
Weaknesses of the FORK-256 compression

function

Krystian Matusiewicz, Scott Contini, and Josef Pieprzyk

Centre for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Macquarie University

{kmatus,scontini,josef}@ics.mq.edu.au

Abstract. This report presents analysis of the compression function of
a recently proposed hash function, FORK-256. We exhibit some unex-
pected differentials existing for the step transformation and show their
possible uses in collision-finding attacks on different variants of FORK-
256. As a simple application of those observations we present a method
of finding chosen IV collisions for a variant of FORK-256 reduced to two
branches : either 1 and 2 or 3 and 4. Moreover, we present how those
differentials can be used in the full FORK-256 to easily find messages
with hashes differing by only a relatively small number of bits. We argue
that this method allows for finding collisions in the full function with
complexity not exceeding 2126.6 hash evaluations, better than birthday
attack and additionally requiring only a small amount of memory.

Version: 2.1, last modified: November 29, 2006

1 Introduction

Most of dedicated hash functions published in the last 15 year follow more
or less closely design ideas used by R. Rivest in his functions MD4 [10, 11]
and MD5 [12]. Using terminology from [13], their step transformations are all
based on source-heavy Unbalanced Feistel Networks (UFN) and employ bit-
wise Boolean functions. Apart from MD4 and MD5 other examples include
RIPEMD [9], HAVAL [18], SHA-1 [7] and also SHA-256 [8]. A very nice feature
of all these designs is that they all are very fast in software implementations on
modern 32-bit processors and use only a small set of basic instructions executed
in constant-time like additions, rotations and Boolean functions.

However, traditional wisdom says that monoculture is dangerous. This proved
to be true also in the world of hash functions. Ground-breaking attacks on MD4,
MD5 by X. Wang et al. [16, 14] were later refined and applied to attack SHA-
0 [17] and SHA-1 [15] as well as some other hash functions.

Since source-heavy UFNs with Boolean functions seem to be susceptible to
attacks similar to Wang’s because only one register is changed after each step
and the attacker can manipulate it to a certain extent, one could try designing a
hash function using the other flavour of UFNs, namely target-heavy UFNs where

changes in one register influence many others. This is the case with designed
in 1995 hash function Tiger [1] (tailored for 64-bit platforms) and a recently
proposed FORK-256 [3] which is the focus of this paper.

We exhibit a flaw in the design of the step transformation of the compression
function that allows for a special kind of rather pathological differentials to exist.
We analyse those differentials in details in section 4 and derive an efficient neces-
sary and sufficient condition for the existence of those differentials. Effectivness
of this test allows us to search for suitable configurations extremely fast.

Then, in section 5 we show how to exploit the existence of such local differ-
entials to construct a high-level differential path for the full function as well as
for its various simplified variants.

As a concrete example we show how to easily find collisions for two branches
of FORK-256 in section 6. Finally, in section 7 we present a method for finding
hashes differing by only a small number of bits and show how this method is
applicable to finding collisions for the full compression function of FORK-256
with complexity 2126.6, faster than by birthday paradox.

Notation Throughout the paper we will use the notation presented below. Unless
stated otherwise, all words are 32-bit and can be seen as elements of Z232 or Z

32
2 .

X + Y integer addition / addition modulo 232 (depending on the context),
X − Y integer subtraction / modular subtraction of two words X, Y ,
X ⊕ Y bitwise XOR of two words X , Y ,

ROLa(X) rotation of bits of the word X by a positions left,

R
(j)
i the value of register R ∈ A, . . . , H in branch j = 1, . . . , 4 after step i.

1.1 A brief description of FORK-256

FORK-256 is a dedicated hash function recently proposed by Hong et al. [3,
4]. It is based on the classical Merkle-Damg̊ard iterative construction with the
compression function that maps 256 bits of state and 512 bits of message to
256 bits of a new state. For the complete description we refer interested readers
to [3], here we only present an outline necessary to understand main ideas of the
rest of this paper.

The compression function consists of four parallel branches BRANCHj , j =
1, 2, 3, 4, each one of them using a different permutation of 16 message words Mi,
i = 0, . . . , 15 and the same set of chaining variables CV = (A, B, C, D, E, F, G, H).
The compression function updates the set of chaining variables according to the
formula

CVi+1 = CVi + {[BRANCH1(CVi, M) + BRANCH2(CVi, M)]⊕

[BRANCH3(CVi, M) + BRANCH4(CVi, M)]} ,

where modular and XOR additions are performed word-wise. This construction
can be seen as a further extension of the design principle of two parallel lines
used in RIPEMD [9].

Each branch function BRANCHj , j = 1, 2, 3, 4 consists of eight steps. In
each step k = 1, . . . , 8 branch function updates its own copy of eight chaining
variables according to the following formulae

A
(j)
k

:= H
(j)
k−1 + ROL21(g(E

(j)
k−1 + Mσj(2k−1)) ⊕ ROL17(f(E

(j)
k−1 + Mσj(2k−1) + δπj(2k−1))),

B
(j)
k

:= A
(j)
k−1 + Mσj(2k−2) + δπj(2k−2),

C
(j)
k

:= B
(j)
k−1 + f(A

(j)
k−1 + Mσj(2k−2)) ⊕ g(A

(j)
k−1 + Mσj(2k−2) + δπj(2k−2)),

D
(j)
k

:= C
(j)
k−1 + ROL5(f(A

(j)
k−1 + Mσj(2k−2))) ⊕ ROL9(g(A

(j)
k−1 + Mσj(2k−2) + δπj(2k−2))),

E
(j)
k

:= D
(j)
k−1 + ROL17(f(A

(j)
k−1 + Mσj(2k−2))) ⊕ ROL21(g(A

(j)
k−1 + Mσj(2k−2) + δπj(2k−2))),

F
(j)
k

:= E
(j)
k−1 + Mσj(2k−1) + δπj(2k−1),

G
(j)
k

:= F
(j)
k−1 + g(E

(j)
k−1 + Mσj(2k−1)) ⊕ f(E

(j)
k−1 + Mσj(2k−1) + δπj(2k−1)),

H
(j)
k

:= G
(j)
k−1 + ROL9(g(E

(j)
k−1 + Mσj(2k−1)) ⊕ ROL5(f(E

(j)
k−1 + Mσj(2k−1) + δπj(2k−1))),

where R
(j)
i denotes the value of the register R in j-th branch after step i and

all A
(j)
0 , . . . , H

(j)
0 are initialized with corresponding values of eight chaining vari-

ables. Functions f and g are defined as

f(x) = x +
(

ROL7(x) ⊕ ROL22(x)
)

, g(x) = x ⊕
(

ROL13(x) + ROL27(x)
)

.

