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Abstract

In this paper, we apply a weakly-supervised

learning approach for slot tagging using con-

ditional random fields by exploiting web

search click logs. We extend the constrained

lattice training of Täckström et al. (2013) to

non-linear conditional random fields in which

latent variables mediate between observations

and labels. When combined with a novel

initialization scheme that leverages unlabeled

data, we show that our method gives signifi-

cant improvement over strong supervised and

weakly-supervised baselines.

1 Introduction

A key problem in natural language processing

(NLP) is to effectively utilize large amounts of unla-

beled and partially labeled data in situations where

little or no annotations are available for a task of

interest. Many recent work tackled this problem

mostly in the context of part-of-speech (POS) tag-

ging by transferring POS tags from a supervised lan-

guage via automatic alignment and/or constructing

tag dictionaries from the web (Das and Petrov, 2011;

Li et al., 2012; Täckström et al., 2013).

In this work, we attack this problem in the con-

text of slot tagging, where the goal is to find correct

semantic segmentation of a given query, which is an

important task for information extraction and natu-

ral language understanding. For instance, answering

the question “when is the new bill murray movie re-

lease date?” requires recognizing and labeling key

phrases: e.g., “bill murray” as actor and “movie”

as media type.

The standard approach to slot tagging involves

training a sequence model such as a conditional ran-

dom field (CRF) on manually annotated data. An

obvious limitation of this approach is that it relies

on fully labeled data, which is both difficult to adapt

and changing tasks and schemas. Certain films,

songs, and books become more or less popular over

time, and the performance of models trained on out-

dated data will degrade. If not updated, models

trained on live data feeds such as movies, songs and

books become obsolete over time and their accuracy

will degrade. In order to achieve high accuracy con-

tinuously data and even model schemas have to be

refreshed on a regular basis.

To remedy this limitation, we propose a weakly

supervised framework that utilizes the information

available in web click logs. A web click log is a

mapping from a user query to URL link. For ex-

ample, users issuing queries about movies tend to

click on links from the IMDB.com or rottentoma-

toes.com, which provide rich structured data for en-

tities such as title of the movie (“The Matrix”), the

director (“The Wachowski Brothers”), and the re-

lease date (“1999”). Web click logs present an op-

portunity to learn semantic tagging models from

large-scale and naturally occurring user interaction

data (Volkova et al., 2013).

While some previous works (Li et al., 2009) have

applied a similar strategy to incorporate click logs

in slot tagging, they do not employ recent advances

in machine learning to effectively leverage the in-

complete annotations. In this paper, we pursue and

extend learning from partially labeled sequences, in

particular the approach of Täckström et al. (2013).



Instead of projecting labels from a high-resource to

a low-resource languages via parallel text and word

alignment, we project annotations from structured

data found in click logs. This can be seen as a bene-

fit since typically a much larger volume of click log

data is available than parallel text for low-resource

languages.

We also extend the constrained lattice training

method of Täckström et al. (2013) from linear CRFs

to non-linear CRFs. We propose a perceptron train-

ing method for hidden unit CRFs (Maaten et al.,

2011) that allows us to train with partially labeled

sequences. We show that combined with a novel pre-

training methodology that leverages large quantities

of unlabeled data, this training method achieves sig-

nificant improvements over several strong baselines.

2 Model definitions and training methods

In this section, we describe the two sequence mod-

els in our experiments: a conditional random field

(CRF) of Lafferty et al. (2001) and a hidden unit

CRF (HUCRF) of Maaten et al. (2011). Note that

since we only have partially labeled sequences, we

need a technique to learn from incomplete data. For

a CRF, we follow a variant of the training method

of Täckström et al. (2013). In addition, we make

a novel extension of their method to train a HU-

CRF from partially labeled sequences. The result-

ing perceptron-style algorithm (Figure 2) is simple

but effective. Furthermore, we propose an initializa-

tion scheme that naturally leverages unlabeled data

for training a HUCRF.

