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Abstract

We address the problem of weakly supervised semantic

segmentation. The training images are labeled only by the

classes they contain, not by their location in the image. On

test images instead, the method must predict a class label

for every pixel. Our goal is to enable segmentation algo-

rithms to use multiple visual cues in this weakly supervised

setting, analogous to what is achieved by fully supervised

methods. However, it is difficult to assess the relative useful-

ness of different visual cues from weakly supervised training

data. We define a parametric family of structured models,

where each model weighs visual cues in a different way. We

propose a Maximum Expected Agreement model selection

principle that evaluates the quality of a model from the fam-

ily without looking at superpixel labels. Searching for the

best model is a hard optimization problem, which has no

analytic gradient and multiple local optima. We cast it as

a Bayesian optimization problem and propose an algorithm

based on Gaussian processes to efficiently solve it. Our sec-

ond contribution is an Extremely Randomized Hashing For-

est that represents diverse superpixel features as a sparse

binary vector. It enables using appearance models of visual

classes that are fast at training and testing and yet accurate.

Experiments on the SIFT-flow data-set show a significant

improvement over previous weakly supervised methods and

even over some fully supervised methods.

1. Introduction

In this paper we consider the problem of semantic seg-

mentation, where a label must be predicted for every pixel

in an image (e.g. ”dog”, ”car” or ”road”). This is a fun-

damental and challenging problem in computer vision. The

standard approach is to train with full supervision, where

every pixel is manually labeled [1, 2, 3, 4, 5]. Producing this

annotation is very time-consuming. Recently, a few weakly

supervised methods have emerged [6, 7], which can train

from image labels indicating which classes are present, but

without pixel-level labels. This setting increases the chal-

lenge, as pixel labels for the training set have to be inferred

before a method is ready to label a novel test image.

Visual classes are intrinsically varied and complex. In

fully supervised semantic segmentation, models that have

complex structure [1, 2] or that leverage a diverse and large

set of visual features [8] achieve state-of-the-art perfor-

mance. Also for fully supervised object detection, [9] re-

ported outstanding results by using multiple kernel learning

to integrate diverse feature sets into one model. Features are

usually integrated in a weighted sum [8, 9], where weights

correspond to the usefulness of features. Weights are es-

timated on the training set by minimizing the discrepancy

between the model output and ground-truth annotations.

However, in the weakly supervised case pixel labels are not

available, which makes it impossible to directly adapt the

weights.

Our goal is to enable weakly supervised algorithms to

benefit from a rich and diverse set of visual features and

structured models. We formulate semantic segmentation as

a pairwise CRF, as in other works [1, 7, 5, 6]. The task of

the model is to infer latent superpixel labels in training im-

ages and learn appearance models of classes. We consider a

parametric family of CRF models. In this family, differ-

ent models give different mixing weights to different vi-

sual similarity metrics between superpixels (color, texture,

e.t.c.), and also have a different weighting of the pairwise

vs. unary potentials. We propose a model selection criterion

that evaluates the quality of each model in the family, with-

out looking at superpixel labels. Finding the best model is a

difficult optimization problem with many local maxima and

no analytic gradient. We cast this problem into a Bayesian

optimization framework and propose an efficient method for

solving it based on Gaussian Processes.

Our second contribution is an improved representation

of the appearance models of semantic classes. On one hand,

appearance models should be flexible and leverage a diverse

set of visual features. On the other hand, learning and pre-

diction must be efficient, because during the model selec-

tion phase they are performed at every optimization step. To

satisfy both requirements, we propose the Extremely Ran-

domized Hashing Forest (ERHF), which is capable of map-

ping almost any feature space into a sparse, binary repre-

sentation. This choice enables us to use a very simple and
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Figure 1. Schematic illustration of Expected Agreement evaluation. It proceeds by 1. estimating parameters θ′ from weak labels {Y j}τ2
of data-set τ2 2. using θ2 predicting labels {ŷji }τ1 for superpixels {xji}τ1 from data-set τ1 3. inferring labels {yji }τ1 from weak labels

{Y j}τ1 of data-set τ1 4. comparing {yji }τ1 and {ŷji }τ1 . Notice, that on step 2, data-set τ1 is treated as a test set - labels {Y j}τ1 are not

used.

efficient Naive Bayes model, while still leveraging diverse

feature sets.