Constants δ0, . . . , δ15 are defined as the first 32 bits of fractional parts of binary
expansions of cube roots of the first 16 primes and are presented in Table 1.

Table 1. Constants δ0, . . . , δ15 used in FORK-256

δ 0 1 2 3 4 5 6 7

0 428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5

8 d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

Finally, permutations σj of message words and permutations πj of constants
are shown in Table 2.

Table 2. Message and constant permutations used in four branches of FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

2 Analysis of step transformation of FORK-256

The step transformation described in the previous section can be logically split
into three parts: addition of message words, two parallel mixing structures QL

and QR and a final rotation of registers. This view is presented in Fig. 1. The
key role is played by the two transformations of four words, QL and QR as they
are the main source of diffusion in the compression function. It is clear that if
we can find interesting differential characteristics for QL and QR, we should be
able to extend them to the whole branch and maybe also the whole function.

Fig. 1. A high-level structure of step transformation of FORK-256

Mσj(2k−2) Mσj(2k−1)

QL QR

Let us focus on QL, presented in Fig. 2, as QR is very similar to QL (f and g
are swapped and rotation amounts are different) and the properties we are going
to discover work for both of them.

Fig. 2. QL-structure of step transformation in FORK-256

g

f

ROL9

ROL21

ROL5

ROL17δπj(2k−2)

A B C D

A B C D

Characteristics of the form (0, ∆B, ∆C, ∆D) → (0, ∆B, ∆C, ∆D) are not
that difficult to get since in each step the difference in registers B, C, D are
modified by only one modular addition and one XOR operation. Whether we
consider modular or XOR differences, there is only one incompatible operation
to deal with.

We can combine such characteristics to get a straightforward differential for
up to three steps for each branch.

The difficult part is characteristics of the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0).
As far as we could see, there are two ways of finding them. The first method of
finding those desired characteristics is based on the fact that both f and g are
not bijective so we can hope that we can find such inputs x, x′ that f(x) = f(x′)
and g(x + δ) = g(x′ + δ). The second one is aimed at getting zero differences in
registers B, C, D in spite of non-zero differences at the outputs of f and g. In
next sections we describe both of them in detail.

3 Simultaneous collisions for f and g

For given value δ, we would like to find all x and x′ such that f(x) = f(x′)
and g(x + δ) = g(x′ + δ). A naive search would require computations of order
264, which is well beyond our computing resources. A less naive method trades
time for memory. Below we describe this tradeoff in a way that involves order
232 computations and 232 memory for the particular functions f and g used in
FORK-256. Again, we focus on QL, i.e. f is applied before g.

Step 1: We determine which inputs x have more than one preimage. This is
done by initializing an array of 232 entries to zero, and then incrementing
entries indexed by f(x) in the array for all 232 inputs x. The entries with
their values at least 2 are output. There are about 230 of these. In fact, this
step is not necessary for our algorithm, but it may be helpful in practice
since it reduces memory requirements for the next step.

Step 2: Read in the values of f(x) from Step 1, i.e. the values that have more
than one preimage. Then, for each input value, build a linked list of all
preimages of that value. This is done in a similar way to Step 1: compute
all 232 values of f(x), and for each value that matches one of the inputs
from Step 1 (this can be checked quickly with a hash table), add it to the
corresponding linked list. The longest linked list for f has 12 preimages.

Step 3: Process the linked lists from Step 2. For each linked list, consider the
set of values x1, . . . , xk that map to the same image. See if there is any xi

and xj in that list such that g(xi + δ) = g(xj + δ), and if so, output the pair
as a solution of simultaneous collisions of f and g.

The running time of Step 3 depends upon the number of combinations of
pairs of preimages that map to the same image. According to our computations,
this is 2134351185 < 231.

There are many potential tricks to reduce the search space and/or memory
requirements further, but the above algorithm was sufficient for us to determine
the following solutions:

x = 4b4d2a05, x′ = 6ff2f3e9, for δ1 = 71374491,

x = 06def69a, x′ = aeb691e5, for δ2 = b5c0fbcf,

x = 27a61343, x′ = 67eac4d8, for δ3 = e9b5dba5,

x = 04549cdc, x′ = 20d331a5, for δ7 = ab1c5ed5,

for QL and

x = 445c5563, x′ = d73bc777, for δ10 = 243185be,

x = be452586, x′ = edfd4d5b, for δ14 = 9bdc06a7.

for QR.

4 Microcollisions in QL and QR

In this section we concentrate on an alternative way of finding characteristics of
the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0) in QL and show that it works for QR as
well. The idea is to look for pairs of inputs to the register A such that output
differences in registers B, C, D are equal to zero in spite of non-zero differences
at the outputs of functions f and g. Such a situation is possible if we have three
simultaneous microcollisions : differences in g cancel out differences from f in
all three registers B, C, D (cf. Fig. 2).

4.1 Necessary and sufficient condition for microcollisions

Let us denote y = f(x), y′ = f(x′) and z = g(x + δ), z′ = g(x′ + δ). We have a
microcollision in the first line if the following equation is satisfied

(y + B) ⊕ z = (y′ + B) ⊕ z′ (1)

for given y, y′, z, z′ and some constant B. Our aim is to find the set of all constants
B for which (1) is satisfied.

Let us first introduce three different representations of differences between
two numbers x, x′ ∈ Z232 . We will use certain relationships between them in our
analysis.

• The first kind of representation useful for us is the usual XOR difference. We
will treat it as a vector of 32 digits representing bits of x⊕ x′ and denote it
∆⊕(x, x′) ∈ {0, 1}32.

