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Wearable EOG goggles: Seamless sensing

and context-awareness in everyday

environments

Andreas Bulling ∗, Daniel Roggen and Gerhard Tröster

Wearable Computing Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland

Abstract. In this article we introduce the analysis of eye motion as a new input modality for activity recognition, context-

awareness and mobile HCI applications. We describe a novel embedded eye tracker that, in contrast to common systems using

video cameras, relies on Electrooculography (EOG). This self-contained wearable device consists of goggles with dry electrodes

integrated into the frame and a small pocket-worn component with a DSP for real-time EOG signal processing. It can store data

locally for long-term recordings or stream processed EOG signals to a remote device over Bluetooth. We show how challenges

associated with wearability, eye motion analysis and signal artefacts caused by physical activity can be addressed with a com-

bination of a special mechanical design, optimised algorithms for eye movement detection and adaptive signal processing. In

two case studies, we demonstrate that EOG is a suitable measurement technique for the recognition of reading activity and eye-

based human-computer interaction. Eventually, wearable EOG goggles may pave the way for seamless eye movement analysis

in everyday environments and new forms of context-awareness not possible today.

Keywords: Wearable Eye Tracking, Electrooculography (EOG), Context-Awareness, Activity Recognition, Human-Computer

Interaction (HCI)

1. Introduction

Fifteen years ago, ubiquitous computing was intro-

duced as a vision of technology fading into the back-

ground and always ready to interact and transparently

respond to the users’ needs. To realise this vision it is

essential to be able to recognise and react according

to the users’ context [1,28]. This is primarily a pat-

tern recognition problem in which context is inferred

from specific sensor signal patterns. Sensing the users’

context may thereby rely on ambient infrastructure -

so-called smart environments - or on wearable sensing

and computing [30]. Wearable sensing allows for per-

manent context recognition and enables access to as-

pects that are difficult to measure with ambient sen-

sors. By combining both, ubiquitous systems can be

*Corresponding author. E-mail address: bulling@ife.ee.ethz.ch;
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developed that provide seamless sensing across differ-

ent environments the user visits in his daily routine.

Human activity is one of the key aspects of user

context. The recognition of physical activity both us-

ing ambient [27,32] and body worn [4] sensors has

been extensively studied. However, context-awareness

encompasses more than mere physical activity. The

inclusion of social and affective aspects may help to

paint a more accurate view of the user’s context [37].

Cognitive aspects such as attention and intentionality

may enhance activity recognition systems and benefit

proactive wearable assistants. So far, most of these as-

pects remain unexplored as they cannot be picked-up

by sensors usually deployed in today’s wearable and

ubiquitous computing scenarios.

A rich source of information about the state of the

user can be found in the movement of the human eyes.

This includes information related to the users’ activi-

ties, such as reading [9], but also to cognitive processes

of visual perception such as attention [26], saliency de-
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termination [19], visual memory [31] and perceptual

learning [12]. Deliberate eye movements can be im-

plemented for human-computer interaction (HCI) to

provide feedback that can be used as explicit contex-

tual information [8]. Attentive user interfaces (AUI)

may also infer user intention and activity by analysing

unconscious eye movements. As part of an ongoing

project we investigate up to which extent deliberate

and unconscious eye movements can be exploited to

enable new kinds of context-aware applications.

The investigation of eye motion may focus on

eye tracking or gaze tracking. Eye tracking refers to

the analysis of general characteristics of relative eye

movements, long-term movement dynamics or statisti-

cal properties of eye motion. In contrast, gaze tracking

refers to the estimation of absolute gaze direction.

For stationary settings, a wide range of hardware for

accurate gaze tracking is available. However, state-of-

the-art mobile systems still do not meet the require-

ments for unobtrusive long-term recordings and real-

time analysis in everyday environments. To our knowl-

edge, at this stage no wearable solution exists that is

self-contained and unobtrusive for use in daily-life ac-

tivities. Furthermore, current video-based systems are

not geared to embedded online analysis of eye motion

to recognise human activity and infer user context.

In this work, we address these issues by describing

the design and implementation of a highly-integrated

wearable eye tracker for context-awareness and mobile

HCI based on Electrooculography (EOG). In contrast

to well-established vision-based gaze tracking, EOG is

measured with body-worn sensors and can be imple-

mented as a low-cost and low-power embedded sys-

tem. The device allows for unobtrusive recordings of

EOG signals and their real-time processing and en-

ables online inference of activity and context. It con-

sists of glasses and a light-weight device worn on the

body and is particularly designed for long-term use in

daily life with simultaneous physical activity.

The specific contributions of this work are (1) the

design and implementation of a wearable EOG-based

eye tracker implemented as goggles, (2) the develop-

ment of a software framework for continuous EOG sig-

nal analysis and the detection of eye movement events,

(3) the evaluation and implementation of a set of al-

gorithms for robust EOG signal processing within this

framework and (4) the characterisation of wearable

EOG and the goggles in two case studies.

1.1. Paper organisation

Section 2 provides information on the physiology of

eye motion and the state-of-the-art in eye movement

research with particular emphasis on sensors and ap-

plications. Based on the definition of the requirements

for a wearable EOG-based eye tracking device, in Sec-

tion 3, we describe the implementation challenges and

the final design of the wearable EOG goggles. Sec-

tion 4 gives detailed information on the signal pro-

cessing algorithms implemented on the device for con-

tinuous recognition of eye movement sequences. Two

case studies enabled by wearable EOG and the gog-

gles are outlined in Section 5. In Sections 6 and 7, we

discuss the current status of the system, comment on

the case studies and give an outlook to future work,

respectively.

2. Eye movements: physiology, sensors and

applications

2.1. Physiology of eye motion

To be able to take advantage of the typical charac-

teristics of eye movements to perform context recog-

nition and implement eye-based HCI, it is important

to understand its two main types, namely saccades and

fixations.