Our experiments on the challenging SIFT-flow data-

set [10] show that the above contributions significantly im-

prove semantic segmentation accuracy over a state-of-the-

art weakly supervised method [6] and even over a fully su-

pervised method [5].

2. Weakly supervised multiple features inte-

gration

We start by setting up the problem and notation.

Images are represented by their superpixels, obtained

by an oversegmentation algorithm [11]. Let τ =
{

Ij =
(

{xji}
Nj

i=1, Y
j
)}N

j=1
be the training set, where im-

age Ij consists of superpixels x
j
i . For each image we are

given a label set Y j ⊂ Y , which is a subset of the set of

all possible labels Y ={1, ..., C}, corresponding to classes.

Each superpixel x
j
i has an associated latent label y

j
i ∈ Y j .

The image label set Y j is the union of the (unknown) labels

of all superpixels inside it (Y j =
⋃

y
j
i ). The task of weakly

supervised learning is to recover the latent labels y
j
i and to

learn appearance models for the classes. These models will

later help to predict superpixel labels in new test images.

2.1. Segmentation model

We model the weakly labeled training set as a CRF,
where nodes correspond to latent superpixel labels. CRF
is a widely adopted model for semantic segmentation, both
in fully [1, 2, 5] and weakly [6, 7] supervised approaches.
The total energy E of the model is a function of the super-

pixel labels y
j
i , the appearance model parameters θ and the

weights α = (α0, α1, ..., αk):

E
(

{yji }, θ,α
)

= α0

∑

x
j
i
∈Ij ;Ij∈τ

ψ
(

y
j
i , x

j
i , θ, Y

j
)

+

(1− α0)

K
∑

k=1

αk







∑

(y
j
i
,y

j′

i′
)∈Ek

φk

(

y
j
i , y

j′

i′
, x

j
i , x

j′

i′

)






(1)

The unary potential ψ
(

y
j
i , x

j
i , θ, Y

j
)

measures how well

the appearance of x
j
i matches the appearance model θ

y
j

i
of

class y
j
i , and whether y

j
i belongs to the given image label

set Y j .

Each pairwise potential φk encourages connected super-
pixels to take the same label if their appearance similarity is
high

φk

(

y
j
i , y

j′

i′
, x

j
i , x

j′

i′

)

=

{

1−Dk

(

x
j
i , x

j′

i′

)

y
j
i 6= y

j′

i′

0 y
j
i = y

j′

i′

(2)

where Dk

(

x
j
i , x

j′

i′

)

: R → [0, 1] is a similarity metric.

Each Dk corresponds to a different measure of visual simi-

larity such as colour, texture, etc. Note that the φk potentials

are submodular, since 1−Dk

(

x
j
i , x

j′

i′

)

≥ 0 holds always.

The model in (1) has a set of pairwise potentials

{φk}
K
k=1, each weighted by αk ≥ 0, with

∑K

k=1 αk = 1.

The weight α0 ∈ [0, 1] controls the overall balance be-

tween pairwise and unary potentials. The pairwise poten-

tials {φk}
K
k=1 are defined on their own set of edges Ek.

Since any αk can be set to zero, α also controls the structure

of the model.

The pairwise potentials are typically used to encourage

smooth segmentations, by connecting neighbouring super-

pixels in individual images [4, 2, 12]. In the weakly su-

pervised setting, recently [6] has shown that it is useful

to also introduce pairwise potentials connecting superpixels

between different training images that share a label. Such

potentials encourage superpixels with similar appearance to

assume the same label values. The potentials have been

shown to facilitate inferring latent superpixel labels and to

regularize learning of appearance models. Overall, they are

important for the accuracy of weakly supervised methods.