• The second one is a plain integer difference. For two numbers x, x′, we
define the integer difference ∂x simply as the result of the subtraction of two
operands, i.e. ∂x = x − x′, −232 < ∂x < 232.

• The third kind of representation we will be using is the signed binary rep-
resentation. It uses three digits, 1, 0, −1, and a pair x, x′ has signed binary
representation ∆±(x, x′) = (x0 − x′

0, x1 − x′
1, . . . , x31 − x′

31), i.e. the i-th
component is the result of the subtraction of corresponding bits of x and x′

at position i.

A simple but important observation is that if a difference has signed represen-
tation (r0, r1, . . . , r31) than the corresponding XOR difference is (|r0|, |r1|, . . . , |r31|),
i.e. the XOR difference has ones in those places where the signed difference has
a non-zero digit, either −1 or 1.

The relationship between integer and signed binary representations is more
interesting. An integer difference ∂x corresponds to a signed binary representa-
tion (r0, . . . , r31) if ∂x =

∑31
i=0 2i · ri where ri ∈ {−1, 0, 1}. Of course this cor-

respondence is one-to-many because of the value–preserving transformations of
signed representations, (∗, 0, 1, ∗) ↔ (∗, 1,−1, ∗) and (∗, 0,−1, ∗) ↔ (∗,−1, 1, ∗),
that can stretch or shrink chunks of ones. To see this better consider a small
example. Let us assume words of 4 bits and consider ∆±(11, 2) = (1, 0, 0, 1),
∆±(14, 5) = (1, 0, 1,−1) and ∆±(12, 3) = (1, 1,−1,−1). All these binary signed
representations correspond to the integer difference ∂x = 9. Note that we can
go from one pair of values to another by adding an appropriate constant, e.g.
(12, 3) = (11 + 1, 2 + 1). This addition preserves the integer difference but can
modify the signed binary representation.

After this introductory part we are equipped with the necessary tools and
can go back to our initial problem. Rewriting (1) as

(y + B) ⊕ (y′ + B) = z ⊕ z′ . (2)

we can easily see that the signed difference ∆±(y +B, y′ +B) can have non-zero
digits only in those places where the XOR difference ∆⊕(z, z′) has ones. This
narrows down the set of all possible signed binary representations that can “fit”
into XOR difference of a particular form to 2hw(∆⊕(z,z′)). But since a single signed
binary representation corresponds to a unique integer difference, there are also
only 2hw(∆⊕(z,z′)) integer differences ∂y that “fit” into the given XOR difference
∆⊕(z, z′) and what is important, integer differences are preserved when adding
a constant B.

Thus, to check whether a particular difference ∂y = y − y′ may “fit” into
XOR difference we need to solve the following problem: given ∂y = y − y′,
−232 < ∂y < 232 and a set of positions I = {k0, k1, . . . , km} ⊂ {0, . . . , 31} (that
is determined by non-zero bits of ∆⊕(z, z′)), decide whether it is possible to find
a binary signed representation r = (r0, . . . , r31) corresponding to ∂y such that

∂y =

m
∑

i=0

2ki · rki
where rki

∈ {−1, 1} . (3)

Substituting ti = (rki
+1)/2 we can rewrite the above equation in the equivalent

form

∂y +

m
∑

i=0

2ki = 2k0+1t0 + 2k1+1t1 + · · · + 2km+1tm , (4)

where ti ∈ {0, 1}. Deciding if there are numbers ti that satisfy (4) is an instance
of the knapsack problem and since it is superincreasing (because weights are
powers of two), we can do this very efficiently.

This gives us a computationally efficient necessary condition for microcolli-
sion in a line: if ∂y = y − y′ cannot be represented as (3), no constant B exist
and there is no solution of (1).

Moreover, we can show that this is as well a sufficient condition: if we can
find a solution to the problem (3), then there exist a constant B that modifies
the signed difference in such a way that it “fits” the prescribed XOR pattern.

Observe that since the solution of the superincreasing knapsack problem (4)
is unique, so is the solution of the equivalent problem (3). This means that we
know the unique signed representation ∆±(u, u + ∂y) = (r0, . . . , r31) that is
compatible with the XOR difference ∆⊕(z, z′) and yields the integer difference
∂y. However, a unique signed representation corresponds to a number of concrete
pairs (u, u+∂y). If at a particular position j ∈ I we have rj = −1, we know that
in this position the value of j-th bit of u has to change from 1 to 0. Similarly, if
we have rj = 1, the j-th bit of u should change from 0 to 1. The rest of the bits
of u (corresponding to positions with zeros in ∆±(u, u + ∂y)) can be arbitrary.
That way we can easily determine the set U of all such values u. It is clear that
U always contains at least one element.

Now, since u = y +B for all u ∈ U , the set B of all constants B satisfying (1)
is simply B = {u − y : u ∈ U}.

This reasoning shows also that if we can have a microcollision in a line,
there are |B| = 232−hw(z⊕z′) constants that yield the microcollision if the most
significant bit of z ⊕ z′ is zero and 232−hw(z⊕z′)+1 if the MSB of z ⊕ z′ is one.
The difference is caused by the fact that if 31 ∈ I, we don’t need to change u31

in a particular way (i.e. either 1 → 0 or 0 → 1), any change is fine since we don’t
introduce carries anyway.

Finally, since we didn’t use any properties of functions f and g, the same
line of argument applies not only to microcollisions in QR but also to the same
structure with any functions in places of f and g.

4.2 Estimation of probabilities of microcollisions

From a practical point of view, we are interested in the probability that a random
pair of values (A, A′) may lead to simultaneous microcollisions and what is the
overall probability of characteristics of the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0)
when we cannot manipulate the values of registers A, B, C, D.

We conducted some experiments for QL and QR with different constants δ.
Our results indicate that the probability that a random pair of inputs (A, A′)
may lead to simultaneous microcollisions in all three lines is around 2−23 with
probability for a single line close to 2−13.

The probability that random constants B, C, D adjust the difference in
f(x) properly depends on Hamming weights of ∆⊕(z, z′). One example of such
distribution of weights obtained by testing 232 random pairs1 is presented in
Table 3.

