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Abstract— A wearable armband electrocardiogram (ECG) 

monitor has been used for daily life monitoring. The armband 

records three ECG channels, one electromyogram (EMG) 

channel, and tri-axial accelerometer signals. Contrary to  

conventional Holter monitors, the armband-based ECG device is 

convenient for long-term daily life monitoring because it uses no 

obstructive leads and has dry electrodes (no hydrogels), which do 

not cause skin irritation even after a few days. Principal 

component analysis (PCA) and normalized least mean squares 

(NLMS) adaptive filtering were used to reduce the EMG noise 

from the ECG channels. An artifact detector and an optimal 

channel selector were developed based on a support vector 

machine (SVM) classifier with a radial basis function (RBF) kernel 

using features that are related to the ECG signal quality. Mean HR 

was estimated from the 24-hour armband recordings from 16 

volunteers in segments of 10 seconds each. In addition, four 

classical HR variability (HRV) parameters (SDNN, RMSSD, and 

powers at low and high frequency bands) were computed. For 

comparison purposes, the same parameters were estimated also 

for data from a commercial Holter monitor. The armband 

provided usable data (difference less than 10% from Holter-

estimated mean HR) during 75.25%/11.02% (inter-subject 

median/interquartile range) of segments when the user was not in 

bed, and during 98.49%/0.79% of the bed segments. The 

automatic artifact detector found 53.85%/17.09% of the data to be 

usable during the non-bed time, and 95.00%/2.35% to be usable 

during the time in bed. The HRV analysis obtained a relative error 

with respect to the Holter data not higher than 1.37% (inter-

subject median/interquartile range). Although further studies 

have to be conducted for specific applications, results suggest that 

the armband device has a good potential for daily life HR 

monitoring, especially for applications such as arrhythmia or 

seizure detection, stress assessment, or sleep studies.  

 
Index Terms—Wearable devices, electrocardiogram (ECG), 

ECG denoising, electromyogram (EMG), artifact detection 
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I. INTRODUCTION 

LECTROCARDIOGRAM is the basis for the diagnosis of 

most cardiac arrhythmias and other cardiac pathologies. 

Many of these pathologies produce paroxysmal symptoms in 

the ECG, e.g., atrial fibrillation [1], which is associated with 

increased mortality and morbidity [2]. Therefore, continuous 

long-term ECG monitoring is desirable for such arrhythmia 

applications. Furthermore, ECG monitoring allows the 

measurement of the heart rate (HR) variability (HRV) which 

remains a powerful tool for autonomic nervous system (ANS) 

assessment [3]. This further expands the range of potential 

applications of long-term ECG monitoring, including epileptic 

seizure detection [4], stress assessment [5], and sleep studies 

[6], among others, which rely only on QRS detection. 

Another interesting technology for long-term HR and HRV 

monitoring is the pulse photoplethysmographic (PPG) signal. 

The PPG has been receiving a lot of attention lately  because it 

can be measured on the wrist by smartwatches, making it very 

convenient for daily life monitoring. However, the PPG signal 

is highly vulnerable to artifacts, and many data points have to 

be discarded [7]. Different studies using PPG in different 

settings report different amounts of usable data, including 

14.76% [8], 24% [9], 25% [10], and 56% [11]. 

The only wearable continuous ECG monitoring options are 

Holter/event monitors and the more recently-developed patch 

devices. Holter and event monitors have some disadvantages, 

including that they are cumbersome devices with obtrusive 

leads, and they use  hydrogel-based electrodes, which often lead 

to skin irritation [12] due to the use of hydrogel and adhesives 

needed to fix the position of the electrodes [13]. This makes 

Holter monitors usable only for short-term monitoring (<2 

weeks). A patch monitoring device eliminates the electrode 

leads but still requires hydrogels, which often cause skin 

irritation since subjects wear the patch for a prolonged period 

*J. Lázaro (corresponding author), N. Reljin, M. B. Hossain, and K. H. Chon 

are with the Biomedical Engineering Department, University of Connecticut, 
Storrs, CT 06269, USA (e-mail: jesus.lazaro@uconn.edu).  

J. Lázaro and P. Laguna are with the Biomedical Signal Interpretation and 

Computational Simulation (BSICoS) group at the Aragón Institute of 
Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain, and 
CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 

Spain. 
Y. Noh is with the College of Nursing and with the Department of Electrical 

and Computer Engineering of the University of Massachusetts, Amherst, MA 

01003, USA. 

Wearable Armband Device for Daily Life 
Electrocardiogram Monitoring 

Jesús Lázaro*, Member, IEEE, Natasa Reljin, Member, IEEE, Md-Billal Hossain, Member, IEEE,  
Yeonsik Noh, Member IEEE, Pablo Laguna, Fellow, IEEE, and Ki H. Chon, Senior Member, IEEE 

E 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

of time. A wearable armband device aimed to monitor ECG 

during long periods, overcoming the limitations of Holter and 

patch devices, is being developed in our lab at the University of 

Connecticut. This armband is designed to be worn on the left 

upper arm, and incorporates three pairs of hydrophobic dry 

electrodes, which were also developed in our lab. Using these 

electrodes differentially, the armband can record 3 ECG 

channels simultaneously (see Fig. 1). A photo of the first 

prototype and another image of its sensing part can be observed 

in Fig. 1. The dimensions of the enclosed circuit board of this 

prototype are 65 × 64 × 28 mm, while the dimensions of its 

sensing part are 170 × 33 × 0.1 (1.5 when includes electrode 

thickness) mm. Note that this is a first prototype, created for 

assessing the feasibility of monitoring HR and HRV using dry 

electrodes over the upper arm. Although the prototype is 

currently large, the “sensing part” is thin, and the dimensions of 

the box can be considerably reduced in the final design. 