The notation we introduce above subsumes both type of po-

tentials, depending on the definition of the edge set Ek.

Learning appearance models θ and recovering {yji }. If

the weights α are fixed, then θ and {yji } can be obtained by



alternating optimization [6]: i) fix labeling {yji } and learn θ;

ii) fix θ and infer {yji }. The first step corresponds to super-

vised learning of appearance models and can be solved effi-

ciently for a wide range of appearance models [5, 4, 1]. The

second step is a discrete, multi-label submodular optimiza-

tion problem, which can be solved to a good approximation

by alpha-expansion [13].

2.2. Expected Agreement criterion for selecting α

In this section we present our novel criterion for select-

ing weights α in the weakly supervised setting. Direct opti-

mization of eq. (1) over α yields a trivial solution. We must

set α0 = 1, so that the pairwise potentials are completely

ignored. The same phenomenon arises in other domains, for

example, if we try to select the weight C of the regularizer

in a SVM, or k in k-means, by optimizing their loss on the

training set. This selection would always prefer the least

possible regularization and the largest data (over)-fit.

In this paper, we take a model selection view on this

problem and we propose an Expected Agreement criterion,

inspired by clustering validation works [14] in unsupervised

learning. Each different setting of α defines a model for

which a method to learn θ and infer {yji } is known (see pre-

vious subsec.). The goal is to select the best model among

the family defined by all possible α. The challenge is how

to evaluate the quality of a model without looking at super-

pixels labels. Our answer is: a model is better if it pro-

duces consistent results on different subsets of the training

data. More precisely, the superpixel labeling produced by

training on a subset τ1 should be as close as possible to

the labeling obtained by training on another subset τ2 and

then ‘testing’ on τ1. Both τ1 and τ2 are weakly supervised

i.i.d samples from the same distribution. During testing, the

image-level labels of τ1 are concealed.

Let L :
(

α, {xji}τ1 , {Y
j}τ1

)

→
(

θ, {yji }τ1

)

be the

learning algorithm, that given α and a weakly supervised

training subset τ1 learns appearance model θ and recovers

superpixel labels {yji }τ1 . Let f :
(

θ,α, {xji}τ2

)

→ {ŷji }τ2
be a prediction function, that given parameters θ,α pre-

dicts superpixel labels {ŷii}τ2 for another subset τ2. The

Expected Agreement induced by α is:

A(α) = Eτ1,τ2

1

|Y|

∑

l∈Y





1

#{yji = l}

∑

x
j

i
∈τ1,y

j

i
=l

I{ŷj

i
=y

j

i
}





s.t. {yji } = L
(

α, {xji}τ1 , {Y
j}τ1

)

(3)

θ′ = L
(

α, {xji}τ2 , {Y
j}τ2

)

, {ŷji } = f(θ′,α, {xji}τ1)

This expression measures the expectation of the average

per-class accuracy of the model trained on τ2 and tested

on τ1, as if the labels recovered by training on τ1 were the

ground-truth. In practice, τ1 and τ2 are random disjoint sub-

sets of a training set. Figure illustrates the process.

It is important to note how the criterion we propose to

evaluate a model does not involve any additional parame-

ter, which would otherwise defeat its purpose. We choose

the average per-class accuracy because it avoids bias toward

classes that cover larger image areas, such as sky or grass. It

also naturally penalizes a model that maximizes agreement

simply by predicting very few labels overall.

2.3. Gaussian Processes for optimization

How can we find α that maximizes A(α) from eq. (3)?

Notice that A(α) has no analytic gradient and typically has

multiple local maxima. We follow the Bayesian optimiza-

tion framework [15] and define a distribution over possible

realizations of A(α) using Gaussian Processes (GP) [16]

A(α) ∼ GP (m(α), k(α,α′)) (4)

where m(α) is a mean function and k(α,α′) is a covari-

ance function. Here the mean function is zero m(α) = 0
and the covariance (kernel) is squared exponential:

k(α,α′) = γ exp

(

−
1

2
(α−α

′)T diag(υ)−2(α−α
′)

)

(5)

where υ is a vector of hyperparameters, which regulates the

influence of each element of α on the output of the kernel;

γ regulates the overall scale (signal variance).