We can see a clear peak around weights 24–26, so, according to the formula
describing the size of the set of constants from the previous subsection, we can
expect 26 ∼ 28 “good” constants in each of the sets B, C, D and thus the
probability that a random constant falls into that set is around 2−24 ∼ 2−26. Of
course to get a result for all three branches we need to cube that number.

1 In all experiments we were using Mersenne Twister [5] as the source of pseudorandom
numbers

Table 3. Distribution of Hamming weights of ∆⊕(g(x+ δ0), g(x′ + δ0)) corresponding
to potential simultaneous microcollisions after testing 232 random pairs x, x′

hw 0 1 . . . 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
count 1 0 . . . 0 1 6 18 29 59 78 74 90 56 39 14 1 0 0

Using the above results, we can try to estimate the probability that a set
of three simultaneous microcollisions occurs if we have no control of any values
A, A′, B, C, D. Multiplying 2−23 by 2−72 ∼ 2−78 we get an estimation of
2−95 ∼ 2−101. It shows that such differentials are not immediately useful, but
if we can force specific values of registers to desired values, they may be used
to construct collisions for at least simplified variants of FORK, as presented in
next sections.

5 Finding high-level differential paths in FORK-256

If we can avoid mixing introduced by the structures QL and QR (i.e. we know how
to get differentials (∆A, 0, 0, 0) → (∆A, 0, 0, 0) and (∆E, 0, 0, 0) → (∆E, 0, 0, 0))
and we can assume that differences in the registers B, C, D and F, G, H remain
unchanged, the only places where differences can change are registers A and E,
after the addition of a message word difference. Thus, the values of registers in
steps are simple linear functions of registers of the initial vector and message
words. If we denote ∆X0 + ∆Mσj(a) by [X,a] and ∆X0 + ∆Mσj(a) + ∆Mσj(b)

by [X,a,b], where σj is the permutation of message words used in branch j =
1, 2, 3, 4, we can write this down concisely in a tabular form presented in Table 4.

Table 4. If no mixing through QL and QR occurs, differences in registers are combina-
tions of differences in initial vectors and message words. [X,i] stands for ∆X0+∆Mσj(i)

and [X,a,b] stands for ∆X0 + ∆Mσj(a) + ∆Mσj(b)

registers
step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H

1 [A,0] [B] [C] [D] [E,1] [F] [G] [H]
2 [H,2] [A,0] [B] [C] [D,3] [E,1] [F] [G]
3 [G,4] [H,2] [A,0] [B] [C,5] [D,3] [E,1] [F]
4 [F,6] [G,4] [H,2] [A,0] [B,7] [C,5] [D,3] [E,1]
5 [E,1,8] [F,6] [G,4] [H,2] [A,0,9] [B,7] [C,5] [D,3]
6 [D,3,10] [E,1,8] [F,6] [G,4] [H,2,11] [A,0,9] [B,7] [C,5]
7 [C,5,12] [D,3,10] [E,1,8] [F,6] [G,4,13] [H,2,11] [A,0,9] [B,7]
8 [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11] [A,0,9]

output [A,0,9] [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11]

It is clear that differences in registers at any particular step are combinations
of differences introduced in the initial vector (A0, . . . , H0) and differences in
message words M0, . . . , M15.

If we consider the simplest case and assume (very optimistically) that any
two differences can cancel each other (this is the case with XOR differences),
we are in fact working over F2 and differences in all registers are F2-linear
combinations of differences ∆A0, . . . , ∆H0 and ∆M0, . . . , ∆M15 (which are now
seen as elements of F2). Now output differences of the whole compression func-
tion (including feed-forward) are also linear combinations of differences from
S = (∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15) and we can represent this map as an F2-
linear function, (∆A, . . . , ∆H) = Lout(S). This means we can easily find the
set Sc of all vectors S = (∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15) that yield zero out-
put differences at the end of the function simply as the kernel of this map,
Sc = ker(Lout).

To minimize the complexity of the attack, we want to find high-level paths as
short as possible. Since each register difference in each step is a linear function of
differences ∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15 and there are only 224 of them, the
straightforward approach is to enumerate them all and for any desirable subset
of registers (e.g. for collisions in two or three branches) count the number of
registers containing non-zero differences and pick those differences S that give
the smallest one. This straightforward process can be improved. If we denote
by V the vector of register states we are interested in, there is a matrix Ψ such
that V = S ·Ψ . The matrix Ψ can be seen as a generator matrix of a linear code
over F2. Minimum words of that code correspond to register states with minimal
weight. To find collisions (or other restricted paths), the appropriate generating
matrix is Basis(kerLout) · Ψ (or Basis(ker(L)) · Ψ where L is the linear map
describing those registers we want to be zero). Here Basis(A) denotes the basis
matrix of a linear space A. Using systems like MAGMA [2], finding minimum
words in such codes takes only a fraction of a second.

Our computations show that

– Minimal collision path in branches 1-2 uses differences in M0 and M9,
– Minimal collision path in branches 3-4 uses differences in M14 and M15,
– Minimal collision path for all four branches requires differences in message

words M6 and M12,
– Minimal unrestriced path for all branches has differences in the message M12

only

However, differences in registers other than A and E don’t contribute to
the complexity of the attack that much. The measure based on the number of
differences in registers A and E only corresponds more closely to the number
of “difficult” differentials we need to handle that require finding microcollisions.
Considering this, we also conducted experiments for different variants of FORK-
256 counting only differences in registers A and E.

The results are presented in Table 5. The first column specifies whether we
are interested in collision, pseudo-collisions (differences also appear in the initial
vector) of just a free path – no specific conditions on differences are imposed.

