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Abstract

Methodologies for training visual question an-

swering (VQA) models assume the availabil-

ity of datasets with human-annotated Image-

Question-Answer (I-Q-A) triplets. This has

led to heavy reliance on datasets and a lack of

generalization to new types of questions and

scenes. Linguistic priors along with biases and

errors due to annotator subjectivity have been

shown to percolate into VQA models trained

on such samples. We study whether models

can be trained without any human-annotated

Q-A pairs, but only with images and their as-

sociated textual descriptions or captions. We

present a method to train models with syn-

thetic Q-A pairs generated procedurally from

captions. Additionally, we demonstrate the ef-

ficacy of spatial-pyramid image patches as a

simple but effective alternative to dense and

costly object bounding box annotations used

in existing VQA models. Our experiments on

three VQA benchmarks demonstrate the effi-

cacy of this weakly-supervised approach, espe-

cially on the VQA-CP challenge, which tests

performance under changing linguistic priors.

1 Introduction

Since Visual Question Answering (VQA) was first

proposed as a Turing test (Malinowski and Fritz,

2014), several human-annotated datasets (Mo-

gadala et al., 2019) have been used to train and

evaluate VQA models. Unfortunately, heavy re-

liance on these datasets for training has the un-

wanted side-effects of bias towards answer styles,

question-types (Chao et al., 2018), and spurious

correlations with language priors (Agrawal et al.,

2018). Similar findings have been reported for nat-

ural language tasks (Gururangan et al., 2018; Niven

and Kao, 2019; Kaushik et al., 2020). Evaluating

VQA models on test-sets that are very similar to

training sets is deceptive and inadequate and not an

accurate measure of robustness.

To address this, one line of work has focused

on balancing, de-biasing, and diversifying sam-

ples (Goyal et al., 2017; Zhang et al., 2016). How-

ever, crowd-sourcing “unbiased” labels is difficult

and costly; it requires a well-designed annotation

interface and a large-scale annotation effort with

dedicated and able annotators (Sakaguchi et al.,

2020). The alternative (that this paper aligns itself

with) is to avoid the use of explicit human anno-

tations and instead to train models in an unsuper-

vised manner by synthesizing training data. These

techniques, coined unsupervised1, come with many

advantages – human bias and subjectivity are re-

duced; the techniques are largely domain-agnostic

and can be transferred from one language to an-

other (low resource languages) or from one visual

domain to another. For instance, template-based Q-

A generation developed for synthetic blocks-world

images in CLEVR (Johnson et al., 2017) can also

be used to generate Q-A pairs for natural complex

scenes in GQA (Hudson and Manning, 2019) or

the referring-expressions task (Liu et al., 2019).

In this work, we train VQA models without

using human-annotated Q-A pairs. Instead, we

rely on weak supervision from image-captioning

datasets, which provide multi-perspective, concise,

and less subjective descriptions of visible objects

in an image. We procedurally generate Q-A pairs

from these captions and train models using this syn-

thetic data, and only evaluate them on established

human-annotated VQA benchmarks.

Why Captions? Image captioning, like VQA,

has been a central area of vision-and-language re-

search. Datasets such as MS-COCO (Lin et al.,

2014; Chen et al., 2015) contain captions that de-

scribe objects and actions in images of everyday

scenes. During the construction of MS-COCO,

human captioners were instructed to refrain from

describing past and future events or “what a per-

son might say”. On the other hand, annotators of
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VQA (Antol et al., 2015) were instructed to ask

questions that “a smart robot cannot answer, but a

human can” and “interesting” questions that may

require “commonsense”. Different sets of annota-

tors provided answers to these questions and were

allowed to speculate or even guess an answer that

most people would agree on. It has also been shown

that multiple answers may exist for questions in

common VQA datasets (Bhattacharya et al., 2019).

In Figure 2, the first VQA-v2 question asks how

many doors the car has. Although commonsense

(and linguistic priors) would suggest that “Most

cars have four doors”, only two doors can be seen

in the image. What should the model predict, two

or four? The second question is subjective and has

multiple contradicting answers from different an-

notators (where one should draw the line between

opaque, transparent, or reflective is not very clear).

Similarly, the first GQA question is ambiguous and

could refer to either the skier or the photographer.

Thus the very nature of the data-collection pro-

cedure and instructions for VQA brings in human

subjectivity and linguistic bias as compared to cap-

tion annotations, which are designed to be simple,

precise, and non-speculative. Motivated by this, we

study the benefits of using captions to synthesize

Q-A pairs, using three types of methods:

1. template-based methods similar to (Ren et al.,

2015a; Gokhale et al., 2020b),

2. paraphrasing and back-translation (Sennrich

et al., 2016) which provide linguistic varia-

tion,

3. synthesis of questions about image semantics

using the QA-SRL (He et al., 2015) approach.

Since our Q-A pairs are created synthetically, there

does exist a domain shift as well as label (answer)

shift from evaluation datasets such as VQA-v2 and

GQA as shown in Figure 2, thus posing challenges

to this weakly-supervised method.

