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Abstract: In late 2019, a new genre of coronavirus (COVID-19) was first identified in humans in
Wuhan, China. In addition to this, COVID-19 spreads through droplets, so quarantine is necessary
to halt the spread and to recover physically. This modern urgency creates a critical challenge for
the latest technologies to detect and monitor potential patients of this new disease. In this vein, the
Internet of Things (IoT) contributes to solving such problems. This paper proposed a wearable device
that utilizes real-time monitoring to detect body temperature and ambient conditions. Moreover, the
system automatically alerts the concerned person using this device. The alert is transmitted when the
body exceeds the allowed temperature threshold. To achieve this, we developed an algorithm that
detects physical exercise named “Continuous Displacement Algorithm” based on an accelerometer to
see whether a potential temperature rise can be attributed to physical activity. The people responsible
for the person in quarantine can then connect via nRF Connect or a similar central application to
acquire an accurate picture of the person’s condition. This experiment included an Arduino Nano
BLE 33 Sense which contains several other sensors like a 9-axis IMU, several types of temperature, and
ambient and other sensors equipped. This device successfully managed to measure wrist temperature
at all states, ranging from 32 ◦C initially to 39 ◦C, providing better battery autonomy than other
similar devices, lasting over 12 h, with fast charging capabilities (500 mA), and utilizing the BLE
5.0 protocol for data wireless data transmission and low power consumption. Furthermore, a 1D
Convolutional Neural Network (CNN) was employed to classify whether the user is feverish while
considering the physical activity status. The results obtained from the 1D CNN illustrated the manner
in which it can be leveraged to acquire insight regarding the health of the users in the setting of the
COVID-19 pandemic.

Keywords: COVID-19; body temperature; wearable devices; 9-axis IMU; temperature sensors; indoor
condition; activity recognition; BLE; Arduino nano 33 BLE sense

1. Introduction

Since late 2019–early 2020, the World Health Organization (WHO) has declared the
coronavirus pandemic, inducing a global coordinated effort to halt the spread of this par-
ticularly infectious virus. Typically, coronaviruses present with respiratory symptoms.
Among those who become infected, some may not manifest any symptoms. Nevertheless, a
considerable portion of the population develops symptoms with varying degrees of severity
ranging from mild to extremely harsh and potentially even causing death. Symptoms may
include respiratory symptoms, fever, cough, shortness of breath or breathing difficulties,
fatigue, and sore throat. Some people might show more severe symptoms, thus being
hospitalized, most often with pneumonia. Self-isolation is identified as an efficient measure
to curb the spread to the virus, with multiple states and countries worldwide imposing
quarantine. Fever is one of the most commonly observed symptoms of COVID-19. There-
fore, quarantined people are advised to frequently check their body temperature. Another
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issue that comes up is that older people and children may be unable to acquire an accurate
temperature reading. In this particularly challenging setting, new opportunities arise to
develop IoT applications through intelligent healthcare/system/monitoring systems [1–4].
In this regard, a wearable device to enable temperature measuring and physical activity
monitoring is extremely beneficial. It serves doctors to monitor their patients while also
maintaining a satisfactory quality of life when they are quarantined. More specifically,
quarantine imposed by doctors to inhibit the spread of COVID-19 may incite adverse con-
sequences for the patients’ mental and physical health; thus, assisting people in quarantine,
physical activity becomes essential [5]. To prevent acute or sustained adverse effects on the
body’s metabolic, vascular, and musculoskeletal systems and protect the patient’s mental
health, physical activity is a viable option for quarantined people to strengthen their overall
health during that period further; hence, it is imperative to encourage quarantined patients
to remain physically active. However, for the correct monitoring, it is integral to consider
that increase of body temperature is caused by physical exercise; thus, it is necessary to
properly adapt the pertinent thresholds to detect fever and alert the patient [6,7]. The
Human Activity Recognition (HAR) algorithm is widely used for movement prediction
based on sensor data by using machine and deep learning [8,9]. However, this methodology
requires large data samples and is significantly more complicated than alternatives.

Working towards this direction, this study proposed a particularly low-power wear-
able device utilizing the Bluetooth Low energy 5.0 communication protocol, several temper-
ature sensors including an MLX90614 IR Temperature sensor and an MCP High Accuracy
Touch Temperature sensor, a 9-axis Inertial measurement unit, and a Real-Time Clock
PCF8523 [10–15]. The proposed solution presents significant autonomy and decent accu-
racy to contain the spread of the virus at home.