Saccades: Humans do not look at a wider scene in a

steady way. Instead, their eyes move around constantly

to locate interesting parts and combine them into one

mental representation. The main reason for this is that

only a small central region of the retina, the fovea, al-

lows to perceive the scene with high acuity. Simulta-

neous movements of both eyes in the same direction

are called saccades. Typical characteristics of saccadic

eye movements are 400◦/s for the maximum velocity,

20◦ for the amplitude and 80ms for the duration [16].

Fixations: A fixation is the static state of the eyes

during which gaze is held upon a specific location. Hu-

mans typically alternate saccadic eye movements and

fixations (see Figure 1). However, visual fixation is

never perfectly steady and fixational eye movements

can also occur involuntarily. The term “fixation” can

also be referred to as the time between two saccades

during which the eyes are relatively stationary. Certain

activities involve characteristic fixation patterns. For

example during reading, the eyes fixate on successive

locations within a line but also across a page to reach

different sections of the text [9].
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Fig. 1. Denoised horizontal (EOGh) and vertical (EOGv) EOG sig-

nals with marked segments showing the two main eye movement

characteristics: saccades (S) and fixations (F).

2.2. Eye movements in daily life

A growing number of researchers investigate move-

ments of the eyes during daily activities. Important

advances have been made to understand how the hu-

man brain processes visual tasks [18], how vision con-

tributes to the organisation of active tasks in everyday

life [25] and how eye, head, and hand movements are

coordinated temporally [34]. In a recent study, Logan

et al. studied activity recognition with a person living

in a smart environment instrumented with a large num-

ber and variety of common sensors [27]. They found

that among all activities, reading was one of the most

difficult to detect. They concluded that in order to catch

all types of physical activity in daily-life scenarios,

novel sensors and algorithms need to be developed.

Although eye movements have been investigated in

daily routine, none of these studies used eye movement

patterns to perform activity and context recognition.

Furthermore, other aspects of visual perception such

as attention [26], saliency determination [19], visual

memory [31] or perceptual learning [12] so far remain

unexplored as a novel input for context-aware systems.

2.3. Video-based eye tracking

2.3.1. Devices

The common method to track eye gaze in natural

environments are systems based on video cameras. A

number of commercial gaze trackers are available of

which some are targeted at mobile use, for example

the Mobile Eye from Applied Science Laboratories

(ASL) [2] or the iView X HED from SensoMotoric In-

struments (SMI) [40]. Nevertheless, they still require

bulky headgear and additional equipment to process

the video streams. This does not allow for unobtru-

sive recordings and constrains the user in his physi-

cal activities. Furthermore, as the video processing is

performed in real-time requiring considerable compu-

tational power, these systems are limited to only very

few hours of mobile gaze tracking.

2.3.2. Eye-based interaction

Eye-gaze recorded using vision has long been inves-

tigated as a means to interact with a computer. How-

ever, due to the lack of appropriate hardware, mobile

eye-based interaction is a so far barely regarded field of

research. Most HCI work has focused on direct manip-

ulation of user interfaces in stationary settings. Zhai et

al. proposed a new way of using eye gaze for computer

input [46]. Results of an early-stage experiment indi-

cated that their method potentially reduces physical ef-

fort and fatigue. Qvarfordt et al. explored an interac-

tive human-computer dialogue system for touristic city

trip planning [36]. They showed that it was possible

to sense the users’ interests based on eye-gaze patterns

and adapt the system’s output accordingly. Drewes et

al. proposed to use eye gestures to implement new

ways of HCI [15]. They argue that these gestures are

insensitive to accuracy problems and do not exhibit the

“Midas touch” problem (for details see [21]).

2.4. EOG-based eye tracking

2.4.1. Electrooculography (EOG)

The eyes are the origin of a steady electric poten-

tial field, which can also be detected in total dark-

ness and if the eyes are closed. It is generated by a

dipole with its positive pole at the cornea and its nega-

tive pole at the retina. The magnitude of this so-called

corneo-retinal potential difference (CRP) lies in the

range of 0.4mV to 1.0mV . On the assumption of an

unchanging CRP, the electric signal that can be de-

rived using two pairs of skin electrodes placed at peri-

orbital positions around one eye is called Electrooculo-

gram (EOG). EOG typically shows signal amplitudes

ranging from 5µV/◦ to 20µV/◦ and an essential fre-

quency content between 0Hz and 30Hz [7]. If the

eyes move from the centre position towards the pe-

riphery, the retina approaches one electrode while the

cornea approaches the opposing one. This change in

the orientation of the dipole and the electric potential

field results in a change in the measured EOG signal.

Inversely, by analysing these changes, eye movements

can be tracked.



Baseline drift: Baseline drift is a slow signal change

mostly unrelated to the actual eye movements but su-

perposing the EOG signal. Baseline drift has many

possible sources as for instance interfering background

signals, electrode polarisation [17] or physical influ-

ences such as varying contact pressure of the elec-

trodes. The differences in EOG signal amplitude dur-

ing saccadic eye movements can be assumed to be

drift-free as saccades are performed in a very short pe-

riod of time. All other signals can become subject to

changes caused by baseline drift. In a four electrode

setup, baseline drift can be different for the horizontal

and vertical EOG signal components.

Several approaches to remove baseline drift from

electrocardiographic signals (ECG) have been pro-

posed in recent literature (for example see [41,11]). As

ECG shows repetitive characteristics, some of the al-

gorithms perform sufficiently well at removing base-

line drift from these signals. However, they perform

worse for signals with non-repetitive characteristics

such as EOG. Thus, the development of robust algo-

rithms for baseline drift removal from EOG signals is

still an active field of research.

2.4.2. Devices

Efforts to miniaturise video-based eye trackers led

researchers to consider EOG signals recorded with

standard equipment for eye tracking in stationary set-

tings [20,6]. Others investigated novel electrode con-

figurations for implementing EOG-based eye track-

ers for mobile use. Manabe et al. proposed a system

that uses EOG electrode arrays mounted on ordinary

headphones [29]. While this approach might be less

obtrusive than electrodes stuck to the face it raises

other issues - namely, low signal-to-noise ratio (SNR)

and poor separation of the horizontal from the ver-

tical component of eye motion. Vehkaoja et al. pre-

sented a light-weight head cap for EOG and facial

EMG measurements with electrodes embroidered of

silver coated thread [42]. A small device integrated

into the cap allows for wireless data transmission. Sig-

nal processing is performed offline using a standard

desktop computer and the system is still to be evalu-

ated in operation.

