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Abstract—We propose a deep-learning based annotation-
efficient framework for vessel detection in ultra-widefield (UWF)
fundus photography (FP) that does not require de novo la-
beled UWF FP vessel maps. Our approach utilizes concur-
rently captured UWF fluorescein angiography (FA) images, for
which effective deep learning approaches have recently become
available, and iterates between a multi-modal registration step
and a weakly-supervised learning step. In the registration step,
the UWF FA vessel maps detected with a pre-trained deep
neural network (DNN) are registered with the UWF FP via
parametric chamfer alignment. The warped vessel maps can
be used as the tentative training data but inevitably contain
incorrect (noisy) labels due to the differences between FA and
FP modalities and the errors in the registration. In the learning
step, a robust learning method is proposed to train DNNs with
noisy labels. The detected FP vessel maps are used for the
registration in the following iteration. The registration and the
vessel detection benefit from each other and are progressively
improved. Once trained, the UWF FP vessel detection DNN
from the proposed approach allows FP vessel detection without
requiring concurrently captured UWF FA images. We validate
the proposed framework on a new UWF FP dataset, PRIME-
FP20, and on existing narrow-field FP datasets. Experimental
evaluation, using both pixel-wise metrics and the CAL metrics
designed to provide better agreement with human assessment,
shows that the proposed approach provides accurate vessel
detection, without requiring manually labeled UWF FP training
data.

Index Terms—Retinal vessel detection, multi-modal registra-
tion, ultra-widefield fundus photography, noisy labels

I. INTRODUCTION

Ophthalmologists recognize features of retinal vasculature

as important biomarkers associated with multiple diseases.
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(a) UWF FP (b) UWF FA

Fig. 1: Concurrently captured ultra-widefield (UWF) fundus

photography (FP) and UWF fluorescein angiography (FA)

image pair. Cyan circles depict the approximate field-of-view

for narrow-field FP.

For example, diabetic retinopathy and retinal vein occlusion

are characterized by increase in retinal vasculature tortuos-

ity, vessel caliber expansion, and retinal non-perfusion [1].

Therefore, detecting vessels is a fundamental problem in

retinal image analysis that has been extensively researched.

Existing approaches classify into two main categories, super-

vised and unsupervised, depending on whether they do or

do not use labeled training data [2]. Traditionally, the focus

was on unsupervised methods that addressed the problem

from a variety of perspectives, incuding hand-crafted match

filtering [3], [4], morphological processing [5]–[7], multi-

scale approaches [8], [9], and matting-based techniques [9].

Recently, supervised learning appproaches, specifically deep

neural networks (DNNs), have led to significant improvements

in retinal vessel detection. A variety of DNN architectures

have been proposed for retinal vessel detection, including per-

pixel classifier [10], fully convolutional network [11], [12],

U-Net [13]–[16], graph neural network [17], context encoder

network [18], and generative adversarial networks [19]. Addi-

tionally, several works exploit novel loss functions [20]–[22]

and training strategies [23]. These DNN based methods have

primarily focused on narrow field (NF) fundus photography

(FP), both because NF FP is the predominant format and

modality of capture in the clinical setting and because recent

efforts have created reasonable sized labeled ground truth

datasets for DNN training [4], [24]–[29].

Due to the additional diagnostic information they can offer,

vessel detection is also of interest in formats and modalities

other than NF FP [30]. Specifically, in this paper, we focus

on ultra-wide field (UWF) FP [31] leveraging concurrently
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captured UWF fluorescein angiography (FA) images. Like NF

FP, UWF FP is noninvasive and only involves capture of

the retinal images under low-power illumination; even pupil

dilation is not required [31]. As shown in Fig. 1a, UWF

FP images provide a wide 200◦ field-of-view (FOV) in a

single high-resolution image, as opposed to the much narrower

30◦–50◦ FOV for NF FP. Manual examination of the UWF

images in diagnosis achieves reliable performance comparable

to direct clinical examination using an opthalmoscope with

pupil dilation. At the same time, UWF FP also reveals

additional peripheral retinal vasculature structure that is of

diagnostic importance when compared to NF FP [32], [33].

UWF FA, which is shown in Fig. 1b, represents an alternative

modality that also offers a wide FOV and additional diagnostic

utility, but has the limitation that it is more invasive, requiring

intravenous injection of fluorescein sodium dye.

While DNNs trained on NF FP can be applied to UWF

FP, the performance is relatively poor in the peripheral re-

gion (as demonstrated in Section III-F). The development

of DNNs specifically for detecting vessels in UWF FP has

been stymied by the paucity of labeled ground truth data.

Manually annotating the binary vessel maps for UWF FP

is particularly time-consuming and requires clinical-expertise.

High-resolution UWF FP exhibits non-uniform illumination

and contrast between vessels and background, which makes

it challenging and time-intensive to accurately annotate both

major and minor vessels across the large FOV; estimates

indicate that approximately 18 hours are required for de novo

manual annotation for one UWF FP image [34]. Prior work

on UWF FP vessel detection [34] therefore proposed the use

of pixel-wise hand-crafted features with a shallow, two-layer,

multi-layer perceptron that were trained on a limited number

of small labeled patches. The approach, however, does not take

full advantage of deep learning advances that employ end-to-

end training and also learn features in a data-driven fashion.

In this paper, we focus on innovative methodologies that

train DNNs for UWF FP vessel detection in an annotation-

efficient fashion and eliminate the requirement of manually

labeled datasets for supervised learning. To this end, we make

the following contributions:

• We present a novel iterative framework for vessel detec-

tion in UWF FP using DNNs that does not require de

novo labeled UWF FP vessel maps. Instead, we rely on

datasets that also include concurrently captured UWF FA

images, for which effective deep learning approaches for

vessel detection have recently become available allowing

for accurate vessel detection. The proposed framework

then jointly addresses precise registration between the

vessel images for the modalities and vessel detection

in UWF FP, where the two tasks synergistically benefit

each other as iterations progress despite the differences

in geometry and modality.

• We construct a new ground truth labeled dataset, PRIME-

FP20, to evaluate retinal vessel detection in UWF FP and

to facilitate further work on this problem.

• The proposed framework provides a method for accurate

vessel detection in UWF FP imagery, a modality that

has received limited attention in prior works. The pro-

posed approach significantly outperforms existing meth-

ods on the PRIME-FP20 dataset and, on NF FP datasets,

achieves performance comparable with state-of-the-art

methods designed specifically for NF FP.