Although the armband setup is much more convenient for 

long-term monitoring, it remains a more challenging scenario 

than the Holter setup mainly because of two reasons: not using 

hydrogel, and the electrodes’ location. Although the impedance 

matching (with the skin) of the electrodes is good [14], it is still 

not as good as that provided by hydrogels. With respect to the 

location of the electrodes, the armband device is located in the 

left upper arm while the Holter and patch devices use electrodes 

over the chest. This leads to a lower signal power of the 

acquired ECG signal, and it is more susceptible to 

electromyogram (EMG) signals (mainly from the biceps and 

triceps). The EMG artifact contamination remains the most 

challenging obstacle for obtaining good fidelity armband ECG 

recordings. Some techniques for reducing the EMG artifact in 

ECG signals have been presented in the literature. As EMG 

overlaps with ECG in time and frequency, adaptive filtering 

techniques are usually used [15], [16], such as least mean 

squares (LMS) or its normalized version (NLMS) [17]. When 

multiple leads are available, the space diversity can be 

exploited. Principal component analysis (PCA) is an approach 

that exploits this, and has been proposed to attenuate the EMG 

artifact in the ECG [18]. The first principal component 

extracted by PCA is expected to be the component in which the 

noise has been reduced the most, especially for noises with 

muscular origin. 

However, a pilot study showed that the quality of the 

armband-acquired ECG signals was high enough to obtain 

respiratory rate using ECG-morphology features during lab-

controlled conditions with no movement [19]. Another pilot 

study showed promising results for 24 hours HR monitoring 

[20]. In this paper, the wearable armband device is evaluated as 

a 24 hour monitor during daily life. The study includes the 

application of PCA and NLMS signal processing techniques to 

deal with the EMG noise, the development of an automatic 

channel selector which selects the highest quality ECG signal 

at each time moment, and an automatic artifact detector which, 

significantly, discards noise-corrupted data largely due to EMG 

artifact. The methods are evaluated with a data set composed of 

24-hour armband recordings during routine daily life, and 

simultaneously recorded Holter ECG signals.  

II. MATERIALS AND METHODS 

A. Data acquisition and preprocessing 

The wearable armband records three ECG channels and one 

EMG channel with a sampling rate of FS = 1000 Hz using three 

pairs of carbon-black dry electrodes [14]. In addition, the 

armband records tri-axial accelerometer channels with a 

sampling rate of 100 Hz. A picture of the armband and the 

configuration of multi-ECG channels is shown in Fig. 1. 

Moreover, Fig. 2 shows a picture of how the armband is 

designed to be worn on the upper left arm. Armband signals 

 
 

(a) 

 

(b) 

 
Fig. 1. a) Armband device prototype and electrode configuration for the 3 ECG 

channels and the EMG channel. b) Sensing part of the prototype. 
  

 
Fig. 2.  Subject wearing the armband device. 
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were continuously recorded from 16 healthy subjects aged 

27.56±8.82 years (mean ± standard deviation) for 24 hours. The 

subjects were instructed to carry out their normal activities but 

without exercise. For reference purposes, three ECG channels 

were simultaneously recorded by a conventional commercially-

available Holter: Rozinn RZ 153+ (Glendale, NY, USA). 

The ECG signals from the armband were down-sampled to 

256 Hz. Many of the potential applications for the armband are 

based on beat occurrences, and the value of this sampling rate 

is a trade-off  between the time resolution and the computational 

cost. The value of 256 Hz was chosen because it is close to the 

minimum recommended for calculating the classical HRV 

indices [3], which are also based on beat occurrences. 

Furthermore, the ECG signals from the armband were found to 

be highly contaminated by noise, mainly due to the EMG from 

the local muscles when subjects moved their left arm. Thus, a 

strong band-pass filter was applied in order to remove much of 

the EMG artifact from ECG data. The low and high cut-off 

frequencies of this filter were set to 3 Hz and 25 Hz, 

respectively, based on the frequency bands used in the literature 

for QRS detection [21]. These filtered ECG signals are denoted 

x1(n), x2(n), and x3(n). Figure 3 shows an example of these 

signals. 

B. Channel synthesis 

Two ECG channels were synthesized from the armband data, 

to attenuate the effect of the EMG noise: one based on PCA 

 
Fig. 3.  A 2-minute segment of armband-recorded ECG channels (a) x1(n), (b) x2(n), and (c) x3(n), (d) recorded EMG channel x4(n), (e) ECG synthesized channel 
based on PCA xPCA(n) (f) EMG noise estimated by PCA xN(n), (g) ECG synthesized channel based on NLMS xNLMS(n), and (h) the ECG channel selected by the 

optimal channel selector xARMBAND(n), where detected QRS complexes are represented with black ‘X’. The color of xARMBAND(n) corresponds to the color of the 
chosen channel at each instant. The segment from 20 to 30 seconds is represented in black because it was considered an artifact by the artifact detector. 
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[22], and another one based on the NLMS filter [17]. 