2.1 Partially Observed CRF

A first-order CRF parametrized by θ ∈ R
d de-

fines a conditional probability of a label sequence

y = y1 . . . yn given an observation sequence x =
x1 . . . xn as follows:

pθ(y|x) =
exp(θ⊤Φ(x, y))

∑

y′∈Y(x) exp(θ
⊤Φ(x, y′))

where Y(x) is the set of all possible label se-

quences for x and Φ(x, y) ∈ R
d is a global fea-

ture function that decomposes into local feature

functions Φ(x, y) =
∑n

j=1 φ(x, j, yj−1, yj) by the

first-order Markovian assumption. Given fully la-

beled sequences {(x(i), y(i))}Ni=1, the standard train-

ing method is to find θ that maximizes the log like-

lihood of the label sequences under the model with

l2-regularization:

θ∗ = argmax
θ∈Rd

N
∑

i=1

log pθ(y
(i)|x(i))−

λ

2
||θ||2

Unfortunately, in our problem we do not have fully

labeled sequences. Instead, for each token xj in se-

quence x1 . . . xn we have the following two sources

of label information:

• A set of allowed label types Y(xj). (Label dic-

tionary)

• A label ỹj transferred from a source data. (Op-

tional: transferred label)

Täckström et al. (2013) propose a different objec-

tive that allows training a CRF in this scenario. To

this end, they define a constrained lattice Y(x, ỹ) =
Y(x1, ỹ1)× . . .× Y(xn, ỹn) where at each position

j a set of allowed label types is given as:

Y(xj , ỹj) =

{

{ỹj} if ỹj is given

Y(xj) otherwise

In addition to these existing constraints, we intro-

duce constraints on the label structure. In our seg-

mentation problem, labels are structured (e.g., some

label types cannot follow certain others). We can

easily incorporate this restriction by disallowing in-

valid label types as a post-processing step of the

form:

Y(xj , ỹj)← Y(xj , ỹj) ∩ Y(xj−1, ỹj−1)

where Y(xj−1, ỹj−1) is the set of valid label types

that can follow Y(xj−1, ỹj−1).

Täckström et al. (2013) define a conditional prob-

ability over label lattices for a given observation se-

quence x:

pθ(Y(x, ỹ)|x) =
∑

y∈Y(x,ỹ)

pθ(y|x)

Given a label dictionary Y(xj) for every token type

xj and training sequences {(x(i), ỹ(i))}Ni=1 where

ỹ(i) is (possibly non-existent) transferred labels for



Figure 1: Illustration of CRFs and hidden unit CRFs

x(i) and, the new training method is to find θ that

maximizes the log likelihood of the label lattices:

θ∗ = argmax
θ∈Rd

N
∑

i=1

log pθ(Y(x
(i), ỹ(i))|x(i))−

λ

2
||θ||2

Since this objective is non-convex, we find a local

optimum with a gradient-based algorithm. The gra-

dient of this objective at each example (x(i), ỹ(i))
takes an intuitive form:

∂

∂θ
log pθ(Y(x

(i), ỹ(i))|x(i))−
λ

2
||θ||2

=
∑

y∈Y(x(i),ỹ)

pθ(y|x
(i))Φ(x(i), y)

−
∑

y∈Y(x(i))

pθ(y|x
(i))Φ(x(i), y)− λθ

This is the same as the standard CRF training except

the first term where the gold features Φ(x(i), y(i))
are replaced by the expected value of features in the

constrained lattice Y(x(i), ỹ).