We note that an alternative framework for joint vessel detec-

tion and registration on paired NF FP and NF FA images has

also been proposed in [35]. The framework in [35] formulates

vessel detection as a style transfer task (from retinal images to

binary vessel maps) and uses one vessel map from the existing

dataset as the style target for all training images. In this setting,

the supervision signal, which is based on perceptual loss,

is relatively weak and sensitive to the selection of the style

target. In contrast, the proposed framework directly transfers

vessel maps from UWF FA to UWF FP providing pixel-wise

supervision, which is more effective.

The rest of the paper is organized as follows. Section II de-

scribes the proposed iterative registration and learning frame-

work. In Section III, we perform the detailed analysis of the

proposed framework and present the experimental results of

vessel detection. Section IV concludes the paper.

II. ITERATIVE REGISTRATION AND LEARNING APPROACH

As already mentioned, instead of labeled data, training

in the proposed approach is accomplished by using a set

of concurrently captured UWF FP and UWF FA images,

which we denote as {(Xi
c,X

i
a)}Mi=1, where (Xi

c,X
i
a) denotes

a simultaneously captured UWF FP and UWF FA image

pair (in that order) and M is the number of image pairs.

Importantly, we note that while the image pairs for the two

modalities are captured during the same clinical visit, they

are not aligned and have significant differences in geometry

in addition to fundamental differences in the information they

contain arising from the differences in the modalities. In the

ensuing discussion, we illustrate and describe the processing

for one pair (Xi
c,X

i
a), the ith pair, for situations where the

same processing flow applies to all pairs.

For each UWF FA image Xi
a, a corresponding vessel map

Y i
a is obtained using a pre-trained DNN for this modality

(shown in green Fig. 2). Our implementation uses [36] though

alternative approaches could also be utilized for this purpose.

The training of the desired DNN for FP vessel detection is

then accomplished as shown in Fig. 2 by iterating between

two steps comprising (a) multi-modal registration between the

estimated UWF FA vessel map and a current estimate for

the UWF FP vessel map and (b) weakly-supervised learning

from noisy labels. Specifically, at iteration t, using parametric

chamfer alignment, the detected UWF FA vessel map Y i
a

is registered with the current estimate Y i,t
c of the UWF FP

vessel map. The UWF FA vessel map Y i
a is warped using the

estimated registration transformation to obtain tentative/noisy

training labels Y i,t
a→c for pixels in the corresponding UWF

FP image Xi
c. The collective set of such pairs of images

for the concurrent UWF FP and FA captured images form

the (noisy-labeled) training data {(Xi
c,Y

i,t
a→c)}Mi=1. The fun-

damental differences between FA and FP imaging modalities

and invariable errors in the registration contribute to the noise

in the labeling. In particular, FA imaging captures fine vessels
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Fig. 2: Proposed iterative registration and learning approach

for retinal vessel detection in UWF FP without requiring

labeled FP vessel data. For clarity, the figure illustrates the

processing flow for only the ith pair (Xi
c,X

i
a) of UWF FP

and UWF FA images, from the complete set of M pairs

{(Xi
c,Y

i,t
a→c)}Mi=1 used for the training.

that are not visible in FP [31]. Consequently, the warped vessel

maps Y i,t
a→c contain a large amount of “false positive” labels

that are actually background in Xi
c.

In the learning step, we propose a robust weakly-supervised

learning approach to train DNN that identifies and corrects the

noisy labels in the generated dataset. The detected UWF FP

vessel map Y i,t+1
c , estimated by the trained DNN, is used for

the registration step in the (t+ 1)th iteration.

The proposed framework iteratively addresses precise reg-

istration and vessel detection, where two tasks synergistically

benefit each other as iterations progress. Precise alignment is

important to obtain high-quality training labels. Even a small

misalignment between the FA and FP images can significantly

deteriorate the training data quality by assigning incorrect

labels to the image pixels. On the other hand, accurate UWF

FP vessel detection, estimated using the weakly-supervised

learning approach, helps estimate the registration parameters

because chamfer alignment uses detected UWF FP vessel

maps for anchoring. Using concurrently captured UWF FP and

FA images, the proposed framework accomplishes the training

of a DNN for FP vessel detection without requiring labeled

UWF FP data. Note that vessel detection in UWF FP images

can be performed using the trained DNN without requiring

concurrently captured UWF FA images.

Next we provide details for the registration and learning

steps that constitute the two major steps in the proposed

iterative framework.

A. Vessel Registration via Chamfer Alignment

Binary UWF FA vessel maps Y i
a are transferred to the

corresponding UWF FP images Xi
c by using a geometric

transform that is estimated using the chamfer alignment tech-

nique from [36]. To make the presentation self-contained, we

include a brief overview here that conveys the key intuition.

We denote the locations of estimated vessel pixels in the

UWF FA vessel map Y i
a by Qa = {qa

j }Na

j=1, where qa
j are

the 2D coordinates of vessel pixel j and Na is the number of

vessel pixels in Y i
a . Similarly, the locations of the Nc vessel

pixels in the estimated UWF FP vessel map Y i,t
c at iteration

t are represented as Qt
c = {qc

k}Nc

k=1. Chamfer alignment [37]

estimates a parametric geometric transformation Tβ to register

the points in Qa to those in Qt
c by minimizing the average

squared Euclidean distance between the transformed locations

Tβ
(

qa
j

)

and the closest point in Qc, where β denotes the

vector of parameters for the geometric transform. Specifically,

define the objective function

L (β) =
1

Na

Na
∑

j=1

Dj(q
c
k, q

a
j ), (1)

with Dj(q
c
k, q

a
j ) = mink ‖qc

k−Tβ
(

qa
j

)

‖2. Then the estimated

registration transform is obtained as Tβ∗ where β∗ minimizes

L (β). We use a second order polynomial transformation for

Tβ, which is parameterized by a 12-dimensional parameter

vector β and has been shown to be suitable for retinal vessel

registration in prior work [36], [38].

In practice, we use a refinement of the basic chamfer align-

ment approach outlined above that uses a latent-variable based

probablistic formulation along with the expectation maximiza-

tion (EM) algorithm [39] to provide robustness against outlier

points that exist in Qa but do not have correspondences in Qc.

The robustness against such outliers is particularly crucial in

this application setting because, as noted earlier, some fine

vessels appear only in Qa because the FA modality detects

these much better than FP. We refer readers to [36] for detailed

derivations of the parameter estimation with the EM approach.

