
 Open access  Journal Article  DOI:10.1109/TMTT.2016.2573274

Wearable Flexible Lightweight Modular RFID Tag With Integrated Energy Harvester
— Source link 

Sam Lemey, Sam Agneessens, Patrick Van Torre, Kristof Baes ...+2 more authors

Institutions: Ghent University

Published on: 13 Jun 2016 - IEEE Transactions on Microwave Theory and Techniques (IEEE)

Topics: Radio-frequency identification, Antenna (radio), Patch antenna and Interfacing

Related papers:

 Autonomous wearable RFID-based sensing platform for the Internet-of-Things

 Design and Performance Analysis of Textile-based RFID (Radio Frequency Identification) Tag Antenna

 Modular Integration of a Passive RFID Sensor With Wearable Textile Antennas for Patient Monitoring

 A low profile miniature RFID tag antenna dedicated to IoT applications

 
Reliability evaluation of wearable radio frequency identification tags: Design and fabrication of a two-part textile
antenna:

Share this paper:    

View more about this paper here: https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-
34avjk5107

https://typeset.io/
https://www.doi.org/10.1109/TMTT.2016.2573274
https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107
https://typeset.io/authors/sam-lemey-2m098ukuos
https://typeset.io/authors/sam-agneessens-3xdmmv7ooq
https://typeset.io/authors/patrick-van-torre-1aic91z6si
https://typeset.io/authors/kristof-baes-28gjb1qinn
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/ieee-transactions-on-microwave-theory-and-techniques-3k89pv40
https://typeset.io/topics/radio-frequency-identification-2u5s9k1g
https://typeset.io/topics/antenna-radio-7jy02x3q
https://typeset.io/topics/patch-antenna-3gw2ycbh
https://typeset.io/topics/interfacing-a0qdxw7w
https://typeset.io/papers/autonomous-wearable-rfid-based-sensing-platform-for-the-3q3tvca0qc
https://typeset.io/papers/design-and-performance-analysis-of-textile-based-rfid-radio-3u04f1maxb
https://typeset.io/papers/modular-integration-of-a-passive-rfid-sensor-with-wearable-3da07aipaw
https://typeset.io/papers/a-low-profile-miniature-rfid-tag-antenna-dedicated-to-iot-4jdg9v2zmh
https://typeset.io/papers/reliability-evaluation-of-wearable-radio-frequency-2uz4ex7rzv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107
https://twitter.com/intent/tweet?text=Wearable%20Flexible%20Lightweight%20Modular%20RFID%20Tag%20With%20Integrated%20Energy%20Harvester&url=https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107
https://typeset.io/papers/wearable-flexible-lightweight-modular-rfid-tag-with-34avjk5107


2304 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 7, JULY 2016

Wearable Flexible Lightweight Modular RFID Tag

With Integrated Energy Harvester
Sam Lemey, Student Member, IEEE, Sam Agneessens, Patrick Van Torre, Kristof Baes,

Jan Vanfleteren, Member, IEEE, and Hendrik Rogier, Senior Member, IEEE

Abstract— A novel wearable radio frequency identifica-
tion (RFID) tag with sensing, processing, and decision-taking
capability is presented for operation in the 2.45-GHz RFID super-
high frequency (SHF) band. The tag is powered by an integrated
light harvester, with a flexible battery serving as an energy
buffer. The proposed active tag features excellent wearability,
very high read range, enhanced functionality, flexible interfacing
with diverse low-power sensors, and extended system autonomy
through an innovative holistic microwave system design paradigm
that takes antenna design into consideration from the very
early stages. Specifically, a dedicated textile shorted circular
patch antenna with monopolar radiation pattern is designed
and optimized for highly efficient and stable operation within
the frequency band of operation. In this process, the textile
antenna’s functionality is augmented by reusing its surface
as an integration platform for light-energy-harvesting, sensing,
processing, and transceiver hardware, without sacrificing antenna
performance or the wearer’s comfort. The RFID tag is validated
by measuring its stand-alone and on-body characteristics in
free-space conditions. Moreover, measurements in a real-world
scenario demonstrate an indoor read range up to 23 m in nonline-
of-sight indoor propagation conditions, enabling interrogation
by a reader situated in another room. In addition, the RFID
platform only consumes 168.3 µW, when sensing and processing
are performed every 60 s.

Index Terms— Battery-assisted, energy harvesting, Internet
of Things (IoT), radio frequency identification (RFID), textile
antenna, wearable.

I. INTRODUCTION

I
N THE near future, it is expected that the Internet-

of-Things (IoT) paradigm will step out of its

infancy [1], [2], fueled by the adaptation of a variety of
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key-enabling technologies, such as radio frequency identifi-

cation (RFID) [3], wireless sensor networks (WSNs) [4], [5],

and wireless power transfer [6], [7]. The integration into the

Internet of everyday objects, devices, and garments equipped

with sensing, processing, and wireless communication

capabilities will revolutionize many aspects of everyone’s

daily life [8]. Smart fabric interactive textile systems,

in which unobtrusive integration of electronic components

increases functionality of the garment [9], [10], play an

important role within the vision of the IoT [8]. They will

experience a significant growth in diverse application areas

in the coming years [11], such as critical professional

applications [12]–[14], health care [2], [15], [16], and

sports [17]. Yet, to accelerate the pervasive deployment of

the IoT, it is necessary to combine the potential of diverse,

complementary, key-enabling technologies [18]–[22].