This project aimed to develop a device capable of distinguishing between healthy and
febrile conditions utilizing measurements from several temperature sensors while also
considering whether the user is exercising. The proposed algorithm presented in Section 3
of the present study enables the detection of physical activity undertaken by the user
wearing our device. Additionally, we introduce a Convolutional Neural Network classifier
used to classify the samples regarding the patient’s condition, providing proof of the
feasibility of our device being employed to identify the state of the patients’ health correctly.
This implementation facilitates monitoring patients’ conditions remotely, providing a safe
diagnosis tool for doctors and physicians.

This study is organized as follows. In Section 2, a critical review of recent literature
is presented. In Section 3, the wearable is described providing the specifications of instru-
mental sensors for its development. Section 4 illustrates the system architecture while also
providing significant benefits of the approach. Besides, the algorithmic process adopted
is presented. Section 5 includes the results stemming from the present study. Lastly, in
Section 6, concluding remarks and discussion on future research steps are provided.

2. Critical Literature Review

Due to the ever-increasing need for human supervision, the use of wearable devices
has gained considerable ground for limiting COVID-19. Currently, large companies are
investigating techniques to identify infected people and whether infected people are quar-
antined properly through wearable devices. Some of the projects that have been explicitly
developed are listed below.

A portable integration of IoT devices was implemented for monitoring body tem-
perature, room temperature in real-time through a notification, and an alert system for
quarantined people [16]. The alarm is transmitted when the body temperature exceeds
the permissible temperature. In addition, an accelerometer algorithm was developed that
predicts whether the quarantine’s temperature rise is due to either immobility or nor-
mal movement and generates an output to infer whether the temperature is the result of
physical exercise or not to adjust the temperature automatically.
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The experiment included an M5stickC, a MEMS accelerometer, an infrared thermome-
ter, and a digital temperature sensor. Indoor temperature and humidity are measures to
limit the spread of the virus. The information is transmitted via WiFi and MQTT under
normal conditions. When the WiFi signal is lost, Bluetooth transfers data from the isolated
person, the electronic device of a family member, or a medical member. Evidence sug-
gests that many sensors could be sued to develop fever monitoring applications, enable
large-scale health monitoring, and provide high-temporal and accurate data on fever re-
sponses [17]. Findings from individuals, who reported COVID-19 infections, prove that
relative increases in temperature are observable with portable devices and are associated
with self-reported fever. Finally, the data support the hypothesis that disease prediction is
possible using data continuously called by portable sensors.

Subsequently, in [18], the authors proposed a framework consisting of three components:
a lightweight and low-cost IoT node, a smartphone application, and fog-based Machine
learning tools for data analysis and diagnosis. In this project, several health parameters were
considered and monitored, including body temperature, cough rate, respiratory rate, and
blood oxygen saturation. A dedicated smartphone app displays the condition of the user, and,
if deemed necessary, a corresponding message notifies the user to maintain social distancing.
Additionally, in this study, a Fuzzy Mamdani system (running at the fog server) computes the
risk of spreading the infection regarding several environmental factors along with the health
status of the user. Two distinct cases are distinguished for the communication between the
IoT node and the fog server, specifically 4G/5G/Wi-Fi or LoRa, depending on environmental
constraints. Lastly, in the context of this study, the authors presented a comparative analysis
with respect to the energy requirements and bandwidth for multiple use-cases.

Furthermore, a wearable monitoring device utilizing simple sensors and microcon-
trollers to track body temperature, heart rate, respiration rate, and other vital signs was
presented in [19] in an attempt to detect COVID-19 symptoms. Additionally, in [20], the
authors presented an affordable IoT-based application. This project’s focal point was to
minimize the probability of COVID-19 transfer. Specifically, a system to check patients’
health status remotely was proposed, acquiring periodic measurements concerning the
user’s vital sings. The proposed design was composed of diverse set of sensors designated
to measure the user’s heart rate, blood oxygen level (MAX30100), and body temperature
(MLX90164) connected to a microprocessor (ATmega 2560) by using the I2C protocol.