Here we only note that the key intuition can be understood

from the fact that, in the EM approach, the arithmetic average

in (1) is replaced by a weighted average where the weight for

the squared error Dj(q
c
k, q

a
j ) corresponding to the jth point

in Qa corresponds to the estimated posterior probability that

it is not an outlier (and has a corresponding point in Qc).

When these posterior probabilities are accurately estimated,

the errors for the outlier points effectively drop out from the

weighted average, as desired.

For the tth iteration, once the registration transform pa-

rameters have been estimated, by applying the corresponding

transformation Tβ∗ to the UWF FA vessel maps Y i
a we obtain

the warped version Y i,t
a→c as the current estimate of the FA

vessel map aligned with the FP imagery, which serves as

“noisy labels” for the learning step.

B. Weakly-Supervised Learning with Noisy Labels

While the multi-modal registration provides tentative dataset

{(Xi
c,Y

i,t
a→c)}Mi=1 to train a DNN for detecting vessels in UWF

FP, the labels in Y i,t
a→c inevitably contain noise (incorrect

labels) due to the fundamental differences in FA and FP

modalities. In this sub-section, we analyze the characteristic

of the label noise and propose a weakly-supervised learning

method to train DNN against label noise.

FA imaging is able to capture the fine retinal vessels better

than FP [31]. Consequently, the warped FA vessel maps Y i,t
a→c

contain a large number of vessel branches, especially fine

vessels, that are not visible in FP modality. Figures 3a and 3b

show a sample UWF FP patch selected from the peripheral

region and the corresponding warped UWF FA vessel map,

respectively. From these two figures, one can appreciate that

the majority of fine vessels are not captured in UWF FP

image. In Fig. 3c, we compare and visualize the differences

between the warped vessel map and ground truth labels that are

manually annotated from scratch by a human annotator. The
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(a) (b) (c)

Fig. 3: (a) Sample UWF FP patch and (b) the corresponding

labels from warped UWF FA vessel map. Red and blue

pixels in (c) indicate incorrect vessel labels (“false positive”)

and background labels (“false negative”), respectively, in the

warped UWF FA vessel map.

red pixels in Fig. 3c depict a large proportion of vessel labels

in the warped UWF FA vessel map Y i,t
a→c that are actually

background in the UWF FP image. On the other hand, the FP

vessel pixels that are not in the warped UWF FA vessel map

Y i,t
a→c, shown in blue in Fig. 3c, are a rather small fraction

of the FP vessel pixels. Thus, treated as an estimate of the

FP vessel map, the warped FA vessel map Y i,t
a→c has low

precision but high recall. Therefore, the label noise in Y i,t
a→c

is asymmetric: the background labels are largely accurate and

the vessel labels potentially have errors.

We exploit the asymmetry of the label noise and propose

a weakly-supervised learning approach to train a DNN using

Y i,t
a→c as noisy labels. Formally, we divide pixels in Y i,t

a→c

into two sets, Yi,t
v and Yi,t

b , where pixels in Yi,t
v are labeled as

vessels (white pixels in Fig. 3b) and those in Yi,t
b are labeled as

background (black pixels in Fig. 3b). We further denote Yt
v =

Y1,t
v

⋃Y2,t
v

⋃ · · · YM,t
v and Yt

b = Y1,t
b

⋃Y2,t
b

⋃ · · · YM,t
b . Our

goal is to train a DNN, modeled as a function f with

learnable weights W , that outputs a probabilistic vessel map

Yc = f(Xc;W ) in response to an input FP image Xc. In the

tth iteration, weight parameters W t for the DNN are estimated

by minimizing the binary cross-entropy loss, viz.,

Lt =
1

|Yt
v|+ |Yt

b|





∑

v∈Yt
v

ltv +
∑

b∈Yt
b

ltb



 , (2)

where ltv = − log(ytc,v) and ltb = − log(1 − ytc,b) are the

binary cross-entropy loss computed from the predicted vessel

probability ytc,v and ytc,b in Yt
v and Yt

b , respectively, and

| · | represents the cardinality. Our motivation is that while

DNNs can be over-fitted on noisy labels with sufficient training

epochs, in the early training epochs [40], DNNs tend to first

learn on the correct labels. Thus the correct and the incorrect

labels can be distinguished based on the loss values [41].

In Fig. 4 (left), we plot the training loss values ltv computed

after each training epoch for both correct (green) and incorrect

(red) labels in Yt
v . At the early stage of the training, pixels

with incorrect labels have larger loss values than the correctly

labeled pixels, allowing one to identify the noisy labels from

the loss values. In Fig. 4 (right), we show the loss distribution

after 20 training epochs for both correctly and incorrectly

labeled pixels. We see that the distribution is bimodal and

can be modeled as a two-component mixture model.

Fig. 4: Left: The binary cross-entropy loss for correct (green)

and incorrect (red) vessel labels in the course of training. The

curve shows the median loss value and the shaded region

represents the range between the 15th and the 85th percentile

of the loss values. Right: histogram of the training loss after

20 training epochs (indicated by the dash line in the left plot).

To estimate the distribution of ltv , we use the latent variable

Zt
v ∈ {0, 1} to indicate if the pixel v in Yt

v is mislabeled.

Given that the label is correct (Zt
v = 1), the conditional

probability of ltv is modeled as an exponential distribution

λ exp(−λltv) with parameter λ. See the green distribution in

Fig. 4. And, given Zt
v = 0, the conditional probability of ltv is

modeled as a Gaussian distribution N (µ, σ) with mean µ and

standard deviation σ. See the red distribution in Fig. 4. The

distribution of the mixture model for ltv takes the form of

p
(

ltv
)

= πλe−λltv + (1− π)
1√
2πσ

e−
(ltv−µ)2

2σ2 , (3)

where π = p (Zt
v = 1) is the mixing weight that represents the

prior probability of latent variable Zt
v . We adopt the EM al-

gorithm [39] to fit the proposed mixture model. EM algorithm

alternates between the E-step and the M-step. In the E-step,

we compute the posterior probability ptv = p (Zt
v = 1 | ltv),

which can be obtained using Bayes’ rule:

ptv =
πλe−λltv

πλe−λltv + (1− π) 1√
2πσ

e−
(ltv−µ)2

2σ2

. (4)

In the M-step, we update the parameters of the mixture model.