2.2 Partially Observed HUCRF

While effective, a CRF is still a linear model. To see

if we can benefit from nonlinearity, we use a HU-

CRF (Maaten et al., 2011): a CRF that introduces a

layer of binary-valued hidden units z = z1 . . . zn ∈
{0, 1} for each pair of label sequence y = y1 . . . yn
and observation sequence x = x1 . . . xn. A HUCRF

parametrized by θ ∈ R
d and γ ∈ R

d′ defines a joint

probability of y and z conditioned on x as follows:

pθ,γ(y, z|x) =

exp(θ⊤Φ(x, z) + γ⊤Ψ(z, y))
∑

z′∈{0,1}n

y′∈Y(x,z′)

exp(θ⊤Φ(x, z′) + γ⊤Ψ(z′, y′))

where Y(x, z) is the set of all possible label se-

quences for x and z, and Φ(x, z) ∈ R
d and

Ψ(z, y) ∈ R
d′ are global feature functions that de-

compose into local feature functions:

Φ(x, z) =
n
∑

j=1

φ(x, j, zj)

Ψ(z, y) =

n
∑

j=1

ψ(zj , yj−1, yj)

In other words, it forces the interaction between

the observations and the labels at each position j to

go through a latent variable zj : see Figure 1 for il-

lustration. Then the probability of labels y is given

by marginalizing over the hidden units,

pθ,γ(y|x) =
∑

z∈{0,1}n

pθ,γ(y, z|x)

As in restricted Boltzmann machines (Larochelle

and Bengio, 2008), hidden units are conditionally

independent given observations and labels. This al-

lows for efficient inference with HUCRFs despite

their richness (see Maaten et al. (2011) for details).

2.2.1 Training with partially labeled sequences

We extend the perceptron training method of Maaten

et al. (2011) to train a HUCRF from partially labeled

sequences. This can be viewed as a modification of

the constrained lattice training method of Täckström

et al. (2013) for HUCRFs.

A sketch of our training algorithm is shown in

Figure 2. At each example, we predict the most

likely label sequence with the current parameters. If

this sequence does not violate the given constrained

lattice, we make no updates. If it does, we pre-

dict the most likely label sequence within the con-



Input: constrained lattices {(x(i), ỹ(i))}Ni=1, step size η

Output: HUCRF parameters Θ := {θ, γ}

1. Initialize Θ randomly.

2. Repeatedly select i ∈ {1 . . . N} at random:

(a) y∗ ← argmaxy∈Y(x(i)) pΘ(y|x
(i))

(b) If y∗ 6∈ Y(x(i), ỹ(i)):

i. y+ ← argmaxy∈Y(x(i),ỹ(i)) pΘ(y|x
(i))

ii. Make parameter updates:

Θ← Θ+ η ×
∂

∂Θ

(

pΘ(y
+, z+|x(i))−

pΘ(y
∗, z∗|x(i))

)

where the following hidden units are com-

puted in closed-form (see Gelfand et al.

(2010)):

z+ := argmax
z

pΘ(z|x
(i), y+)

z∗ := argmax
z

pΘ(z|x
(i), y∗)

Figure 2: A sketch of the perceptron training algorithm

for a partially observed hidden unit CRF.

strained lattice. We treat this as the gold label se-

quence, and perform the perceptron updates accord-

ingly (Gelfand et al., 2010). Even though this train-

ing algorithm is quite simple, we demonstrate its ef-

fectiveness in our experiments.

2.2.2 Initialization from unlabeled data

Rather than initializing the model parameters ran-

domly, we propose an effective initialization scheme

(in a similar spirit to the pre-training methods in neu-

ral networks) that naturally leverages unlabeled data.

First, we cluster observation types in unlabeled

data and treat the clusters as labels. Then we train

a fully supervised HUCRF on this clustered data to

learn parameters θ for the interaction between obser-

vations and hidden units Φ(x, z) and γ for the inter-

action between hidden units and labels Φ(z, y). Fi-

nally, for task/domain specific training, we discard

γ and use the learned θ to initialize the algorithm in

Figure 2. We hypothesize that if the clusters are non-

trivially correlated to the actual labels, we can cap-

ture the interaction between observations and hidden

units in a meaningful way.

3 Mining Click Log Data

We propose using search click logs which consist

of queries and their corresponding web documents.