Several research efforts in the past few years have pushed

passive RFID beyond simple barcode replacement to enhanced

RFID tags. These combine the potential of WSN and RFID

technologies to implement identification, sensing, arbitrary

processing, data logging, and actuation functionality [22]–[26].

Integrating such an enhanced RFID/WSN tag within a gar-

ment will leverage pervasive quantification of the wearer’s

interaction with its environment by wirelessly communicating

physical information about the wearer and his/her environment

to the Internet via a question-and-reply protocol. This, how-

ever, introduces novel, stringent design requirements. First,

the enhanced RFID tag functionality and larger operating

range make system autonomy one of the major critical design

constraints [21], [23]. Powering enhanced RFID tags exclu-

sively by RF energy transmitted by RFID readers restricts data

logging, sensing, and computational operations to the coverage

range of the RFID reader [23], [27]. Reliability, functionality,

and operation range may be increased [9], [23] by combining

an antenna with high radiation efficiency and tailored radiation

pattern [9], [28] with energy harvesters relying on ambient

sources, such as vibration [29], kinetic [17], solar [23], [30],

or RF energy [26]. Second, enhanced RFID tags for body-worn

applications must be low-profile, lightweight, and mechani-

cally flexible, allowing unobtrusive integration [28]. Moreover,

the tag should maintain its performance in the proximity of

the human body and under harsh operating conditions [31].

Finally, unwanted absorption of radiation by the human body

should be minimized to prevent potential health threats [32].

In this paper, we introduce an innovative holistic RFID tag

design paradigm for body-worn applications that takes antenna

design into consideration from the very early stages. Adopting

this paradigm leverages a new highly integrated, compact,

0018-9480 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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low-profile RFID tag that combines excellent wearability with

very high read range, enhanced functionality, and extended

system autonomy. This active RFID tag is flexible, compact,

low-profile, lightweight, and modular. It is equipped with

sensing, processing, and decision-taking capability. The tag

operates in the 2.45-GHz RFID superhigh frequency (SHF)

band and envisions communication with a smart floor/

ceiling [18], [33]. In this scenario, one or multiple RFID

readers are integrated into the ceiling/floor of the building

in which the wearer is walking around. Embedded software

implements a novel protocol that logs sensor data to support

the decision-taking process implemented on the node, in the

meantime reducing energy consumption. An integrated light-

energy harvester further increases system autonomy, whereas

an integrated flexible battery allows the tag to remain fully

operative in the absence of light.

The current literature features a plethora of passive

(battery-less) wearable, flexible RFID tags, based on

novel implementation/manufacturing technologies, such as

conductive thread embroidery on textile substrates [34], [35],

substrate-integrated-waveguide (SIW) technology on

textile [31], and inkjet-printing with conductive ink [17].

In contrast, the tag described here possesses more functionality

and a much larger communication range compared with these

passive RFIDs. The wearable RFID tag that is the most

closely related to our proposed RFID platform in terms of

functionality is the one proposed in [28]. However, as the

tag in [28] is exclusively powered by the RFID reader,

a read range of only 4 m is achieved, provided that the

RFID reader transmits at a 30 dBm power level. In contrast,

our tag features an indoor read range up to 23 m when

three brick walls are in between both the link ends and

enables communication with a reader at an overhead floor,

through a reinforced concrete floor. Therefore, our tag only

consumes 168.3 µW of power, when sensing and processing

are performed every 60 s, yielding a system autonomy

of 138 days in the complete absence of light, provided that

the battery was fully charged. Hence, our design significantly

reduces the required amount of RFID readers to cover

an entire building. Moreover, compared with the ad hoc

antenna/harvester codesign strategy in [9], [36], and [37], our

novel microwave system design paradigm also includes the

integration of the transceiver, microcontroller, memory, and

sensor hardware. This holistic approach leads to enhanced

system autonomy, as the power consumption profile is now

tailored to the power generation profile of the solar harvester

by means of a dedicated algorithm. In addition, the tag now

relies on a circular patch antenna that exploits shorted posts

to tailor its radiation pattern for application in the smart

floor/ceiling concept, instead of an SIW cavity-backed slot

textile antenna that envisions body-to-body communication

as in [9], [36], and [37].

The remainder of this paper is organized as follows.

Section II describes the design and fabrication of our wearable,

light-energy-harvesting-assisted RFID-based sensing, process-

ing, and decision-taking platform. First, the design approach

and system architecture are outlined. Next, we elaborate on

the implementation of each subsystem (including the novel

Fig. 1. Block diagram of the wearable, light-energy-harvesting RFID-based
sensing platform.

textile antenna). Finally, the fabrication of the RFID tag is

discussed. In Section III, experimental results as well as

practical measurements are presented to validate simulation

results and to demonstrate our platform’s performance in terms

of energy-harvesting potential, power consumption, communi-

cation distance, and antenna performance. The conclusion is

drawn in Section IV.