We evaluate two models, UpDown (Anderson

et al., 2018) and a transformer-encoder (Vaswani

et al., 2017) based model pre-trained on synthetic

Q-A pairs and image-caption matching task. To

remove the dependence on object bounding-boxes

and labels needed to extract object features, we

propose spatial pyramids of image patches as a

simple and effective alternative.

To the best of our knowledge, this is the first

work on the unsupervised1 visual question answer-

ing, with the following contributions:

1adhering to the usage of this term in Lewis et al. (2019a).
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Figure 1: Aspects of generalization in VQA.

• We introduce a framework for synthesizing

(Question, Answer) pairs from captions.

• Since synthetic samples (unlike popular

benchmarks) include multi-word answer

phrases, we propose a sub-phrase weighted-

answer loss to mitigate bias towards such

multi-word answers.

• We propose pre-training tasks that use spatial

pyramids of image-patches instead of object

bounding-boxes, further removing the depen-

dence on human annotations.

• Extensive experiments and analyses under

zero-shot transfer and fully-supervised set-

tings on VQA-v2, VQA-CP, and GQA show

our model’s efficacy and establish a strong

baseline for future work on unsupervised vi-

sual question answering.

2 Related Work

Robustness in VQA can be defined as shown in

Figure 1 under two situations: domain shift and

label shift. Under domain shift, generalization to

a new input domain (such as different styles of

questions or novel scenes) is desired, characterized

by S ∩ T 6= T where S and T denote the train

and test input domains. Under label shift, gener-

alization to novel answers is desired (predicting

answers not seen during training), characterized by

AS ∩ AT 6= AT , where AS and AT are the set of

answers seen during training and test-time.

Performance under domain shift has been evalu-

ated for new domains of test questions with unseen

words and objects (Teney and Hengel, 2016; Ra-

makrishnan et al., 2017), novel compositions (John-

son et al., 2017; Agrawal et al., 2017), logical

connectives (Gokhale et al., 2020b), as well as

questions that are implied (Ribeiro et al., 2019),

entailed (Ray et al., 2019) or sub-questions (Sel-

varaju et al., 2020); or for datasets with varying

linguistic styles (Chao et al., 2018; Xu et al., 2020;

Shrestha et al., 2019) and different reasoning capa-

bilities (Kafle and Kanan, 2017).

Label shift or Prior Probability Shift (Storkey,
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Figure 2: Examples of images and human-annotated Q-A pairs from VQA and GQA and our synthetic Q-A pairs.

2009) has been implicitly explored in VQA-

CP (Agrawal et al., 2018), where the conditional

probabilities of answers given the question type

deviate at test-time. Teney et al. (2020c) have iden-

tified several pitfalls associated with the models

and evaluation criteria for VQA-CP.

Unsupervised Extractive QA in which aligned

(context, question, answer) triplets are not available,

has been studied (Lewis et al., 2019b; Banerjee and

Baral, 2020; Rennie et al., 2020; Fabbri et al., 2020;

Li et al., 2020; Banerjee et al., 2021) by training

models on procedurally generated Q-A pairs. Cap-

tions have been used to generate Q-A pairs for

logical understanding (Gokhale et al., 2020b) and

commonsense video understanding (Fang et al.,

2020a). Li et al. (2018); Krishna et al. (2019) have

explored Visual Question Generation from an input

image and answer.

Weak supervision is an active area of research;

for instance in action/object localization (Song

et al., 2014; Zhou et al., 2016) and semantic seg-

mentation (Khoreva et al., 2017; Zhang et al., 2017)

without pixel-level annotations, but only class la-

bels. There is also interest growing in leverag-

ing natural language captions or textual queries as

weak supervision for visual grounding tasks (Hen-

dricks et al., 2017; Mithun et al., 2019; Fang et al.,

2020b).

Visual Feature Extractors such as VGG (Si-

monyan and Zisserman, 2015) and ResNet (He

et al., 2016) have been widely used for many

computer vision tasks. Object-based features

such as RCNN (Girshick et al., 2014) and Faster-

RCNN (Ren et al., 2015b) have become the stan-

dard for V& L tasks (Anderson et al., 2018).

3 Framework for Synthesizing Q-A Pairs

Problem Statement: Consider a dataset contain-

ing images and associated captions as shown in

Figure 2. Our work deals with learning VQA using

these image-caption data, without any labeled Q-A

pairs, and answer questions about unseen images.

3.1 Question Generation

Several studies (Du et al., 2017; Lewis et al., 2019a)

have been dedicated to the complex domain of ques-

tion generation. We approach it conservatively,

using template-based methods and semantic role

labeling, with paraphrasing and back-translation

for improving the linguistic diversity of template-

based questions. We begin by extracting object

words from the caption by using simple heuristics

such as extracting noun-phrases and using numeri-

cal quantifiers in the caption as soft approximations

of objects’ cardinality. If object-words are available

explicitly, we used them as is. Questions are cat-

egorized based on answer types; Yes-No, Number,

Color, Location, Object, and Phrases.