Suppose we have already evaluated A for t different

αi, thereby acquiring pairs {αi, si}, where si = A(αi).
Let K be a kernel matrix Ki,j = k(αi,αj). Consider

now a new point α′, for which A(α′) is unknown. Let

k = [k(α′,α1), k(α
′,α2), ..., k(α

′,αt)]. Then a predic-

tive distribution for α′ is:

A(α′) = N
(

µt(α
′), σ2

t (α
′)
)

(6)

where

µt(α
′) = k

TK−1
s1:t

σ2
t (α

′) = k(α′,α′)− k
TK−1

k (7)

We are now ready to formulate the optimization strategy,

known as upper confidence bound (GP-UCB) [17]

αt+1 := argmax
α

(

µt(α) + βσ2
t (α)

)

(8)

The expectation µt(αt) represents the estimate of the

function value st at point αt. Variance σ2
t (αt+1) is an in-

verse of certainty of the estimate. By looking at both the

mean µt(αt+1) and variance σ2
t (αt+1) GP-UCB trades off

exploitation and exploration - a point is queried if its ex-

pected value is high or if certainty is low, thus dealing with

the problem of local maxima (fig. 2).
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Figure 2. Illustration of AdaGP-UCB for one-dimensional function maximization. Each panel corresponds to one iteration. The three

curves represent the true function (black), the current GP estimate (blue), and the upper confidence bound (UCB, green). A red cross

represents a queried point, a red circle the point with the maximum UCB, which is the next query. At iteration t+1 algorithm gets stuck

in local maximum due to false certainty of current approximation. The kernel is then scaled at t+2 and in the end at iteration T the true

optimum is found.

Finding hyperparameters υ and γ. In the traditional ap-

plication of GPs for regression, υ is estimated by maximiz-

ing the likelihood of the training data [16]. This concept

is applied in a straightforward manner to our case by re-

estimating υ, γ after each new measurement arrives. How-

ever, our samples {α1:t, s1:t} are not i.i.d, because they are

actively selected. Hence maximum likelihood estimate is

not reliable. GP-UCB is especially vulnerable in the be-

ginning, when only a few samples have been observed. In

this case, a very smooth function (small values of γ) yields

high likelihood and, therefore, it results in false certainty

and low values of σt(αt+1), leading to pure exploitation. In

consequence, the algorithm gets stuck, returning the same

value αt+1 = αt over and over again. We propose a sim-

ple heuristic to avoid this behavior. Whenever αt+1 = αt,

we scale γ by a fixed factor, lowering the confidence and

stimulating exploration. We call this procedure Adaptive

GP-UCB (AdaGP-UCB) and summarize it in Alg. 1. The

algorithm is run either for a given number of iteration or

until k consecutive queries αn:n+k return the expected val-

ues sn:n+k = µ(αn:n+k). The latter case means that the

function value is well-approximated and no new informa-

tion is being gained.

Algorithm 1 AdaGP-UCB

INPUT: Initial measurements {α1:t0 , s1:t0},

covariance function K, β, scaling factor λ,

maximum number of evaluations T .

OUTPUT: α∗

1: for t = t0 + 1 : T do

2: estimate υt, γt using maximum likelihood

3: αt+1 := argmaxα
(

µt(α) + βσ2
t (α)

)

4: while αt+1 = αt do

5: scale γt := λγt
6: αt+1 := argmaxα

(

µt(α) + βσ2
t (α)

)

7: end while

8: end for

3. Appearance models via Extremely Random-

ized Hashing Forest

Here we detail our classifier and feature representations

for the appearance models used in unary potential in ψ. Ev-

ery iteration of Alg. 1 involves training and inference for

a model defined by αt. In turn, this involves several iter-

ations of estimating θ and inferring {yji } (sec. 2). There-

fore the estimation of the appearance model parameters θ

must be computationally efficient. On the other hand, the

visual variability of semantic classes demands rich features

and a flexible appearance model [8]. To satisfy both re-

quirements, we propose to use a Naive Bayes classifier on

top of an intermediate representation obtained by our novel

method - Extremely Randomized Hashing Forests (ERHF).