II. WEARABLE, LIGHT-ENERGY-HARVESTING

RFID-BASED SENSING PLATFORM DESIGN

A. Design Considerations and Requirements

The wearable RFID tag must not affect the comfort of the

wearer under any circumstance. This does not only require

a low-profile, flexible, and lightweight design, enabling unob-

trusive integration, but also demands energy-efficient opera-

tion to avoid the discomfort of (frequent) battery recharging.

Furthermore, a robust, stable, and long-range wireless com-

munication link is desired to provide the wearer with the

highest possible freedom of movement, without being out of

read range. To meet these stringent requirements, a holistic

microwave system design paradigm is adopted, in which

antenna design is taken into consideration from the very early

stages. Indeed, as the antenna performs a vital task within the

wireless tag, an inappropriate design of this component will

inadvertently lead to short communication range, poor energy

efficiency (quickly draining batteries), and discomfort to the

user [28].

B. System Architecture

Fig. 1 shows a block diagram of the light-energy-harvesting

RFID-based sensing platform that fulfills the requirements

stated in Section II-A. Fig. 1 also shows our design approach.

A circular patch antenna, designed to operate with maximum

total efficiency in the 2.45-GHz RFID SHF band, serves

as an integration platform for a flexible photovoltaic (PV)

module, with the power management system (including energy

storage) and sensing, processing, and transceiver hardware

integrated on its feed plane. This topology, implemented in

appropriate materials, yields a wearable, highly integrated, and



2306 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 64, NO. 7, JULY 2016

low-profile antenna, realizing a robust, efficient, and long-

range wireless communication link. The implementation of

each block, as well as the component selection, is discussed

into more detail in Sections II-C–II-E. The fabrication of the

entire system is described in Section II-F.

C. Textile Antenna Design and Fabrication

A mobile user prefers a compact antenna for inconspicuous

integration, whereas an antenna engineer will opt for larger

dimensions (in the order of half a wavelength) to obtain

better overall performance. A good design must reconcile these

two conflicting demands to achieve optimal system perfor-

mance with manageable dimensions. In addition, as our design

is envisioned for communication with a smart floor/ceiling,

in which an interrogator is located at either low or high

elevation angles, an antenna with a radiation pattern where

these angles of arrival are well received is required. This

rules out conventional patch antennas, a popular choice for

body-worn applications as their main direction of radiation

is orthogonal to the user and not directed toward the floor

or ceiling. Yet, high body-antenna isolation should be pur-

sued to prevent antenna detuning caused by the presence

of the human body. Finally, the adopted antenna topology

and implementation technology must enable straightforward

integration of carefully selected active low-power electronics

(transceiver, microcontroller, and so on) that implement the

desired functionality (such as logging sensor data, processing,

and decision-taking), and appropriate energy harvesters, which

further increase system autonomy, without performance degra-

dation or discomfort for the wearer. From the RFID designer’s

point of view, a large antenna can provide interesting possi-

bilities, as its area may be reused to integrate the complete

system [38], [39].

To this end, a low-profile topology implemented in low-cost,

lightweight, and flexible textile materials is selected, based

on [40]. The topology consists of a circular patch with four

shorting vias, connecting the patch to the ground plane. The

antenna is fed by a probe in the center. Fig. 2 shows the

tag’s geometry. The shorting posts enable the excitation of the

TM22 mode, which gives the antenna a monopolelike radiation

pattern, allowing reliable communication between a body-

worn node and an interrogator located in a smart floor/ceiling.

The most important parameters for antenna optimization

are the position of the shorting posts (Rs) and the radius

of the patch (Rp). The size of the patch has a significant

influence on the resonance frequency, while the position of the

shorting posts can be adjusted to improve the matching to 50 �

(Fig. 3). Furthermore, Fig. 4 shows the simulated radiation

pattern at 2.45 GHz, when the patch is deployed in the center

of a ground plane of size WGND = LGND = 113 mm, and for

the ground plane dimensions shown in Fig. 2. Observe that

by shrinking the width of the ground plane, while keeping

the length sufficiently large, the antenna can be made more

compact, without reducing sensitivity in the direction of the

floor and ceiling [i.e., in the yz plane (φ = 90°)].

System integration can be improved by carefully selecting

the fabrication materials. A low-cost protective textile foam

Fig. 2. Wearable, light-energy-harvesting RFID-based sensing platform, con-
sisting of a circular patch antenna with four shorting tubelet posts, on which
a flexible a-Si:H PV module is integrated onto its antenna patch and power
management, sensing, processing, and transceiver hardware are integrated onto
its ground plane (Rs = 19.75 mm, ds = 2 mm, Rp = 27.5 mm, d1,feed =

1.3 mm, d2,feed = 4.6 mm, HSUB = 3.94 mm, WGND = WSUB = 66 mm,
LGND = LSUB = 113 mm, and Htot,max = 6.6 mm). (a) Top 3-D view.
(b) Cross-sectional view of the enlarged inset.