Template-based: To create Yes-No questions,

modal verbs are removed from the caption, and a

randomly chosen question prefix such as “is there”,

“is this” is attached. For instance, the caption “A

man is wearing a hat and sitting” is converted to “Is

there a man wearing a hat and sitting”, with the an-

swer “Yes”. To create the corresponding question

with the answer “No”, we use either negation or

replace the object-word with an adversarial word

or antonym, thus obtaining “Is there a dog wearing

a hat and sitting” for which the answer is “No”. An

adversarial word refers to an object absent in the

image but similar to objects in the image. To com-

pute similarity, we use Glove (2014) word-vectors.

For Object, Number, Location, and Color ques-

tions, we follow a procedure similar to Ren et al.
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Template-based

Paraphrase &

Back-translate QA-SRL VQA-v2 GQA VQA-CP

# of Questions 600K 400K 2.5M 438K / 214K 943K / 132K 245K / 220K

# of Answers 5K 5K 90K 3.5K 1878 3.5K

Mean Question Length 7.9 8.1 4.8 6.4 10.6 6.4

Mean Answer Length 1.4 1.4 6.3 1.1 1.3 1.1

Image Source COCO COCO COCO COCO COCO,VG,Flickr COCO

Image Counts 120K 120K 120K 120K 113K 120K

Figure 3: Discrepancy between VQA-v2, GQA, and synthetic samples. Left: t-SNE plot of question embeddings.

Right: Dataset statistics for our generated Q-A pairs with Train/Val. splits for benchmark datasets.

(2015a). To create “what” questions for the Object

type, we extract objects and noun phrases from cap-

tions as potential answers and replace them with

what. The question is rephrased by splitting long

sentences into shorter ones and converting indefi-

nite determiners to definite. A similar procedure is

used for Number questions; numeric quantifiers of

noun phrases are extracted and replaced by “how

many” and “what is the count” to form the question.

Color questions are generated by locating the color

adjective and the corresponding noun phrase and

replacing them in a templated question: “What is

the color of the object?”. Location questions are

similar to Object questions, but we extract phrases

with “in”, “within” to extract locations, with places,

scenes, and containers as answers.

Semantic Role Labeling: QA-SRL (He et al.,

2015) was proposed as a paradigm to use natural

language to annotate data by using Q-A pairs to

specify textual arguments and their roles. Con-

sider the caption “A girl in a red shirt holding

an apple sitting in an empty open field”. Using

QA-SRL with B-I-O span detection and sequence-

to-sequence models (FitzGerald et al., 2018), for

the “when”, “what”, “where”, and “who” ques-

tions, we obtain Q-A pairs belonging to the Phrases

category such as:

(what is someone holding?, an apple)
(who is sitting?, girl in a red shirt holding an apple)

(where is someone sitting?, an empty open field)

These examples illustrate that QA-SRL ques-

tions are short and use generic descriptors such as

something and someone instead of elaborate ref-

erences, while the expected answer phrases are

longer and descriptive. Thus to answer these, bet-

ter semantic image understanding is required.

Paraphrasing and Back-Translation (P&B):

We apply two natural language data augmentation

techniques, paraphrasing, and back-translation to

increase the linguistic variation in the questions. To

paraphrase questions, we train a T5 (Raffel et al.,

2019) text generation model on the Quora Ques-

tion Pairs Corpus (). For back-translation, we train

another T5 text generation model on the Opus cor-

pus (2012), translate the question to an interme-

diate language (Français, Deutsche, or Español),

and translate the question back to English. For

example:
Is the girl who is to the left of the sailboats wearing a

backpack?




y

Español

La chica que está a la izquierda de los veleros lleva mochila?




y

English

Does the girl to the left of the sailboats carry a backpack?

3.2 Domain Shift w.r.t. VQA-v2 and GQA

Compared to current VQA benchmarks (which typ-

ically contain one-word answers), answers to QA-

SRL questions are more descriptive and contain

adjectives, adverbs, determiners, and quantifiers,

as seen in Figure 2. On the other hand, synthetic

questions have less descriptive subjects due to the

use of pronouns. Our synthetic data contains 90k
unique answer phrases, compared to 3.2k in VQA

and 3k in GQA. Around 200 answers from VQA

are not present in our answer phrases, such as time

(11:00) and proper nouns (LA Clippers), both of

which are not present in caption descriptions.

Moreover, our training data contains Q-A pair

such as (“Where is the man standing?, “to the left

of the table”), generated by QA-SRL with long

phrases as answers. However, the test set contains

questions such as (“Which side of the car is the

tree?”, “left”), which expects only “left” as the

answer. So although the word “left” is seen as a

sub-phrase of our training answers, it is not explic-

itly seen as an only correct answer.