PCA channel: The first principal component extracted by 

PCA is expected to be the component in which the EMG noise 

has been most attenuated [18]. Similarly, the last principal 

component is expected to be the component in which the EMG 

noise is expected to be the most prominent. The armband data 

were split into 10-second segments, and PCA was applied 

segment by segment to all three ECG channels and the EMG 

channel. Then, the first component was normalized in 

amplitude with respect to its standard deviation, and inverted in 

case its minimum were greater than its maximum in absolute 

value. The concatenation of the resulting first principal 

component from the 10-s segments is denoted xPCA(n) in this 

paper, and it was considered as an additional ECG channel. In 

parallel, the concatenation of the last principal component from 

the 10-s segments is xN(n), and it was used as noise estimation 

for the NLMS adaptive filter. 

NLMS filter: The NLMS filter can be seen as an adaptive 

Wiener filtering technique in which the filter is adapted based 

on the difference between the desired and the obtained filter. It 

can be used to attenuate the influence of a known corrupting 

noise on a corrupted signal, e.g., to attenuate the EMG noise in 

the ECG [17]. An additional ECG channel was obtained by 

applying a NLMS filter using xPCA(n) as the corrupted signal, 

and xN(n) as an estimation of the corrupting noise. An example 

of the two synthesized ECG channels can be observed in Figure 

3, and a 10-s zoom in can be observed in Figure 4. 

C. Artifact detection 

An ECG artifact detection technique was developed based on 

the support vector machine (SVM) classifier with radial basis 

function (RBF) kernel [23]. It was designed to classify ECG 

segments of 10 seconds as normal or artifact, as this duration is 

enough to estimate the mean heart rate [24]. In addition, another 

criterion based on the level of signal power found in the 

accelerometers was used. A 10-second segment was considered 

as an artifact if either the SVM-based ECG artifact detector 

classified it as an artifact, or if a certain level of signal power 

was found in the accelerometers. 

Features of the ECG artifact detector: Different signal 

quality indices (SQI) which are available in the literature were 

studied as potential features for the classifier. The SQI found in 

the literature can be divided into two groups: those based on 

fiducial features and those based on non-fiducial features [25]. 

When based on fiducial features, one detects the beats followed 

by the mean level and/or regularity of the resulting inter-beat 

intervals. However, abnormal values of mean level and, 

especially, of regularity of the inter-beat intervals are the key 

features for many potential applications, such as arrhythmia 

detection [1], epileptic seizure detection [4], stress assessment 

[5], and sleep studies [6]. The most valuable data for such 

applications may be considered of low quality by the SQI based 

on abnormal values of mean level and/or regularity of inter-beat 

intervals. Thus, no fiducial features were considered in this 

work. Nine other non-fiducial features were considered in this 

work: 

• Shannon entropy (m1) [26], which provides a quantitative 

measure of the average uncertainty present in a signal, 

quantifying how different its probability density function is 

from a uniform distribution. Thus, a clean ECG signal is 

expected to have a lower Shannon entropy than an EMG-

corrupted ECG signal. 

• Multiscale entropy (m2) [27] is another measure of average 

uncertainty, in this case obtained from a sample entropy 

analysis of the signals for different time scale factors. As 

with the Shannon entropy, a clean ECG signal is expected 

to have a smaller multiscale entropy than an EMG-corrupted 

ECG signal has. 

• Ratio of powers (m3) [28], defined as the ratio between 

power in the frequency band 5-20 Hz with respect to the 

total power, which is expected to be higher when it is 

computed from a clean ECG than when it is computed from 

an EMG-corrupted ECG. 

• Self-correlation (m4) [29], defined as the autocorrelation at 

the highest peak, excluding the zero lag. As an ECG signal 

has a higher periodicity than an EMG signal, this self-

 
 

Fig. 4.  A 10-second segment of armband recorded ECG channels (a) x1(n), (b) 
x2(n), and (c) x3(n), (d) recorded EMG channel x4(n), (e) ECG synthetized 

channel based on PCA xPCA(n) (f) EMG noise estimated by PCA xN(n), and (g) 

ECG synthetized channel based on NLMS xNLMS(n). 
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correlation value is expected to be higher for a clean ECG 

than for an EMG-corrupted ECG. 

• Shannon entropy (m5), mean (m6), and variance (m7) of the 

first intrinsic mode function [30] are related to uncertainty 

and the power of the higher frequency components. Thus, 

they are expected to be lower for a clean ECG than for an 

EMG-corrupted ECG. 

• Skewness (m8) [31], which is expected to be further from 

zero for a clean ECG than for an EMG-corrupted ECG.  

• Kurtosis (m9) [31], which is expected to be higher for a clean 

ECG than for an EMG-corrupted ECG. 

