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WEALTH DISTRIBUTIONS IN ASSET EXCHANGE MODELS

P. L. KRAPIVSKY AND S. REDNER*

How do individuals accumulate wealth as they interact economically? We outline the consequences
of a simple microscopic model in which repeated pairwise exchanges of assets between individuals
build the wealth distribution of a population. This distribution is determined for generic exchange
rules — transactions that involve a fixed amount or a fixed fraction of individual wealth, as well as
random or greedy exchanges. In greedy multiplicative exchange, a continuously evolving power
law wealth distribution arises, a feature that qualitatively mimics empirical observations.
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Perspective

The economy is a complex interacting system that
responds to a multitude of influences and extends
over a wide range of monetary scales. As experience

with financial crises continues to demonstrate,
understanding how an economy develops and how it is
influenced by externalities remains poorly understood. Basic
questions about what causes financial crises and how to
deal with them continue to be hotly debated, with little
sign that a fundamental understanding is emerging1–3.

What can statistical physics contribute to this
discussion? Not much, if the goal is to predict the economy
next year. However, statistical physics possesses powerful
theoretical tools that have proven useful in describing
specific financial phenomena, such as the Black-Scholes
options pricing formula4. There are many parallels between
statistical physics and economic phenomena, and physics-
based modeling has helped facilitate conceptual
developments in finance and economics5–7.

In classic economic theories, humans, or companies,
are considered as rational actors that respond
deterministically to external conditions. More recently,
stochastic tools have been applied to the economy,
particularly to financial modeling. The stochastic
approaches that are conventionally employed are Brownian

motion and its generalizations. In physics, a similar
approach was followed to describe non-deterministic
systems, where the interaction between a particle and its
environment was mimicked by noise, while interactions
between microscopic entities (such as Brownian particles)
were ignored. This development (associated with physicists
like Einstein, Langevin, and Stratonovich, and
mathematicians like Kolmogorov, Feller, and Itô) led to
increasingly sophisticated stochastic processes8–11, a
research thread that is still active.

Over the last 40 years a new approach that combines
the stochastic behavior of elemental entities as well as their
mutual interactions has emerged12, 13. While a few-particle
interacting system is hopelessly complicated and beyond
the reach of analytical techniques, a dramatic simplification
arises for a many-particle system because we can often
make statistical predictions about its fate. That a

Fig.. 1. Illustration of the asset exchange model.
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macroscopic interacting system is simpler than its few-
element counterpart has several appellations — the law of
large numbers, ergodicity, etc. — and it justifies the utility
of statistical physics and probability theory in attempts to
understand economic processes.

In this short review, we present an interacting many-
agent asset exchange model that can be quantitatively
analyzed using statistical physics tools. An agent could be
a single person or a self-contained economic entity, such
as a company. In this model, the interaction between two
agents results in a redistribution of their assets. We regard
an asset as any economic attribute — cash, goods, or other
materials — that contributes to overall individual wealth.

The macroeconomy is viewed as the result of a large
number of asset exchanges between randomly-selected pairs
of agents. Through these exchanges a global wealth
distribution develops, and we want to understand how
generic features of this distribution depend on the nature
of the exchanges. The notion that the wealth distribution
is driven by two-person exchanges appears to have been
first considered in the economics literature by Angle14, 15.
In the physics community, this approach was introduced
by Ispolatov et al.16, and related perspectives on this subject
include Refs.17–21. A comprehensive review of this research
topic is given in22 and an engaging non-technical exposition
appears in23.

Additive Exchange

As a preliminary, we first study additive exchange
processes, in which a fixed amount of asset is exchanged
between two agents, independent of their wealth before a
trade occurs. At the outset, we have to determine how to
treat agents whose wealth reaches zero as a result of many
unfavorable trades. We treat such penurious agents as
economically “dead”, so that they no longer participate in
the evolution of the wealth. Mathematically, this rule
corresponds to imposing an absorbing boundary condition
on the density of agents of zero wealth. An alternative is
to impose a reflecting boundary condition at zero wealth,
so that all agents continue to economically interact, even
if they have no wealth17. In this latter case, the wealth
follows the Boltzmann distribution of equilibrium statistical
mechanics, with an effective temperature equal to the
average amount of wealth per agent.