Some of our synthetic template-based questions

about counting and object presence are similar in

style to those in VQA and GQA. However, QA-

SRL questions require a semantic understanding of

the actions depicted in the image, which are rare

in VQA and GQA. We quantify this by plotting

the t-SNE components of document vector embed-
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dings of the questions from VQA, GQA, and our

synthetic data, in Figure 3, and observe that our syn-

thetic questions are a distinct cluster, while VQA

and GQA overlap with each other. As such, a lin-

guistic domain shift exists between these synthetic

source questions and human-annotated target ques-

tions. In this paper, we address the challenge of

learning VQA on a synthetically generated dataset

and evaluating models on conventional benchmarks

which have questions and answers that deviate lin-

guistically from synthetic training samples.

4 Method

Recently, multiple deep transformer-based architec-

tures have been proposed (Tan and Bansal, 2019;

Lu et al., 2019; Chen et al., 2019), that are pre-

trained on a combination of multiple VQA and

image captioning datasets such as Conceptual Cap-

tions (Sharma et al., 2018), SBU Captions (Or-

donez et al., 2011), Visual Genome (Krishna et al.,

2017), and MSCOCO (Lin et al., 2014). These

models are resource intensive as they are trained

on a huge collection of data with 3 million images.

We train our models only on MS-COCO captions

and images (∼204k), without access to any human-

authored Q-A pairs or object bounding boxes.

4.1 Spatial Pyramid Patches

“Bottom-Up” object features (Anderson et al., 2018)

extracted from Faster R-CNN (Ren et al., 2015b)

have become the de-facto features used in state-of-

the-art VQA models. These VQA models thus only

use features of detected objects as input, and ignore

the rest of the image. Although object features are

discriminative, dense annotations are required for

training and additional large deep networks for ex-

traction. Object detection can be imperfect for

small and rare objects (Wang et al., 2019); for in-

stance if an object detection model detects only

four out of six bananas in an image, features of

the other two bananas will not be used by VQA

models. This creates a performance bottle-neck for

questions about counting or rare objects.

We take a step back and postulate that the use

of features of the entire image in context could

reduce this bottleneck. Image features extracted

from a ResNet (He et al., 2016) trained for the Im-

ageNet (Russakovsky et al., 2015) classification

task, which is widely used for computer vision

tasks, have been previously used for VQA mod-

els (Goyal et al., 2017). Unfortunately, since Ima-

geNet contains iconic (single-object) images, using

these features for non-iconic VQA images is restric-

tive since many questions refer to multiple objects

and backgrounds in the image. Inspired by Spa-

tial Pyramid Matching (Lazebnik et al., 2006) for

image classification, we propose spatial pyramid

patch features to represent the input VQA image

into a sequence of features at different scales.

We divide each image I into a set of image

patches {Ik1 , . . . , Ikn}, each Iki being a ki × ki
grid of patches, and extract ResNet features for

each patch. Larger patches encode global features

and relations, while smaller patches encode local

and low-level features.

Encoder: Our Encoder model is similar to the

UNITER single-stream transformer, where the se-

quence of word tokens w = {w1, ..., wT } and the

sequence of image patch features v = {v1, ..., vK}
are taken as input. We tokenize the text using a

WordPieces (Wu et al., 2016) tokenizer similar to

BERT (Devlin et al., 2019), and embed the text

tokens through a text-embedder (Sanh et al., 2019).

The visual features are projected to a shared em-

bedding space using a fully-connected layer. A

projected visual position encoding, indicating the

patch region (top-right, bottom-left) is added to the

visual features. We concatenate both sequences of

features and feed them to L cross-modality atten-

tion layers. Parameters between the cross-modality

attention layers are shared to reduce parameter

count and increase training stability (Lan et al.,

2020), and a residual connection and layer normal-

ization is added after cross-modal attention layer

similar to Vaswani et al. (2017).

4.2 Pre-training Tasks and Loss Functions

We train the Encoder model using three pre-training

tasks: Masked Language Modeling, Masked Ques-

tion Answering, and Image-Text Matching.

Masked Language Modeling (MLM): We ran-

domly mask 15% of the word tokens from the cap-

tion and ask the model to predict them. For the

caption “There is a man wearing a hat”, the model

gets the input “There is [MASK] wearing a hat”.

Without the image, there can be multiple plausible

choices for the [MASK] token, such as “woman”,

“man”, “girl”, but given the image the model should

predict “man”. This task has been shown to effec-

tively learn cross-modal features (2019).
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SELF-SUPERVISED
DATA SYNTHESIS

Q: What is someone passing?

A:  a competition race marker

VISUAL
PROJECTION

LANGUAGE
EMBEDDER

CROSS
MODAL

ENCODER

BERT
TOKENIZER

[CLS] What is someone 
[MASK] ? 

[SEP] a [MASK] race marker 
[SEP]

Positional Encoding

Masked Language Modeling
passing

Image-Text Matching 
 YES

Masked Question Answering
competition

Sub-phrase Weighted 
Answer Loss
{race marker, race, marker, 
competition, competition race marker}

SPATIAL
PYRAMID

PATCH 
EXTRACTOR

Figure 4: Our model architecture makes the use of spatial pyramids of image patches as inputs to the Encoder,

which is trained for three pre-training tasks as shown.