Table 5. Minimal numbers m of sets of simultaneous microcollisions in QL and QR

necessary in different attack scenarios on variants of FORK-256

Scenario Branches m Differences in

Collisions 1,2 2 M0, M9

Collisions 3,4 2 M14, M15

Collisions 1,3 3 M5

Collisions 1,4 3 M2

Collisions 2,3 3 M3

Collisions 2,4 3 M9

Pseudo-collisions 1,2,3 6 B0

Pseudo-collisions 1,2,4 6 B0

Pseudo-collisions 1,3,4 6 B0

Pseudo-collisions 2,3,4 6 B0

Collisions 1,2,3,4 12 M6, M12

Free path 1,2,3,4 6 M12

The third column gives the minimal number of Q–structures that require special
differentials and thus also microcollisions in registers B,C,D or F ,G,H . The last
column gives an example of message and/or chaining variables differences that
induce the high-level path with the given number of sets of microcollisions.

5.1 More general variant of path finding

We can generalize this approach even further. Depending on whether we force a
microcollision to happen in a particular line or not, we have eight different models
for each Q-structure. Using the linear model that assumes that all differences
cancel each other, we can express output differences of each QL-structure as

∆Ai+1 = ∆Ai

∆Bi+1 = ∆Bi + qB · ∆Ai

∆Ci+1 = ∆Ci + qC · ∆Ai

∆Di+1 = ∆Di + qD · ∆Ai

where qB, qC , qD ∈ F2 are fixed coefficients characterizing the QL-structure. The
same is true for QR-structures. This means that we have 864 possible linear
models of FORK-256 when we allow such varied microcollisions to happen. In
fact, results presented in Table 5 correspond to a special case when all coefficients
q are equal to zero. Relaxing this condition and allowing for microcollisions
in only selected lines decreases the number of active Q-structures, however, at
the expense of additional conditions required to cancel differences coming from
different parts of the strucutre.

Results of our search for such paths are summarized in Table 6. They show
that by introducing such an extended model of Q-structures we can significantly

decrease the number of necessary microcollisions. Particuraly interesting is the
result showing that, under favourable conditions, collisions can be achieved by
using a single difference in M12 with 6 microcollision places in the path. In
section 7 we show how to use this situation to generate near-collisions and the-
oretically also collisions.

Table 6. Minimal numbers m of Q-structures with microcollisions for different scenar-
ios of finding generalized high-level differential paths. Q-structures are numbered from
1 to 64 where 1 corresponds to QL in the first step of branch 1 and 64 to QR in the
last step od branch 4.

Scenario Branches m Differences in active Q-structures

Pseudocollisions 1,2,3,4 5 IV [7], M2, M11 12:000, 25:000, 35:001,
41:001, 51:010

Collisions 1,2,3,4 6 M12 13:000, 31:001, 40:000,
47:100, 50:000, 57:000

Pseudocollisions 1,2,3 2 IV [1], M12 8:100, 24:0
1,2,4 3 IV [7], M11 3:000, 51:010, 60:000
1,3,4 3 IV [7], M2 35:001, 44:000, 51:000
2,3,4 3 IV [3], M9 36:010, 43:000, 52:000

Collisions 1,2,3 3 M0, M3, M9 1:001, 20:010, 39:100
1,2,4 4 M1, M2 2:001, 9:000, 25:100, 51:000
1,3,4 5 M9 10:000, 39:001, 42:001

43:010, 59:000
2,3,4 5 M3, M9 20:010, 27:000, 39:000

57:000, 59:010

6 Collisions for two branches of FORK

We can use the minimal path for branches 1&2 to get collisions for these two
branches of FORK-256. The idea is to find two related simultaneous microcolli-
sions, the first one of type f - δ0 - g (f is followed by δ0 and then by g) to be used
in the left part of the first step of branch 1 and the other one of type g - δ12 - f
to be used in step 2 of branch 2.

If we can find a pair of values (x, x′) that yields f - δ0 - g microcollisions and
a pair (y, y′) that yields g - δ12 - f microcollisions such that the values satisfy
the condition x − x′ = y′ − y, we can construct a collision for branches 1&2 by
preserving differences ∂x = x − x′ in steps 2, 3, 4 of branch 1 and ∂y = y − y′

in steps 3, 4, 5 of branch 2.
The algorithm works as follows:

1. find a pair of values x, x′ that produce f - δ0 - g simultaneous microcollisions
and determine the three compatible constants ρ1, ρ2, ρ3, (this step requires
around 223 tests of random pairs x, x′)

2. for the fixed difference ∂x = x−x′ test pairs of the form y, y′ = y+∂x until a
simultaneous microcollision of type g - δ12 - f is found. Determine compatible
constants τ1, τ2, τ3. (Again, experiments suggest that the complexity of this
step is 223 tests)

3. set IV [1] := ρ1, IV [2] := ρ2, IV [3] := ρ3,
4. compute M0 := x − IV [0], M ′

0 := x′ − IV [0],
5. set both M15 and M ′

15 to τ1 − IV [4] − δ14,
6. compute initial values IV [5] and IV [6] as follows

IV [5] := (τ2 ⊕ f(IV [4] + M15 + δ14)) − g(IV [4] + M15),

IV [6] := (τ3 ⊕ ROL5(f(IV [4] + M15 + δ14))) − ROL9(g(IV [4] + M15))

7. compute the values M9 := y − E
(2)
1 and M ′

9 := y′ − E
(2)
1 , where

E
(2)
1 = ((IV [3]+ROL17(f(IV [0]+M14)))⊕ROL21(g(IV [0]+M14 + δ15))),

is the value of register E after step 1 in branch 2.
8. preserve the difference ∂x by forcing the value of g to zero in steps 2, 3, 4

(XOR-ing with zero doesn’t change the modular difference)

– set M ′
2 := M2 := −A

(1)
1 − δ2,

– set M ′
4 := M4 := −A

(1)
2 − δ4,

– set M ′
6 := M6 := −A

(1)
3 − δ6,

9. similarly, preserve the difference ∂y by forcing the value of f to zero in steps
3, 4, 5 of branch 2

– set M ′
10 := M10 := −E

(2)
2 − δ10,

⋄ in step 3 we cannot modify the value of M4 as it is already fixed by
correction done in branch 1. However, we can modify freely the value of

M8 (and M ′
8) which indirectly influences the value of E

(2)
3 we need to

adjust. We do this until the difference in H
(2)
4 is equal to the difference

at the beginning of the step, i.e. in G
(2)
3 . If we exhaust all possible values

of M8, we can modify the value of M11 and go to step 9 or pick another
constant ρ1 and start over from step 3.