Although novel devices for recording eye motion

using EOG have been developed, none of them allows

for combined, embedded signal acquisition and activ-

ity and context recognition in a standalone wearable

device. The system described in this work is a highly

miniaturised, autonomous wearable sensor particularly

designed for both tasks. Low-power and light-weight

implementation, real-time signal processing capabili-

ties and additional sensors for artefact compensation

make this embedded system a unique solution for ro-

bust recordings in mobile daily life settings.

2.4.3. EOG-based interfaces

Basic eye movement characteristics detected from

EOG signals such as saccades, fixations, blinks and de-

liberate movement patterns have been used for hands-

free operation of stationary human-computer [13,22]

and human-robot [23,10] command interfaces. As part

of a hospital alarm system, EOG-based switches pro-

vided immobile patients with a safe and reliable way

of signalling an alarm [43]. All of these studies show

that EOG is a measurement technique that is easy to

operate, reliable and can also be made cosmetically ac-

ceptable.

For mobile settings, EOG-based interfaces have

been developed for assistive robots [45] and as a con-

trol for an electric wheelchair [5,35]. These systems

are intended to be used by physically disabled people

who have extremely limited peripheral mobility but

still retain eye motor coordination. Mizuno et al. used

basic characteristics of eye motion to operate a wear-

able computer system for medical caregivers [33]. Al-

though these studies target mobile settings the people

themselves are still constrained in their movements.

2.5. Summary

In this section, we have shown that the eyes are a

rich source of information which has not yet been used

for activity and context recognition or mobile HCI ap-

plications. A review on the state-of-the-art in eye track-

ing devices and related applications revealed that the

main reasons for this is the lack of an appropriate sen-

sor and missing processing techniques for online con-

text recognition based on eye motion.

We have shown that EOG provides several advan-

tages over common systems based on video in partic-

ular in terms of embedded implementation and long-

term recordings in daily life. However, in current work

the information obtained from EOG remains coarse,

the users are static, and signal processing is done of-

fline using desktop computers. In this work we demon-

strate how complex contexts can be recognised from

EOG in mobile scenarios using an autonomous wear-

able device without the need for such additional infras-

tructure.



3. Design and implementation of a wearable

context-aware EOG sensor

3.1. Requirements

A wearable context-aware eye tracking device based

on EOG that is robust to simultaneous physical activity

and changing environments has to meet the following

requirements:

1. To achieve a convenient and unobtrusive imple-

mentation and minimise user distraction the de-

vice needs to be wearable and light-weight.

2. To allow for autonomous long-term recordings

the device needs to be low-power and support on-

board data storage.

3. The device needs to provide real-time signal pro-

cessing capabilities to allow for context-aware

interaction.

4. To compensate for EOG signal artefacts caused

by physical activity and changes in ambient light

[7] an accelerometer and a light sensor need to

be added.

Given the fact that EOG is recorded using electrodes

placed around the eye, the natural choice for the ba-

sic form of the device was that of goggles: A goggles

frame is built to minimise distraction to the user. It is

very close to the face and covers the lateral positions

on each side of the head commonly used for placing

the electrodes. Only for the electrodes recording the

vertical signal component above and below the eye an

extension to the frame needs to be made. Furthermore,

a goggles frame provides enough space to carry a small

component that contains the amplification circuits for

the analogue signals, the accelerometer and a connec-

tion to the light sensor. The latter can be fixed to the

frame in between both eyes to provide measurements

of incident light.

3.2. Challenges

The first trade-off we had to deal with was the

one between wearability and signal quality: To reduce

noise, the analogue amplification circuit and conver-

sion from analogue to digital signals must occur close

to the electrodes integrated into the frame. However,

this results in increased weight and size and therefore

reduced wearability. To optimise the design for weight,

only the light sensor, the accelerometer and the ampli-

fication circuits can be attached to the glasses frame.

On the downside, due to a longer wire up to the pro-

cessing unit, in this case the analogue high-impedance

EOG signals pick up an increased amount of noise

compared to the first option.

A second challenge was the decision for the type

of electrodes and their mounting to the glasses frame.

Wet electrodes are commonly used for EOG record-

ings and provide high quality trace pickup. They come

with a built-in layer of conductive gel, which assures

good conductivity between the skin and the electrodes

to minimise signal artefacts. However, because of the

gel layer, they need to be stuck to the face with an ad-

hesive brim, which may be uncomfortable and poten-

tially irritate the skin.

In contrast to wet electrodes, dry electrodes are

more convenient as they allow for easy removal and

reattachment to the skin. However, they can move on

the skin or can loose contact. Proper signal acquisition

therefore requires a mechanical mounting that assures

permanent contact and constant pressure on the skin

at any time. To accommodate for different head sizes

the electrode mounting also needs to be adjustable.

Even if good electrode-skin contact can be guaranteed,

dry electrodes usually show lower signal stability. This

is caused by a higher initial contact resistance, which

decreases considerably over time thus resulting in in-

creased signal drift (see Section 2.4.1).

The described challenges emphasise that a proper

design of an integrated wearable sensor based on EOG

is subject to a variety of sometimes contradictory tech-

nical constraints. We believe, however, that most of

these can be solved in the future and therefore decided

to optimise the first prototype of the wearable eye

tracker for wearability and comfort accepting a me-

chanically more complex device and potentially lower

signal quality.

3.3. Hardware design

The final design consists of two components (see

Figures 2, 3 and 4): Goggles with integrated electrodes

and a signal processing unit (called WEPU, Wearable

EOG Processing Unit).