Clicks are an implicit signal for related entities and

information in the searched document. In this work,

we will assume that the web document is structured

and generated from an underlying database. Due

to the structured nature of the web, this is not an

unrealistic assumption (see Adamic and Huberman

(2002) for discussion). Such structural regularities

make obtaining annotated queries for learning a se-

mantic slot tagger almost cost-free.

As an illustration of how to project annotation,

consider Figure 3, where we present an example

taken from queries about video games. In the fig-

ure, the user queries are connected to a structured

document via a click log, and then the document is

parsed and stored in a structured format. Then anno-

tation types are projected to linked queries through

structural alignment. In the following subsections

we describe each step in our log mining approach in

detail.

3.1 Click Logs

Web search engines keep a record of search queries,

clicked document and URLs which reveal the user

behavior. Such records are proven to be useful in

improving the quality of web search. We focus on

utilizing query-to-URL click logs that are essentially

a mapping from queries to structured web docu-

ments. In this work, we use a year’s worth of query

logs (from July 2013 to June 2014) at a commercial

search engine. We applied a simple URL normaliza-

tion procedure to our log data including trimming

and removal of prefixes, e.g. “www”.

3.2 Parsing Structured Web Document

A simple wrapper induction algorithm described in

Kushmerick (1997) is applied for parsing web docu-

ments. Although it involves manually engineering a

rule-based parser and is therefore website-specific, a

single wrapper often generates large amounts of data

for large structured websites, for example IMDB.

Furthermore, it is very scalable to large quantities of

data, and the cost of writing such a rule-based sys-



Figure 3: An example illustrating annotation projection via click-log and wrapper induction.

tem is typically much lower than the annotation cost

of queries.

Figure 4 shows the statistics of parsed web docu-

ments on 24 domains with approximately 500 tem-

plate rules. One of the chosen domains in our ex-

periment, Music, has over 130 million documents

parsed by our approach.

3.3 Annotation Projection via Structural

Alignment

We now turn to the annotation projection step where

structural alignment is used to transfer type annota-

tion from structured data to queries. Note that this is

different from the word-based or phrase-based align-

ment scenario in machine translation since we need

to align a word sequence to a type-value pair.

Let us assume that we are given the user query as

a word sequence, w = w1, w2, . . . , wn and a set of

structured data, s = {s1, s2, . . . , sm}, where si is

a pair of slot-type and value. We define a measure-

ment of dissimilarity between word tokens and slots,

dist(wi, sj) = 1 − sim(wi, sj) where sim(·, ·) is

cosine similarity over character trigrams of wi and

sj . Next we construct a n-by-n score matrix S of

which element is maxj dist(wt′...t, sj) meaning that

a score of the most similar type-value sj and a seg-

ment {t′ . . . t} where 1 ≤ t′ < t ≤ n. Finally,

given this approximate score matrix S, we use a dy-

namic programming algorithm to find the optimal

segments to minimize the objective function:

T (t) = min
t′<t

T (t′)S(t′, t).

Our approach results in a large amount of high-

quality partially-labeled data: 314K, 1.2M, and

1.1M queries for the Game, Movie and Music do-

main, respectively.

4 Experiments

To test the effectiveness of our approach, we per-

form experiments on a suite of three entertainment

domains for slot tagging: queries about movies, mu-

sic, and games. For each domain, we have two types

of data: engineered data and log data. Engineered

data is a set of synthetic queries to mimic the be-

havior of users. This data is created during devel-

opment at which time no log data is available. Log

data is a set of queries created by actual users us-

ing deployed spoken dialogue systems: thus it is di-

rectly transcribed from users’ voice commands with

automatic speech recognition (ASR). In general we

found log data to be fairly noisy, containing many

ASR and grammatical errors, whereas engineered

data consisted of clean, well-formed text.

Not surprisingly, synthetic queries in engineered

data are not necessarily representative of real queries

in log data since it is difficult to accurately simu-

late what users’ queries will be before a fully func-

tioning system is available and real user data can

be gathered. Hence this setting can greatly benefit

from weakly-supervised learning methods such as

ours since it is critical to learn from new incoming

log data. We use search engine log data to project

lattice constraints for weakly supervised learning.