Using the estimated posterior probability, we obtain

πt =

∑

v∈Yt
v
ptv

|Yt
v|

, µt =

∑

v∈Yt
v
(1− ptv) l

t
v

∑

v∈Yt
v
(1− ptv)

,

λt =

∑

v∈Yt
v
ptv

∑

v∈Yt
v
ptvl

t
v

, σt =

√

√

√

√

∑

v∈Yt
v
(1− ptv) (l

t
v − u)

2

∑

v∈Yt
v
(1− ptv)

.

(5)

The process is repeated until parameters converge. The fitted

mixture model provides a tool for analyzing the label noise

in the warped vessel maps. The prior probability p (Zt
v = 1)

is an estimate of the amount of correct labels in Yv . More

importantly, the posterior probability p (Zt
v = 1 | ltv) indicates

the probability of pixel being correctly labeled, which allows
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us to update labels in Yt
v . Specifically, the label in updated

ground truth Y i,t
u is computed as

ytu,v =

{

ptvy
t
a→c,v +

(

1− ptv
)

ytc,v, if v ∈ Yi
v, (6a)

0, if v ∈ Yi
b. (6b)

In (6a), the updated label for pixel in Yt
v is a linear combi-

nation of the label in the warped vessel map yta→c,v and the

predicted probability vessel map ytc,v where the coefficients are

determined by the posterior probability ptv . Intuitively, if the

posterior probability ptv is close to 1, we trust the label yta→c,v

in the warped vessel map because the corresponding pixel is

correctly labeled. Otherwise, we reduce the weights of label

yta→c,v and rely more on the network-predicted probability

vessel maps ytc,v . In (6b), we do not update background labels

in Yt
b because these labels are considered accurate.

The training process is divided into two stages. First, we

train the DNN on the tentative noisy dataset {(Xi
c,Y

i,t
a→c)}Mi=1

for E0 epochs. Then we fit the proposed mixture model on the

loss values ltv and obtain the updated labels Y t
u . In the second

stage, we continue to train the DNN on {(Xi
c,Y

i,t
u )}Mi=1 for

another E1 epochs. The overall algorithm for the proposed

framework is summarized in Algorithm 1.

Note that both the vessel registration and the robust learning

steps utilize the EM framework to estimate the posterior

probabilities of a pixel being outlier/mislabeled. However, the

objectives in these two steps are different and we can not use

the posterior probabilities estimated in one step for the other.

In the registration step, the EM framework mitigates the effects

of outlier vessel points. The outliers are defined as the vessel

points in Y i
a that do not have correspondences in the current

estimated vessel map Y i,t
c . As we show in Section III-D,

some vessels are not properly detected in Y i,t
c in the first

few iterations. As a result, the outlier pixels in the registration

step are not necessarily the same as the mislabeled pixels that

need to be identified in the training step.

III. EXPERIMENTS

In this section, we first introduce a new dataset, PRIME-

FP20, that is used for implementing the proposed iterative

framework and for evaluating the vessel detection perfor-

mance. Next, we summarize the evaluation metrics in Sec-

tion III-B, and describe the implementation details and alter-

native methods used as baselines in Section III-C. The exper-

imental results are structured as follows. We provide detailed

analysis to demonstrate the effectiveness of the proposed iter-

ative framework and the weakly-supervised learning method

in Section III-D and Section III-D, respectively. We then

compare the proposed framework with alternative methods on

the PRIME-FP20 dataset in Section III-F. Finally, we show

the boarder utility of the proposed framework for detecting

vessels in NF FP in Section III-G.

A. PRIME-FP20 Dataset

We construct a new dataset, PRIME-FP20, for evaluating the

performance of vessel detection in UWF FP. The PRIME-FP20

dataset consists of 15 pairs of concurrently captured UWF FP

and UWF FA images that are selected from baseline images

Algorithm 1: Iterative training of DNN for vessel

detection in UWF FP without de novo labeled data

Given : DNN architecture that outputs a probabilistic

FP vessel map f(Xc;W ), where Xc is an

input FP image and W are the weights for

the network

Input : UWF FP image Xi
c, UWF FA vessel map

Y i
a , number of iterations T , training epochs

E0 and E1

Output: Trained DNN weights W ∗

Initialization:

1 t = 0 ;

2 Detect preliminary FP vessel map Y i,0
c ;

3 Extract vessel pixel coordinates Qi
a from Y i

a ;

4 repeat /*registration and learning iterations*/

Vessel registration and Warping

5 for i = 1 : M do

6 Extract vessel coordinates Qi,t
c from Y i,t

c ;

7 Estimate second-order transformation T i
β∗ from

Qi
a to Qi,t

c . See Sect. II-A and [36] for details;

8 Warp FA vessel map to FP: Y i,t
a→c ← T i

β∗(Y i
a );

9 end

Learn using Y i,t
a→c as noisy labels

10 Obtain weights W t by training DNN f(·; ·) for E0

epochs on {(Xi
c,Y

i,t
a→c)}Mi=1;

11 Compute loss values ltv for pixels in Yt
v using (2);

12 repeat /*EM for label noise mixture model*/

13 Compute posterior probabilities ptv using (4);

14 Update parameters πt, λt, µt, and σt using (5);

15 until Parameter converge;

16 Update labels Y i,t
u using (6a) and (6b);

17 Fine-tune weights W t by training DNN f(·; ·) for

E1 epochs on {(Xi
c,Y

i,t
u )}Mi=1 ;

Update

18 t← t+ 1; Y i,t
c ← f(Xi

c;W
t);

19 until (t = T );

20 W ∗ ←W T

of patients enrolled in the PRIME study1. The images are

captured using Optos California and 200Tx cameras (Optos

plc, Dunfermline, United Kingdom) [42]. The system uses a

scanning ophthamoscope with a low power laser to capture

dual red and green channel UWF FP images and a single

channel FA image. All images have the same resolution of

4000× 4000 pixels and are stored as 8-bit TIFF format with

lossless LZW compression. The green channel UWF FP image

is used as the input Xc for our vessel detection because it

captures information for layers with the retinal vasculature,

whereas the red channel captures information from other layers

(from the retinal pigment epithileum to the choroid) [42].

For evaluation, ground truth vessel maps for the UWF FP

modality are manually labeled by a human annotator using

the ImageJ software [43] with the segmentation editor plugins.