Training set for the ECG artifact detector: The 10-second 

segments of the first hour from 5 subjects were labelled as 

artifact, normal, or neither. This labelling was based on the 

comparison of the mean HR estimated from the armband and 

the mean HR estimated from the Holter. The segment was 

considered as “artifact” if these mean HR estimations differed 

by more than 20%, whereas it was considered as “clean” if these 

mean HR estimations differed by less than 2%. 4,821 segments 

were labelled as normal, and 1,410 as artifact. Subsequently, 

the 9 features noted above were computed for distinguishing 

between artifact and normal segments, and 1,410 normal 

segments were selected by a k-means algorithm in order to 

balance the groups and to obtain a good representation of the 

underlying distribution of the data. K-means was used to set 

1,410 clusters in the “normal” class, and their centroids. Then, 

the element closest to each one of those centroids was selected. 

Therefore, a total of 2,820 segments (1,410 normal and 1,410 

artifacts) were considered for the subsequent training of the 

SVM classifier. Feature selection was performed by a forward 

wrapper approach, which consisted of adding one feature at a 

time and selecting the one which provided the highest accuracy, 

and stopping when the obtained accuracy was lower than that 

obtained with one less feature. Subsequently, the SVM 

classifier was trained using only those features selected by the 

wrapper.  

Test set for the ECG artifact detector: In order to assess the 

performance of the classifier, a test set was created by labelling 

the 10-second segments of the first hour from the 11 subjects 

who were not included in the training set. The criterion for 

labelling was exactly the same as that used for labeling the 

training set. The test set was composed of a total of 9,899 

fragments (3,800 artifacts + 6,099 normal). 

Accelerometer-based rule for artifact detection: The level of 

power in the accelerometers was defined as: 𝑃𝑃ACC = var�𝑥𝑥X (𝑛𝑛) + 𝑥𝑥Y (𝑛𝑛) + 𝑥𝑥Z (𝑛𝑛)�, (1) 

where xX(n), xY(n), and xZ(n) denote the x, y, and z 

accelerometer channels, respectively, and var(·) denotes the 

variance. A 10-second segment was considered as artifact if 

PACC was higher than a certain threshold. This criterion was 

included in order to detect some of the artifacts that were not 

detected from the ECG signal by the SVM-based detector, 

under the assumption that some may be related to movements. 

In order to set this threshold, PACC was computed from those 

segments of the training set which were classified as “normal” 

by the ECG-based artifact detector. The threshold was set to 

0.02864 G2, which maximized the accuracy and did not discard 

more than  0.01% of (labelled as) “normal” segments. 

D. Channel selection 

Among three ECG channels, the best signal fidelity channel 

was selected for every 10-second segment for further 

processing. Five channels were considered by the optimal 

channel selector: x1(n), x2(n), x3(n), xPCA(n), and xNLMS(n). The 

selection was based on the SVM classifier with RBF kernel 

used for artifact detection. The selected ECG channel was 

determined to be the one with the highest likelihood of 

belonging to the “normal” group. In the event that several 

channels obtained the same likelihood of belonging to the 

“normal” class, a similar signal quality was expected in those 

signals. The algorithm gives preference to the original channels 

x1(n), x2(n), and x3(n), in this order, and later to xPCA(n) and 

xNLMS(n), in this sequence. In this manner, a unique armband 

ECG signal xARMBAND(n) was created by concatenating those 

selected segments at different time points. Figure 3h shows an 

example of xARMBAND(n). 

E. Mean heart rate measurement 

The location of the QRS complexes of x1(n), x2(n), x3(n), 

xPCA(n), xNLMS(n), and xARMBAND(n) were automatically detected 

by an algorithm based on variable frequency complex 

demodulation (VFCDM) and some adaptive threshold rules 

[32]. This algorithm was applied in segments of 20 seconds 

with 5 seconds of overlap, leaving 10 effective seconds at each 

segment. The fiducial point of each QRS complex, 𝑛𝑛QRS𝑖𝑖 , was 

set to that where the absolute value of the amplitude was 

maximum (R peak). Then, the instantaneous HR was computed 

from 𝑛𝑛QRS𝑖𝑖  as the inverse of the beat-to-beat intervals: �̂�𝑑𝐻𝐻𝑅𝑅𝑢𝑢 (𝑛𝑛) = 𝐹𝐹𝑆𝑆 ∑ 1𝑛𝑛𝑄𝑄𝑄𝑄𝑆𝑆𝑖𝑖−𝑛𝑛𝑄𝑄𝑄𝑄𝑆𝑆𝑖𝑖−1 𝛿𝛿�𝑛𝑛 − 𝑛𝑛𝑄𝑄𝑅𝑅𝑆𝑆𝑖𝑖�𝑖𝑖  ,  (2) 

where the superscript “u” denotes that the signal is unevenly 

sampled. A 4-Hz-evenly-sampled version of �̂�𝑑HR𝑢𝑢 (n) was 

obtained by cubic-splines interpolation, and it is denoted as �̂�𝑑HR(𝑛𝑛) in this paper. 

