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Abstract—Current clinical practice in diagnosing patients af-
fected by psychiatric disorders such as bipolar disorder is based
only on verbal interviews and scores from specific questionnaires,
and no reliable and objective psycho-physiological markers are
taken into account. In this paper, we propose to use a wearable
system based on a comfortable t-shirt with integrated fabric elec-
trodes and sensors able to acquire electrocardiogram, respirogram,
and body posture information in order to detect a pattern of objec-
tive physiological parameters to support diagnosis. Moreover, we
implemented a novel ad hoc methodology of advanced biosignal
processing able to effectively recognize four possible clinical mood
states in bipolar patients (i.e., depression, mixed state, hypomania,
and euthymia) continuously monitored up to 18 h, using heart rate
variability information exclusively. Mood assessment is intended as
an intrasubject evaluation in which the patient’s states are modeled
as a Markov chain, i.e., in the time domain, each mood state refers
to the previous one. As validation, eight bipolar patients were mon-
itored collecting and analyzing more than 400 h of autonomic and
cardiovascular activity. Experimental results demonstrate that our
novel concept of personalized and pervasive monitoring constitutes
a viable and robust clinical decision support system for bipolar dis-
orders recognizing mood states with a total classification accuracy
up to 95.81%.

Index Terms—Autonomic nervous system (ANS), bipolar dis-
order, heart rate variability (HRV), mood recognition, pervasive
monitoring, wearable systems.

I. INTRODUCTION

W
EARABLE systems for physiological monitoring have

been gaining large interest over the last decade in
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research and commercial fields [1]–[27]. The key benefits in-

troduced by these wearable systems include their small size,

lightness, low-power consumption and, of course, wearability.

Major applications of such systems are related to medicine and

healthcare allowing for outpatient care and enhancing the qual-

ity of life for chronic disease patients, and preventing unnec-

essary hospitalizations. Long-term monitoring through wear-

able monitoring systems is a challenging task because of the

many issues involved such as movement artifact rejection, com-

fort, and power consumption. In order to meet this challenge,

long-term monitoring through multiple sensors are often rec-

ommended [1]. As a matter of fact, several systems have been

recently developed for monitoring blood pressure [3], [4], car-

diac activity [5], [6], respiration [7], eye tracking [2], multivari-

ate physiological signs [6], [8]–[10], [23]–[26], electrodermal

response [13], [14], physiological signs through antenna and

UWB radar [11], [12], brain activity [15], as well as neuroreha-

bilitation activity [16]. The state of the art on wearable systems

for physiological monitoring can be found in these recent re-

views [17]–[22].

In the abovementioned literature, some methods have proven

better than others when it comes to developing wearable sys-

tems for physiological monitoring, namely those systems based

on smart textiles used for autonomic nervous system (ANS)

activity monitoring (e.g., see [6], [9], [13], [14], [23]–[27]).

The major reason behind this choice is related to comfort and

its insensitivity to artifacting events. Although signal dynam-

ics coming from electroencephalograms (EEG) provide direct

measurements of brain activity and, thus, are more effective in

applications such as monitoring of mental disorders, peripheral

measurements can also provide useful information. Indeed, both

EEG and ANS dynamics are affected by a pathological mental

status [9], [28]–[32]. It has been demonstrated how affective

elicitations lasting longer than 6 s allow the prefrontal cortex to

encode the stimulus information and to transmit it to other areas

of the central autonomic network down to the brainstem, thus

producing a context appropriate response [33]. Moreover, cor-

tisol hormone levels are affected in mood disorders [34]–[36].

Finally, the parasympathetic ANS is anatomically connected

to central nervous system activity. As a counter-proof, vagus

nerve stimulation has been successfully used for the treatment

of resistant depression [37].