Masked Question Answering (MQA): In this

task, the answer tokens are masked, and the model

is trained to predict the answer tokens. For exam-

ple in Figure 2, for the input “ When is someone

competing? [MASK] [MASK]”, the model should

predict, “at night”. To answer such questions, the

model needs to interpret the image.

Image-Text Matching (ITM): We use the five

captions provided by MS-COCO as positive sam-

ples for each image. To obtain negative samples,

we randomly sample captions from other images

that contain a different set of objects. We train the

model on a binary classification task (matching /

not matching) for each image-caption pair.

For VQA and ITM, we use the final layer rep-

resentation z[CLS] of [CLS] token , followed by

a feed-forward and softmax layer. For MLM and

MQA we feed corresponding token representations

to a different feed-forward layer. We train the

model using cross-entropy loss for all three tasks.

Sub-phrase Weighted Answer Loss: As ob-

served before, the questions generated in QA-SRL

have long answer phrases. For instance “What is

parked?” has the answer “two black cars”. We

extract all possible sub-phrases that can be al-

ternate answers, but assign them a lower weight

than the complete phrase, computed as Wsub =
WordCount(sub)/WordCount(ans). Thus “two

black cars” has a weight 1.0, while the extracted

sub-phrases and weights are: (two, 0.33), (2, 0.33),

(black, 0.33), (cars, 0.33), (two cars, 0.66), (2

cars, 0.66), (black cars, 0.66), (car, 0.33). This

enforces a distribution over the probable answer

space instead of a strict “single true answer” train-

ing. We train the model with this additional bi-

nary cross-entropy loss, where the model predicts

a weighted distribution ywa over the answer vocab-

ulary. The vocabulary is defined from the synthetic

QA answer-space.

LSWA = LBCE(σ(z
[CLS]), ywa). (1)

The total loss, with scalar coefficients α, β ∈ (0, 1]
is given by:

L = LMLM + LMQA + α · LITM + β · LSWA. (2)

5 Experimental Setup

Datasets: We evaluate our methods on the three

popular visual question answering benchmarks:

VQA-v2, VQA-CP-v2, and GQA. Answering ques-

tions in VQA-v2 and VQA-CP v2 requires image

and question understanding, whereas GQA further

requires spatial understanding such as composi-

tionality and relations between objects. We evalu-

ate our methods under zero-shot transfer (trained

only on procedurally generated samples), and fully-

supervised (where we finetune our model using

the associated train annotations) settings. We use

exact-match accuracies for GQA, and use VQA-

metric (Agrawal et al., 2017) for VQA.

Training: Our Encoder has 8 cross-modal lay-

ers with a hidden dimension of 768. The weights

are initialized using the standard definition as pro-

vided in the Huggingface repository (Wolf et al.,

2019). Our models are pre-trained for 40 epochs

with a learning rate of 1e−5, batch size of 256,

using Adam optimizer. For finetuning, we use a

learning rate of 1e−5 or 5e−5 and batch size of 32

for 10 epochs. We use a ResNet-50 pretrained on

ImageNet to extract features from image patches

with 50% overlap, and Faster R-CNN pretrained on

Visual Genome to extract object features. We eval-

uate both frozen and finetuned ResNet, and observe

finetuning the feature extractor to perform better.

All our models are trained using 4 Nvidia V100

16 GB GPUs. All results in the fully supervised

setting are reported for from-scratch trained final

classification layers.
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Model All Yes-No Num Others

SAN (2016) 25.0 38.4 11.1 21.7
GVQA (2018) 31.3 58.0 13.7 22.1
UpDown (2018) 39.1 62.4 15.1 34.5
AReg(2017) 42.0 65.5 15.9 36.6
AdvReg (2019) 42.3 59.7 14.8 40.8
RUBi (2019) 47.1 68.7 20.3 43.2
Teney and van den Hengel (2019) 46.0 58.2 29.5 44.3
Unshuffling (2020b) 42.4 47.7 14.4 47.3
UpDn+CE+GS (2020a) 46.8 64.5 15.4 45.9
LXMERT (2019) 46.2 42.8 18.9 55.5
SCR (2019) 48.4 70.4 10.4 47.3
LMH (2019) 52.4 69.8 44.5 45.5
CSS (2020)* 58.9 84.4 49.4 48.2
MUTANT (2020a)* 69.5 93.2 67.2 57.8

ZSL+Objects+UpDown 40.8 67.4 28.6 30.2
ZSL+Patches+UpDown 41.2 68.5 29.8 30.0
ZSL+Patches+Encoder 47.3 73.4 39.8 35.6

Table 1: Unsupervised accuracy on VQA-CP-v2 test

set. All baselines are supervised methods trained on the

train split. * use further additional supervised training

samples. Cyan: our model is better overall. Red: our

model is better on specific categories.2

Model All Yes-No Num Others

GVQA (2018) 48.2 72.0 31.1 34.7
UpDown (2018) 65.3 81.8 44.2 56.1
RUBi (2019) 63.1 * * *
MCAN (2019) 70.4 85.8 53.7 60.7
VilBERT (2019) 70.5 * * *
LXMERT (2019) 72.5 88.2 54.2 63.1
UNITER (2019) 72.7 * * *