1The study (ClinicalTrials.gov Identifier: NCT03531294) evaluates the im-
pact of intravitreal aflibercept in diabetic retinopathy patients with a baseline
diabetic retinopathy severity score level of 47A to 71A inclusive.
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The available selection tools in ImageJ, such as brush tool

and free-hand selection tool were used to mark the vessel

pixels in the UWF FP. The annotator repeatedly adjusted image

brightness and contrast to precisely label both major and minor

vessel branches in different regions. For each UWF FP, we also

provide a binary mask for the FOV of the image. To obtain

the mask, we simply binarize the green channel of the UWF

FP because the pixels intensities out of FOV are close to zero.

B. Evaluation Metrics

For quantitative evaluation, we report the area under the

Precision-Recall curve (AUC PR)2, the Dice coefficient (DC),

and the CAL metric [44]. The computation of these metrics is

summarized in Section S.III of the Supplementary Material.

The AUC PR and the Dice coefficient, although widely used

in prior literature, are based on the pixel-wise comparison

of the ground truth and the estimated vessel map. However,

the pixel-wise comparison does not consider the structure of

retinal vasculature and is sensitive to the label ambiguities,

particularly for peripheral pixels that only partially belong to

vessels. The CAL metric [44] is designed to be less sensitive

to label uncertainties and provides better agreement with

human assessment of higher level structure. CAL evaluates the

consistency between the binary ground truth and the binary

predicted vessel map by calculating three individual factors

that quantify the consistency with respect to the connectivity

(C), the area (A), and the corresponding length of skeletons

(L). Each factor ranges between 0 and 1 where 1 indicates

perfect consistency to the ground truth. The product of three

factors is defined as the overall CAL metrics. The computation

of the CAL metrics requires a binary vessel map, to obtain

which, we binarize the predicted probabilistic vessel map Yp

with a threshold τ = 0.5.

For the experiments on the PRIME-FP20 dataset, we per-

form the K-fold cross-validation [45] to evaluate the perfor-

mance of vessel detection, where K is set to 5, and report

the statistics of the five evaluation metrics. We only consider

pixels within the FOV mask when computing the metrics.

C. Implementation Details and Alternative Methods

To detect UWF FA vessels Xa, we train the U-Net [13]

model on the RECOVERY-FA19 dataset [36] that provides

eight high-resolution (3900 × 3072 pixels) UWF FA images

and the ground truth vessel maps. We use the U-Net model

because of its superior performance in medical image seg-

mentation [46]. Detailed training protocol is included in the

Supplementary Material (Section S.II-B). We apply the trained

model to the UWF FA images Xi
a and binarize the estimated

vessel map Y i
a with a threshold τ = 0.5.

For the proposed iterative framework, we use the pairs

of UWF FP and UWF FA images in the PRIME-FP20

dataset. Note that the proposed framework does not require

the ground truth vessel maps for UWF FP in the PRIME-

FP20 dataset. These manually labeled ground truth are only

2We do not choose the Receiver Operating Characteristic (ROC) curve as
the evaluation metric because the ground truth label is highly skewed. We
provide additional discussion in Supplementary Material (Section S.III).

used for evaluation in our experiments. We implement the

chamfer alignment and the weakly-supervised learning using

MATLABTM and PyTorch [47], respectively. We perform

three iterations between registration and learning (T = 3)

and provide an empirical evaluation of different number of

iterations in Section III-D. In the first iteration, we use a

preliminary UWF FP vessel map Y i,0
c for chamfer alignment,

which is obtained from a DNN pre-trained on existing NF FP

dataset. For the weakly-supervised learning step, we use the

U-Net [13] model. We set the training epochs E0 = 25 and

E1 = 30. Detailed network architectures and training protocol

are included in Section S.II of the Supplementary Material.

We consider existing learning-based vessel detection meth-

ods for as baselines for comparison. These methods include

HED [48], U-Net [13], DRIU [11], CRF [49],NestUNet [14],

M2U-Net [50], CE-Net [18], CS-Net [51], RU-Net [15], and

IterNet [16]. We train all methods on the IOSTAR [26]

dataset where the images are captured with the scanning

laser ophthalmoscopy (SLO) technique that is also used in

the PRIME-FP20 dataset. Our experiments show that these

baseline methods trained on the IOSTAR achieve the best

generalization performance on the PRIME-FP20 dataset.

D. Iterative Registration and Learning Framework

We demonstrate the effectiveness of the proposed iterative

framework by showing that both registration and learning

benefit from each other and improve progressively.

To quantify registration accuracy, we compute the chamfer

distance as the average Euclidean distance between each point

in the ground truth binary vessel maps and its closest point in

the transformed vessel maps detected in UWF FA. The average

chamfer distance under the second-order transformation can be

treated as a proxy for the registration error. The blue line with

circle markers in Fig. 5a shows the average chamfer distance

over 4 iterations. In the first iteration, the chamfer distance is

on average 1.66 pixels. While the misalignment is slight, it can

significantly deteriorate the quality of the training data. The

generated tentative ground truth in the first iteration only has

a recall of 0.63, which means that 37.0% of true vessels are

labeled as background (false negative labels). The third column

in Fig. 5b shows sample results of the generated ground truth

in the first iteration, where the blue pixels highlight the false

negative labels. In the third iteration, the chamfer distance

drops to 0.77 pixels, yielding accurate training data with a

recall increased to 0.83. The fifth column in Fig. 5b shows

training data obtained from the third iteration.

The improved ground truth dataset in turn benefits network

training for vessels detection in UWF FP. The fourth and the

last columns in Fig. 5b show the predicted vessel maps in the

first and the third iteration, respectively. The yellow arrows

highlight the improved vessel detections that are not correctly

identified in the first iteration. We quantify and visualize the

performance of vessel detection obtained over 4 iterations in

Fig. 5a. The axes on the right side correspond to the three

metrics used for evaluation. It is clear that, as the registration

and training proceed, the performance of vessel detection is

improved progressively. Additionally, we see that the DNN
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Fig. 5: Registration and vessel detection performance as a

function of iteration count. (a) the residual chamfer distance,

which serve as a good proxy for the registration error, is

labeled on the left axis and shown in a corresponding plot.

The three axes labeled on the right side and corresponding

plots show the metrics used for evaluating the vessel detection

performance. (b) Sample vessel maps obtained in the first

and the third iterations. Red and blue pixels indicate incorrect

vessel labels (“false positive”) and background labels (“false

negative”), respectively, in the warped UWF FA vessel map.

performance becomes stable after three iterations and going

to the fourth iteration offers limited improvement. Thus, we

set the total number of iterations T to 3 in our experiments.