In this setup, a user issues a natural language

query to retrieve movies, music titles, games and/or

information there of. For instance, a user could say
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Figure 4: Statistics of structured web documents. The vertical axis shows the number of documents (in millions); the

horizontal axis shows the web domain types.

“play the latest batman movie” or “find beyonce’s

music”. Our slot sequence tagger is trained with

variants of CRF using lexical features, gazetteers,

Brown clusters and context words. The domains

consist of 35 slot types for movies, 25 for music and

24 for games. Slot types correspond to both named

entities (e.g., game name, music title, movie name)

as well as more general categories (genre, media

type, description). Table 1 shows the size of the

datasets used in our experiments.

Domains Training Test

games 32017 5508

movies 48173 7074

music 46377 8890

Table 1: Labeled data set size for games, movies and mu-

sic domains partitioned into training and test set.

Domains Engineered Log Diff.

games 89.63 68.58 21.05

movies 88.67 74.21 14.45

music 88.77 37.13 51.64

AVG. 89.02 59.97 29.05

Table 2: The difference in F1 performance of CRF mod-

els trained only on engineered data but tested on both en-

gineered and log data.

4.1 Discrepancy between Engineered Data and

Log Data

To empirically highlight the need for learning from

real user queries, we first train a standard CRF on

the (fully labeled) engineered data and test it on the

log data. We have manually annotated some log data

for evaluation purposes. For features in the CRF, we

use n-grams, gazetteer, and clusters. The clusters

were induced from a large body of unlabeled data

which consist of log data and click log data. Table 2

shows the F1 scores in this experiment. They indi-

cate that a model fully supervised with engineered

data performs very poorly on log data. The differ-

ence between the scores within engineered data and

the scores in log data is very large (29.05 absolute

F1).

4.2 Experiments with CRF Variants

Our main contribution is to leverage search log data

to improve slot tagging in spoken dialogue systems.

In this section, we assume that we have no log data

in training slot taggers.1

For parameter estimation, both CRFs and

POCRFs employ L-BFGS, while POHUCRF uses

1In practice, this assumption is not necessarily true because

a deployed system can benefit from actual user logs. However,

this controlled setting allows us to show the benefits of employ-

ing web search click log data.



Domains games music movies AVG.

CRF 74.21 37.13 68.58 59.97

POCRF 77.23 44.55 76.89 66.22

POHCRF 78.93 46.81 76.46 67.40

POHCRF+ 79.28 47.35 78.33 68.32

Table 3: The F1 performance of variants of CRF across

three domains, test on log data

average perceptron. We did not see a significant dif-

ference between perceptron and LBFGS in accuracy,

but perceptron is faster and thus favorable for train-

ing complex HUCRF models. We used 100 as the

maximum iteration count and 1.0 for the L2 regular-

ization parameter. The number of hidden variables

per token is set to 300. The same features described

in the previous section are used here.

We perform experiments with the following CRF

variants (see Section 2):

• CRF: A fully supervised linear-chain CRF

trained with manually labeled engineered sam-

ples.

• POCRF: A partially observed CRF of

Täckström et al. (2013) trained with both

manually labeled engineered samples and click

logs.

• POHUCRF: A partially observed hidden unit

CRF (Figure 2) trained with both manually la-

beled engineered samples and click logs.

• POHUCRF+: POHUCRF with pre-training.

Table 3 summarizes the performance of these

CRF variants. All results were tested on log data

only. A standard CRF without click log data yields

59.97% of F1 on average. By using click log data,

POCRF consistently improves F1 scores across do-

mains, resulting into 66.22% F1 measure. Our

model POHUCRF achieves extra gains on games

and music, achieving 67.4% F1 measure on aver-

age. Finally, the pre-training approach yields signif-

icant additional gains across all domains, achieving

68.32% average performance. Overall we achieve

a relative error reduction of about 21% over vanilla

CRFs.