The complete system weighs 188g (Goggles: 60g,

WEPU: 78g, cable: 50g) and is powered by a 3.7V /

1500mAh Li-polymer battery attached to the WEPU.

The total power consumption is 769mW when storing

data on the MMC card and 828.4mW when streaming

data to a remote computer using Bluetooth. This allows

for up to 7.2 hours (MMC) and 6.7 hours (Bluetooth)

of autonomous eye movement recording, respectively.
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Fig. 2. Two-part hardware architecture of the EOG-based wearable

eye tracker with EOG amplification circuitry (EOGh, EOGv), ac-

celerometer (ACC), light sensor (LIGHT), analog-digital convert-

ers (ADC), DSP, EEPROM, Bluetooth module (BT) and MMC card

holder for data transmission and storage.

3.3.1. Mechanics

The Goggles contain the light sensor, dry EOG elec-

trodes and a small analogue amplification board (see

Figure 3). The light sensor is attached at the front of the

frame in between both eyes pointing forward in line of

incident light. Although a minimum of five EOG elec-

trodes is required for recording eye motion (four for

the two signal components and one for the reference

signal), six electrodes are arranged around both eyes.

This allows for flexibility if one of the eyes can not

be measured due to poor signal quality. The electrodes

are mounted on spring steel to ensure permanent skin

contact and constant contact force. The spring steel is

bent in such a way that the electrodes are placed flat

on the skin. Because of the anatomy of the skull, this

is particularly challenging for the electrodes above and

below the eye, which need to be placed further away

from the frame. Each electrode is connected to the am-

plification board with a shielded one core cable fol-

lowing the frame’s shape. The amplification board has

a size of 42x15mm and is screwed onto the left side

of the frame. Besides the analogue amplification cir-

cuit this board also contains an accelerometer for mea-

suring head movements. The Goggles are connected to

the WEPU with a shielded 14 core cable. The WEPU

can be worn on the body, e.g. in a cloth bag fixed to

one of the upper arms.

3.3.2. Electronics

The EOG signal is composed of a small voltage su-

perimposed by a large offset voltage relative to the

ground electrode above the right eye. The offset is

mostly caused by stray electrical signals on the leads

and therefore referred to as common-mode interfer-

ence. If an electric circuit is able to efficiently reject

this interference it has a high common-mode rejection

ratio (CMRR). For signal amplification on the Gog-
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Fig. 3. Detailed view of the Goggles component: Dry electrodes

mounted on spring steel (1) and screwed to the frame (2). Shielded

one core cables (3) connect each electrode to a small analogue am-

plification board (4), which is connected with a shielded 14 core ca-

ble (5) to the WEPU. The pictures also show the light sensor attached

at the front of the frame (6).

gles, we decided for low-power, medical grade instru-

mentation amplifiers. They provide a very high CMRR

rating of 110dB and 1010Ω input impedance and thus

meet the requirements for a potentially robust signal

acquisition. To further increase the CMRR, a Driven

Right Leg (DRL) circuit [44] is implemented on the

Goggles. This circuit measures the common mode po-

tential and feeds its negative back into the body to ac-

tively cancel signal interference. Using this approach,

we are able to achieve a CMRR of more than 105dB.

The WEPU is the core signal processing unit of the

system with a credit card size of 82x56mm (see Fig-

ure 3). It is based on a 16-bit dsPIC from Microchip

and contains dedicated 24-bit Delta-Sigma ADCs for

each EOG channel, a Bluetooth and a MMC module

and an EEPROM. The main advantage of the dsPIC

compared to other microcontrollers commonly used on

wearable sensors is its suitability for efficient real-time

signal processing. It runs at 3V with 40 Million In-

structions Per Second (MIPS). The ADCs are critical

for fast analog-digital conversion with high resolution.

To achieve a resolution of 2.5µV/◦ for EOG signals

with a dynamic range of 600mV the ADCs have to

provide a minimum resolution of 18 bit. On the wear-

able eye tracker, the two ADCs allow the raw EOG



signals to be processed with a sampling rate of up to

250Hz and a resolution of 20 bits noise-free, i.e. that

can be distinctly resolved. Processed data can either be

transmitted using Bluetooth or stored on the MMC for

offline analysis. The EEPROM is used to store config-

uration data and parameters for the signal processing

algorithms described in Section 4. Four LEDs and two

buttons allow the user to access the functionality of the

device.
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Fig. 4. Components of the EOG-based wearable eye tracker: the

WEPU with credit card size (1), the Goggles (2) and the shielded 14

core cable (3). The pictures at the bottom show the Goggles worn

by a person with the positions of the two horizontal (h) and vertical

(v) dry electrodes, the light sensor (l) and the accelerometer (a) with

direction of its axes (ACCY, ACCZ).

3.4. Firmware

The dsPIC on the WEPU runs freeRTOS, an open-

source real-time operating system devised for embed-

ded systems. freeRTOS is configured to run in preemp-

tive mode using predefined task priorities. Using an

operating system does not only contribute to clean and

well-structured code but also provides services such as

interrupt handling and a scheduler, which eases devel-

opment and later code maintenance. In addition, this

allows us to eventually run a context recognition mid-

dleware and opens up the possibility to integrate the

device into multi-modal context recognition systems,

physiological sensor networks or smart sensing envi-

ronments. As a first step in this direction, we have im-

plemented a driver for the Context Recognition Net-

work (CRN) Toolbox [3], which enables the recording

of EOG for eye movement analysis to be automatically

synchronised with signals coming from body-worn ac-

celerometers for activity recognition.
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Fig. 5. Three-tier software architecture of the EOG-based wearable

eye tracker with layers for hardware abstraction and the operating

system (freeRTOS), access to external components (Device Layer),

common routines (Library) and core functionality (Task Layer).