Fig. 3. Effect of the position of the shorting posts (Rs ) on the antenna’s
reflection coefficient.

(ǫr = 1.42 and tand = 0.016 at 2.45 GHz, HSUB =

3.94 mm [41]) is used as an antenna substrate to achieve

sufficient bandwidth, while guaranteeing a low-profile, flexi-

ble, and lightweight antenna design. The conductive patch and

ground plane are fabricated from conductive textile materials

(surface resistivity Rs = 0.18 �/sq [41]), which are laminated

to the dielectric antenna substrate by means of a thermally

activated glue. Hollow, brass eyelets realize the shorting
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Fig. 4. Effect of ground plane size on the antenna’s radiation pattern.

connections between the ground plane and the antenna patch.

They are manually fixed with a hand press. Antenna optimiza-

tion is performed by full-wave electromagnetic simulations in

CST Microwave Studio. The final dimensions can be found

in Fig. 2. The simulated performance of the antenna, in terms

of impedance matching and radiation pattern, is shown

in Figs. 7 and 8, respectively.

As radiation originates only from the radiating edge of the

patch, a low profile object can be placed on the patch with-

out altering the antenna’s operation. Furthermore, the eyelets

applied to make the shorting connection between the patch and

the ground plane are hollow, which makes it possible to rout

wires from the front side of the tag (top of the antenna patch)

to the backside (behind the ground plane). Hence, the topology

allows for easy integration of a PV module on top of the patch.

It can be easily connected to a power management circuit,

placed underneath the antenna.

The directional nature of the radiation pattern is another

asset of this topology. The ground plane directs all radiation

toward one hemisphere and shields the other side from the

radiating parts. Thereby, it enables the placement of electronics

behind the ground plane, where they are not exposed to the

radiated electromagnetic fields of the antenna. In addition,

the antenna is not influenced by the presence of the electronics

or a human body in its near field, resulting in robust and

reliable performance.

D. Sensing, Computational, and Transceiver Hardware

As shown in Fig. 1, the advanced low-power C8051F921

microcontroller by Silicon Laboratories is selected to

form the heart of the sensing, processing, and transceiver

hardware. The lowest-power sleep mode is employed in this

design. The microcontroller contains a SmaRTClock, which

is a real-time clock performing cyclic wake-up from sleep

mode. According to the specifications, the microcontroller chip

consumes <1 µA of supply current in sleep mode, with the

SmaRTClock running. Different sensors may be connected to

this microcontroller through analog as well as digital inputs.

The device is programmed in the C language and contains all

the software to control the wireless transceiver together with

the sensors. Moreover, it implements the node’s low-power

algorithm.

An Analog Devices ADF7242 transceiver is applied for

communication in IEEE802.15.4 mode [42]. The wireless

transceiver exchanges data with the microcontroller over a ser-

ial peripheral interface (SPI). Also the ADF7242 can be

configured in a low-power sleep mode, reducing its supply

current to <1 µA, provided that all oscillators are shut down.

The ADF7242 transceiver’s RF output port, characterized by

a complex chip impedance Zchip = (74.3 − 10.7 j) � at

2.45 GHz, is conjugate matched to the 50-� antenna feed

via a Johansson Technology 2450BM14E0007 balun.

A 1-MB Microchip 25AA1024 serial EEPROM memory is

also included for nonvolatile data storage. Sensor measure-

ments can be logged here and a history of measurements

can be requested at the time of interrogation. The EEPROM

memory can also be put in a deep power-down mode, such

that it consumes a little over 1 µA of supply current when it

is not operational.

Employing a state-of-the-art transceiver component allows

reliable communication over a long range [43]. The micro-

controller provides plenty of sensor connectivity and can be

conveniently configured to process sensor data in real time.

Digital sensors can be connected via an SPI or I2C bus. Analog

sensors can also be directly connected, as the microcontroller

contains a 10-bit analog to digital converter. Local processing

of the sensor data for unit conversions, filtering, or statistical

processing is possible, providing a reduction in the amount of

data to be transmitted. A large nonvolatile storage capacity is

available for measurement data.

Since all selected components provide a low-power mode,

a very low average supply current is achieved, enabling

extended battery-supported operation.