– set M ′
13 := M13 := −E

(2)
4 − δ6,

The complexity of the attack on branches 1 and 2 depends on the effort to find
suitable pair of microcollisions and the amount of work necessary to find the
appropriate value of M8 in step 9.⋄. Microcollisions can be precomputed using
around 223 evaluations of functions f , g. The only part we need to deal with
during the attack is the step 9.⋄. In our experiment we had to test ≈ 10000 values
of M8 to find the right one. Since one test is roughly equivalent to computing
single step in one branch of FORK (1/32 of the whole function), we can estimate
the complexity of 9.⋄ to be less than 29 evaluations of the compression function.

This algorithm (partially) uses the following variables: IV [1], IV [2], IV [3],
IV [5], IV [6], M0, M2, M4, M6, M8, M9, M10, M13, M15. The following variables
can have arbitrary values: IV [0], IV [4], IV [7], M1, M3, M5, M7, M11, M12, M14.

Finally, we present an example of a collision:

IV={6a09e667, ff03f03a, f7da19f9, a19f937d,

510e527f, d1075199, c4bba02c, 00000000}

M={97770819, 00000000, 90e31bf1, 00000000,

e9b1a3b9, 00000000, 36ca5a85, 00000000,

000024a1, 6ff47b82, 3f7bfaf6, 00000000,

00000000, 014b4e3b, 00000000, 980100ed}

MM={b479fad2, 00000000, 90e31bf1, 00000000,

e9b1a3b9, 00000000, 36ca5a85, 00000000,

000024a1, 52f188c9, 3f7bfaf6, 00000000,

00000000, 014b4e3b, 00000000, 980100ed}

Collisions for branches 3 and 4 can be obtained using exactly the same
method by introducing appropriate differences in message words M14 and M15.

7 Near-collisions and possible collisions for the full

compression function

In this section we show how a high-level path using differences in M12 presented
in section 5 can be used to find very low weight output differences of the compres-
sion function of FORK-256 and we argue that this approach might be applicable
to finding full collisions faster than using the birthday paradox.

7.1 Overview

The foundation of our attack is the observation that if we introduce a difference
in M12 and we are able to prevent if from propagating to other registers in step
1 and step 5 of branch 4 and in step 4 of branch 3 and it does not introduce
a difference in register E7 of branch 1 then the output difference is confined to
registers B,C,D and E only, ie. to at most 128 bits in total. This situation is
illustrated in Figure 3.

We can decrease the number of affected bits further by selecting a modular
difference having differences in only a few most significant bits as the difference
in register B will be restricted to only those most significant bits as well.

Now, if we can find pairs of messages satisfying aforementioned conditions
efficiently enough and we can assume that output differences have distribution
close to uniform, we can expect to find very low weight differences and ultimately
also a collision.

The attack consist of two phases. During the first one, we find simultaneous
microcollisions in steps 1 and 5 of branch 4 and step 4 of branch 3 for a specially
selected modular difference introduced in M12.

In the second phase we use free message words M4 and M9 that do not
interfere with already fixed microcollisions in branches 3 and 4 to find messages

that yield no difference in register E
(1)
7 due to a single microcollision in line D

in step 7 of branch 1.

Fig. 3. High-level path used to find near-collisions in FORK-256. Thick lines show the
propagation of differences. Q-structures for which microcollisions have to be found are
grayed out.

Branch 1 Branch 2 Branch 3 Branch 4

7.2 Achieving microcollisions in branches 3 and 4

We assume that we have already chosen a suitable modular difference d. We
proceed as follows.

– We start with branch 4. We find x1 such that x1, x1 + d give simultaneous
g - δ15 - f microcollisions for step 1 of branch 4, compute corresponding con-
stants τ1, τ2, τ3 and assign IV [5] := τ1, IV [6] := τ2, IV [7] := τ3. Set M12 to
x1 − IV [4] and M ′

12 to x1 − IV [4] + d.
– Fix arbitrary values of M5, M1, M8, M15, M0, M13 and M11 and compute

the first half of the branch, up to step 5. Then, in step 5 find a pair of

values x2, x2 + d∗ (where d∗ = A
(4)
4 − A

′(4)
4 is the modular difference in

register A after step 4) yielding simultaneous f - δ6 - g microcollisions and
compute corresponding constants ρ1, ρ2, ρ3. If no such solution exists, repeat

this point, otherwise, set M3 := x2 − A
(4)
4 .

– By manipulating message words M1, M15, M13 (and also M0 and M11) we

need to adjust the values of registers B
(4)
4 , C

(4)
4 , D

(4)
4 to ρ1, ρ2, ρ3.

• Since B
(4)
4 = A

(4)
3 +M13 +δ8 and we want B

(4)
4 = ρ1, we adjust the value

of B
(4)
4 by setting M13 := ρ1 − A

(4)
3 − δ8.

• Now, starting from ρ2 we can go back one step and compute the necessary

value of B̄
(4)
3 = [ρ2 ⊕ g(A

(4)
3 + M13 + δ8)] − f(A

(4)
3 + M13). We can do

this by setting M15 := B̄
(4)
3 −A

(4)
2 − δ10. This change has also influenced

the value of E
(4)
3 so we have to compensate it by adjusting the value of

M11.
• Similarly, going back from ρ3 two steps we can determine the necessary

value of B
(4)
2 and adjust M1 accordingly. Again, we need to compensate

the induced change in E
(4)
2 by adjusting the value of M0 and the change

in E
(4)
3 by correcting M11 again.

– Now we switch to branch 3. We choose values x3, x3 + d that cause simul-
taneous g - δ6 - f microcollisions in step 4 and find corresponding constants
λ1, λ2, λ3. Using them we compute the necessary values of registers E–H , ie.

Ē
(3)
3 := x3 − M12, F̄

(3)
3 := λ1, Ḡ

(3)
3 := λ2, H̄

(3)
3 := λ3.