The firmware is composed of three layers (see Fig-

ure 5). Among these layers, the Hardware Abstrac-

tion Layer (HAL) accesses the hardware. It provides

a number of interfaces to the upper layers thus hid-

ing all low-level hardware access. The Device Layer

(DEL) uses the HAL to provide functionality for com-

ponents external to the DSP such as the Bluetooth and

the MMC module. For the MMC, a custom file sys-

tem has been implemented to allow for efficient data

storage. The binary EOG data can afterwards be con-

verted into a standard two-column format using a cus-

tom software. The core functionality of the firmware is

provided by the following five freeRTOS tasks imple-

mented in the Task Layer (TAL):

The Controller Task is in charge of the interface

components, power management and task control. It

processes events coming from the two push buttons

and the LEDs, monitors the output of the charger IC

and activates the stand-by mode. In this mode, it re-

duces the DSP clock speed, holds the Bluetooth mod-

ule and MMC in reset state and powers down the

ADCs.

The Packet Reader Task reads packets received

from the Bluetooth module, calculates a checksum and

stores valid packets into a receive buffer. If the task

receives a configuration packet, it initiates the recon-

figuration process during which the Sampler Task and

Processing Task may select other types or a different

order of the algorithms for EOG signal processing.

The Sampler Task retrieves data samples from the

external 24-bit ADCs and uses the 12-bit ADC inter-

nal to the DSP to sample the accelerometer and light

sensor signals. The data is then passed on to the Pro-

cessing Task.



The Processing Task implements the core function-

ality of the eye tracker as it takes samples from the

Sampler Task, executes each building block of the sig-

nal processing cascade and passes processed samples

on to the Communicator Task. The type and order of

the processing algorithms applied to the signals within

the cascade can freely be chosen by the user (see Fig-

ure 6 for the default).

The Communicator Task reads data from the sam-

ple queue, builds a data packet and sends the packet

either to the MMC controller or the Bluetooth module

depending on the output medium selected by the user.

It is also in charge of operating these peripherals.

Additionally, a separate Library contains function-

ality that is shared by these tasks such as the CRC rou-

tines.

4. EOG signal processing for context sensing

In this section, we describe the signal processing

cascade implemented on the wearable eye tracker (see

Figure 6). The processing is tailored to the partic-

ular needs of recognising context information from

EOG signals. It aims at removing artefacts and noise

from the EOG signals. Additionally, it aims at pro-

viding robust detection of saccades and blinks for eye

movement event encoding and the recognition of so-

called eye gestures, which consist of several consec-

utive movements. We first describe the denoising fil-

ter and the algorithm for compensation of EOG signal

artefacts caused by walking. We continue with a de-

scription of the algorithms for the detection of blinks

and saccades, removal of blinks, eye movement event

encoding and eye gesture recognition.

4.1. Adaptive Filtering

4.1.1. Denoising

Raw EOG signals are corrupted with noise from the

following sources:

– Noise caused by the residental powerline, usually

referred to as mains hum

– Noise introduced by the measurement circuitry,

the electrodes, wires, etc.

– Noise from other physiological sources interfer-

ing with EOG such as electromyographic (EMG)

signals

– Noise due to simultaneous physical activity, which

may cause the electrodes to loose contact or move

on the skin
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Fig. 6. Flowchart showing the building blocks of the signal process-

ing cascade implemented on the wearable eye tracker: horizontal

and vertical EOG (EOGh, EOGv) and acceleration (ACCY, ACCZ,

cf. Figure 4) signals as input, adaptive filtering using a median filter

and eye movement event detection. As output, the system returns the

detected eye movement events as well as the processed EOG data

(EOGhp, EOGvp).

As a first step in the signal processing cascade, noise

reduction is necessary to improve the signal for the fol-

lowing processing blocks. In contrast to other physi-

ological signals such as those from electrocardiogra-

phy (ECG), eye movements are usually non-repetitive,

which make the generated EOG signals unpredictable.

This mostly prohibits to apply optimised algorithms

that make use of structural and temporal knowledge

about the expected signal to improve denoising quality.

Furthermore, EOG signals exhibit characteristics that

need to be preserved for further signal analysis. The

signal edges need to be retained to allow for saccade

detection and analyse eye movement dynamics. Signal

amplitudes need to be preserved to allow to distinguish

between different types and directions of saccadic eye

movements. Denoising filters must not introduce arti-

ficial signals that may accidently be interpreted as eye

movements in subsequent signal processing steps.

To identify a suitable approach for denoising we

evaluated different algorithms, such as a standard low-

pass filter, a filter based on wavelet shrinkage denois-

ing (see [14] for details) and a standard median filter



applied on a signal window with fixed length. From

our experiments we found that the median filter per-

formed best as it preserved edge steepness of saccadic

eye movements, retained signal amplitudes and did

not introduce any artificial signals. Furthermore, as the

median filter is computationally light-weight it is well

suited for online signal processing on a DSP. However,

it is crucial to choose an appropriate window size to

reduce noise without removing important EOG signal

parts.

4.1.2. Motion artefact compensation

As EOG is measured with body-worn sensors, mo-

tion causes artefacts in the signals and affects eye

movement detection. Walking is a common activity

in everyday life. Thus, walking serves as a good test

bench for investigating artefacts induced by body mo-

tion. Analyses showed that artefacts in the EOG sig-

nals occur periodically according to the step frequency.

A median filter with fixed window size fails to elimi-

nate these artefacts for different persons and walking

speeds. A parameter sweep on the window size using

example data recorded from several subjects revealed

that the optimal size is strongly related to the tempo-

ral step length. Therefore, we use an algorithm imple-

menting an adaptive filter. The idea is to exploit the

repetitive characteristic of walking and adapt the win-

dow size of the median filter to the step length as long

as walking activity is detected (see Figure 7).
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Fig. 7. Adaptive filter for artefact compensation while walking

slowly (a) and fast (b). Vertical acceleration signal (ACCY) and

threshold (dashed line) for detecting walking activity. Horizontal ac-

celeration signal (ACCZ) and first derivative for calculating the step

length. The window size used by the median filter and tuned to the

walking pace is shown at the bottom.