Unlike a regular random forest, we employ ERHF for fea-

ture representation, not for classification. It hashes in-

stances x from the original feature space into buckets cor-

responding to its leafs.

ERHF is an ensemble of decision trees. Each internal

node splits the space of data in half. At test time, an instance

x is passed through each tree and the indices of leaves it

reaches are recorded. The instance x is then represented

by a sparse binary vector b, where the entry b[l] = 1 if

x reaches leaf l (and b[l] = 0 otherwise). Here l indexes

leaves of all trees, thus b has as many elements as the total

number of leaves in all trees (see Figure 3).

During training, we build the forest in a completely ran-

domized way, without looking at any class labels. Binary

split functions are chosen at random for each node. Data

is used only to avoid trivial splits, that have zero samples

on one side. This protocol avoids all issues related to weak

supervision, since no class labels are used. Training is per-

formed only once and the ERHF is kept fixed. We can use

any initial representation of xi, as long as we can define

appropriate binary functions on it. We can combine ar-

bitrary heterogeneous features such as colour, texture and

SIFT histograms, superpixel area and location, GIST, and

so on. ERHF will transform them into a convenient sparse

representation.



Figure 3. The mapping of an instance x ∈ R
d to a binary represen-

tation by ERHF with two trees is depicted. Every leaf corresponds

to an element of a vector b, being 1 if an instance fall into it and 0
otherwise.

Naive Bayes appearance model. Training a Naive Bayes

classifier on top of the binary feature representation output

by ERHF is very efficient. Our goal is to learn matrix θ,

where θ[c, l] = P (b[l] = 1|c) defines the likelihood that a

sample of class c will reach leaf l. LetB be an ERHF repre-

sentation matrix, where each column B[:, i] is a binary rep-

resentation of superpixel xi
1. Matrix C is a binary matrix,

where each column is associated with a superpixel and each

row with a label; C[c, i] = 1 if a superpixel xi is currently

labeled by class c. Then θ̂ = BCT . Since both matrices

are very sparse, their multiplication and storage is very ef-

ficient. To obtain final parameters θ we normalize rows of

θ̂.

The appearance model is defined as:

f (c, xi, θ) = P (c)
∏

l:B[l,i]=1

P (B[l, :]|c). (9)

Then Ψ = BT diag(P (c))θ, where Ψi,c = g (c, xi, θ).

Initial superpixel features are taken from [8]. They con-

stitute a wide range of visual characteristics of a superpixel,

like texture, colour, keypoints, size, location, GIST and so

on. We choose binary functions for ERHF to be linear func-

tions for each feature group. Thus when a node is being

split: i) a feature group is chosen at random ii) a random

hyperplane that splits data in non trivial way is chosen.

4. Generalized MIM

In this section we detail the particular segmentation

model we use - the Generalized Multi-Image Model

(GMIM), which generalizes the original Multi-Image

Model [6].

E
(

{yji },α, θ
)

= α0

∑

x
j
i
∈Ij ;Ij∈τ

(

ψ
(

y
j
i , x

j
i , θ

)

+ π(yji , Y
j
i )

)

+

1We skip image index for superpixels here and use a continuous num-

bering of all superpixels in the training set.

(1− α0)

K
∑

k=1

αk







∑

(y
j
i
,y

j′

i′
)∈Ek

φk

(

y
j
i , y

j′

i′
, x

j
i , x

j′

i′

)






(10)

As most of the other CRFs for segmentation [1, 2, 3, 4,

5, 6], GMIM fits in the general class captured by eq. (1).

For clarity, here we decompose the unary potential in two.

The first unary potential ψ (y, x, θ) = − log g (y, x, θ) cor-

responds to appearance models parameterized by θ and de-

scribed in the previous section.