E. Energy Harvesting and Power Management Hardware

Powerfilm’s ultrathin (200 µm) and ultraflexible

SP3-37 hydrogenated amorphous silicon (a-Si:H) PV ambient

light-energy-harvesting transducer [23], positioned on top

of the antenna, is connected to the power management

subsystem, located on the node’s feed plane. This particular

PV module is selected because of four multidisciplinary

reasons. First, the SP3-37 harvester exhibits a broad spectral

response, not only enabling energy harvesting from solar

light but also from the most frequently available light

sources in an indoor environment [9], [23]. More specifically,

the SP3-37 PV module is characterized by a maximum output

voltage of 3 V at 22 mA under full sunlight (107 527 lx)

and a maximum output voltage of 2.5 V at 100 µA under

typical office lighting (330 lx) [23]. Second, its flexible

and ultrathin structure permits a conformal and low-profile

integration [44]. Third, the SP3-37 is manufactured through

a low-cost roll-to-roll printing process, making it compatible

with current RFID production processes [23]. Finally,

the harvester’s relatively small size, and the ease of patterning

the solar cell’s surface to fit the antenna patch contours

facilitate the integration procedure.
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Fig. 5. Circuit schematic of the energy harvesting and power management
hardware (Cin,byp = 100 nF, Cin = 4.7 µF, Cref = 10 nF, CSTOR = 4.7 µF,
CBYP = 100 nF, Cout = 44 µF, LBOOST = 22 µH, LBUCK = 10 µH,
ROV1 = 5.62 M�, ROV2 = 7.32 M�, ROK1 = 3.83 M�, ROK2 = 7.5 M�,
ROK3 = 680 k�, ROUT1 = 4.64 M�, and ROUT2 = 8.25 M�).

For a given PV module at a specific temperature, the instan-

taneous generated power depends on the spectral composition,

incident angle, and the intensity of the light impinging on the

PV module [9]. This requires a power management system

that converts the highly fluctuating, and often small, levels of

harvested light energy into a form useful for adequately pow-

ering the node. To this end, the Texas Instruments bq25570,

an integrated energy-harvesting nanopower management sys-

tem (Fig. 5), is applied. This integrated circuit (IC) imple-

ments two highly efficient conversion stages. The first stage

encompasses a pulse-frequency modulated (PFM) boost con-

verter charger, with maximum-power-point-tracking (MPPT)

capability, to efficiently store the energy generated by the

energy-harvesting transducer in a suitable energy storage

device. During the charging process, the energy storage

component is protected from overcharging by disabling the

boost converter once the voltage at VBAT (Fig. 5) exceeds

4.18 V, set by selecting the proper values for ROV1 and ROV2.

As the PV module’s maximum output power fluctuates in

ambient light conditions, the fractional open circuit algorithm

is adopted to optimize power transfer from the PV unit to

the energy storage device. This means that the bq25570 peri-

odically (every 16 s) samples the open circuit input voltage

of the PV module, by disabling the boost converter for

256 ms, and determines the MPP during that particular time

interval. In this paper, the boost converter is configured to

subsequently load the light-energy-harvesting transducer until

its voltage drops to 80% of the sampled open circuit voltage.

This periodic update continually maximizes power delivery

in real time, based on the harvesting conditions. The second

conversion stage consists of a highly efficient, nanopower PFM

buck converter, providing a regulated power supply to the

sensing, processing, and transceiver hardware. In this paper,

the buck converter/output regulator is set by means of ROUT1

and ROUT2 to provide a regulated output voltage of 3.36 V.

Yet, to prevent overdischarging, the output voltage is disabled

when VBAT (Fig. 5) drops below 3.60 V. It is only turned

back ON after the VBAT voltage exceeds 3.82 V. Both the

voltage levels are set by means of the voltage divider formed

by ROK1, ROK2, and ROK3. The other passive components are

dimensioned to obtain the highest possible efficiency for both

the conversion stages of the IC.

The availability of ambient light will often be sporadic

or time-varying, thereby necessitating some type of energy

storage element. Such a storage element will not only ensure

that the required power is available when needed by the

node but also will handle peak currents that cannot directly

be delivered by the PV module. The single cell version of

Prologium’s 066113 Flexible Printed Circuit Lithium Ceramic

Battery (FLCB) is selected as the node’s energy storage

element. This FLCB cell is only 380 µm thick and covers

an area of 113 mm×66 mm. It exhibits a nominal capacity of

170 mAh and allows a maximum discharge current of 120 mA.

The FLCB technology is selected because it exhibits favorable

electrical properties, such as high energy density and good

pulse discharge. Moreover, it can be manufactured through

a roll-to-roll printing production process, reducing manu-

facturing cost. Furthermore, its ability to dynamically bend

and/or twist, without reducing neither cycle life nor electrical

performance, in combination with its ultrathin (380 µm)

profile, facilitates integration on the textile antenna without

significantly increasing its overall thickness or significantly

reducing the overall conformality. In addition, the FLCB

technology does not exhibit leakage, catch fire, or explode

after physical abuse (nail penetration, excessive vibrations,

drop test, and so on), after thermal test conditions up to 250 °C

or after electrical abuse (overcharging, reverse charging, and

short circuiting), demonstrating its ability to be safely worn

on the human body, even in harsh environments.