Under the condition that bankrupt agents are
eliminated from further economic activity, we determine
the consequences of: (i) fair transactions, where either agent
is equally likely to profit in an interaction, and (ii) greedy
transactions, in which the richer agent profits in an

interaction. For simplicity, each agent is assumed to possess
an integer-valued amount of assets and that one unit of
asset is transferred between traders in each interaction.

Fair Transactions : In a fair exchange, the wealth of

two agents evolves as (j, k)  (j ± 1, k   1); the direction

of the exchange is independent of their starting wealth. The
wealth distribution evolves by selecting two agents at
random who exchange one unit of wealth and repeating
this elemental step ad infinitum. We assume that all agents
are equally likely to interact with any other agent
(corresponding to the mean-field limit in statistical physics).

In this limit, the evolution of the wealth distribution
is described by a master equation that accounts for the
changes in wealth in each microscopic interaction between
agents. Let ck(t) be the density of agents with wealth k. In
random additive exchange, the master equation is

 1 1 2 ,k
k k k

dc
N c c c

dt     (1)

where 
1

( ) ( )kk
N t c t


  is the density of economically

viable agents. The first two terms on the right-hand side
account for the gain in ck due to the transactions (j, k + 1)
 (j + 1, k) and (j, k – 1)  (j – 1, k),  respectively,
while the last term accounts for the loss in ck due to the
transactions (j, k)  (j ± 1, k   1). Since these transactions

require the presence of an agent of wealth k or k ± 1 and
an agent of arbitrary wealth, all terms on the right-hand
side involve N times a concentration. The density of agents
with a single unit of wealth evolves by dc1/dt = N(c2 –
2c1); this equation may also be written in the same form
as Eq. (1) by imposing the absorbing boundary condition
c0(T) = 0.

Introducing the time-like variable, 
0

( )
t

T dt N t   , we

reduce Eq. (1) to the discrete diffusion equation

1 1 2 ,k
k k k

dc
c c c

dT     (2)

which may be solved for any initial condition11,13. When

all agents start with unit wealth, ,1(0)k kc  , we may

account for the absorbing boundary condition by
augmenting the initial condition with an “image”
contribution due to agents with initial wealth – 1; that is,

,1 , 1(0)k k kc     . The solution to Eq. (2) subject to these

initial conditions is13
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1 1( ) (2 ) (2 ) ,T

k k kc T e I T I T
   (3)
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where In is the modified Bessel function of order n.
Correspondingly, the total density of active agents N(T) is

 2
0 1( ) (2 ) (2 ) .TN T e I T I T  (4)

In the limit T  , the asymptotic behaviors of Eqs.
(3) and (4) are :
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T
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
   (5)

These asymptotics apply, up to an overall factor, to
all initial conditions that decay sufficiently rapidly with k.
An important feature of (5) is the emergence of scaling:

the distribution ck(T) depends on the scaled wealth, k T ,

rather than separately on the variables k and T. Similar
scaling behavior arises in numerous interacting particle
systems13. Normally, scaling is postulated and then verified
analytically or numerically. For asset exchange, we deduce
the validity of scaling from the exact solution. We now
express the asymptotic solution (5) in terms of the physical

time t by using 32
30
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t T dT N T T     to eliminate

T and give
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(6)

The number of viable agents decreases as t–1/3 and
their typical wealth grows as t1/3. While this model is not
realistic, it illustrates the efficacy of a statistical physics
perspective in solving an interacting many-body system.

Instead of removing bankrupt agents, let us provide
each of them with ‘welfare’ of a single unit of asset. In
this case, the economically viable population density is
always N = 1 and the master equation for the wealth
distribution simplifies to

1 1 2 2,k
k k k

dc
c c c k

dt     

1
2 1, 1,

dc
c c k

dt
   (7)

We can extend the first of these equations to all k
and also subsume the equation for c1 by choosing the initial
condition c1–k(0) = ck(0), with c1(0) = c0(0) = 1, and ck(0)
= 0 for k   0; 1. The solution to (7) subject to this initial
condition is

 2
1(2 ) (2 ) .t

k k kc e I t I t
  (8)

Because of this injection of assets to destitute agents,

the total wealth density of the population, 1 kk
M kc


 ,

grows with time as
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as t  . In this toy model, the rate of welfare
expenditure to keep everyone solvent decreases with time!