E. Robust Learning with Noisy Labels

We conduct detailed analysis for a better understanding of

the proposed method for robust learning from noisy labels.

Because we focus on the robust learning method, all exper-

imental results reported in this section are performed on the

noisy training data that is generated from the last iteration in

the proposed framework.

To justify the effectiveness of the proposed robust learning

method, we compare the performance of vessel detection with

the following alternative training strategies: (1) the standard

training approach that directly trains a DNN without any

techniques particularly attuned to noisy labels, (2) the re-

labeling method that dynamically updates the labels in the

training dataset [52], and (3) a re-weighting method that

reduces the weight for the noisy labels in the loss function.

The re-labeling method seeks to obtain a clean dataset by

dynamically updating the training labels using the probabilistic

vessel maps predicted from the DNN. The training process is

formulated as a joint framework that alternatively optimizes

the DNN parameters and the training labels. For the re-

weighting method, the idea is to adaptively assign small

weights to the potential noisy pixels and to emphasize the

Methods AUC PR Max DC CAL (C, A, L)

Direct Training 0.802 0.745 0.628 (0.998, 0.777, 0.809)
Re-labeling [52] 0.837 0.769 0.586 (0.999, 0.729, 0.805)

Re-weighting 0.842 0.768 0.713 (0.999, 0.833, 0.856)
Proposed 0.842 0.772 0.730 (0.999, 0.849, 0.860)

TABLE I: Accuracy metrics for vessel detection results ob-

tained with alternative training strategies. All DNNs are trained

on the dataset obtained from the third iteration in the proposed

framework. The best result is shown in bold.

clean pixels in the loss function. Specifically, we assign the

posterior probability pv as the weighting factor to each pixel

in Yv and set the weights to 1 for all pixels in Yb.

The quantitative results obtained from different training

methods are listed in Table I. Directly training on the incorrect

labels adversely impacts the performance of vessel detection,

even though we apply early stopping to prevent the DNN

from over-fitting the noisy labels. In addition, it is difficult to

determine the stopping criterion because no validation dataset

is available in this settings. The re-weighting and the proposed

approaches, both of which utilize the posterior probabilities pv
to train DNNs, show significant improvement over the direct

training and the re-labeling methods. This also demonstrate

the effectiveness of the proposed mixture-model-based noisy

label identification. Unlike the re-weighting method, which

uses pv to reduce the effects of incorrect labels, the proposed

robust training approach updates the noisy labels and therefore

explicitly forces DNN to learn on the correct prediction.

Next, we assess the effects of different mixture models on

fitting the loss distribution and estimating the posterior prob-

abilities pv . Specifically, we compare the proposed mixture

model with a two-component Gaussian mixture model (GMM)

and a two-component beta mixture model (BMM) [41]. A

proper mixture model, which provide a good approximation

to the loss distribution, should lead to an accurate estimation

of the posterior probability pv and an accurate update on

the training labels Yu. Thus, we compare the quality of the

updated labels with respect to the manually labeled ground

truth. To do so, we fit the mixture models on the same loss

distribution and update the labels using (6a) and (6b). Figure 6

plots the AUC PR obtained after each training epoch for

different mixture models. We have several observations from

this figure. First, the GMM is not a good approximation for

the loss distribution and the accuracy of noisy label correction

decreases as the training proceeds and is significantly worse

than other two mixture models. Second, compared to the

BMM, the proposed mixture model provides the more accurate

results and the performance is largely stable in the first 70

training epochs. In Fig. 7, we show the sample results of

updated labels, the corresponding noisy labels from the warped

vessel maps, and the manually labeled ground truth. The “false

positive” labels are removed from the warped vessel maps,

highlighted by the yellow arrows in Fig. 7, yielding to updated

labels that is similar to the ground truth labels.
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F. Evaluation on the PRIME-FP20 Dataset

As mentioned in Section III-B, we perform 5-fold cross-

validation to assess the results of vessel detection on the

PRIME-FP20 dataset. Table II lists the quantitative results

obtained from the proposed iterative framework and the ex-

isting methods. The proposed iterative framework performs

remarkably well and significantly outperforms other methods

with respect to all evaluation metrics, achieving an AUC PR

of 0.845, the maximum Dice coefficient of 0.776, and an

overall CAL of 0.730. Notably, the performance metrics for the

proposed framework are quite close to the annotation-intensive

approach, where a U-Net model is trained manually labeled

clean dataset with the same 5-fold cross-validation (The row

labeled U-Net∗ in Table II). We show sample results of the

detected vessel maps obtained from different methods in Fig. 8

and provide more visual results in the Section S.IV of the

Supplementary Material. In Fig. 8, we see that the existing

DNNs trained on NF fundus images perform poorly in the

peripheral region. We attribute this poor performance to the

fact that the peripheral region contains artifacts that are not

visible in the NF dataset. Such artifacts normally have dark and

curvilinear structures that can be misinterpreted as vessels in

the image. For example, the yellow arrows in the enlarged view

of region III highlight the “false positive” detection region

that is not a vessel but an eyelash shadow appearing in the

periphery. Compared to the DNNs trained on NF images, the

proposed iterative framework accurately detects vessel maps

Methods Year AUC PR Max DC CAL (C, A, L)

U-Net∗ [13] - 0.869 0.796 0.755 (0.999, 0.869, 0.870)

HED [48] 2015 0.723 0.683 0.451 (0.997, 0.640, 0.700)
U-Net [13] 2015 0.746 0.704 0.547 (0.998, 0.727, 0.752)
DRIU [11] 2016 0.728 0.691 0.495 (0.999, 0.698, 0.705)
CRF [49] 2017 0.563 0.550 0.341 (0.994, 0.577, 0.590)

NestUNet [14] 2018 0.754 0.716 0.567 (0.999, 0.747, 0.757)
M2U-Net [50] 2019 0.727 0.694 0.534 (0.998, 0.720, 0.742)
CE-Net [18] 2019 0.757 0.718 0.574 (0.999, 0.752, 0.762)
CS-Net [51] 2019 0.772 0.721 0.565 (0.998, 0.746, 0.755)
RU-Net [15] 2019 0.757 0.707 0.559 (0.999, 0.737, 0.758)
IterNet [16] 2020 0.746 0.717 0.553 (0.999, 0.732, 0.753)

Proposed 2020 0.841 0.771 0.730 (0.999, 0.849, 0.860)

TABLE II: Quantitative metrics assessing vessel detection

accuracy for different methods on the PRIME-FP20 dataset.