Lastly, an IoT-based solution was suggested to conduct vital signs monitoring and
alert officials in the event of detecting COVID-19 symptoms [21]. The proposed design
entails the acquisition of readings from various sensors and determining the best course of
action needed in each instance. The regular temperature reading ranges from 36.5 ◦C to
37.1 ◦C, and SpO2 measurements greater than 95% are deemed as normal. In the case that
the measured values exceed certain thresholds, health officials are notified accordingly. The
entire methodology is automated, reducing time and complexity, and importantly allowing
for immediate intervention from health officials to halt the spread of the virus. Table 1
summarizes our device’s used modules and implemented protocols, along with similar
devices from pertinent literature.

Table 1. Sensors and protocols in this project compared to pertinent literature.

Our Device Similar Devices from Literature

Modules Used Protocols Modules Used Protocols

Arduino Nano 33 BLE I2C M5stickC (ESP32 based) I2C
MLX90614 SPI ESP8266 SPI

PCF8523 RTC BLE ATmega 2560 WI-FI
MCP9808 MLX90614 4G/5G
HTS221 MCP9808 LORA

NINA B306 BLE MAX30100 MQTT
LMSDS1 9-axis IMU

1.3 inch OLED display
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3. Wearable Prototype

In the present study, the MEMS accelerometer undertook the acquisition of acceleration
data, aiming to categorize the activity status of the user through the CDA model. Depending
on this status, the temperature threshold was adjusted accordingly. More specifically, if
physical exercise is detected, the fever threshold was increased by approximately 0.5–1.0 ◦C.
Afterwards, in case of febrility, the alert message was automatically sent to the user. The
most significant information was displayed through an OLED screen and also sent to
the user’s cellphone via BLE. Using the central application allowed us to connect to the
Wearable device and read the published services, which were updated and then published
every 2 s, allowing us to continuously monitor the patient and keep an eye on each
parameter. Figure 1 illustrates the prototype being worn, along with the interface providing
information about the device’s sensors.
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Figure 1. Wearable prototype and BLE advertised services.

3.1. Overview of the Designed System

Figure 2 summarizes the entire operating procedures of the designed system. The IMU
acquired the data, which were then processed through the CDA to determine if exercise
occurred. If the exercising boolean variable was true, the temperature cut-off value was
adjusted automatically. Meanwhile, the ambient temperature and humidity sensor collected
room conditions. The alerts were transmitted when the body temperature surpassed the
temperature cut-off value. The essential data could be viewed via the OLED display or
remotely through the BLE application. The collected information could always be saved
via the BLE logs or a serial monitor application. The code for this project was written by
using the famous Arduino IDE [22].
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Figure 2. Principle of operation of the designed system.

3.2. Sensors

The additions will not only help to monitor COVID-19, but also other similar medical
applications in general. All the sensors are embedded within the prototype device equipped
by the user. The involved sensors in the experiment were the following. Two main
communication protocols were used between the various sensors and modules, including:
I2C [23,24] and SPI [25], besides the BLE 5.0.

• The Arduino Nano 33 BLE Sense was the main microcontroller since it is a well-known
form factor. It contains a 9-axis IMU rendering the board ideal for wearable devices.

• The HTS221, which measures the ambient temperature and humidity, was embedded
in the Arduino Nano 33 BLE Sense MCU.

• The thermal body sensor MLX90614 was connected to the I2C bus, along with the
MCP9808 touch temperature sensor, the Adafruit PCF8523 real-time clock, and the
Sparkfun Battery Babysitter [26]. The device’s exact specifications are the following:
The operating voltage is at 3.3 V with 1 M.B. (nRF52840) CPU Flash memory. The LiPo
battery added to the device is rated at 450 mAh, ensuring up to 12 h of continuous
usage. The MCU contains a 9-axis IMU, and the linear acceleration range is at ±2 g at
a frequency of 104 Hz.

• The Waveshare 1.3-inch OLED display, connected via SPI bus, displayed the essential
information: Body touch temperature, body infrared temperature, ambient temper-
ature, and ambient humidity. Furthermore, battery percentage, date, and time were
displayed through the OLED display.

Although the MCP9809’s accuracy increases incrementally after initial contact with the
body, the measurement uncertainty of the contact thermometer is unavoidable. Once the
touch temperature sensor exceeds the threshold and no exercise is detected, the user should
consider using the infrared temperature sensor to evaluate the readings. If both sensors
exceed the threshold, then febrility is likely in this instance regardless of the exercising
variable. Careful and repeated measurements must be taken to evaluate if someone is ill.