ZSL + Objects + UpDown 41.4 68.1 27.6 29.4
ZSL + Patches + UpDown 40.6 67.8 28.4 29.2
ZSL + Patches + Encoder 46.8 72.1 34.4 34.1

FSL + Objects + UpDown 66.8** 82.4** 45.1** 56.4**
FSL + Patches + UpDown 63.4 80.2 45.2 52.1
FSL + Patches + Encoder 65.3 80.5 48.94 56.2

Table 2: VQA-v2 Test-standard accuracies2. FSL mod-

els are pretrained on synthetic samples, and further fine-

tuned on VQA-v2 train split. * - Scores are not avail-

able, ** - Validation split scores.

Baselines: To measure the improvements due to

our proposed image patch features and SWA loss,

we compare our methods to the UpDown model

Anderson et al., which uses object bounding-box

features. For the Zero-shot transfer setting, we

compare our Encoder with UpDown when trained

with spatial features as well as object features. Pre-

trained transformers such as UNITER use large

V&L corpora, dense human annotations for objects

and Q-A pairs and supervised loss functions over

these. Comparisons with such models are therefore

not fair in a ZSL setting; instead, we perform these

comparisons in a fully-supervised (FSL) setting.

2ZSL refers to zero-shot transfer setting and FSL refers
to our models further finetuned on the respective train split.
Underline⇒unsupervised best, bold⇒overall best. Baselines
are trained on train-split, our models on synthetic data.

Model All Binary Open

CNN + LSTM (2018) 46.6 61.9 22.7
UpDown (2018) 49.7 66.6 34.8
MAC (2018) 54.1 71.2 38.9
BAN (2018) 57.1 76.0 40.4
LXMERT (2019) 60.3 77.8 45.0

ZSL + Objects + UpDown 30.7 50.8 17.6
ZSL + Patches + UpDown 31.1 52.3 16.8
ZSL + Patches + Encoder 33.7 55.5 21.2

FSL + Objects + UpDown 50.4 67.5 35.1
FSL + Patches + UpDown 46.4 64.3 31.4
FSL + Patches + Encoder 55.2 73.6 38.8

Table 3: GQA Validation split accuracies.2

6 Results2

Unsupervised Question Answering: Tables 1,

2 and 3 summarize our results on the three bench-

mark datasets. We can observe that our method

outperforms specially designed supervised meth-

ods for bias removal in VQA-CP; our model with

UpDown is 1.1% better than the supervised Up-

Down. Under the ZSL setting for VQA-CP, our

Encoder model is 6.1% better than UpDown with

patches, and 6.5% better than UpDown with Object

features, for VQA-v2: 6.2%, 5.4% respectively,

and for GQA: 2.2%, 3.0% respectively.

For VQA-CP, our procedurally generated Q-A

pairs and patch-features when used with either Up-

Down or Encoder are better than the baseline super-

vised UpDown model, showing the improvements

are model-agnostic. This also shows the merits of

using our Q-A generation methods when train and

test-sets deviate linguistically.

Most GQA questions require understanding spa-

tial relationships between objects. Such questions

are infrequent in our synthetic training data since

captions do not contain detailed spatial relation-

ships among objects. Thus, the ZSL performance

is not as competitive for GQA when compared to

our performance on VQA and VQA-CP. Improving

spatial and compositional question-answering with

weak supervision is an interesting future pursuit.

Fully Supervised Question Answering: In the

FSL setting, our methods’ performance is not far

from SOTA methods, even though our method uses

significantly fewer annotations (no access to object

bounding boxes). In GQA, the Encoder model per-

forms on par with MAC (2018) and BAN (2018),

which unlike us, use object relationship annotations.

This suggests that cross-modal transformer layers

can learn spatial relations from spatial pyramidal
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Question Generation VQA-v2 VQA-CP GQA
U

p
d

n
Template 26.2 25.7 11.6
Template + Para&Back 28.5 27.1 14.8
QA-SRL 31.1 33.8 18.9
All 41.4 40.2 31.1

E
n

co
d

er

Template 32.5 31.3 18.5
Template + Para&Back 34.8 33.6 23.6
QA-SRL 40.3 39.8 21.4
All 47.1 46.8 33.7

Table 4: Effect of different pre-training data sources on

ZSL Validation split accuracies.

Patch Resolutions VQA-v2 VQA-CP GQA

U
p

D
n

{1} 18.8 19.7 11.3
{1, 3} 36.7 35.9 24.5
{1, 3, 5} 40.1 39.7 29.5
{1, 3, 5, 7} 41.4 40.2 31.1
{1, 3, 5, 7, 9} 39.8 38.4 29.3

E
n

co
d

er

{1} 26.4 27.7 15.3
{1, 3} 42.6 43.1 28.8
{1, 3, 5} 44.3 45.2 30.9
{1, 3, 5, 7} 47.1 46.8 33.7
{1, 3, 5, 7, 9} 46.2 45.4 31.2

Table 5: Effect of the number of spatial patches on ZSL

performance {3,5} implies division of the image into a

3x3 and 5x5 grid of patches.

features.