An approach for detecting footsteps using data from

a head-mounted accelerometer has been described in

[39]. To detect walking activity, we implemented an

extended version of the algorithm. Our algorithm first

analyses the vertical axis of the goggle-mounted ac-

celerometer (ACCY, cf. Figure 4). If the correspond-

ing signal exceeds a defined threshold, the algorithm

tries to detect steps by searching for zero-crossings of

the first derivative of the low-pass-filtered acceleration

data of the horizontal axis (ACCZ, cf. Figure 4). Walk-

ing is assumed as long as such steps are detected. In

order to smooth out variations in walking style for dif-

ferent subjects, the step length is calculated on the ba-

sis of three consecutive step movements (e.g. right -

left - right) separately for the left and the right leg. By

calculating the length continuously for each step, the

algorithm can adapt to different persons and walking

speeds. For softer adaptation, only small increments

are applied (see Figure 7). If walking activity is not de-

tected anymore, the window size is progressively set

towards its default value.

In [8] we evaluated the adaptive filter in a mobile

setting. The experimental scenario involved subjects to

perform different eye movements while standing and

walking down a corridor. The expected eye movements

were shown on a head-up display (HUD) with a de-

fined order and timing. We recorded five male subjects

between the age of 21 and 27 totalling roughly 35 min-

utes of recording with walking activity accounting for

about 22 minutes. As the mobile setting did not al-

low to record a ground truth, we decided to do a com-

parison to a standard median filter with fixed window

size to assess a relative performance measure. Figure 8

shows a boxplot for the total number of detected sac-

cades in the horizontal EOG signal component. Each

box summarises the statistical properties of the data of

the subjects: The horizontal red lines in each box in-

dicates the median and the upper and lower quartiles.

The vertical dashed lines indicate the data range, points

outside their ends are outliers. Boxes are plotted for the

following cases: stationary and raw signal, stationary

and fixed median filter, stationary and adaptive filter,

walking and raw signal, walking and fixed median fil-

ter, walking and adaptive filter. The single solid hori-

zontal line indicates the expected number of saccades

defined by the experimental procedure. We found that

the adaptive filter was able to reduce signal artefacts

caused by walking activity by up to 80% in the hori-

zontal, and up to 60% in the vertical signal component.
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Fig. 8. Boxplot for the total number of detected saccades in the hor-

izontal EOG signal component with fixed thresholds over all sub-

jects: stationary/raw (a), stationary/fixed median filter (b), station-

ary/adaptive filter (c), walking/raw (d), walking/fixed median filter

(e), walking/adaptive filter (f).

4.2. Blink detection

Blinks need to be detected in the vertical EOG signal

component for two reasons: For certain HCI applica-

tions they may provide important input and a more ver-

satile input alphabet. For applications focused on eye

movement detection, blinks need to be detected and re-

moved because their characteristics are very similar to

those of saccadic eye movements. This can affect sub-

sequent signal processing steps and eventually render

robust eye movement analysis impossible.

We evaluated different algorithms with special at-

tention to a real-time implementation on the DSP.

The methods considered included continuous wavelet

transform (CWT-BD), velocity threshold analysis [23],

Haar wavelet decomposition [24] and template match-

ing. Similar to the algorithm described in the follow-

ing section, CWT-BD uses thresholding of wavelet co-

efficients for blink detection. The approach based on

template matching works as follows: First, a blink tem-

plate is created using manually cut equally-sized raw

signal segments of 10 blinks from different persons,

vertically shifted by their median and aligned at their

peaks. To create the template, the mean at each sam-

ple point over all segments is calculated. Afterwards,

blinks are detected by shifting this template over the

vertical EOG signal component by following a sliding

window approach. In each step, the Euclidean distance

between the template and the signal segment of the

current window is computed as a similarity metric. If

the distance is below a defined threshold, i.e. the simi-

larity between the template and the current segment is

high, a blink event is recorded.

We evaluated each of these algorithms on nine EOG

signals from different subjects (see Table 1). The sig-

nals contained a total of 105 blinks with different

blink amplitudes (80 large, 25 small). For each algo-

rithm, true positive (TP ), false positive (FP ) and false

negative (FN ) counts were taken to calculate preci-

sion ( TP

TP+FP
) and true positive rate (recall) ( TP

TP+FN
)

values. From the results we found that both CWT-

BD and template matching were able to recognise

all large blinks while the velocity algorithm and the

Haar wavelet performed worse. Although CWT-BD

performed slightly better on blinks with smaller am-

plitude, for the wearable eye tracker we decided to use

the template matching algorithm due to its higher pre-

cision rate. The reason is that a small number of blinks

that are not recognised correctly have less negative im-

pact on eye movement detection than the same number

of actual movement events that get detected as blinks

and removed due to wrong classification.

Table 1

Combined true positive (TP ), false positive (FP ), false negative

(FN ), precision and true positive rate (recall) values for blink de-

tection using different algorithms. The results were calculated based

on nine EOG datasets from different subjects containing a total of

105 blinks of which 80 had large and 25 small amplitudes.

Algorithm TP FP FN Precision Recall

CWT-BD 104 6 1 95% 99%

Template Matching 101 1 4 99% 96%

Velocity Threshold 91 0 14 100% 87%

Haar Wavelet 76 6 29 93% 72%

4.3. Saccade detection

For saccade detection we developed the so-called

Continuous Wavelet Transform - Saccade Detection

(CWT-SD) algorithm, which can be efficiently im-

plemented for real-time processing on the DSP. The

CWT-SD first computes the continuous 1-D wavelet

coefficients from the signal at scale 20 using Haar

wavelets. Saccades are detected for all samples where

the absolute value of the coefficient vector exceeds a

defined threshold. The direction and size of a saccade

is given by the sign of the first derivative and the max-

imum value of the corresponding EOG signal ampli-

tude.



4.4. Blink removal

For blink removal, the streams of saccade and blink

events are analysed in parallel. Three cases need to be

distinguished to maintain essential signal characteris-

tics such as saccade amplitude and slope required for

eye movement detection.

Presaccadic blinks are caused by blinks that share

their last edge with a saccade. Presaccadic blinks are

removed by replacing the blink interval with the signal

value at the beginning of the blink.