For comparison purposes, the mean HR was calculated also 

from the Holter device by a similar procedure, obtaining the 

reference HR series 𝑑𝑑HR(𝑛𝑛). The channel selector was not used 

in this case. Instead, the first channel was always used. The 

artifact detector was also not used. In order to identify those 

segments with artifacts in this channel, two different QRS 

detectors ([32] and [33]) were applied on the same signal. Those 

segments in which these QRS detectors offered a different 

output were considered artifacts and they were discarded for 

further analysis. The segments from the armband data identified 

as artifacts by the artifact detector were also discarded from 

further analysis. Note that this is a stricter criterion than that 

used for the armband-ECG signals. This criterion requires that 

a rudimentary QRS detector performs as good as the 

sophisticated approach on the analyzed segment. This stricter 

criterion allows us to be sure that we only evaluate the armband 

performance when we have a reliable reference, without 

discarding too much data. However, this criterion cannot be 
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applied to the armband data without discarding too many data 

segments as the armband signals are noisier in general, and the 

rudimentary QRS detector usually does not work for the 

armband. 

The delay between �̂�𝑑HR(𝑛𝑛) and 𝑑𝑑HR(𝑛𝑛) series was estimated 

(and corrected) as the lag that maximized their cross 

correlation. Then, the percentage of 10-second segments where 

the mean HR estimated from the armband (mean of �̂�𝑑HR(𝑛𝑛)) 

differed by less than 10% from the mean HR estimated from the 

Holter (mean of 𝑑𝑑HR(𝑛𝑛)) was computed. This analysis was 

performed for non-bed time and for bed time independently. 

Bed time was reported by each subject, and further adjusted 

manually by visual inspection of the accelerometer signals. In 

addition, these percentages were computed also using only 

those 10-s segments that were determined to be usable 

according to the artifact detector described in Section II-C. 

F. Heart rate variability analysis 

HRV analysis was performed in 5-min-length (overlapped 4 
min) windows in which segments from xARMBAND(n) were 
determined to be usable according to the artifact detector 
described in Section II-C. The length of 5 minutes was chosen 
since it is recommended in [3]. Four standard HRV parameters 
were computed: standard deviation of successive normal-to-
normal beat intervals (SDNN), the root mean square of 
successive differences of normal-to-normal beat intervals 

(RMSSD), the power of �̂�𝑑HR(𝑛𝑛) within the low frequency band 

[0.04 Hz, 0.15 Hz] (LF), and the power of �̂�𝑑HR(𝑛𝑛) within the 
high frequency band [0.15 Hz, 0.4 Hz] (HF) [3]. These four 
parameters were computed also from xHOLTER(n) and used as the 
reference. 

For each one of the 5-min-lengh windows, the relative error 
of the armband-derived parameters with respect to the Holter-
derived parameters was computed. For each subject, the (intra-
subject) median and IQR of this relative error was computed.  
In addition, the inter-subject median and IQR of those intra-
subject medians and IQRs were also computed. 

III. RESULTS 

A. Artifact detector 

The forward wrapper selected all the 9 studied features for 

the SVM-based ECG artifact detector and channel selector, in 

the following order: m9, m3, m7, m1, m8, m4, m5, m2, m6. The 

PACC-based threshold was set to 0.02864 G2, as it maximized 

the accuracy and did not discard more than a 0.01% of (labelled 

as) “normal” segments. 

The resulting classifier obtained an accuracy of 90.79% in 

the test set, a sensitivity of 92.05%, a specificity of 90.00%, a 

positive predictive value of 85.15%, and a negative predictive 

value of 94.79%. 

B. 24-hour heart rate monitoring 

Table I shows the median and interquartile range (IQR) of 

the percentage of segments where the heart rate was accurately 

estimated (less than 10% of relative error with respect to the 

TABLE I 
MEDIAN AND INTERQUARTILE RANGE (MEDIAN / IQR) OF THE PERCENTAGE OF SEGMENTS WITH ACCURATE HEART RATE ESTIMATES (LESS THAN 10% OF 

RELATIVE ERROR WITH RESPECT TO THE HOLTER) FROM THE WEARABLE ARMBAND DEVICE; OF THE PERCENTAGE OF SEGMENTS WITH USABLE ARMBAND DATA 

ACCORDING TO THE ARTIFACT DETECTOR; AND OF PERCENTAGE OF SEGMENTS WITH HOLTER USABLE DATA; DURING NON-BED TIME AND DURING BED TIME. 
 

 

Non-bed time Bed time 

Percentage of segments with Percentage of segments with 

usable data accurate heart rate usable data accurate heart rate 

x1(n) 40.75% / 24.81% 98.99% / 0.71% 94.28% / 2.39% 99.28% / 0.24% 

x2(n) 45.02% / 17.60% 99.06% / 0.62% 94.49% / 4.20% 99.33% / 0.19% 

x3(n) 42.98% / 23.49% 98.72% / 0.61% 93.86% / 11.83% 99.22% / 0.19% 

xPCA(n) 39.34% / 24.04% 98.98% / 0.67% 91.84% / 9.72% 99.31% / 0.23% 

xNLMS(n) 36.83% / 17.58% 99.15% / 0.65% 84.29% / 17.04% 99.29% / 0.16% 

xARMBAND(n) 53.85% / 17.09 % 98.54% / 0.99% 95.00% / 2.35% 99.25% / 0.21 % 

xHOLTER(n) 85.07% / 15.45% - 97.14% / 5.08% - 

 

TABLE II 
INTER-SUBJECT MEDIAN AND IQR OF INTRA-SUBJECT MEDIANS OF OBTAINED 

RELATIVE ERROR WITH RESPECT TO THE HOLTER DEVICE WHEN ESTIMATING 

HRV PARAMETERS FROM xARMBAND(n), FOR ALL 16 SUBJECTS, AND FOR ONLY 

THOSE 11 SUBJECTS THAT WERE NOT USED FOR TRAINING THE ARTIFACT 

DETECTOR. 