The second unary potential π(yji , Y
j
i ) enforces a super-

pixel to take a label from the label set Y j of the image

π(yji , Y
j
i ) =

{

∞ y
j
i 6∈ Y j

0 y
j
i ∈ Y j

(11)

The edge set Ek over which the pairwise potential is de-

fined is built by a simplified algorithm from the original

MIM work [6]. For each y
j
i , the algorithm selects the pmost

similar superpixels from each image I l which shares a label

with the image Ij where y
j
i comes from: I l : Y l ∩ Y j 6= ∅.

This list is then pruned to the q most similar superpixels

overall. Finally, y
j
i is connected to the y variables of these

q superpixels. The reasons for this procedure is to keep the

edge set down to a manageable size, while sacrificing little

in terms of modeling accuracy. In fact, the pairwise poten-

tial (11) gives very low energy to superpixels of dissimi-

lar appearance regardless of their labels, and therefore only

connections between similar superpixels matter. As in [18],

we can interpret Ek as a model for the manifolds formed by

superpixels in the space defined by the similarity metricDk.

Pairwise potentials penalize labelling {yji } that cut through

these manifolds.

The original MIM [6] has only one pairwise potential

(K = 1). In GMIM instead we have a set of pairwise poten-

tials {φk}. Each is defined on a different set of edges Ek,

corresponding to 6 different similarity metrics (K = 6).

All metrics are based on the χ2 distance for histograms of

quantized i) SIFT [19] ii) colour and ii) texture features inte-

grated over the superpixel. We use the code released by [8]

to compute these histograms.

4.1. Segmenting a test image.

Assuming all the parameters of GMIM
(

α
∗, θ∗, {yji }

)

have been learned, a new image It can be segmented in the

same way as for the original MIM [6]. First, the few training

images most globally similar to It are retrieved, using a

pre-trained multiple kernel metric [20]. We then derive an

estimation of image-level label probabilities for It, called

image-level prior (ILP) [4], by histogramming the labels of

the retrieved training images. Finally, the following energy

is minimized to label the superpixels yti of It



Method [5] [10] [8] [6] GMIM

supervision full full full weak weak

average acc. 13 24 29 14 21

Table 1. Results on SIFT-flow data-set [10]. All methods that, to

our knowledge, reported results on the this data-set are presented,

both weakly and fully supervised. Our GMIM ranks third, sur-

passing fully supervised TextonBoost [5] and reaching close to

SIFT-flow based [10].

E
(

{yti}
)

= α
∗

0

∑

i

(

ψ
(

y
t
i , x

t
i, θ

∗
)

+ µ
(

y
t
i , I

t
))

+

MainResults

+ (1− α
∗

0)

K
∑

k=1

α
∗

k







∑
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i
,y

j

i′
)∈Et

k

φk

(

y
t
i , y

j

i′
, x

t
i, x

j

i′

)






(12)

The first unary potential ψ (yti , x
t
i, θ

∗) measures how well

xti matches the appearance model of class θ∗
yt
i

The second

unary potential µ is ILP, which can be seen as a soft version

of π in eq. (10). The pairwise potentials φk connect each

test image superpixel yti to its 3 most similar (according

to Dk) superpixels in each retrieved training image. Note

how superpixel labels y
j
i from the training images are fixed,

which facilitates optimization.

5. Related work

Our proposed GMIM generalizes previous works on

weakly supervised semantic segmentation [7, 6, 21]. The

latent aspect model [7] is a special case of GMIM with pre-

fixed α, no pairwise potentials between images, and a spe-

cific way of estimating θ and inferring {yji }. The Multi-

Image Model [6] (MIM) is a special case of GMIM with a

single pairwise potential between images (constructed via

a Semantic Texton Forest from [21]). Moreover, in this

work the balance between the unary and pairwise potentials,

regulated by α0 is also learned using our model selection

principle from weakly supervised data. Instead, in previous

weakly supervised works it was set heuristically or based

on a labeled validation set [7, 6].