Intersaccadic blinks usually occur during slow eye

movements or fixation periods. This type of blink is

removed by replacing its interval with a linear interpo-

lation between the value at the beginning and the value

at its end.

Postsaccadic blinks are blinks that immediately fol-

low a saccade and thus share their first edge with it. For

removal, the blink interval is replaced with the signal

value at the end of the blink.

4.5. Eye gesture recognition

The idea of combining a sequence of distinct rela-

tive eye movements to create more complex gestures

was introduced in [15] for a video-based eye tracker.

We follow a similar approach for the continuous recog-

nition of eye gestures based on EOG (see Figure 9).

Our algorithm takes the streams of saccade events for

the horizontal and the vertical EOG signal component

as its input. It maps these saccades to eye movements

with basic, intermediate and diagonal directions and fi-

nally encodes them into a combined string sequence.

Basic directions are left, right, up and down (L, R, U,

D). Diagonal eye movements (1, 3, 7, 9) are charac-

terised by simultaneous saccades with similar signal

amplitudes. If the saccades have different signal am-

plitudes, the corresponding eye movements are called

intermediate (e.g. V, M).

The algorithm for eye movement detection works as

follows: It first checks for simultaneous saccade events

in both EOG signal components within a time win-

dow of 0.06s given by eye physiology. If no simulta-

neous saccade events are detected, the single saccade

is directly mapped to the symbol of the corresponding

basic eye movement. If two such events are detected

within the time window, a non-basic eye movement has

occurred. The algorithm then uses the corresponding

saccades’ directions and amplitudes to combine both

events into the appropriate symbol (c.f. Figure 9): Two

saccades with equally large amplitudes are merged to

the symbol exactly in between (e.g. symbols R and D

are mapped to symbol 3). If the saccades’ amplitudes

differ by more than 50% the saccades are merged to the

closest neighbouring symbol (e.g. symbols r and D are

mapped to symbol V). This scheme encodes each eye

movement into a distinct event symbol, thus merges

both EOG signal components into one string sequence.
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Fig. 9. Eye movement encoding from horizontal (EOGh) and vertical

(EOGv) EOG signals for gesture 3U1U: Windows marked in grey

with distinct saccade events (R, L, D, U) detected in the horizontal

and vertical signal component (a), mapping to basic (U) and diag-

onal (1, 3) eye movements (b) and final merging into a combined

sequence of symbols (c). The circle in the middle shows all possible

symbols for saccade event mapping.

To recognise eye gestures consisting of several con-

secutive movements, the resulting string sequence is

scanned for eye movement patterns following a string

matching approach: For matching, the sequence is con-

tinuously compared with templates representing all

gestures required by the specific application. For each

template, the edit distance between the templates and

the segment is calculated. To allow for variability in-

herent in the eye gestures, the edit distance between

two symbols of which one represents an intermediate

direction is set to zero if the angle between them is

smaller than or equal to 22.5◦. If one of the templates

exactly matches the current segment of the string se-

quence (i.e. the edit distance is zero), the correspond-

ing eye gesture is recognised.



5. Case Studies

5.1. Activity recognition

The aim of the experiment conducted in [9] was to

recognise the reading activity of people in transit in an

everyday environment using a wearable EOG system.

We defined a scenario of travelling to and from work

containing a semi-naturalistic set of reading activities.

It involved eight subjects reading text while being en-

gaged in a sequence of activities such as sitting at a

desk, walking along a corridor, walking along a street,

waiting at a tram stop and riding a tram. For this two-

class classification problem, we evaluated three recog-

nition algorithms - string matching and two variants of

Hidden Markov Models (HMMs), mixed Gaussian and

discrete - on a dataset of about six hours.

Two leave-one-out training schemes were used for

the HMMs: subject-dependent only using the calibra-

tion data from the subject being tested and subject-

independent using calibration data only from other

subjects. The different methods were compared across

a sweep of their main parameters. The resulting Re-

ceiver Operating Characteristics (ROC) curves for the

subject-dependent and the subject-independent case

are shown in Figure 10. These plot true positive rate

against false positive rate (FPR) ( FP

FP+TN
). Best case

results approach the top left corner while worst case

(which means random) follow the diagonal.

The ROC shows that string matching outperforms

the HMMs. At its “best”, we were able to recognise

reading activity over all subjects using string matching

with a recall of 71.0% and FPR of 11.6% (total accu-

racy 80.2%). The mixed Gaussian returns a lower best-

case at recall 62.0%, FPR 24.0% and accuracy 68.9%

while the worst performing algorithm is the discrete

HMM. The experiment has shown that wearable EOG

is a feasible approach for recognising reading in daily-

life scenarios and is robust across an example set of

activities for different subjects.

5.2. Human-computer interaction

In [8] we evaluated the wearable eye tracker for

human-computer interaction. To investigate the use of

explicit eye gestures as a control input, we developed

a desktop computer game consisting of eight different

game levels. In each game level, subjects had to re-

peatedly perform a defined eye gesture as fast as possi-

ble until the first successful try (see Table 2). To reach

a high score, wrong eye movements, i.e. movements
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Fig. 10. ROC curves showing a performance comparison for the

recognition of reading activity between string matching (STR),

Gaussian HMM (HMM) and discrete HMM (D-HMM). For the

HMMs, both the subject-dependent and the subject-independent re-

sults are shown.

that were not part of the expected gesture, had to be

minimised. In contrast to a previous study [15], move-

ments of the head and the upper body were allowed at

any time. We collected data from eleven subjects - two

female and nine male - between the ages of 24 and 64.

Table 2

Eye gestures of increasing complexity and their string representa-

tions used for interaction in a computer game (cf. Figure 9). The

grey dot denotes the start and the arrows the order and direction of

each eye movement.