 
 

  
Relative error 

Intra-subject median 

(median / IQR) 

   16 subjects 11 subjects 

1
6

 s
u

b
je

ct
s 

N
o

n
-b

ed
 t

im
e SDNN -0.04% / 0.25% -0.07% / 0.15% 

RMSSD -0.05% / 0.58% -0.20%  / 0.57% 

LF -0.03% / 0.25% 0.03% / 0.43% 

HF 0.07% / 1.15% -0.09% / 1.50% 

B
ed

 t
im

e 

SDNN -0.09% / 0.15% -0.11% / 0.13% 

RMSSD -0.10% / 0.27% -0.14% / 0.29% 

LF 0.16% / 0.21% 0.17%  / 0.23% 

HF -0.31% / 1.37% -0.29% / 1.31% 

 

TABLE I 
MEDIAN AND INTERQUARTILE RANGE (MEDIAN / IQR) OF THE PERCENTAGE OF SEGMENTS WITH ACCURATE HEART RATE ESTIMATES (LESS THAN 10% OF 

RELATIVE ERROR WITH RESPECT TO THE HOLTER) FROM THE WEARABLE ARMBAND DEVICE; OF THE PERCENTAGE OF SEGMENTS WITH USABLE ARMBAND DATA 

ACCORDING TO THE ARTIFACT DETECTOR; AND OF THE PERCENTAGE OF SEGMENTS WITH HOLTER USABLE DATA; DURING NON-BED TIME AND DURING BED TIME. 
 

 

Non-bed time Bed time 

Percentage of segments with Percentage of segments with 

usable data accurate heart rate usable data accurate heart rate 

x1(n) 40.75% / 24.81% 98.99% / 0.71% 94.28% / 2.39% 99.28% / 0.24% 

x2(n) 45.02% / 17.60% 99.06% / 0.62% 94.49% / 4.20% 99.33% / 0.19% 

x3(n) 42.98% / 23.49% 98.72% / 0.61% 93.86% / 11.83% 99.22% / 0.19% 

xPCA(n) 39.34% / 24.04% 98.98% / 0.67% 91.84% / 9.72% 99.31% / 0.23% 

xNLMS(n) 36.83% / 17.58% 99.15% / 0.65% 84.29% / 17.04% 99.29% / 0.16% 

xARMBAND(n) 53.85% / 17.09 % 98.54% / 0.99% 95.00% / 2.35% 99.25% / 0.21 % 

xHOLTER(n) 85.07% / 15.45% - 97.14% / 5.08% - 
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Holter) from the armband device, during both non-bed time and 

bed time. In addition, Table I shows the median and IQR of the 

percentage of usable data obtained from the armband device 

according to the artifact detector as well as the percentage of 

usable data from the Holter, during both non-bed time and bed 

time. Note that these results were based on skipping the first 

hour of the 5 subjects that were used for training the artifact 

detector. A Bland-Altman plot illustrating the HR estimated 

from xARMBAND(n) vs. the HR estimated from the Holter device 

is shown in Fig. 5. The obtained bias was 0.08 bpm, and the 

length of the limits of agreement was 6.58 bpm. Correlation 

between these measures was 0.95. 

Table II shows the inter-subject median and IQR of intra-

subject medians when estimating HRV parameters with respect 

to the Holter device, also based on skipping the first hour of the 

5 subjects that were used for training the artifact detector. Note 

that a negative relative error corresponds to an underestimation 

of the studied parameter. These median values are illustrated in 

Fig. 6. The correlations between the HRV parameters estimated 

by the armband and those estimated from the Holter were 

0.9479, 0.9142, 0.9989, and 0.9984 for SDNN, RMSSD, LF, 

and HF, respectively. 

IV. DISCUSSION 

ECG data from a wearable armband have been analyzed for 

HR monitoring during daily life. The armband simultaneously 

records three ECG channels and one EMG channel. However, 

the ECG channels were often contaminated with EMG artifacts 

during arm movements. In order to automatically discard the 

noisy data due to EMG corruption, a novel artifact detector was 

developed, based on the SVM classifier with RBF kernel and 

nine features that have been reported to be related to the ECG 

signal quality in the literature [25]. All nine features were 

selected by a forward-wrapper approach, suggesting that the 

features have complementary information about the signal 

quality, at least in part. The classifier was trained using the ECG 

segments of the first hour from 5 subjects, and tested with the 

ECG segments of the first hour from the remaining 11 subjects. 