4. System Description
4.1. General Approach

Recently, the advent of IoT technologies has redefined health care analytics. Abnormal
measurements play a prominent role in healthcare analytics [27,28]. An IoT node transmits
the data through a Bluetooth connection. At that moment, a doctor or a person responsible
for the patient can observe the temperature in correlation with the activity and judge the
health situation.
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Wearable activity trackers can provide unique insights and contribute to the early
detection of COVID-19 cases [29] by monitoring patients using wearable devices. The ideal
combination can be achieved with the wearable device and the usage of IoT for the health
monitoring of people in isolation [30]. This study provided an activity recognition tool
using a 9-axis IMU, which allows the variation of signals to reflect the human activity.
The approach focuses on distinguishing between regular activity, so the CDA is proved
effective.

Using several temperature sensors allowed us to track the temperature fluctuations
because fever is one of the key symptoms of COVID-19. The contact thermometer was
configured appropriately to monitor the user’s body temperature with great fidelity. It is
deemed worthy to mention that in the beginning of the monitoring, the sensor required
a few seconds to calibrate. The standard body temperature threshold was automatically
adapted depending on the physical exercise status. An infrared thermometer is an indis-
pensable sensor that quickly finds the users’ temperature but lacks precision [31]. This type
of recognition allows the observer to keep track of the users’ temperature variations and
find out if the temperature is due to physical exercise [32].

On the contrary, the ambient sensor HTS221—which was embedded in the board—
responsible for measuring room temperature and humidity is necessary to assure the
quarantined person’s suitable living conditions and restrain COVID-19 [33]. Therefore,
in our design, there was a combination of three temperature sensors, each one checking
the different types of temperature (touch/I.R./ambient) and humidity, as well as contin-
uously checking the AmT (Ambient Temperature) and the AmH (Ambient temperature)
surrounding the user. All the abovementioned data were shown to the user via the OLED
display. Tracking of the ambient parameters is also important because if one is under
supervision, it is mandatory to adjust the environment variables to halt the spread of the
virus, in the particular values between 20–60% of humidity and 20–24 ◦C concerning the
ambient temperature [34].

By analyzing the data measurements between room conditions and body state, we
could improve the monitoring capabilities of infected people without needing to access
large databases and without large training datasets. Besides that, we then send warnings
via the OLED display and the BLE communicate when the body temperature exceeds the
allowed threshold. The importance of the proposed system is that it combines simple logic,
a small size, and multiple functionalities. This system features upgradeability, utilizing
machine learning models. It can be customized or progressed to a more complex and
multipurpose system that uses the rest of the sensors embedded on the Arduino Nano
33 BLE sense board.

4.2. Benefits of the Approach

We developed a Continuous Displacement Algorithm (CDA) which computes the
number of observations surpassing the physical activity threshold, inciting automatic up-
date of the temperature threshold. The accelerometer inside the wearable device provided
the acceleration value. The extremes were calculated based on the acceleration variation
as the input of the CDA model. The average human body temperature ranges from 36.8
to 37.0 ◦C since each person’s body temperature is different with negligible fluctuations.
However, during physical exercise, the temperature hovers around 37.5 ◦C [35,36]. Ad-
ditionally, ambient temperature and humidity are critical to impede the virus diffusion.
The ambient temperature (AmT) should be around 20–24 ◦C, and the Ambient Humidity
(AmH) approximately 20–60%. In this project, a wearable device based on Arduino nano
33 BLE sense’s embedded ambient sensors, two other temperature sensors were added to
this device to obtain reliable readings, namely, an MLX90614 infrared thermometer and an
MCP9808 high-accuracy contact thermometer [37].

The primary protocols used to transmit the information are BLE and were used as
peripheral, serial transmission to an OLED display attached to the wearable device [38].
The measurements were available to the user at any time. They could simply connect to a
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Bluetooth central application like LightBlue primarily used in this project for data decoding)
or nRF Connect to access the available data [39,40]. Altogether, the system is based on
thermometer and accelerometer readings. The objectives include the smooth combination of
contact—and non-contact—ambient thermometers to update the temperature and acquire
accurate readings. The overall purpose of this device is to provide warnings if the body
temperature is above the permissible limit, which the CDA detects.