GMIM is also related to fully supervised semantic seg-

mentation approaches. In [8] multiple visual cues (SIFT,

colour and position cues) were used, but only for unary po-

tentials. In GMIM multiple visual cues are used in both

unary and pairwise potentials. In supervised learning in

general, the weights α of a CRF are often learned using

structured SVM [22]. However, these cannot be applied in

the weakly supervised case, as the loss function would need

to observe superpixel labels in the training set. Instead, in

our work annotation comes only in the form of image la-

bels. Because the CRF itself is used for inferring the label-

ing {yji } of the training set, its weights α have to be selected

by a meta-principle.

The Expected Agreement principle is inspired by model

selection for clustering [14]. Out of a parametric set of clus-

tering models (e.g. choosing k for k-means) these tech-

niques prefer a model that produces consistent results on

resampled versions of the data.

Using Gaussian Processes for global optimization of

”black-box” functions [15] is a recent idea that has been

used in problems where no analytic gradient is available

and the function is expansive to evaluate, e.g. when solv-

ing bandits problems [17] or learning user preferences [23].

The hyperparameters υ, γ of the GP are usually assumed

to be given beforehand. One strategy [15] is Bayesian in-

tegration over the hyperprior, but it is only computationally

feasible for very low dimensional domains. The dimension-

ality of υ plus γ in our experiments is 7, which is already

prohibitive for that approach. Instead of integrating results

over all possible υ and γ, our AdaGP-UCB first commits

to the parameters with the highest likelihood. Whenever

the algorithm gets stuck, γ is scaled. This corresponds to

switching to a less smooth prior over possible functions and

have higher uncertainty, hence stimulating exploration.

Random Forests [24] have recently gained popularity in

computer vision [4, 25, 26]. Our use of RF is different from

common practice. The structure of the forest is trained in

an unsupervised way and is used for reformatting the rep-

resentation of the image features, not for classifying them.

ERHF presents a view on RF as hashing, i.e. samples are

hashed into buckets corresponding to leafs. This allows

fast (re)-training of appearance models, which is valuable in

weakly supervised learning. In principle, we could use non-

parametric approach from [8] to integrate multiple features

into appearance models, but its computational complexity

is prohibitive.

6. Experimental results

We present experiments on the LabelMe subset intro-

duced in [10] (called the SIFT-flow data-set). This data-

set with 2668 images and 33 classes is very challenging.

It is best suited for our task, as all classes are labeled in

all images and there is significant co-occurrence between

classes. Moreover, the large size of the data-set allows to

perform model validation without suffering from a small

sample size. The standard performance measures in seman-

tic segmentations are the total measure (percentage of cor-

rectly classified pixels) and the average per-class measure

(percentage of correctly classified pixels for a class, aver-

aged over all classes) [1, 2, 3, 4, 5]. The average measure is

preferable as it gives equal contribution to classes, regard-

less of how large they appear in the images (e.g. dog vs

sky). [6, 4]

Experimental protocol. We use standard train/test

split [8, 10], consisting of 2488/200 images. We split the

training data into two equal parts τ1 and τ2 and use them
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Figure 4. Performance of AdaGP-UCB. The x axis show iterations

and the y axis shows the ratio between the current maximum and

the global maximum. We compare to GP-UCB without scaling

heuristic and to random search.

for model selection (sec. 2) to obtain the weights α, us-

ing AdaGP-UCB for optimization. When α is set, we use

the recovered superpixel labels {yji } from both τ1 and τ2
to estimate the final appearance models θ∗ (sec. 3). After

training, we apply the model to segment all images in the

test set (sec. 4.1) and report the accuracy. In a summary, all

parameters of our GMIM model are automatically selected

by looking only at image labels in the training set. Pixel

labels are used only to report final accuracy on test set.

Results. Results on the test set are reported in table 1.