The obtained accuracy in the test set was 90.79%, with a 

negative predictive value of 94.79%. This means that when a 

segment is detected as “normal,” the expectance of not having 

a clean ECG signal is 5.21%. Note that, in this case, a clean 

ECG signal is that from which the mean HR was estimated with 

an error lower than 1%. In addition, a segment was considered 

to contain artifacts if a certain level of power was found in the 

accelerometer signals. This accelerometer-based criterion was 

designed to find the artifacts that were not detected by the ECG-

based artifact detector. A total of 85.31% of the detected 

artifacts were found by the ECG-based detector, while 45.52% 

of the detected artifacts were found by the accelerometer-based 

criterion. A total of 37.12% of the detected artifacts were found 

by both criteria. We learned that the accelerometer criterion 

should be applied first (as it is faster), and then is no need to 

compute the ECG-based criterion if an artifact is found. 

The mean HR was estimated in every 10-second segment 

from each ECG channel of the armband x1(n), x2(n), and x3(n), 

and was compared to the mean HR estimated from the Holter 

monitor, which was taken as the Gold Standard reference data. 

The estimation was considered accurate if the mean HR differed 

by less than 10% from the estimation based on the Holter 

monitor. Note that this is a stringent criterion, as 10% in 10 

seconds corresponds to an error of only one beat in a typical 

resting HR (around 60 per minute). 

Results obtained from these armband ECG channels were not 

optimal during the non-bed time. The best channel in terms of 

median of percentage of segments with usable data was x2(n) 

(45.02%), obtaining an accurate HR estimate in a median of 

99.06% of usable segments. Results were much better during 

bed time, when the movements of the subjects were greatly 

reduced. During bed time, the median of percentage of usable 

segments was 94.49%, and the mean HR was estimated 

accurately from 99.33% (in median) of these segments. 

However, none of these ECG channels was observed to be 

consistently the cleanest ECG signal for every subject at every 

time. A possible reason for this observation is that the electrode 

distribution (around the left upper arm) makes the recorded 

leads to be very dependent on the shape of the arm. 

Furthermore, the armband can slightly rotate during the 

recording, affecting the lead channels. Note that x1(n) could be 

x2(n) or x3(n) with the appropriate device rotation. 

In order to clean the EMG noise, two signal processing 

techniques were applied: PCA [18] and NLMS filtering [17]. 

PCA was performed in segments of length as short as 10 

 
 

Fig. 5.  Bland-Altman plot illustrating the HR estimated from xARMBAND(n) ( �̂�𝑑HRM) with respect to the HR estimated from the Holter dHRM. The obtained bias 

was 0.08 bpm, and the length of the limits of agreement was 6.58 bpm. 

 
 

Fig. 6.  Boxplot of intra-subject median of obtained relative error when 

estimating HRV parameters. Boxes on the left (in blue) are from non-bed time 
data, and boxes on the right (in black) are from bed time data.  
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seconds, making it robust against possible device rotations. 

xPCA(n) obtained usable data from a median of 39.34% during 

the non-bed time, and of 91.84% during bed time. This 

performance is lower than the performance of the original 

channels x1(n), x2(n), and x3(n). A possible reason for these 

results is that the electrodes of the armband are very close to 

each other, giving the leads a similar influence from the EMG, 

which is substantial, especially during arm movements. 

Furthermore, a strong EMG component would lower the 

automatic gain control which consequentially attenuates the 

ECG signal. This indicates that when local muscles (mainly left 

biceps and left triceps) contract, the EMG component becomes 

a principal component. This may be the reason why xNLMS(n) 

did not fare well (36.83% during the non-bed time and 84.29% 

during the bed time). The NLMS filter relies on the availability 

of good estimation of the noise, while our estimation of the 

noise (the last component from the PCA) often contained the 

desired signal (the ECG), albeit its magnitude was small when 

compared to the noise-free ECG case. 

Similarly, for ECG channels x1(n), x2(n), and x3(n), none of 

the synthetized ECG channels were observed to be consistently 

the most clean ECG at all times, thus, they were treated as two 

additional ECG channels and a novel channel selector was 

developed in order to choose the best channel at each time. The 

channel selector was based on the SVM classifier with RBF 

kernel used for artifact detection. This SVM classifier was used 

to select the most clean ECG channel among the 5 eligible 

channels (x1(n), x2(n), x3(n), xPCA(n), and xNLMS(n)), for every 

10-second segment. A new signal xARMBAND(n), composed of 

the cleanest segment at each time, was generated. Results 

obtained with xARMBAND(n) outperformed those obtained from 

any of the ECG channels separately in terms of median 

percentage of usable data during both non-bed and bed time, 

while they were similar in terms of percentage of usable 

segments with accurate HR, demonstrating the advantage of 

best channel selection. During the non-bed time, a median of 

53.85% usable data was obtained. Results during bed time were 

much better, obtaining usable data from a median of 95.00% of 

the segments. Note that this is very close to xHOLTER(n) 

performance during the bed time (97.77% usable data). 