Besides the simplicity and accuracy, an additional benefit of this design is distant
patient supervision. In future applications, it is highly upgradeable, and it can perform
pulse oximetry which can assist in notifying supervising staff or patients of the help they
need and acquire accurate information about their current condition. Furthermore, one
of the most significant benefits is that the Arduino Nano BLE 33 Sense can implement
machine learning models with TinyML or TensorFlow [41,42].

Overall, this paper is an alternative approach to the system described in [43], using sim-
ilar principles for acquiring and handling the data. It offers excellent future upgradeability
while maintaining power efficiency—one of the critical features of the BLE 5.0 protocol.

4.3. Continuous Displacement Algorithm

To recognize human activity, it is mandatory to collect and process data provided
by the IMU unit. In this case, the acceleration magnitude (Amag) was used to calculate
the difference between its two-consecutive samples (∆αmag) with Amag, Amag-1, and
compute the average between them, the previous and the current readings, for activity
recognition.

∆Amag =
√

x2 + y2 + z2 (1)

where x, y, z are the three axes of the accelerometer. Figures 3–5 show the behavior of Amag
and |∆Amag| during three activity conditions:

1. No activity (sitting).
2. Ordinary movements (walking).
3. Doing physical exercise (running).
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Figure 5. Physical exercise.

The Acc signal acquisition was carried out for 1 min in real-time. The signal can only
react to the apparent motion of the body. Under stillness, no extremes were found, and
the accelerometer maintained a constant value without any extremes, so the |∆αmag|
maintained a constant value without unnecessary interruptions. Hence, the |∆αmag| was
almost 1 at all times. Regular activities can cause sudden variations, but it is easy to realize
that the signal behavior is random with tiny |∆αmag| at low frequencies. Likewise, if
the user performs physical exercises, the ∆αmag frequently varies with high repetitive
extremes due to numerous motions that cause and |∆αmag| fluctuations repetitively with
similar values. To distinguish between normal activities and training, the CDA counts the
number of extremes per a specified period (20 s) to decide whether the person is exercising.
Additionally, pertinent literature indicates that the body’s temperature returns to standard
levels approximately 20 min after exercise. Therefore, the timer is to count that period
and adjust the temperature threshold accordingly at 37.5 ◦C, which is the maximum body
temperature during exercising.

The CDA flowchart, in Figure 6, presents a comprehensive overview of the imple-
mented algorithm. We gathered accelerometer data using the Vector Equation and stored
the data into an array of 100 elements each time, calculating the average between two
vector elements each time. After the data were stored into another array, a threshold was
generated, computing the total average of the 100 elements. Values above that threshold
were counted as local extreme values. If the local extremes were above a set value acting
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as a threshold, corporal activity was detected and adjusted the points accordingly. The
following equation calculates the average vector:

AverageVector[a] =
99

∑
a=0

vector[a]+vector[a−1]...a=99
2

99
(2)

where: a is the capacity of an array ranging from 0 to 99 and Average Vector[a] is an array
of 100 elements which calculates the avg of the vector[a] which is calculated by the ∆Amag
formula.
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This process was repeated for 20 s each time. Suppose the number of spikes we
found on that time interval is above the spike threshold. In this instance, the exercise’s
Boolean variable is shifted from 0 to 1. Afterward, we adjust the temperature threshold
from 36.8 to 37.5 ◦C which is the temperature threshold that comes into place if someone is
exercising. This value is held for 20 min. The data acquisition is accomplished by using the
device’s serial port to transmit data and a computer (in combination with a serial monitor)
to receive data. In summary, if they are enough extremes in a specified period and if
the corresponding extreme values are above the threshold, the flag is shifted from 0 to 1.
Consequently, the temperature cut-off value is adjusted from 36.8 ◦C to 37.5 ◦C.



Signals 2022, 3 20

4.4. Deep Learning Analysis

Subsequently, we performed classifications and determined the condition of the user
concerning their body temperature. Explicitly, we fed the measurements of the touch
temperature sensors to identify an increase in the body temperature potentially caused
by pathogenesis, thus signifying fever. The models employed for this task were unidi-
mensional Convolutional Neural Networks. CNNs are a class of deep learning neural
networks that display excellent capabilities in pattern recognition schemes. Their ability
to extract regional features enables researchers to deal with complex tasks that are not
possible with classic ANNs. Although, our signals stemmed from one device, and thus we
did not possess a plethora of samples; we were prompted to select unidimensional CNNs
as our classifier to provide proof of feasibility for our application in this task.