– Again, by going backwards and adjusting message words M2, then M14 and
M13 and then M6 and M10 and finally IV [1] in a similar manner to what
we did in branch 4 we obtain desired values of register at the beginning of
step 4.

– Since we have just modified IV [1] we need to go back to branch 4 and
compensate for this change by adjusting the value M11 once again.2

After this procedure we have obtained a differential path in branches 3 and 4
presented in Figure 3. The important fact is that changing the values of message
words M4 and M9 do not change this path, so after fixing branches 3 and 4 we
still have 64 bits of freedom left. Also note that there are many possible states
of branches 3 and 4 following this path as at the beginning of the process we can
select many arbitrary values, e.g. M5, M8, M7 and IV [0], IV [2], IV [4], IV [5].
Additionally, there are many constants to choose from when fixing a microcolli-
sion.

7.3 Single microcollision in branch 1

What is left are branches 1 and 2. Fortunately, we do not need to pay attention
to branch 2 at all as M12 appears in the very last step and so in any case it
induces differences in registers B–E only.

In branch 1 we need a single microcollision in the third line of step 7. It
seems to us that there is no better way of finding messages that cause that
microcollision to happen than by randomly testing message words M4 and M9.

The probability of the success heavily depends on the modular difference in
use. A few best modular differences we could find are presented in Table 7.

2 Note that this description mentions modification of M11 three times. Only the last
one is necessary, but we include them all to make the process more intelligible by
clear invariants.

Table 7. Best modular differences d we could find and their probabilities of inducing a
single microcollision in strand D of step 7 in branch 1. η is the number of input values
to strand A that may result in the microcollision.

difference d η observed probability

0xdd080000 221.7 2−24.6

0x22f80000 221.7 2−24.6

Let us analyse the computational complexity of finding this single microcolli-
sion in terms of numbers of full FORK-256 evaluations. Denote by η the number
of allowable values for the modular difference in use. By an allowable value we
mean an input x for which there exist constants that cause a microcollision to
happen for the pair (x, x + d). For d =22f80000 we have η = 221.7 (cf. Table 7).
We proceed as follows.

– First, we fix the value of M4. We will exhaust all values of M9 for this value
of M4.

– Next, step through the computation up until step 7. We need to know all
inputs into step 7.

– Then, for each allowable value into strand A of step 7 (note that M12 and M ′
12

are already fixed) we step backwards one step to determine the corresponding
“allowable outputs” to strand G in step 5 and we store them in a hash table.
For each allowable value we need to compute one XOR, one subtraction and
store the element in a hash table, so the work effort for this step is about
1/64 · η of full FORK-256 evaluations. For η = 221.7 the complexity of this
step is about 215.7.

– We loop through all 232 values of M9. For each one, we compute the output
of G only in step 5 and check if it matches something in the lookup table. If
so, we proceed forward to see if it causes the difference to disappear in step
7. If not, we go to the next value of M9.
The cost of testing one value of M9 is less than 1/64 of a full FORK evalua-
tion. Essentially, we are computing less than a single Q-structure (FORK-256
consists of 64 of them). We assumed here that the cost of the table lookup
is not exceeding the cost of computing the other parts of the Q-structure
that we are omitting (strands F and H), which seems to be a fairly safe
assumption. For η < 222 values that match the allowable outputs we do a
little bit more (about one more Q-structure in the left part of step 6), but
the dominant term is 232 · 1/64 = 226.

– After exhausting the list, we proceed with the next value of M4.

From the above analysis it follows that we process 232 values of M9 for the
work effort of about 226 full FORK evaluations. Since the observed probability
of finding a solution is about 2−24.6 (cf. Table 7), we are getting about 27.4

solutions for 226 effort. This is equivalent to about 218.6 FORK evalutations per
solution.

7.4 Finding near-collisions: experimental results

If output differences are distributed uniformly on the positions where they can
appear (ie. part of the register B and register C, D, E) than we can expect a
binomial distribution of their Hamming weights. After generating enough pairs
we should be able to find some with exceptionally small weights, which can be
called near-collisions.

We implemented this algorithm and performed some searches for such output
differences with low weights. Comparison of the distribution of Hamming weights
of differences obtained by the means of an experiment with theoretical binomial
distribution is presented in Figure 4. It seems that the experimental distribution
is indeed close to the theoretical one. However, one can see a slight bias towards
lower weights.

Fig. 4. Distribution of Hamming weights of 211867 output differences generated by
the algorithm for d =0x22f80000.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

30 40 50 60 70

experimental
theoretical

rs rs rs rs rs rs rs
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs rs rs rs rs rs rs

rs

This phenomena can be explained by looking at Table 8 which contains counts
of non-zero differences appearing at all bit positions of registers B, C, D and
E. The expected number of non-zero differences for a truly random bit stream
would be 211867/2 ≈ 105933. All bits of registers C, D and E are very close
to that value, but in some bits of register B non-zero differences appear with a
little lower probability. This most likely accounts for the bias towards smaller
weights.

The best result we obtained so far has the output difference of weight 28 and
is presented in Table 9. It took about a day of work of an average workstation
PC to find it.

Table 8. Counts of non-zero bit differences in registers B, C, D and E after testing
211867 pairs of “close” hashes.

Register bits counts

0 – 7 0 0 0 0 0 0 0 0
8 – 15 0 0 0 0 0 0 0 0

B 16 – 23 0 0 0 0 105812 102276 94549 82277
24 – 31 68364 105987 102715 105458 97349 89530 105799 103214

0 – 7 105460 105722 105723 105751 104016 106018 105458 105833
8 – 15 105840 104074 106047 105842 105798 104450 99927 106058

C 16 – 23 106255 106211 105918 108125 105860 105751 105785 105357
24 – 31 110069 106080 105834 105726 106008 106559 106134 105892

0 – 7 106072 105667 105443 105786 106165 106053 106019 105874
8 – 15 105949 106556 105629 105597 105709 105308 102826 105302

D 16 – 23 105637 105938 105993 104343 105727 106117 105800 105642
24 – 31 106491 105858 105933 105595 104871 105884 106314 105622

0 – 7 105496 105903 105954 105681 106193 105745 105652 105878
8 – 15 103071 105674 106294 105795 105778 105893 105728 105701

E 16 – 23 105913 105857 105977 105725 105963 106232 106061 105743
24 – 31 106115 105974 107089 105738 105904 106000 105941 105671

Table 9. An example of an IV value and a message pair giving a pair of hashes differing
on 28 bits.