F. Integration Procedure

Once the textile antenna is fabricated according

to Section II-C, the flexible PV module is glued on top

of the antenna patch by means of stretchable, nonconductive

adhesive sheets, as shown in Fig. 2. To maintain the

antenna’s excellent performance after solar cell integration,

the PV module is patterned to fit the antenna patch contours

and placed in such a way that the radiating edge remains

uncovered. Furthermore, the PV module is modified to

facilitate the connection of its dc-terminals from its bottom

side. The negative dc terminal of the PV module is directly

connected to the antenna patch, acting as a dc ground. The

positive dc terminal is connected to a dc connection island,

fabricated out of pure copper-coated e-textile and isolated

from the antenna patch by means of a nonconductive adhesive

sheet, as shown in the enlarged inset shown in Fig. 2(b). The

dc connection island is connected to the power management

system via a wire routed through one of the hollow tubelets.

These measures not only reduce the number and length of

interconnecting wires but also prevent that interconnections

influence the radiation characteristics of the antenna, resulting

in a more robust design and improved comfort for the user.

Next, we integrate the processing, power management and

transceiver hardware. These components are implemented on
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Fig. 6. Prototype of the wearable, RFID tag with integrated light harvester
(top) and flexible battery (bottom). (a) Top view: bending diameter = 15 cm.
(b) Bottom view: bending diameter = 15 cm. (c) On-body deployment.

a compact, low-profile, polyimide flexible circuit board (FCB),

as in [9], [41], and [43]. To maintain flexibility, small

electronic components were selected and distributed over

a sufficiently large area to allow for small bending radii.

Furthermore, special care was taken to avoid vias, whenever

possible, and to position components on only one side of the

FCB. This leads to a circuit bottom layer that almost entirely

consists of a copper ground plane. The FCB is then integrated

onto the antenna’s feed plane by means of a conductive

adhesive sheet, bonding the antenna ground plane with the

circuit ground plane, as shown in Fig. 2(b). This approach

allows using the antenna as a common dc ground and yields

excellent shielding between the antenna patch and the active

circuitry, owing to the ground plane.

As the antenna’s ground plane is slightly larger than

Prologium’s 066113 FLCB, integration of the FLCB at the

antenna’s backside, as shown in Fig. 2(b), will not affect the

antenna’s radiation performance. Moreover, its ultrathin profile

only adds 380 µm to the total thickness of the entire stack. The

FLCB’s cathode is directly connected to the antenna’s ground

plane, acting as a common dc ground, whereas its anode is

connected to the power management subcircuit. A prototype

of our wearable, light-energy-harvesting-assisted RFID-based

sensing platform is shown in Fig. 6. The figure shows that

we have connected an HDC1000 low power humidity and

temperature sensor by Texas Instruments, implemented on

an FR4 printed circuit board, via the I2C bus, as a proof

of principle. In a future design, this sensor may be directly

implemented on the FCB as well. The sensor was selected

as temperature and humidity are key parameters in diverse

medical environments, for instance to assess the integrity of

drugs or to detect the arise of an epidemic source producing

fever rush [2].

III. MEASUREMENT RESULTS

A. Textile Antenna Performance

To validate the antenna performance and the integration

procedure, the antenna’s figures of merit are measured under

different operating conditions. First, the antenna performance

is analyzed before and after the integration of the addi-

tional light-energy-harvesting, power management, sensing,

processing, and transceiver hardware. Afterward, the antenna

performance is measured when deployed on the human body.

Fig. 7. Reflection coefficients of the textile antenna, under free-space
conditions, to validate the integration procedure and its on-body performance.

Fig. 8. Simulated and measured radiation pattern of the stand-alone textile
antenna at 2.45 GHz.

All measurements are conducted in an anechoic room, where

external interferers are absent.

Impedance matching to a 50-� source is validated by means

of an Agilent PNA-X vector network analyzer. The antenna

should have good impedance matching (|S11| < −10 dB)

around the 2.45 GHz center frequency, irrespective of the

operating condition. Comparison of the measured reflection

coefficients in Fig. 7 demonstrates stable results for all differ-

ent conditions with an impedance bandwidth of more than

150 MHz or 6.1%. In addition,good agreement with the

simulated curve is observed.

The gain pattern and how it is affected by the different

operating conditions are also evaluated. Fig. 8 shows the

simulated and measured radiation patterns for the φ = 0° and

φ = 90° cross-sections. It is seen that the antenna exhibits

a monopolar radiation pattern with most of the radiation

directed toward the ceiling and the floor (φ = 90°). In contrast,

due to the smaller ground plane size, there is less radiation

toward the walls (φ = 0°), with a gain difference of ∼4 dB.

In the stand-alone scenario, a measured maximum gain

of 3.3 dBi at the direction (θ, φ) = (−40°, 90°),

a 3-dB beamwidth of more than 50° and a total efficiency

of 66% is obtained.
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Fig. 9. Measured radiation pattern of the textile antenna at 2.45 GHz, under
free-space conditions, to validate the integration procedure and its on-body
performance.

Fig. 9 shows the radiation pattern at 2.45 GHz before

and after integration of the light-energy-harvesting, power

management, sensing, processing and transceiver hardware.

When integrating the solar cell on top and the flexible bat-

tery behind the antenna, the radiation pattern remains stable,

with a maximal measured gain of 2.7 dBi and an efficiency

of 65%. It is noted that the integrated radiation pattern is

slightly rotated with respect to the stand-alone and on-body

cases, which is caused by a small alignment error during

measurement. Despite this, it can clearly be seen that the shape

and absolute values of the patterns remain very stable. The

design also performs well in the on-body scenario (Fig. 9).