Greedy Transactions : In greedy exchange, the richer
agent is exploitative and always takes one unit of wealth
from the poorer agent in each interaction, as represented
by (j, k)  (j +1, k – 1) for j  k. The densities ck(t) now
evolve according to

 
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1 1

.
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The first term on the right accounts for the gain in ck
due to an agent with wealth k – 1 taking one wealth unit
from a poorer trading partner. Similarly, the second term
accounts for an agent with wealth k + 1 losing one unit of
wealth to a richer trading partner. The last term accounts
for the loss of ck when an agent of wealth k trades with
anyone; the extra factor of ck accounts for the loss of both
agents of wealth k when two such agents interact.

While this set of non-linear equations appears
intractable by exact methods, they are readily amenable to
a scaling analysis13. We first re-write Eq. (9) as

 1 1 1 1( ) ( ) ,k
k k k k k k k j

j k
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c c c N c c c c c
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

   


        (10)

and make the scaling ansatz  2
* *( )c t k C k k
 , where k*(t)

is the typical wealth of each agent. That is, the wealth
distribution at different times is invariant when wealth is
measured in units of the time-dependent typical wealth. The

prefactor 2
*k   ensures that the total wealth of the

population, ( )kk
kc t , is conserved, while the condition

( )kk
kc t  = N(t) gives k*(t) ~ 1/N(t). Substituting now

the scaling form 2( ) ( )kc t N C x , with x = kN, in Eq. (10)

and taking the continuum limit gives

  2(0) 2 2 1 2 ( ) ,
x
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        (11)

where C dC dx  . The scaling function must satisfy

0
( ) 1 ,dx C x


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0
( ) 1 ,dx x C x


 (12)
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that follow from ( ) ( )kN c t N dx C x    and setting the

(conserved) wealth density to one, ( ) 1kk
kc t  .

Equation (11) is soluble by elementary techniques16,
and the asymptotic wealth is simply the step function

1 (2 ), 2 ,
( )

0, 2 ,
k

t k t
c t

k t

  


(13)

while the density of active agents decays as N(t) = t–1/2. In
greedy exchange, the number of viable agents decays faster
than in random exchange and the population is slightly
wealthier, with the average wealth growing as t1/2 rather
than as t1/3.

Multiplicative Exchange

While additive exchange provides instructive warmup
examples, multiplicative exchanges, where a fixed fraction
of the current wealth of one of the agents is traded, are
economically more realistic. For example, investment
returns are generally quoted as percentages rather than
absolute amounts. A trade now has the form

( , ) ( , )x y x x y x    , with 0 1   the fraction of

the loser’s assets that are gained by the winner. By
multiplicative exchanges agents can never go bankrupt, but
they can become arbitrarily poor.

Fair Transactions : If an agent gains or loses with
equal probabilities in a transaction, the wealth distribution
evolves as

( ) 1
( ) ( ) ( ) ( )

2

c x
dy dz c y z x z x y

t
       

 

 (1 ) ( ) .y x z y x          (14)

The delta functions cleanly indicate the origin of the
various terms in this equation. For example, the first two
terms on the right account for the loss of agents of wealth
x due to trades with any other agents. The next two terms
account, respectively, for the gain in c(x) due to the

exchanges , ,
1 1

x x
y x y


 

           
 and  ,y x y

  1 ,y x  . Integrating over the delta functions, the

master equation becomes

0
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t    
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(15)

where we set the (conserved) total density to one.