Recently, we have proposed a preliminary evaluation of a

multiparametric wearable platform for physiological/behavioral

monitoring of mood fluctuation in bipolar patients [9]. The
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system has been developed in the frame of a European Project,

Personalized monitoring SYstems for Care in mental HEalth

(PSYCHE), whose goal was to find possible correlations

between ANS patterns and mood swings over short- and long-

term monitoring (see details in Section II). In this study, we

present a part of the PSYCHE concept consisting of a wearable

monitoring platform enriched with a novel and effective signal

processing methodology able to recognize mood states using

long-term cardiovascular dynamics and past mood labels.

Given the experimental evidence over the past three decades

on ANS and cardiovascular dynamics, we have chosen the

heart rate variability (HRV) analysis [38], [39] as a noninvasive

marker for a personalized and accurate management of patients

affected by bipolar disorder.

A. Background on Bipolar Disorders

Bipolar disorder is very common in western population [40]–

[43]. A recent worldwide survey in 11 countries has found an

overall lifetime prevalence of 1% for the typical forms of bipolar

disorder and 1.4% for milder subthreshold disorders [44].

From the clinical point of view, bipolar disorder is a chronic

condition characterized by an impaired mood balance. Patients

experience episodes of altered mood states ranging from depres-

sion with sadness, hopelessness (including suicidal ideation),

loss of energy, anhedonia, and psychomotor retardation to ma-

nia characterized by euphoria or irritability, excessive energy,

hyperactivity, hypertrophic self-esteem, reduction in the need

of sleep, and psychomotor acceleration. The moderate form of

mania is called hypomania (at the stage of mania, change in be-

havior is so obvious that hospitalization is needed). Accordingly,

it is possible to identify four possible types of mood episodes

associated with such a disease: depression (DP), mania (MN),

hypomania (HY), and mixed state (MS), which corresponds to

the simultaneous presence of depression and mania. Patients

experiencing periods of relatively good affective balance are

defined as staying in euthymic state (ES) or remission.

B. Limits in the Diagnostic Approach of Bipolar Disorders

The diagnosis of bipolar disorders and, more in general, of

psychiatric pathological conditions is based on clinical evalua-

tions through interviews and the evaluations of scores gathered

by quantitative psychopathological rating scales only. Although

these interviews are “structured” (i.e., questions and question

order are established and defined in specific manuals) and high

rates of consensus can be achieved among specialists (psychia-

trists and clinical psychologists), the diagnosis is always based

on clinician observation, the patient’s subjective description, and

on the physician’s interpretation of such description. However,

specific physiological or biochemical markers to be taken into

account in current clinical practice are still missing. The most

important diagnostic system is based on the criteria proposed

by the diagnostic statistic manual of mental disorders (DSM-IV-

TR) [45] edited by the American Psychiatric Association. Ac-

cording to this manual, to be diagnosed with depressive episodes

the patient must have five out of nine possible symptoms. Simi-

lar cutoffs are applied for the diagnosis of other episodes. In line

with this approach, a patient who has had only four symptoms of

depressive episodes is considered remitted (although partially

remitted). These clearly can bring to biased interpretation and

inconsistency [46]–[48].

To overcome these issues, research has been done on propos-

ing biomarkers that consider sleep quality [49]–[51], circadian

heart rate rhythms [52], [53], cortisol dynamics, [34]–[36], as

well as ANS functionality [9], [28]–[32]. However, none of

these studies has reached an acceptable level of accuracy for

clinical use in order to forecast the clinical course in patients. In

a recent study [9], we presented a multiparametric approach that

was successfully applied as a decision support system for the

diagnosis of bipolar disorder. We demonstrated that a single-

variable approach, as proposed by previous literature, is not

sufficient to robustly characterize mood episodes [9]. Instead, a

multiparametric and personalized approach, i.e., mood episodes

are identified as an intrasubject analysis, is much more effec-

tive. However, limitations of such an approach were twofold:

first, the temporal dynamics of a patient’s mood episodes were

not taken into account (patients passing from depression to eu-

thymia through a mixed state would be evaluated as patients

passing from mixed state to depression through euthymia); sec-

ond, patients experiencing more than two mood states were as-

sessed by performing comparative evaluations for each couple

of mood states, i.e., two-class pattern recognition problem.