The presence of the human body only has a slight influence

on the pattern: the direction of maximal gain corresponds to

(θ, φ) = (−20°, 90°) with a value of 2.5 dBi and more than

50° 3-dB beamwidth.

These measurements validate that the antenna remains very

stable under the different operating conditions, both in terms

of impedance matching and radiation performance.

B. Light-Energy-Harvesting Potential

A Keithley 236 source meter and a solar simulator, with

a standardized illumination level of 100 mW/cm2, were used

to measure the dc P–V characteristic of the SP3-37 PV

module before and after patterning its surface to fit the antenna

patch contour. Fig. 10 shows both curves and shows that the

maximum power generated by the PV module reduces from

56.9 down to 50.1 mW by modifying its surface. This decrease

can be attributed to a smaller effective light aperture and shunt

resistance after modification.

The boost converter/charger stage of the power management

hardware is designed to minimize the required input voltage

and power. This enables ambient light-energy harvesting in

near minimum lighting requirements. For indoor environ-

ments, the Occupational Safety and Health Administration

Fig. 10. DC P–V characteristic of the flexible solar cell, before and after
patterning.

Fig. 11. Boost charger efficiency as a function of input current (Iin) for
different input voltage (Vin) levels and VStor fixed to 3.9 V (Fig. 5).

specificies these conditions as 150 lx for a warehouse,

330 lx for an office, and 650 lx for a supermarket environ-

ment [23]. Measurements have demonstrated that the boost

charger allows harvesting ambient light energy as long as

the PV module is capable of generating a voltage and power

level exceeding 110 mV and 6 µW, respectively. This is the

case when the patterned PV harvester is illuminated by white

LED light at an illumination level higher than 330 lx, and

when illuminated by fluorescent light at an illumination level

exceeding 150 lx.

Next, two Keithley 2400 source meters and a Fluke

45 multimeter were applied to accurately characterize the

boost charger and buck regulator efficiency. The boost charger

efficiency is shown in Fig. 11, as a function of input cur-

rent (Iin), for different input voltage levels (Vin) and VStor

fixed to 3.9 V (Fig. 5). Fig. 11 demonstrates that the boost

charger stage operates more efficiently for larger values of

the input voltage. A maximum achievable efficiency of over

90% can be observed in Fig. 11. Yet, even for Vin = 0.25 V,

the boost charger efficiency exceeds 70% for input currents

larger than 200 µA.

Fig. 12 shows the buck converter/regulator efficiency, as a

function of output current (IOut), for a regulated output volt-

age (VOut) of 3.36 V and Vstor fixed to 3.9 V (Fig. 5). Fig. 12

proves that the buck converter regulator is able to guarantee

an efficiency higher than 75% from an output current as low

as 3.8 µA to output currents exceeding 100 mA.
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Fig. 12. Buck regulator efficiency as a function of output current (IOut) for
VOut regulated to 3.36 V and Vstor fixed to 3.9 V (Fig. 5).

TABLE I

RECEIVED SIGNAL LEVEL FOR DIFFERENT READING SCENARIOS

C. Read Range

The read range of the RFID sensor system is large enough

to enable reading from another room, or another floor in

a building. The indoor range has been tested to be up to 23 m

in nonline-of-sight (NLoS) indoor propagation conditions.

Interrogation of nodes, or garments with integrated nodes,

which are stored in a standard metal office closet is also pos-

sible. A standard closet does not provide enough attenuation

to block the communication between the RFID node and the

interrogator.

The measurement of the received signal strength (dBm)

is performed for the ADF7242 transceiver chip deployed on

the RFID node as well as on the interrogator. According to

specifications, the minimum required received signal strength

to successfully decode IEEE802.15.4 packets is −95 dBm.

Table I lists a number of measured received signal levels in

practical conditions. Fig. 13 shows the measurement setup and

a floor plan of the real-life environment, with all practical test

locations annotated. LoS measurements are performed within

the same room, whereas NLoS conditions imply communi-

cation between rooms in the same building. The building is

composed of a steel structure with reinforced concrete floors

and solid brick walls. At 13 and 23 m, two and three brick

walls are in between both link ends, respectively. Communi-

cation from the overhead floor is also included, through the

reinforced concrete floor. Two measurements of this type are

included, one with the RFID node directly overhead on the

upper floor, and one with the node 10 m further away from

this position.

Fig. 13. Read range measurement setup. (a) Floorplan with all reading
scenarios annotated (Table I). (b) RFID tag. (c) RFID interrogator with textile
antenna [43].

D. Current Consumption Profile

The average current consumption of the RFID node is

controlled by adjusting the amount of time the system is

in sleep mode, as in this state, a current of only 8 µA is

consumed. Compared with the leakage current of the battery,

which is ∼40 µA, this is a very low power consumption.