The row U-Net∗ lists the results from a U-Net trained on a

manually labeled dataset. The best result is shown in bold.

from different regions in UWF FP. See the enlarged view of

regions III and IV for the result patches selected from the

periphery and the central retina, respectively.

We also notice that, under the precise registration, the

warped vessel maps with noisy labels are still valuable for

training DNNs. Comparing the results listed in Tables I and II,

the direct training approach already has a better performance

than the existing methods trained on NF fundus images. These

results further reinforce the benefits of the transfer approach

for generating training data for UWF FP modality.

G. Evaluation on Narrow-Field Fundus Photography

Fundus photography shares common characteristic between

the ultra-widefield and the narrow-field modalities. In this

section, we demonstrate that the DNN trained only on ultra-

widefield images using the proposed framework is capable of

detecting vessels in NF FP. To this end, we test the perfor-

mance of the trained DNN on two public datasets, DRIVE [24]

and STARE [4], and compare with the existing learning-based

methods for vessel detection. Note that we train the DNN on

ultra-widefield images using the proposed weakly-supervised

learning approach and evaluate the performance on the NF

images. We refer to this experiment as the cross-training

evaluation [12], [53] where the training and the test data

come from two independent sources. For existing learning-

based methods, the models are trained on the DRIVE [24]

and evaluated on the STARE [4], and vice versa. These two

datasets provide two independent ground truth vessel maps

manually labeled by two human annotators. We choose the

vessel maps from the first annotator as the ground truth also

report the human performance by evaluating the vessel maps

made by the second annotator, which is commonly accepted

approach in the literature.

Complete results are listed in Table S.1 in the Supplemen-

tary Material. On the DRIVE dataset, the proposed framework

achieves the best performance with the AUC PR of 0.886, the

maximum DC of 0.803, and the overall CAL metric of 0.827.

Note that the CAL metric is significantly better than those

obtained from prior alternatives by large margins and is close

to human performance (0.839). The second-best performing

method, HED [48], achieves an overall CAL of 0.743. The



9

UWFFP (Green) Ground Truth (GT) Proposed DRIU UNet

Ⅰ
Ⅱ

Enlarged View Of Regions Ⅰ, Ⅱ, Ⅲ, and Ⅳ

Ⅲ Ⅳ

Ⅰ

Ⅲ Ⅳ

Ⅱ

Fig. 8: Sample images and detected vessel maps for the proposed approach and alternatives from the PRIME-FP20 dataset.

The contrast-enhanced enlarged views I-IV, marked by the cyan rectangles in the full image, are included. Additional visual

results are provided in Section S.IV of the Supplementary Material.

performance on the STARE dataset, while slightly worse than

the best performing method, is comparable to other methods.

Specifically, the results obtained from the proposed framework

has the AUC PR of 0.884, the maximum DC of 0.795, and

the overall CAL metric of 0.756. The results on both datasets

reinforce the robustness and the accuracy of the proposed

iterative framework. We provide visual results of detected

vessel maps in Section S.V of the Supplementary Material.

IV. CONCLUSION

The iterative registration and deep-learning framework pro-

posed in this paper provides an effective and annotation-

efficient approach for detecting retinal blood vessels in UWF

FP imagery without requiring manually labeled UWF FP ves-

sel maps. Experimental evaluations demonstrate that the pro-

posed approach significantly outperforms the existing methods

on a new UWF FP dataset, PRIME-FP20, and achieves compa-

rable performance with the state-of-the-arts on existing NF FP

datasets. The PRIME-FP20 is made publicly available [54]3.

to facilitate further work on retinal image analysis.

3A sample low resolution annotated image is currently provided and the full
set of 15 high resolution images will be made available with the publication
of the paper.
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S.I. OVERVIEW

This document provides Supplementary Material for the paper [1]. Section S.II provides implementation details, including

network architectures and training protocol. Section S.III provides a summary of the evaluation metrics. In Section S.IV, we

show additional visual results of vessel detection on the PRIME-FP20 dataset. Finally, we include the complete results on the

narrow-field fundus photography.

S.II. IMPLEMENTATION DETAILS

A. Network Architectures

In the proposed framework, we adopt the U-Net [2] model that is an encoder-decoder architecture with skip connection.

The encoder architecture is

Ce
1
(64) - Ce

2
(128) - Ce

3
(256) - Ce

4
(512) - Ce

5
(512),

where Ce

i
(n) denotes the i-th layer in the encoder, which consists two consecutive convolutional layers followed by a max-

pooling layer. The decoder architecture is

Cd
4
(256) - Cd

3
(128) - Cd

2
(64) - Cd

1
(64) -Cout(1),

where Cd

i
(n) denotes the i-th layer in the decoder that has the skip connection to the layer Ce

i
in the encoder, and Cout(1)

is the output convolutional layer that returns the probabilistic vessel maps. The convolutional layers Ci(n) have 3× 3 kernel

size, n output channels, and ReLU activation. The output layer Cout(1) uses a 1× 1 kernel and sigmoid activation.

B. Training Protocol

The input to the U-Net are 256× 256 patches extracted from the training images with a stride of 128. Patches that are not

completely in the FOV masks are not included. Data augmentation techniques are applied to enlarge the size of training data.

To do so, we randomly apply a sequence of transformations to image patches, including (1) rotation with an angle randomly

selected between −90◦ and 90◦, (2) horizontal and vertical flip, (3) blurring with Gaussian filter, and (4) contrast and brightness

adjustment. We use Adam optimizer [3] with a fixed learning rate of 0.0001. The parameters that are used for calculating the

gradient averages and its square are set to 0.9 and 0.999, respectively. We shuffle the training dataset in each epoch and set

the batch to 16. The network is trained on a NVidia Tesla V100 GPU.

S.III. DESCRIPTION OF EVALUATION METRICS

We report three metrics to quantify the performance of vessel detection, i.e., the area under the Precision-Recall curve (AUC

PR), the Dice coefficient (DC), and the CAL metric [4]. The PR curve is plotted as the precision versus the recall obtained

by binarizing the predicted vessel map with thresholds τ ranging 0 to 1. Precision, recall, and DC are computed as

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, DC =

2TP

2TP + FP + FN
,

where TP, FP, and FN are true positive, false positive, and false negative, respectively.
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Fig. S.1: Schematic illustration of the pixel-wise based metrics and the CAL metric [4]. (a) and (b) show sample patches of the

ground truth label and the binary predicted vessel map, respectively. (c) shows the pixel-wise comparison of the overlapping

area, where true positive, false positive, and false negative are highlighted in black, red, and blue, respectively. (d) shows the

pixel-wise comparison of the length of skeleton, which are obtained from the corresponding binary vessel maps. Figures in (e)

- (h) illustrate the CAL metric that consists of three individual factors: the connectivity, the area, and the length of skeleton.