Equation (15) is daunting, and it is simpler to study

the evolution of the moments, 
0

( ) ( , ) ,n
nM t dx x c x t


   that

quantify the wealth of a typical agent. It is straightforward
to verify that the first two moments, the population M0
and the wealth density M1, are conserved; we choose M0
= 1 and M1 = M without loss of generality. More interesting
behavior arises for the second moment equation

22
2

( )
(1 ) ( ) ,

dM t
M t M

dt
     

whose solution is
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M t M e  

 
  

     
(16)

All moments beyond the second also converge to non-
zero steady-state values. This steady state arises because
the wealth of a rich agent substantially diminishes in a
losing multiplicative exchange, but its wealth increases only
slightly in a winning exchange. Conversely, a poor agent
suffers a slight loss in a losing exchange but can gain
substantially in a winning exchange. These two countering
outcomes tends to move all agents toward a middle class.

Greedy Transactions :  When only the richer agent
gains in an exchange, the master equation is now

(1 )

( ) 1
( ) ( )

1 1 x

c x x
c x c dy c y

t  




          

(1 )

1
( ) .

x

x y
dy c y c

 




   
  (17)

Numerically, we find that the resulting wealth
distribution is a power law (Fig. 2), with most of the
population impoverished. Pervasive impoverishment arises
because greedy exchange causes the poor to become poorer
and the rich to become richer, but wealth conservation
forces there to be many more poor than rich agents. In the
longtime limit, a small fraction of the population possesses
most of the wealth.

An exact formal solution to Eq. (17) is16

( , ) ,
A

e x t
xt

   with  
1

.
ln(1 )

A


 


(18)

This distribution is pathological, however, because
positive the moments Mn(t) of this distribution are
divergent. Thus Eq. (18) can only apply within an
intermediate scaling regime x1(t) < x < x2(t), a restriction
that leads to finiteness of all the moments. To determine
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this scaling region, we use Eq. (18) to compute the
moments and obtain:

 2

1

2 1
0

ln
( ) ~ ( , ) ~ ,

x

x

A x x
M t dx c x t

t

2

1

2
1( ) ~ ( , ) ~ .

x

x

Ax
M t dx x c x t

t (19)

Since M0 = 1 and M1 are constants, we infer that

1( ) ~ (1 )t A tx t e     and 2 ( )x t t . These cutoffs

correspond to the wealth of the poorest and richest agent,
respectively, in the population. It is only within these ranges
that the wealth distribution is a power law, as shown in
Fig. 2.

Fig. 2. The power-law wealth distribution c(x) of greedy multiplicative
exchange with   = 0:5 on a double logarithmic scale for times t =
1:5n, with n = 7, 10, 13, and 16.

Discussion

Asset exchange represents a parsimonious mechanism
for the gain and loss of individual wealth in an
economically active population. In spite of the obvious
shortcomings of considering only this single factor among
the myriad of influences on individual wealth, asset
exchange models lead to a rich array of wealth distributions.
For additive asset exchange, the wealth distribution can be
explicitly derived for a variety of microscopic exchange
rules. For greedy multiplicative exchange, where the richer
agent always gains in an interaction, a scaling-based
approach indicates that the wealth distribution has an

evolving power law form, ( , ) 1 ( ).c x t xt

Power-law distributions occur in the high-wealth tail
of the wealth distribution in various economies, with the
associated exponent in the range of 1.6–2.2 (see

Refs.21, 24). As alluded to in the introduction, a variety of
stochastic models, where agent undergoes an independent
stochastic process, have also been invoked to argue for
this power law25–29. In contrast, greedy multiplicative
exchange is based on a combination of stochasticity and
microscopic interactions between agents. There are many
directions in which asset exchange models have been
extended to make them more realistic; recent work along
these directions can be found in Ref.30–36. Specific examples
of such additional elements include the incorporation of
the saving of assets19, 21, 37, speculative trading38, and other
forms of wealth redistribution. The notion of exchange of
assets has also been applied to construct a migration model
for the distribution of city sizes39. It should prove
interesting to examine the role of such redistribution
mechanisms in the ideologically-free setting of statistical
physics modeling. The underlying assumption of conserved
assets in an exchange neglects the possibility of wealth
growth because of the exploitation of a natural resource,
technological developments, or by both agents benefiting
in exchanges. These are issues that appear ripe for further
development.

We thank Slava Ispolatov for his initial collaboration
on this project. 
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