Here, we overcome such limitations describing a novel and

effective signal processing methodology applied to HRV data

gathered from bipolar patients, which significantly improved our

previous results. More specifically, the major assumption of the

method hereby proposed is that clinical mood state depends on

the previous mood state. In fact, in current clinical practice, it is

widely accepted that a specific psycho-pathological status is dif-

ferently characterized by taking into account the clinical history

of the illness.Accordingly, our personalized approach identifies

mood states as an intrasubject analysis taking into account the

temporal dynamics of the illness. From a signal processing point

of view, patients’ mood changes are modeled as a discrete-time

stochastic process in which each recording, associated with a

specific mood state, also depends on the previous state respect-

ing the so-called Markov property [54]. Of note, computational

architectures for modeling of human emotions were proposed as

being based on the Markov’s theory [55].We demonstrate that

mood changes in bipolar disorders can be modeled as a Markov

chain, in which each state is characterized by ANS-HRV fea-

tures extracted over long periods of time (up to 18 h). Multiclass

recognition of these mood states achieved an accuracy as high

as 99%.

II. THE PSYCHE SYSTEM AND THE WEARABLE

MONITORING PLATFORM

PSYCHE stands for PerSonalized monitoring sYstems for

Care in mental HEalth and identifies a personalized, pervasive,

cost-effective, and multiparametric system for the long-term and

short-term acquisition of data gathered from patients affected

by mood disorders [9], [56], [57]. It was designed and is cur-

rently used in the framework of a European project PSYCHE,
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Fig. 1. Overview of the PSYCHE system as a global platform serving as
decision support system for bipolar disorder management.

which is funded in the seventh framework programme (FP7).

The PSYCHE system supports a novel approach for bipolar dis-

ease management based on the paradigm that quasi-continuous

monitoring in a natural environment providing parameters, in-

dices, and trends that will be used to assess mood status, support

patients, predict and anticipate treatment response in its early

phase, prevent relapse, and to alert physicians in case of a critical

event. PSYCHE serves as a decision support system that fills the

gap between research and clinical routine management of bipo-

lar patients integrating the traditional clinical standard proce-

dures of mood assessment with data coming from the pervasive

system, which includes physiological signals, as well as bio-

chemical and behavioral data. A centralized server performing

data-mining procedures for mood evaluations is currently under

development along with the implementation of a user-friendly

patient interface (e.g., on a smartphone), and a professional

web-based interface used by clinicians to administer evaluation

questionnaires, look at physiological variable variations, com-

municate with patients, etc. The user-friendly device will also

monitor environmental information such as light, temperature,

and noise thereby completing the PSYCHE platform (see the

PSYCHE concept of decision support system for bipolar dis-

order on Fig. 1). Several signals are taken into account for the

patient’s physiological monitoring such as voice [57], activity

index, sleep pattern alteration [58], electrodermal response [56],

respiration activity, and electrocardiogram (ECG) [9].

In this study, we used the core sensing system of the project,

i.e., the PSYCHE wearable monitoring platform [9], whose tech-

nical specifications are reported in Table I. It was developed by

Smartex s.r.l (Pisa, Italy) and consists of a comfortable sen-

sorized t-shirt having dry textile-based electrodes that acquire

the patient’s ECG, a piezoresistive sensor to acquire the respira-

tion signal, and a three-axial accelerometer to track movement.

It is worth noting that the use of dry textile-based electrodes

provides several advantages. First, the system is easy to use

and allows to maximize comfort and to locate the sensors au-

tomatically. Second, a special multilayer structure increases the

amount of sweat and reduces the rate of evaporation reaching

electrochemical equilibrium between the skin and electrodes

after a couple of minutes. Therefore, the signal quality [6] is re-

markably improved and kept as constant as possible. If contacts

TABLE I

TECHNICAL SPECIFICATIONS OF THE WEARABLE MONITORING PLATFORM

(PROVIDED BY SMARTEX S.R.L.)