This selection also delineates our future directions regarding the simultaneous acqui-
sition of multiple signals from interconnected devices in the context of family members
wearing this device and obtaining feedback in real-time concerning their condition and
relatives. In this vein, these networks present excellent scaling capabilities, thus rendering
them great candidates to constitute the foundation for our analysis. Furthermore, these net-
works were also employed in our previous work [44], where they demonstrated significant
efficacy in classifying the condition of vessel equipment. Therefore, it is deemed necessary
to use methodologies established in other domains and determine their transferability. The
primary functionalities of CNNs are explicated in detail, as follows:

Feature extraction: First, the convolution is characterized as a linear element-wise
multiplication as a small array called the kernel glides through the input tensor of the layer
and convolves the value of each time step. Equation (3) delineates this operation.

F(x) = K
◦
S(x) =

N

∑
i=−N

K(i)S(x − i) (3)

The emerging output tensor was fed into a nonlinear activation function. Recently, the
rectifier linear unit (ReLU) has started to gain popularity, as it has been evinced capable of
yielding remarkable results while also solving gradient problems related to other popular
activation functions of the past, such as the sigmoid and the tanh.

Classification: The output feature map of the last convolution layer was converted
into a vector, which was input into a traditional Feed-Forward Neural Network (FFNN)
carrying out the assignment of the samples to the output labels.

Loss: The main objective of the optimization procedure is the minimization of the loss
function. The utilized loss function was concluded based on the nature of the problem
at hand. Explicitly, for our application, the Categorical Cross Entropy was utilized in the
present study. Afterward, we assumed a dataset with M labels and N observations, and
the vector of ground truth measurements is denoted as y = [y1, y2, . . . , yn]. Similarly,
the predicted values are denoted as a[L] = [a[L]1 , a[L]2 , . . . , a[L]n ]. Accepting CCE as our loss
function then gives:

E = CCE(y, a[L]) = −
M

∑
i=1

yi log
(

a[L]i

)
(4)

Subsequently, the backpropagation succeeded the forward pass. The gradient, namely
the partial derivative of the loss, was calculated concerning the model’s output. Through
this computation, the model was capable of updating its learnable parameters, namely
weights and biases, achieving convergence of the inferred values and actual measure-
ments, hence augmenting the model’s accuracy. Mathematically, we can formulate the
aforementioned procedure as follows:

p = p − a
∂L
∂p

(5)
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where p represents any learnable parameter and α denotes the learning rate of the optimizer
of the model.

For our application, we had continuous time-series signals pertinent to the variables
monitored by the watch’s sensors. We had available 2 h worth of data with a 1 Hz sampling
frequency, accumulating to approximately 7200 data points, corresponding to 1 h (3600 data
points) with the being user healthy and another hour with the user being febrile. Table 2
summarizes the data acquisition for the N.N. classification task and the user’s physical
condition while wearing the watch.

Table 2. Number of data points available.

Condition Duration Frequency (Hz) Data Points

Healthy 1 h 1 3600
Febrile 1 h 1 3600
Total 2 h 1 7200

For the needs of our application, it was essential to parse the continuous-time series
signals and create distinct segments that shall constitute the samples fed to the CNN. The
dataset segmentation was carried out concerning a preconditioned timeframe, as illustrated
in Figure 7, where the segmentation of an arbitrary signal was divided into 10 sections.
Explicitly, for our application, a 5-min segment horizon was employed. Additionally, it
is worth noting that an overlap of 75% between adjacent time windows was applied to
maximize the number of available samples fed into the neural network. The 5-min input
window with the 75% overlap yielded 250 samples across the two possible conditions of
the user’s health (healthy and patient). These two states were equivalently represented in
the dataset, as derived from the equal amount samples, respectively. Table 3 demonstrates
the distribution of the samples to the training, validation, and test subsets for the neural
net, respectively.
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Table 3. Division of samples to each dataset.

Input Window Total Samples Train Set Validation Set Test Set

5 min 125 100 5 20
5 min 125 100 5 20

- 250 200 10 40

5. Results

After gathering samples, this section summarizes the obtained results using the device
for 2 days. The data were monitored and recorded for analysis. The device was used
three times each day for one hour for practical reasons. The experimental assessment is
categorized into three main parts:
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• Overview of system interaction
• Examination of data through the serial monitor each day of the quarantine
• Presenting an outline of the most critical information during the whole quarantine

period.