Furthermore, the median of the percentage of usable 

segments providing an accurate HR estimation was 98.54% 

during non-bed time, and 99.25% during bed time. The Bland-

Altman plot in Fig. 5 did not show a dependence of the accuracy 

of the usable segments on the actual HR. Moreover, the HRV 

analysis in 5-min-length windows of continuous usable 

armband data obtained a relative error with respect to the Holter 

with inter-subject median and IQR of intra-subject medians not 

higher than 1.54% (see Table II), and they showed strong 

correlation. The analysis was repeated using only those 11 

subjects that were not used for training the artifact detector in 

order to assess the possible bias of the results due to a possible 

overfitting. In this case, the mean HR was accurately estimated 

from a median of 98.55% of the segments detected as “clean” 

during the non-bed time, and a median of 99.29% during the 

bed time. These results are very similar to those obtained when 

using all subjects (98.54% and 99.25%, respectively), 

suggesting that the artifact detector did not overfit to those 5 

subjects that were used for training. Furthermore, the relative 

errors obtained for the HRV analysis were also similar for both 

cases (See Table II), reinforcing this suggestion. These results 

suggest that the analysis for all of the subjects is not biased. A 

possible reason is that no differences were observed in the 

signals from the different subjects, thus, no overfitting to those 

5 subjects is expected. Furthermore, the classifier was trained 

using only the first hour from those 5 subjects, and those data 

(from that first hour) were not used for further analyses, so no 

bias due to overfitting to those particular segments is expected. 

Therefore, the obtained HR and HRV estimations were 

accurate for almost all the segments detected as usable by the 

artifact detector, suggesting that the segments automatically 

classified as clean are reliable for QRS detection. However, 

some of the segments that were automatically classified as 

artifact may be also reliable for this purpose (false positives), 

so the actual coverage of the armband device may be higher. In 

order to assess the actual coverage of the armband device, the 

percentage of segments of xARMBAND(n) that offered an accurate 

estimation of mean HR was computed. This analysis revealed 

that the mean HR was accurately estimated from 75.25% / 

11.02% (inter-subject median/IQR) of the armband-ECG 

segments during the non-bed time, and from 98.49% / 0.79% 

during bed time. This means that 21.40% (in median) of the 

segments during the non-bed time and 3.49% (in median) of the 

segments during the bed time were automatically classified as 

artifacts while they could provide an accurate estimation of the 

mean HR. Thus, the artifact detector is strict: those  data that 

were automatically classified as clean are reliable at the expense 

of discarding a high amount of reliable data. Hence, there is 

room for improving this in the artifact detection, especially 

during the non-bed time. 

However, these results are promising and suggest that the 

armband has a strong potential to be a wearable long-term ECG 

monitor, especially during bed time, which can potentially be 

used for overnight recordings such as sleep studies. During non-

bed time, the armband records considerably less usable data per 

day than a conventional Holter monitor, but it causes no skin 

irritation and it is much more comfortable for the patient, so it 

can be worn for months or even years when compared to the 

Holter. Therefore, the armband can provide much more usable 

data in total than the Holter even if it offers less usable data per 

day. Moreover, the obtained coverages were higher than those 

reported for PPG-based wearable devices. Only 134 of 908 

segments (14.76%) were reported to be usable from PPG during 

lab-controlled conditions in [8]. A mean coverage of 76.34% 

was reported in [10], using PPG, where recordings from 

patients in bed during controlled-movement-restricted 

conditions were analyzed. In [9], 24% coverage from PPG was 

reported when requiring the same accuracy as a Holter device 

during 24-hour recordings. A higher mean coverage during 24-

hour recordings was reported  in [11], where 56% of data from 

PPG was considered to be usable. For comparison of these 

numbers with those obtained by the armband, it should be noted 

that subjects in [11] are patients aged 67.4±12.1 years, so they 

may have much less active life styles than the subjects (healthy 
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volunteers aged 27.56±8.82 years) analyzed in the present 

study. It should also be noted that 24-hour recordings include 

both non-bed and bed time. The overall coverage of the 

armband during the 24-hour recordings in this study was 

83.51%±8.00%. 

These results suggest that the armband is very interesting for 

applications that may benefit from long-term ECG monitoring, 

such as paroxysmal arrhythmia detection, seizure detection, 

stress assessment, and monitoring of chronic respiratory 

patients. However, some specific problems may occur in 

different applications, such as patient movements that could 

lead to unusable data in the precise moment when it is most 

valuable. E.g., a patient could move the arm every time that he 

or she has a short-period AF episode due to chest pain, or every 

time he or she has a seizure. Thus, further studies have to be 

conducted in order to evaluate the full potential of the armband 

in different applications and scenarios. Furthermore, in this 

paper the armband has been evaluated for QRS detection 

(through HR and HRV). Further studies have to be conducted 

for evaluating the armband device as a monitor for other ECG 

features which may be relevant in some applications, such as 

the ST elevation for ischemia. 

V. CONCLUSIONS 

The results suggest that the armband device is suitable for 

daily life HR monitoring, obtaining usable data approximately 

3/4 of the non-bed time (median of 75.25%) and almost all the 

bed time (median of 98.49%). The automatic artifact algorithm 

found 53.85% (median) of data to be usable during the non-bed 

time, and 95.00% during the bed time. However, further studies 

must be conducted in order to assess the full potential of the 

armband for specific applications, such as arrhythmia detection, 

sleep studies, seizure detection, stress assessment, or 

monitoring of chronic respiratory patients. 
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