(e) and (f) visualize the connected vessel segments in (a) and (b), respectively. (g) and (h) show the comparisons used in the

CAL area factor and CAL length factor computations, respectively, demonstrating the resilience of these factors to differences

in labeling of ambiguous pixels on vessel peripheries and slight displacements between vessel skeletons.

We do not choose the Receiver Operating Characteristic (ROC) curve, which is a plot of the true positive rate against the

false positive rate, as the evaluation metric. For assessing the performance of vessel detection, the ROC curve is not informative

because the ground truth labels are highly skewed where the majority is the negative labels (background pixels in the UWF

FP). In this setting, the false positive rate, computed as the ratio between the number of false positive detection to the total

number of negative labels, is dominated by the negative labels. As noted in [5], the PR curve is more preferable than the ROC

curve when the dataset contains highly imbalanced labels.

Although the AUC PR and the DC are commonly reported in prior works, these metrics are based on pixel-wise comparison

of the labeled ground truth and the predicted vessel map. However, as shown in Fig. S.1(c), the pixel-wise comparison is

sensitive to the label ambiguities, particularly for pixels on vessel peripheries that can be partially belong to the vessel. In

addition, the pixel-wise comparison does not reflect the performance with regard to the higher level structure of the vasculature,

which is also of clinical interest. To overcome these concerns, we use the CAL metric [4] that provides resilience to labeling

of ambiguous pixels on vessel peripheries and better agreement with human assessment (of higher level structure). The CAL

metric assesses the consistency of the binary ground truth and the binary predicted vessel map using three individual factors,

the connectivity (C), the area (A), and the length of skeleton (L). The connectivity factor C compares the number of connected

vessel segments between the ground truth and the predicted vessel maps, as shown in Figs. S.1(e) and (f). The area factor

A assesses the relative overlapping area between the ground truth vessel map and the predicted vessel map while disregard

the labeling uncertainty in pixels on vessel peripheries using morphological dilation on binary vessel maps. It can be seen

in Fig. S.1(g) that the area factor is more robust against label uncertainties than pixel-wise comparison. The length factor L

assesses the consistency of the vessel skeleton obtained from the ground truth and the predicted vessel map. Similar to the area

factor, the morphological dilation operation is performed to overcome the issue that vessel skeleton may be slightly displaced

in one image relative to the other. Figures S.1(d) and (h) show the evaluation of vessel skeleton obtained from the pixel-wise

comparison and the CAL metric, respectively. The overall CAL metric is defined as the product of individual C, A, and L

factors. We refer the readers to the original paper [4] for detailed computation of the CAL metric.

S.IV. ADDITIONAL VISUAL RESULTS ON PRIME-FP20 DATASET

We provide additional visual comparison of vessel detection on PRIME-FP20 dataset in Fig. S.2. The results reinforce the

findings in the main manuscript that the proposed iterative framework offers significant improvement over existing methods.
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Fig. S.2: Additional sample images and detected vessel maps for the proposed approach and alternatives from the PRIME-FP20 dataset. Six contrast-enhanced enlarged

views I-VI, marked by the cyan rectangles in the full image, are included.
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S.V. RESULTS ON NARROW-FIELD FUNDUS PHOTOGRAPHY

In this section, we provide complete results of cross-training evaluation where the training and the test data are from two

independent sources. Table S.1 lists the quantitative results. On the DRIVE dataset, the proposed framework has the best

performance and significantly outperforms the existing alternatives, achieving an AUC PR of 0.886, the max DC of 0.803,

and the overall CAL of 0.827. Although the proposed method is not the best performing method on the STARE dataset, the

performance is only slightly worse than the best performing method (DRIU [6]). In Fig. S.3, we show sample results of the

detected vessel maps on the DRIVE and the STARE datasets.

Method Year
DRIVE (Trained On STARE) STARE (Trained On DRIVE)

AUC PR Max DC CAL (C, A, L) AUC PR Max DC CAL (C, A, L)

2nd Annotator - - 0.789 0.839 (1.000, 0.940, 0.892) - 0.742 0.640 (1.000, 0.848, 0.753)

HED [7] 2015 0.879 0.797 0.743 (0.996, 0.900, 0.828) 0.838 0.748 0.574 (0.995, 0.773, 0.740)
U-Net [2] 2015 0.886 0.803 0.713 (0.997, 0.890, 0.803) 0.852 0.782 0.730 (0.996, 0.859, 0.842)
DRIU [6] 2016 0.877 0.793 0.629 (0.996, 0.847, 0.744) 0.898 0.812 0.806 (0.996, 0.912, 0.886)

NestUNet [8] 2018 0.877 0.795 0.688 (0.996, 0.876, 0.787) 0.892 0.805 0.786 (0.997, 0.895, 0.879)
M2U-Net [9] 2019 0.859 0.784 0.649 (0.995, 0.856, 0.760) 0.817 0.749 0.635 (0.995, 0.800, 0.785)
CE-Net [10] 2019 0.876 0.792 0.694 (0.997, 0.880, 0.790) 0.871 0.785 0.750 (0.997, 0.875, 0.855)
CS-Net [11] 2019 0.883 0.801 0.703 (0.996, 0.883, 0.798) 0.854 0.775 0.701 (0.996, 0.840, 0.821)
RU-Net [12] 2019 0.884 0.800 0.659 (0.996, 0.859, 0.769) 0.891 0.815 0.780 (0.996, 0.899, 0.869)
IterNet [13] 2020 0.845 0.795 0.698 (0.998, 0.882, 0.792) 0.815 0.794 0.727 (0.999, 0.861, 0.839)

Proposed 2020 0.886 0.803 0.827 (0.998, 0.938, 0.883) 0.884 0.795 0.756 (0.999, 0.880, 0.857)

TABLE S.1: Quantitative results of vessel detection obtained from different methods on the DRIVE and the STARE datasets.

The best result is shown in bold.
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Fig. S.3: Sample images and detected vessel maps for the proposed approach and alternatives for cross-training evaluations on

the DRIVE (Rows 1-3) and the STARE (Rows 4-6) datasets.