However, when the node switches to its active states, the cur-

rent consumption increases up to 35 mA, although this maxi-

mum current is only drawn during a period of 5 ms each time

the node wakes up.

The current for different operation modes was measured

by a Tektronix MSO2014B mixed signal oscilloscope, with

a 1 � resistor in series with the power supply ground.

In Fig. 14, the current is displayed during receive (RX)

mode. During the power-up event, the microcontroller first

awakens from sleep mode, causing a current of 5 mA, then the

ADF7242 transceiver chip is also awoken from its sleep mode.

Some initialization time is necessary for the transceiver before

actual packets can be received. As soon as the transceiver

operates in RX mode, a current of 35 mA is consumed. During

this mode, the transceiver keeps waiting for a valid packet.

However, a time-out is implemented in the software to allow

the system to return to sleep mode after a while if no packet

is received.

The measured average current consumption during the

active period TActive = 8 ms is IActive = 22.45 mA, yielding

for an average current consumption of the system for a

wake-up period TSleep

IAvg =
TActive · IActive + TSleep · ISleep

TSleep + TActive
(1)

with ISleep = 8 µA.
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TABLE II

AVERAGE CURRENT CONSUMPTION AND SYSTEM AUTONOMY FOR

DIFFERENT SLEEP PERIODS AND FOR TWO BATTERY TYPES

Fig. 14. Current consumption during RX mode (sleep current was measured
by a Fluke 45 multimeter).

A number of practical values are listed in Table II. In addi-

tion, Table II depicts the system autonomy when complete

absence of light is assumed and for two different battery

types, being the integrated 170-mAh FLCB battery and a state-

of-the-art 5-mm-thick 120-mAh lithium-ion coin cell battery

(MULTICOMP LIR2450). In both the cases, the battery’s

leakage current is taken into account, being 40 µA for the

FLCB and 11 µA for the coin cell. Note that the coin cell’s

smaller leakage current yields a higher system autonomy at

higher values for the sleep time. Yet, the FLCB is preferred in

our design because of its mechanical flexibility and its thinner

profile. A protocol waking up the system every 10 s consumes

an average supply current of 26 µA, guaranteeing a high

system autonomy. In this mode, the system is standing by

for interrogation and will answer within a maximum of 10 s.

Of course, the interrogating device should rapidly transmit

subsequent packets in order to be sure that the node is able

to effectively receive a packet during its active RX state of

5 ms duration. If the received packet contains the node’s serial

number, the node will immediately respond by transmitting

a reply packet.

We prefer to use a protocol where the sleep period is

automatically adjusted when interrogation of other nodes is

detected. Receiving a packet intended for interrogation of

another node indeed means a higher probability of interro-

gation in the near future, in which case it is interesting to

temporarily reduce the sleep time to 1 s, in order to allow

faster subsequent interrogation of multiple nodes.

Fig. 15 shows the current consumption during the inter-

rogation of the node. First, the node wakes up from sleep

mode, and switches to RX mode, similar to the event shown

Fig. 15. Current consumption when the node is interrogated (sleep current
was measured by a Fluke 45 multimeter).

in Fig. 14. However, a packet containing the node’s serial

number is now received, indicating proper interrogation. After

the packet is received, the node returns from RX mode,

performing further processing and SPI communication

between the processor and the transceiver, requiring 12 mA

of current. Finally, the node responds by transmitting a packet

containing sensor data, consuming 27 mA.

IV. CONCLUSION

We have discussed the design, realization, and valida-

tion of a wearable, light-energy-harvesting-assisted sensing,

processing, and decision-taking RFID tag for operation in the

2.45-GHz RFID SHF band. To the best of our knowledge,

this is the first tag in the literature that combines excel-

lent wearability with enhanced functionality, very high read

range, and extended system autonomy, through a newly intro-

duced holistic microwave system design paradigm, in which

antenna design is taken into account from the early beginning.

In addition, the tag features flexible interfacing with a wide

variety of digital and analog low power sensors, such as

accelerometers, light sensors, gas sensors, and temperature

sensors. This enables us to adapt our design to a plethora

of real-life applications by introducing the appropriate sen-

sor(s). Furthermore, the enhanced RFID node is capable of

taking decisions, through the processing of logged or real-

time sensor data, even in the absence of an RFID reader.

However, the increased functionality and read range come at

an increased cost and power consumption of the RFID node

compared with passive RFID tags, exclusively powered by an

RFID reader. Yet, in our design, dedicated embedded software

minimizes energy consumption, while system autonomy is

further increased by the integration of a flexible MPPT light-

energy harvester. In addition, the higher cost of an individual

RFID node does not necessarily lead to a higher cost of the

overall system, as the excellent read range of our proposed

RFID tag reduces the amount of RFID readers that are needed

to cover a specific area. Hence, our design is a step forward

in realizing the IoT paradigm. It is particularly suited for

unobtrusive integration within a garment, leveraging pervasive

quantification of the wearer’s interaction with its environment,

by wirelessly communicating physical information about the

wearer and his/her nearby environment to the Internet via

a question-and-reply protocol.
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