Domain CRF HUCRF HUCRF+

alarm 91.79 91.79 91.96

calendar 87.60 87.65 88.21

communication 91.84 92.49 92.80

note 87.72 88.48 88.72

ondevice 89.37 90.14 90.64

places 88.02 88.64 88.99

reminder 87.72 89.21 89.72

weather 96.93 97.38 97.63

AVG. 90.12 90.75 91.08

Table 4: Performance comparison between HUCRF and

HUCRF with pre-training.

4.3 Weakly-Supervised Learning without

Projected Annotations via Pre-Training

We also present experiments within Cortana per-

sonal assistant domain where the click log data is

not available. The amount of training data we used

was from 50K to 100K across different domains and

the test data was from 5k to 10k. In addition, the

unlabeled log data were used and their amount was

from 100k to 200k.

In this scenario, we have access to both engi-

neered and log data to train a model. However, we

do not have access to web search click log data. The

goal of these experiments is to show the effective-

ness of the HUCRF and pre-training method in the

absence of weakly supervised labels projected via

click logs. Table 4 shows a series of experiments on

eight domains.

For all domains other than alarm, using non-linear

CRF (HUCRF) improve performance from 90.12%

to 90.75% on average. Initializing HUCRF with pre-

training (HUCRF+) boosts the performance up to

91.08%, corresponding to a 10% decrease in error

relative to a original CRF. Notably in the weather

and reminder domains, we have relative error re-

duction of 23 and 16%, respectively. We speculate

that pretraining is helpful because it provides bet-

ter initialization for training HUCRF: initialization

is important since the training objective of HUCRF

is non-convex.

In general, we find that HUCRF delivers better

performance than standard CRF: when the training

procedure is initialized with pretraining (HUCRF+),

it improves further.



5 Related Work

Previous works have explored weakly supervised

slot tagging using aligned labels from a database as

constraints. Wu and Weld (2007) train a CRF on

heuristically annotated Wikipedia articles with rela-

tions mentioned in their structured infobox data. Li

et al. (2009) applied a similar strategy incorporating

structured data projected through click-log data as

both heuristic labels and additional features. Knowl-

edge graphs and search logs have been also consid-

ered as extra resources (Liu et al., 2013; El-Kahky et

al., 2014; Anastasakos et al., 2014; Sarikaya et al.,

2014; Marin et al., 2014).

Distant supervision methods (Mintz et al., 2009;

Riedel et al., 2010; Surdeanu et al., 2012; Agichtein

and Gravano, 2000) learn to extract relations from

text using weak supervision from related structured

data sources such as Freebase or Wikipedia. These

approaches rely on named entity recognition as a

pre-processing step to identify text spans corre-

sponding to candidate slot values. In contrast, our

approach jointly segments and predicts slots.

Works on weakly supervised POS tagging are

also closely related to ours (Toutanova and Johnson,

2007; Haghighi and Klein, 2006). Täckström et al.

(2013) investigate weakly supervised POS tagging

in low-resource languages, combining dictionary

constraints and labels projected across languages via

parallel corpora and automatic alignment. Our work

can be seen as an extension of their approach to the

structured-data projection setup presented by Li et

al. (2009). A notable component of our extension is

that we introduce a training algorithm for learning a

hidden unit CRF of Maaten et al. (2011) from par-

tially labeled sequences. This model has a set of bi-

nary latent variables that introduce non-linearity by

mediating between observations and labels.

6 Conclusions

In this paper, we applied weakly-supervised learn-

ing approach for slot tagging, projecting annota-

tions from structured data to user queries by lever-

aging click log data. We extended the Täckström

et al. (2013) model to nonlinear CRFs by introduc-

ing latent variables and applying a novel pre-training

methodology. The proposed techniques provide an

effective way to leverage incomplete and ambiguous

annotations from large amounts of naturally occur-

ring click log data. All of our improvements taken

together result in a 21% error reduction over vanilla

CRFs trained on engineered data used during system

development.
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