GMIM substantially outperforms the best existing weakly

supervised approach [6], which in turn was demonstrated

on the easier MSRC21 data-set [5] to outperform earlier

weakly supervised methods [7, 21]. Moreover, GMIM sur-

passes the fully supervised TextonBoost [5], and reaches

a performance comparable to the modern fully supervised

non-parametric method [10]. However, the very recent

state-of-the-art fully supervised method [8] achieves even

higher performance. Overall, this comparison shows that

GMIM can perform in the range of some fully supervised

approaches on a highly challenging data-set, despite train-

ing from weak supervision. As a side note, on the training

set we recover superpixel labels with 56% per class accu-

racy.

6.1. Evaluation of components.

Here we study the influence of our proposed novel com-

ponents: i) learning the weights of multiple similarity met-

rics α ii) learning balance α0 between unary and pairwise

term iii) ERHF.

Baselines and protocol. We run grid search over α. Vec-

tor α lives in a 7 dimensional space, where α0 ∈ [0, 1]

and
∑6

k=1 αk = 1, α1:k ≥ 0. We produce a regular grid

over the simplex for α1:k and over the [0, 1] interval for α0

at 0.1 steps. Each point on the grid defines a model. We

choose the model using the Expected Agreement criterion

and compare to the following baselines. As a first baseline,

we set α to simply average all similarity metrics, and set

α0 = 0.5, giving equal important to unary and pairwise po-

ERHF Histograms

Setup Av. acc. Setup Av. acc.

MEA 21 MEA 19

average 6 average 5

best* α 21 best* α 20

best* α0 + average 17 best* α0 + average 17

Table 2. Comparison of different settings of α and choice of fea-

ture representation. MEA corresponds to full utilization of our

work - finding α that maximizes Expected Agreement. Average

corresponds to setting α0 = 0.5 and α1:K = 1
K

. * marks settings

that use training superpixel labels: the best α and the best α0 and

averaged similarity metric.

tentials. The second baseline uses information of the super-

pixel labels {yji } derived from the training set. We choose

’best’ (found by grid search) values of whole α, by looking

at average accuracy of GMIM when training on τ1 and test-

ing on τ2 and vice versa. To investigate the influence of α0,

third baseline averages similarity metrics, but sets α0 to the

best’ value.

This is performed for two families of GMIM models, one

with unary potential based on ERHF for all superpixel fea-

tures taken from [8] and the other based only on histogram

features from [8] (e.g. SIFT, color, textons), to which Naive

Bayes can be applied directly.

Results. Table 2 summarizes the results. All of our novel

components contribute to the final result. We significantly

outperform flat averaging. Moreover, selecting α by look-

ing at true accuracy of GMIM is no better than selecting it

using Expected Agreement. Using ERHF consistently im-

proves results both for baselines and proposed method. No-

tice, how selecting correct α0 improves results from 6% to

17% even for blind averaging.

6.2. Bayesian optimization

Here we investigate the effectiveness of our AdaGP-

UCB optimization. As baselines, we use random search and

GP-UCB [17] without adaptation. As a point of reference,

we use the optimum found by grid search described above.

In AdaGP-UCB we set β = 0.01 and λ = 1.1. The results

are presented in fig. 4. AdaGP-UCB matches the maximum

found by grid search in just 66 iterations, while regular GP-

UCB gets stuck after 15 iterations in local optimum. Grid

search made 41136 evaluations of A(α), in contrast to 66
by AdaGP-UCB, making grid search 623 times slower.

7. Conclusion

This paper addresses the problem of integrating multi-

ple visual cues for weakly supervised semantic segmenta-

tion. Results show a substantial improvement over previ-

ous weakly supervised approaches and further bridge the

gap between weakly and fully supervised methods. Our

main contribution is a MEA model selection principle for
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Figure 5. Results on the LabelMe data-set. Colors correspond to visual classes.

this problem. Given a parametric family of models that uti-

lize different visual cues, we use it to evaluate the quality of

models without looking at superpixel labels. We show that

the optimization problem associated with finding the best

model can be efficiently solved by Bayesian optimization.

Our second contribution is ERHF, which enables us to map

diverse, heterogeneous superpixel features into a common

sparse binary representation. This allows us to use class

appearance models which are efficient to train.
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