Characteristics

Power supply Litium battery (life up to 18 hours)

Data storage MicroSD card

Data communication Micro USB, bluetooth

Electrocardiogram

Measurement principle Bio-potentials on the thorax

Sensors Textile electrodes

Number of leads 1

Input auto configurable analog filter 0.67Hz to 40Hz

Analog-to-digital conversion 16 bits

Sampling rate 250 Hz

Respiration signal

Measurement principle Piezoresistive method

Range of electrical resistance 20kΩ to 10MΩ

Bandwidth DC to 10Hz

Resolution 12 bits

Sampling rate 25 Hz

with the skin in not good, for reasons of size, the quality of the

signals cannot be adequate for obtaining meaningful values. To

avoid this problem, a preliminary check on the quality of the

data is done using available shirts with different sizes before

giving the system to the patients.The shirt was designed follow-

ing both a female and male model and is made of elastic fibers

that allow for tight adhesion to the user’s body, piezoresistive

fibers to monitor fabric stretching (and consequently respiration

activity), and metallic fibers knitted to create fabric electrodes

to monitor the ECG. These materials are knitted together and

are fully integrated in the garment without any mechanical and

physical discontinuity, creating areas with different functional-

ities. In this study, a comfortable t-shirt having two textile ECG

electrodes integrated in the inner side of the front part, below

the pectoral muscles in men and the breasts in women, and a

textile piezoresistive sensor located between the electrodes, on

the outer side, was used. The shirt is conceived to be similar in

term of look and feel perception to any other ordinary under-

wear garment. The shirt has been designed taking into account

the thermal comfort, both in the selection of the yarns and in

the stitches structure, several zones with an open net have been

inserted, and a polyamide yarn with antibacterial properties and

a natural feeling has been used as a basic component. As a

matter of fact, garments are made of commercial yarns, already

tested (and certified) for contact with human skin, and can be

easily washed and, in case, disinfected. The two ECG electrodes

and a piezoresistive sensor are finally connected to the portable

electronics, which is connected to the garment through a simple

plug that can be easily unplugged when necessary.

In this study, we used ECG information coming from the

PSYCHE wearable monitoring platform in order to extract the

interbeat interval series (hereinafter RR), i.e., the series consti-

tuted by the distance of two consecutive peaks of the ECG in a

patient as a noninvasive biomarker of ANS dynamics [38], [39].

While using the PSYCHE system, patients are asked to wear

the sensorized shirt. They are free to perform daily activities

at home or elsewhere, while the aforementioned physiological
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Fig. 2. Block scheme of the overall processing platform divided in three
logical units for acquisition, processing, and interpretation.

signals are monitored and stored in a microSD card. After about

18 h of monitoring, patients are asked to take the system back

to their physician, and the recorded data ae manually sent to

a central database. As aforementioned, the final version of the

PSYCHE system will provide an automatized storage process

by means of a smartphone or tablet without the involvement of

a technician.

III. DATA ACQUISITION, PROCESSING, AND INTERPRETATION

Acquisition, processing, and interpretation procedures aim

at extracting significant information from the acquired data in

order to well define and characterize the patient’s mood state.

Such procedures are divided into three units: data acquisition,

processing, and interpretation, whose general block scheme is

shown in Fig. 2.

A. Data Acquisition and Processing

Data acquisition is fully implemented in the embodied elec-

tronic device of the wearable platform and includes also a part of

the preprocessing step. In this unit, the analog ECG is acquired

and conditioned by means of an instrumentation amplifier and

filters. Then, the ECG is digitalized with a sample frequency of

250 Hz and stored into the microSD card for further analysis.

The processing unit is responsible for extracting and analyzing

features from the stored raw data collected as ASCII files. The

ECG signal is prefiltered through a tenth-order band-pass finite

impulse response filter with cutoff frequencies of 0.05–35 Hz

approximated by the Butterworth polynomial. Considering that

the patients wearing the sensorized shirt can move during the

acquisition, and that textile electrodes could lose contact with

the skin during body movement, an ad hoc algorithm for the

automatic removal of movement artifacts has been applied [9].