IV 6a09e667 db1bb914 3c6ef372 a54ff53a 510e527f 767b0824 66410f7d 90f7ce64

M
85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 1dcb6936 ec995db1 d2ad257b 730f5bb4

M ′ 85a83e55 91d3ca9d a6c2facb 027afd32 000000cb 00000000 9d4a6aba 00000000

e649c148 4606ae35 6efb18d8 2d6ade8f 40c36936 ec995db1 d2ad257b 730f5bb4

diff 00000000 8c300000 1d010204 52520104 c0908122 00000000 00000000 00000000

7.5 Feasibility of finding full collisions

Results from the previous subsection suggest that we can consider output differ-
ences to be very close to the uniform distribution. Using d =0xdd080000, there
are 109 bits that may contain differences, but we know that differences in bit
19 of register B will always cancel out each other. This means that since at
most 108 bits are affected, after generating 2108 such pairs we expect to find a
collision. We have already computed that the complexity of finding a single pair
like this is about 218.6 (or less, if better modular differences exist). So the total
complexity of generating enough pairs to find a collision with high probability is
2108 · 218.6 = 2126.6, more than a factor of two better than the generic birthday
attack.

It is worth mentioning that the additional advantage of our attack is that
it does not need a huge storage, it requires only about 2 · 222 32-bit words of

memory for storing precomputed inputs for microcollisions and a hash table of
similar size.

The above estimate is rather conservative, because if we multiply probabilities
of single bit differences being zero (which can be easily derived from Table 8) we
get the value of 2106.4 rather than 2108 and thus also a lower complexity of the
attack of 2125 but one has to be cautious as there is no guarantee that the bits
are uncorrelated enough to make the computation of this product valid.

8 Conclusions

In this paper we exposed a number of weaknesses of the compression function of
FORK-256. We showed how the unexpected property of Q-structures (allowing
for finding microcollisions) can be exploited to easily find pairs of messages
that after compressing result in a difference on only a small number of bits. We
presented how this ease of finding output differences restricted to at most 108 bits
may be exploited further to launch a collision-finding attack on the compression
function faster and with smaller memory requirements than by birthday attack.

Our results are by no means final and complete. We expect that having more
computational power to search for more favourable cases or investigating slighly
different variations of the attacks we presented, it may be possible to improve
them significantly.

Although we are intrigued by the design of FORK-256, at this point in time
we are convinced that it should not be used in applications that require the
highest level of security against collisions.

Finally, we would like to mention that an independent analysis of FORK-256
conducted by Mendel et al. [6] also discovered the existence of those pathological
differentials and made use of them to produce collisions for two branches of
FORK-256.

References

1. R. Anderson and E. Biham. Tiger: A fast new hash function. In D. Gollmann,
editor, Fast Software Encryption – FSE’96, volume 1039 of LNCS, pages 121–144.
Springer-Verlag, 1996.

2. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I:
The user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997.
http://magma.maths.usyd.edu.au/.

3. D. Hong, J. Sung, S. Hong, S. Lee, and D. Moon. A new dedicated 256-bit hash
function: FORK-256. First NIST Workshop on Hash Functions, 2005.

4. D. Hong, J. Sung, S. Lee, D. Moon, and S. Chee. A new dedicated 256-bit hash
function. In Fast Software Encryption – FSE’06, LNCS. Springer-Verlag, 2006.

5. M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.

Simul., 8(1):3–30, 1998.
6. F. Mendel, J. Lano, and B. Preneel. Cryptanalysis of reduced variants of the

FORK-256 hash function. Accepted to CT-RSA’07.

7. National Institute of Standards and Technology. Secure hash standard (SHS).
FIPS 180-1, April 1995. Replaced by [8].

8. National Institute of Standards and Technology. Secure hash standard (SHS).
FIPS 180-2, August 2002.

9. B. Preneel, A. Bosselaers, and H. Dobbertin. RIPEMD-160: A strenghtened version
of RIPEMD. In D. Gollmann, editor, Fast Software Encryption – FSE’96, volume
1039 of LNCS, pages 71–82. Springer-Verlag, 1997.

10. R. L. Rivest. The MD4 message digest algorithm. In A. J. Menezes and S. A.
Vanstone, editors, Advances in Cryptology - CRYPTO’90, volume 537 of LNCS,
pages 303–311. Springer-Verlag, 1991.

11. R. L. Rivest. The MD4 message digest algorithm. Request for Comments (RFC)
1320, Internet Engineering Task Force, April 1992.

12. R. L. Rivest. The MD5 message digest algorithm. Request for Comments (RFC)
1321, Internet Engineering Task Force, April 1992.

13. B. Schneier and J. Kesley. Unbalanced Feistel networks and block cipher design. In
D. Gollmann, editor, Fast Software Encryption – FSE’96, volume 1039 of LNCS,
pages 121–144. Springer-Verlag, 1996.

14. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash func-
tions MD4 and RIPEMD. In R. Cramer, editor, Advances in Cryptology – EURO-

CRYPT’05, volume 3494 of LNCS, pages 1–18. Springer-Verlag, 2005.
15. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances

in Cryptology - CRYPTO’05, volume 3621 of LNCS, pages 17–36. Springer, 2005.
16. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,

editor, Advances in Cryptology – EUROCRYPT’05, volume 3494 of LNCS, pages
19–35. Springer-Verlag, 2005.

17. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In
Advances in Cryptology - CRYPTO’05, volume 3621, pages 1–16. Springer, 2005.

18. Y. Zheng, J. Pieprzyk, and J. Seberry. HAVAL – a one-way hashing algorithm
with variable length of output. In J. Seberry and Y. Zheng, editors, Advances in

Cryptology - AUSCRYPT’92, volume 718 of LNCS, pages 83–104. Springer-Verlag,
1993.