Impact of each question-generation technique:

In Table 4 we can observe the effect of different

question generation techniques. All models use

spatial image patch features. QA-SRL based ques-

tions and the SWA-Loss contribute the most to-

wards gains in performance, and the paraphrased

questions provide larger linguistic variation.

Effect of Spatial Pyramids: We study the effect

of progressively increasing the number of spatial

image patches (i.e., decreasing the patch size). Ta-

ble 5 shows that an optimum exists at grid-size of

7× 7 after which the addition of smaller patches is

detrimental. Similarly, only using patches of large

size does not allow models to focus on specific im-

age regions. Thus a trade-off exists between global

context and region-specific features. Changing the

feature extractor from ResNet-50 to ResNet-101

only results in a minor improvement of 0.01% to

0.30%. Removing visual position embeddings has

a significant effect on performance, with a drop of

4.60% to 8.00% in both ZSL and FSL settings.

Impact of Pre-training Tasks: Table 6 shows

the effect of different pretraining tasks on the down-

stream zero-shot transfer VQA task. We need the

Pre-Training Task VQA-v2 VQA-CP GQA

SWA 39.1 38.3 25.4
MLM+SWA 42.4 41.5 27.8
MQA+SWA 42.0 41.2 26.6
MLM+MQA+SWA 45.6 44.9 29.7
MLM+ITM+SWA 44.7 43.6 28.9

All 46.2 45.4 31.2

Table 6: Effect of different pre-training tasks on the

ZSL performance for the Encoder model.

Figure 5: Learning Curve showing validation accuracy

vs. number of synthetically generated training samples.

SWA task, as it is used to perform the zero-shot QA

task. The combination of MLM, MQA, and ITM,

all of which need image understanding, shows im-

proved performance on the downstream task, indi-

cating better cross-modal representations.

Effect of size of synthetic training set: Figure 1

shows our Encoder model’s learning curve for the

zero-shot transfer setting trained on our synthetic

Q-A pairs. The performance stagnates after a crit-

ical threshold of 106 samples is reached. Our ex-

periments also suggest that randomly sampling a

set of questions for each image per epoch leads to

a 4% gain compared to training on the entire set.

Error Analysis: Our ZSL method is pretrained

on longer phrases and hence tends to generate more

detailed answers, such as “red car” instead of “car”.

Although the SWA loss is designed to encourage a

distribution over the shorter phrases, the bias is not

entirely removed. On automated evaluation, we ob-

serve that for 42% of questions, the target answer

is a sub-phrase of our predicted answer. Manual

evaluation of 100 such samples shows that 87% of

such detailed predicted answers are plausible. This

shows the relevance of learning from captions and

quantifies the bias towards short “true” answers

in human-annotated benchmarks, calling for bet-

ter evaluation metrics that do not penalize VQA

systems for producing descriptive or alternative

accurate answers.

In the FSL setting, we either finetune our pre-
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trained QA classifier with the SWA Loss or train

a separate feedforward layer from scratch for the

task. The pre-trained QA classifier predicts longer

phrases as answers, leading to a drop in accuracy.

The feedforward layer performs better (+6%), indi-

cating our Encoder captures relevant features neces-

sary to generalize to the benchmark answer-space.

Note that we do not use object annotations during

training, unlike existing methods.

Our error analysis and Figure 3 show the shift

in question-space and answer-space between syn-

thetic and human-authored Q-A pairs. These (along

with inadequate evaluation metrics) act as the pri-

mary sources explaining the performance-gap be-

tween weakly-supervised methods and the fully-

supervised setting. It remains to be seen whether

more sophisticated question generation can be de-

veloped to reduce the performance gap further and

mitigate the heavy reliance on human annotations.

7 Discussion and Conclusion

Prior work (Chen et al., 2019; Jiang et al., 2020)

has demonstrated that the use of object bounding-

boxes and region features leads to significant im-

provements on downstream tasks such as caption-

ing and VQA. However, little effort has been ded-

icated to developing alternative methods that can

approach similar performance without relying on

dense annotations. We argue that weakly super-

vised learning coupled with data synthesis strate-

gies could be the pathway for the V&L community

towards a “post-dataset era”.2 In this work, we take

a step towards that goal. We address the problem of

weakly-supervised VQA with a framework for the

procedural synthesis of Q-A pairs from captions for

training VQA models, where benchmark datasets

can be used only for evaluation. We use spatial

pyramids of patch features to increase the annota-

tion efficiency of our methods. Our experiments

and analyses show the potential of patch-features

and procedural data synthesis and reveal problems

with existing evaluation metrics.