To this aim, the maximum and minimum envelopes of the ECG

filtered in the bandwidth from 0.1 to 4 Hz [59] are calculated.

Afterwards, movement artifacts are detected by using simple sta-

tistical thresholds, i.e., 95th percentile, on the average envelope

aforesaid, which the signal is considered affected by artifacts.

Further analyses such as R-peaks and feature extraction were

performed in all of the available artifact-free, nonoverlapped

time windows W of 5 min. Parts of the signals with artifacts

together with consecutive artifact-free ECG signals having dy-

namics less than 5 min were discarded and not considered for

further analysis. The W of 5 min was chosen in order to fulfill

the stationarity requirements in analyzing long-term RR series

(see recommendations in [38] and [60]).

In RR series extraction, referring to the change of the beat

interval corresponding to the R-peak, the well-known automatic

algorithm developed by Pan-Tompkins [61] was adopted for

automatic R-wave detection. Given the RR interval series, the

analysis is performed by extracting significant features using

the state of the art for assessing the autonomic regulation of the

heart rate [38], [39]. In particular, standard parameters that are

defined in the time and frequency domain and are correlated

with the sympatho-vagal balance as well as nonlinear measures

are taken into account. Time-domain features include the av-

erage and standard deviation values of the RR intervals, the

square root of the mean of the sum of the squares of differences

between subsequent NN intervals (RMSSD), and the number

of successive differences of intervals that differ by more than

50 ms (expressed as a percentage of the total number of heart-

beats analyzed, pNN50). Moreover, the triangular index was

calculated as a triangular interpolation of the HRV histogram.

All extracted features in the frequency domain were based on

the power spectral density (PSD) of the HRV. An autoregressive

(AR) model was used to estimate the PSD in order to provide

better frequency resolution than in nonparametric methods. The

optimal order p was estimated according to the Akaike infor-

mation criterion [62]. The Burg method was used to obtain

the AR model parameters. The standard frequency-domain pa-

rameters were: very low frequency, this spectral component in

general below 0.04 Hz; low frequency (LF), ranging between

0.04 and 0.15 Hz, and high frequency (HF), which is up to

0.4 Hz. For each of the three frequency bands, the peak value

corresponding to the frequency having maximum magnitude

was also evaluated. Moreover, the LF/HF ratio was calculated

in order to quantify sympathovagal balance and to reflect sym-

pathetic modulations [38], [39].

Several nonlinear HRV measures were also extracted along

with the standard morphological and spectral features [38], [39].

Even if the physiological meaning of these features is still un-

clear, they resulted to be an important quantifier of cardiovascu-

lar control dynamics mediated by the ANS [63]–[72]. Nonlinear

measures are referred to as features extracted by means of the

phase space (or state space). Once the phase space is estimated

(by means of the so-called embedding procedure), the parame-

ters that appears subject to an ANS modulation were evaluated.

More specifically, correlation dimension [73], sample entropy,

and approximate entropy [74], [75], features from the recur-

rence plot [76] by means of the recurrence quantification analy-

sis (RQA) [77], and the detrended fluctuation analysis [78], [79]

were evaluated. RQA was chosen to quantify the number and

the duration of recurrences of the considered cardiovascular dy-

namical system. The following features were calculated [77]:
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Fig. 3. Overall block scheme of the proposed mood recognition system.

recurrence rate, determinism, laminarity, trapping time, average

diagonal line length, entropy, and longest diagonal line.