The interaction between each sensor, the displayed alert, and the data evaluation are
examined. The measurements below were reported when the device was worn based on
the following schedule. The quarantined person also used the device optimally to validate
the data and acquire accurate results. The battery capacity lasts between 12–14 h of constant
usage.

• In the morning between 11.30 a.m. to 12.30 p.m.
• In the evening, the device was worn from 5.30 p.m. to 6.30 p.m.
• At night, the user wore the device between 7.30 p.m. and 8.30 p.m. and performed

physical exercise.

Considering the fade time to acquire accurate readings using the high-accuracy contact
thermometer, we started gathering samples after the 10-min mark for the most accurate
measurements. Some of the parameters needed to take into consideration are listed as
follows:

1. Age
2. Sex
3. Environment
4. Physical exercise before data gathering
5. People sick out of the people tested
6. Body part on which the sensor is used, etc.
7. Temperature sensors offset, etc.
8. The season during the year
9. Time of the day
10. Geolocation

It can be inferred from the information mentioned that data acquisition concerning
temperature monitoring is a complicated procedure that requires carefully examined clues,
large groups of people, and many other factors to guarantee the approximate maximum
validity. Figures 8–10 demonstrate the temperature signals acquired during the three use
intervals, while Tables 4 and 5 provide average values for different periods.
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Figure 8. Morning Temperature signal.
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Figure 9. Evening Temperature signal.
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Figure 10. Night Temperature signal.

Table 4. Average Body Temperature of a day (High-Accuracy Touch Temperature Sensor).

Parameters Morning Evening Night

Minimum (◦C) 32.4 35.1 35.2
Maximum (◦C) 35.64 37.15 37.23
Average (◦C) 34.97 36.28 36.39

Exercising (0/1) 0 0 1
Threshold (◦C) 37.0 37.0 37.5

Table 5. Average body temperature of a day (I.R. sensor).

Time Body Temp Exercising (0/1)

8.35 am 33.4 0
6.35 pm 34.9 0
3.35 pm 35.3 0
7.40 pm 34.6 1

The user also measures the temperature several times during the day by using the
infrared thermometer while taking off the device. All the data are monitored via BLE
through a device because the infrared sensor does not require large amounts of sampling
plus time to measure the results by hand.

The user also measures the temperature several times during the day by using the
infrared thermometer while taking off the device. The device was programmed such that
the user just needs to place the infrared sensor on the forehead, upper wrist, armpit, and
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rectum. All the data are monitored via BLE through a device for some time because the
infrared sensor does not require high amounts of sampling plus time; hence, results can be
measured by hand. Figure 11 illustrates the exercise time, and the orange line showcases
the Boolean value of the quarantined person. Additionally, in the mentioned period, we
witnessed the fluctuations in body temperature as time passed 20 min. It returned to
normal after the exercising time passed, and the temperature returned to normal after
~10–20 min of exercising ended. Given the exercise information, the people responsible for
the person in quarantine can acquire an accurate image of how this graph works and how
the temperature fluctuates with exercise.
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Figure 11. Exercise and temperature status.

5.1. Ambient Conditions

The data of ambient conditions were also collected to visualize. The AmH is ordinarily
high in Athens, especially in Piraeus. The quarantined person tried to adjust the room
conditions during the day. The room temperature was mildly warm, constituting optimal
conditions for the quarantined patient.

The data were used to demonstrate that the person that was monitored during quar-
antine had normal body conditions without fever while trying to maintain optimal room
conditions, evincing that the designed system successfully tracked the person’s homeostasis
under the COVID-19 pandemic. After using the device for an adjusted period, the user
reported that the device had provided accurate information for the supervising people.
Additionally, the patient’s family members were able to follow the temperature conditions
as well as the ambient conditions (Figure 12), enabling them to take appropriate initiatives
according to the data provided by the device (Table 6).

Table 6. Reported data from ambient conditions.