Ethical Considerations

Captions and Question-Answer pairs are both anno-

tated by humans in existing image captioning and

visual question answering datasets. However, cap-

tions arguably contain a lesser degree of subjectiv-

ity, ambiguity, and linguistic biases than VQA an-

notations, due to the design of annotation prompts

2A. Efros, Imagining a post-dataset era, ICML’20 Talk.

that limit the introduction of these biases. Our work

points to the potential of procedurally generated

annotations in providing robustness improvements

under changing linguistic priors in VQA test sets

(Table 1). Hendricks et al. find that gender bias

exists in image-captioning datasets and is ampli-

fied by models; further research in self-supervised

data synthesis could potentially help alleviate such

social biases.
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Appendix

A Synthesized Samples

Table 7 shows illustrative examples of Q-A pairs

procedurally generated from the image caption us-

ing template-based method. Table 8 shows the use

of two transformations (T): negation and adver-

sarial words (Gokhale et al., 2020b) two generate

more sentences. Thus the negation of Q or substitu-

tion of a word in Q with an adversarial word results

in the new question-answer pair Qnew, Anew. To

increase the linguistic diversity of the questions we

use paraphrasing as shown in Table 11.

B Dataset Analysis

In Table 9, we compare the distribution per answer-

type of our synthetically generated samples with

the distribution in the VQA-CP-v2 (Agrawal et al.,
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Image Question Answer

What are set on the sidewalk

outside a veterinary hospital?

bags

What is the young man holding

up in front of his face ?

phone

What is almost empty on the

table

glass

What drawn carriage with

passengers in the city

horse

What is the color of the table ? white

What is the color of the eyes ? blue

How many boats anchored by

ropes close to shore?

8

Table 7: Examples of template-based data synthesis

T Image Q A Qnew Anew

N
eg

at
io

n

Is this bread? yes Is this not

bread

no

What is the

color of the

woman’s

shirt?

black What is not

the color of

the woman’s

shirt?

white

Is there a boy? no Is there no

boy?

yes

A
d

v
er

sa
ri

al

Who is sitting

in the boat ?

man Who is sitting

in the dining

table ?

can’t

say

How big is the

plane ?

large How big is the

car ?

size

How many

puppies are on

the bed ?

two How many

cats are on the

bed?

none

Table 8: The effect of using transformations (T) to cre-

ate new Q-A pairs

2018) dataset. Since we use our synthetic samples

as the pre-training data, and do not use VQA-CP

Category VQA-CP (%) Pretraining (%)

Yes/No 41.86 50.18
Number 11.91 8.32
Other 46.23 41.45

Table 9: Distribution of samples by answer-type in

our pre-training dataset and the VQA-CP evaludation

dataset.

Hyper-Parameters Model

Batch Size 32-128

Learning Rate (1e−5, 5e−5 )
Dropout 0.1
Language Layers 6
Cross-Modality Layer 4 — 12
Optimizer BertAdam
Warmup 0.1
Max Gradient Norm 5.0
Max Text Length 30
ResNet 50 / 101 / 152
Epochs 10-40

Table 10: Hyper-Parameters for our models

samples for training in our zero-shot setup, this

comparison displays the shift between the training

(synthetic) and test (human annotated VQA-CP)

datasets.

We further analyze this shift, by computing the

t-SNE projections of questions using mean-pooled

Glove (Pennington et al., 2014) embeddings for our

generated questions and observe the overlap with

human-authored questions in VQA and GQA (Hud-

son and Manning, 2019). Figure 6. We observe

a marked shift between the question clusters for

our procedurally generated questions and human

annotated questions from VQA and GQA.

Similarly, we also show the distribution of an-

swers in our dataset in Figure 7. It can be seen that

our dataset has a slight imbalance in the proportion

of questions with answer “yes” and “no”. Numeric

answers 0,1,2,3 are most frequent. Answers about

people such as man, woman, people, person, group

of people are also more common in the dataset. The

remaining answers have a long-tailed distribution,

since there are ∼ 90k unique answers in our dataset

compared to ∼ 3.5k in VQA and ∼ 2k in GQA.

C Training Details

We use the HuggingFace (Wolf et al., 2019) and

PyTorch frameworks (Paszke et al., 2019). Hyper-

parameters and other training settings are given in

Table 10.
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Image Q A Qnew Anew

How is something parked ? illegally How’s-what’s parked? illegally

what does something seem to do ? park What do you think something

seems to be doing?

park

Where was parked something? behind a legally

parked car

Do you know where something

was parked?

behind a legally

parked car

How many cars are visible ? 2 How many cars are we looking at? 2

Is there two cars parked on the

sidewalk on the street ?

Yes There are two cars parked on the

sidewalk, right?

Yes

Table 11: Illustration of using paraphrasing to improve the linguistic variation of our questions and answers.

Figure 6: t-SNE projections of Glove embedding our generated questions, and human-authored VQA-v2 and GQA

questions. Blue: our pretraining dataset, Orange: GQA, Green: VQA. L-R: All, GQA, Pretrain, VQA.

(a) “Yes-No”
(b) “Numeric”

(c) ”Other”: Highly frequent
answers (count > 500)

(d) “Other”:Answers with
count between 200 and 500

Figure 7: Distribution of most frequent answers in our Pretraining dataset for each answer-type (yes-no, numeric,

and other). Please zoom for details.