R1R DRUL RDLU RLRLRL

3U1U DR7RD7 1397 DDR7L9

The average performance over all subjects is given

in Table 3 which shows the times TT and TS , the

time ratio TS/TT and the accuracy Acc to perform

each of the eight gestures. TT denotes the total time

the subjects spent trying to complete each of the ges-



tures while the success time TS only measures the time

spent on all successful attempts. What can be seen

from the table is that the subjects were able to achieve

an average eye gesture accuracy of 87%. Although the

total time TT increased significantly for more complex

gestures such as DDR7L9, the success time TS was

comparable for all gestures. This highlights the fact

that the eyes can be used as a versatile and fast input

modality across gestures with different complexity.

Table 3

Average performance for the different gestures over all subjects. TT

is the total time spent to complete the gesture and TS the success

time spent only on successful attempts. The accuracy Acc is the ratio

of eye movements resulting in a correct gesture to the total number

of movements performed until success.

Gesture TT [ms] TS [ms] TS/TT Acc[%]

R1R 3370 2890 0.858 85

DRUL 4130 3490 0.845 90

RDLU 3740 3600 0.963 93

RLRLRL 6680 5390 0.807 90

3U1U 4300 3880 0.902 89

DR7RD7 12960 5650 0.436 83

1379 6360 3720 0.585 84

DDR7L9 25400 5820 0.229 83

Average 8368 4305 0.712 87

6. Discussion

6.1. On wearable eye tracking using EOG

From our studies we found that the wearable eye

tracker described in this work is a robust sensor for

recording eye motion. In contrast to common systems

using video, the device uses an EOG-based measure-

ment technique that enables the unobtrusive imple-

mentation as goggles. The main advantage of EOG is

the fact that the person only has to wear light-weight

equipment. Our studies show that this contributes to

the person feeling unconstrained and allows for natu-

ral behaviour and unrestricted physical activity in daily

life settings. We plan to carry out additional experi-

ments on human factors to further evaluate the goggles

with respect to unobtrusiveness and user acceptance

particularly for special user groups such as disabled

or elderly people. Another advantage is that EOG pro-

cessing requires less computational power than video

due to lower data rates. This enables an embedded

and low-power design and results in low data storage

requirements. Both are crucial prerequisites for long-

term data collection and real-time signal processing in

mobile daily-life settings.

Our system particularly addresses challenges related

to wearability, signal artefacts caused by physical ac-

tivity and eye motion analysis. This is possible with

a combination of a special mechanical design, adap-

tive signal processing and optimised algorithms for

eye movement detection. An interesting question for

future work is how the adaptive filter performs for

people with different walking styles (e.g. elderly, per-

sons limping, etc.) and how it can be extended to ad-

dress different types of movement artefacts. A remain-

ing issue with the current prototype is that dry EOG

electrodes require permanent skin contact. Poor place-

ment of electrodes and signal artefacts due to electrode

movements were the reasons for many of the prob-

lems in our work. We believe that these may even-

tually be solved by developing special-purpose EOG

goggles with a mechanically improved mounting that

is tailored to assure permanent skin contact and proper

electrode placement.

Baseline drift is an issue for wearable EOG record-

ings in particular if dry electrodes are used. It is for this

reason that accurate eye-gaze tracking is difficult to

achieve. Nevertheless, as we demonstrated in this pa-

per, eye motion is a rich source of information on user

activity and context that complements common pin-

point tracking. The development of novel electrodes is

still a very active topic of research (for example see

[38]). Eventually, dry electrodes that allow to record

drift-free signals would allow EOG to be implemented

for eye-gaze tracking.

6.2. On the case studies

The first case study shows that wearable EOG is a

feasible approach for recognising reading activity in

daily-life scenarios and is robust across an example

set of simultaneous physical activities. We were able

to detect reading activities over all subjects with a top

recognition rate of 80.2%. This result raises the ques-

tion of whether different reading behaviours can be de-

tected automatically. A "reading detector" could en-

able novel attentive user interfaces that take into ac-

count aspects such as user interruptability and level of

task engagement.

Results from the second case study show that EOG

is a robust modality for HCI applications that can be

efficiently processed to recognise eye gestures consist-

ing of several consecutive eye movements. While us-



ing the eyes as a control input was quickly learned,

30% of the subjects reported of having had problems to

stay concentrated during the game. However, fatigue is

an intrinsic problem not only for eye gestures but also

for common input modalities such as speech or hand

gestures. Eye gestures outperform these modalities if

the hands can not be used (e.g. during driving or while

working on the computer) or if speech input is not pos-

sible (e.g. for privacy reasons or in very silent or very

noisy surroundings).

7. Conclusion and outlook

In this work, we have demonstrated an autonomous

EOG-based eye tracker and context recognition system

integrated into goggles. We have shown that this un-

obtrusive device is applicable to different people and

works in a wide range of applications. Its embedded

and self-contained design allows for wearable sensing

and online analysis of eye motion and extends these

to everyday environments. This enables context-aware

feedback, which is a key aspect to smart wearable as-

sistants and smart environments. Furthermore, we have

shown that the main characteristics of eye motion can

be captured in an efficient way, which promises a range

of new context-aware applications. EOG-based eye in-

put allows for versatile human-computer interaction

and may eventually provide new means of light-weight

interaction for mobile settings.

The movement patterns our eyes follow in daily rou-

tine reveal much about what we are doing as well as

what we intend to do. Our long-term objective is to in-

vestigate how much information eye motion can pro-

vide about the user’s activity and context. By con-

necting several eye trackers, concurrent eye movement

recordings for a group of people and distributed activ-

ity recognition may become possible. In addition, we

also plan to investigate unconscious eye movements,

which are the result of cognitive processes in the hu-

man brain. These processes are related to external as-

pects such as the user’s activity or environment, but

also to internal aspects of visual perception such as

memory [31] and learning [12]. The analysis of eye

motion thus may allow to deduce these aspects, which

would give important input for future context-aware

systems.

Eventually, eye motion may be used as a new

sensing modality for activity recognition, context-

awareness and mobile HCI applications, providing ac-

cess to underlying cognitive processes not accessible

with current sensing modalities.
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