Average Value Morning Afternoon Night

Humidity (%) 53 50 48
Temperature (◦C) 25 27 29
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5.2. Deep Learning Analysis

For the selection of hyperparameters, we consulted [44], where unidimensional CNNs
were employed to carry out Condition-Based Monitoring in-vessel equipment. The archi-
tecture of the networks, along with the applied value of other significant hyperparameters,
such as the optimizer’s learning rate or the batch size, is tabulated in Table 7. The results of
the experiments established the efficacy of the 1D-CNNs in identifying feverish symptoms
to the user. Multiple runs were carried out to ensure the validity of our results. All 30 ex-
periments yielded the same results, as shown in Figure 13 and Table 8. Explicitly, Table 8
presents the confusion matrix of the classifications demonstrating that the networks cor-
rectly classified every sample in the test set. Additionally, Figure 13 illustrates the Receiver
Operating Characteristic (ROC) curve and the equivalent Area Under Curve (AUC) value,
evincing the perfect classification carried out by our proposed classifier.

Table 7. Architecture of 1D CNN.

Name of Component Value

Convolutional Layer #1 256 × 256 × 15, Kernels: 3 × 3
Max Pooling Layer #1 128 × 128 × 15 Kernels: 2 × 2

Convolutional Layer #2 128 × 128 × 6, Kernels: 3 × 3
Max Pooling Layer #2 64 × 64 × 6, Kernels: 2 × 2

Convolutional Layer #3 64 × 64 × 6, Kernels: 3 × 3
Max Pooling Layer #3 32 × 32 × 6, Kernels: 2 × 2

FCN Layer #1 3 nodes, Dropout = 0
Output Layer 2 nodes
Learning Rate 5·10−4.0

Weight updates Epochs·BatchSize = 8·100 = 800

Table 8. Confusion matrix of the 1D CNN classifier in identifying febrile patients.

True Class

Negative Labeled Positive Labeled

Predicted Class
Negative 20 0
Positive 0 20
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6. Conclusions

IoT-enables remote monitoring in the healthcare sector and enables physicians to treat
their patients. Furthermore, remote monitoring of patients’ health contributes to curtail
their hospital stay and prevents re-admissions. Therefore, the profound role of IoT in
healthcare-related implementations becomes evident.

In the present study, a wearable system that can be used to monitor COVID-19 infected
health status was presented. It was shown that the designed system successfully managed
to monitor the user temperature and the ambient room temperature and humidity. The
numerous measurements were acknowledged from the self-isolated person due to COVID-
19. Furthermore, IoT enabled connecting sensor data supervising users via BLE. Utilizing
the wireless protocol, the information almost always reached the connected devices, which
is critical since the virus is most infectious via the respiratory system. This project’s primary
goal was to design a functional device while also bearing its intuitiveness, practicality,
along with its affordability. This small-size device was equipped with sensors managing
to supervise the user’s health and distinguish high temperature due to fever or physical
exercise. This device successfully measured wrist temperature at all states, ranging from
32 ◦C initially to 39 ◦C, providing better battery autonomy than other similar devices
from pertinent literature, lasting over 12 h of usage and data recording, with fast charging
capabilities (500 mA), and utilizing the BLE 5.0 protocol for data wireless data transmission
and low power consumption.

This study emphasized the development of a Continuous Displacement Algorithm
following the default thresholds of maximum points and temperature. Besides that, the
ambient temperature and humidity were always available for the quarantined person to
use and adjust accordingly to ensure suitable living conditions. Lastly, our samples were
tested in deep learning analysis. The samples acquired during the three measurement
periods were gathered and fed to a unidimensional CNN. This practice showcased remark-
able accuracy in classifying the condition of the user concerning its febrility, achieving
a perfect classification accuracy of the samples in the test set. Currently, the designed
device underwent a series of clinical trials with the support of infected people to validate
its strengths and identify its weaknesses. Besides, machine learning techniques to improve
the system’s accuracy were considered.

Henceforward, the designed device will be tested with more people to validate its
strengths and identify its weaknesses. In addition to that, it is scheduled to use machine
learning techniques to improve the system’s accuracy. Another aspect providing room
for improvement is the battery life along with the addition of a pulse oximeter sensor.
This device can also be upgraded in terms of sensor calibration to provide more accurate
results from all the sensors included. We also aim to materialize further improvements
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regarding the following attributes: the CDA, and the addition of a WiFi and GPS module
for selection, MQTT protocol for data visualization on a personal computer or a mobile
device interactively via NodeRed, and an OLED screen from non-touch to touch display.
Furthermore, one future direction entails experimentation of this device and its efficacy on
actual patients suffering from COVID-19.
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