B. Data Interpretation Through History-Dependent Analysis

and Pattern Recognition

Data interpretation is based on a personalized model in order

to accurately associate and recognize the obtained parameters

with the clinical mood status of the patient. Here, personaliza-

tion is intended as intrasubject analysis. A logical scheme of

the proposed mood recognition system, which also includes

the previous steps, is shown in Fig. 3. Once all HRV fea-

tures are extracted for each patient, the feature set related

to the kth acquisition can be defined as a multidimensional

vector Xnk (Tm ) representing n features evaluated within the

time window Tm . Therefore, Xnk (Tm ) is a matrix of fea-

tures consisting of m rows (each of the rows corresponds to

one of the time windows Tm within the acquisition) and n
columns (each of the columns contains one of the HRV fea-

tures). In order to consider the process of mood states such as

the Markov chain, i.e., Pr{Xnk = x|(Xn(k−1) = xk−1)}, a sim-

ple rescaling procedure is applied. Specifically, for each column

of the matrix Xnk (Tm ), the matrix Ynk (Tm ) = [Xnk (Tm ) −
Median(Xn(k−1)(Tm ),m)]/MAD(Xn(k−1)(Tm )) is calcu-

lated, where MAD(X) = Median(|X − Median(X)|). The

quantity Median(Xn(k−1)(Tm ),m) is intended as a vector of

the median values of the features calculated through all the rows

m of the matrix Xnk (Tm ), thus over all the time windows Tm

of the acquisition k − 1.

This model is justified by the hypothesis that the transition

from a clinical mood state to another is dependent on the past

history of mood fluctuations. In other words, the current clini-

cal status of a patient is influenced by the previous status, and

therefore also the neurovegetative balance should be rescaled

by a factor taking into account the previous clinical status. A

simplified block scheme representing such a rescaling proce-

dure over multiple mood states of a patient is shown in Fig. 4.

The first observation of each patient was used exclusively to

obtain the rescaling values useful for the characterization of the

observation, which followed in time. This choice was justified

by the fact that no preceding recordings were available.

Fig. 4. Simplified block scheme over multiple mood states representing the
Markov modeling of the mood recognition procedure.

The obtained feature set Ynk (Tm ) is taken as an input of the

leave-one-out (LOO) procedure [80] applied on a support vector

machine (SVM)-based pattern recognition [81]. More specifi-

cally, we used a nu-SVM (nu = 0.5) having a radial basis kernel

function with γ = n−1 . A mood label, given by psychological

clinical assessment, was associated with each point in the feature

space Ynk (Tm ). More specifically, the initial mood, diagnostic

of the current bipolar episode, was determined by clinicians

according to DSM-IV-TR criteria [45] and resulted in a diag-

nosis of current episode of depression, hypomania, or mixed

state, which was the mood label at study entry. Then, its evo-

lution toward another mood state (for instance transition from

hypomania to mixed state) or an ES (remission of manic and

depressive symptoms) was assessed using scores from quanti-

tative psychopathological rating scales (for the scales and the

threshold scores, see paragraph IV). This was a purely clinical

evaluation that disregarded any physiological/biochemical ref-

erence analysis. The mood label associated with each patient’s

evaluation was assigned independently with respect to the pre-

vious ones. The focus on intrasubject analysis is mainly due to

the small number of patients involved and is focused to find

possible correlations between the pattern of physiological sig-

nals and mood fluctuations, which are much more interesting

for the psychiatric community. In order to compare the proposed

methodology with a standard approach, we evaluated the LOO-

SVM performance in discerning different mood patterns that are

independently processed. In other words, the feature set belong-

ing to a specific acquisition of a patient is taken as an input for

the LOO-SVM classification without performing any rescaling

procedure, i.e., without using information related to previous

mood states. All of the classification results were expressed as

recognition accuracy in detailed confusion matrices [82]. The

generic element rij of the confusion matrix indicated a per-

centage as to how many times a pattern belonging to class i
was classified as belonging to class j. A more diagonal confu-

sion matrix corresponded to a higher degree of classification.

All of the algorithms were implemented by using Matlab v7.2

endowed with two additional toolboxes for pattern recognition,

i.e., LIBSVM [83] and a time series analysis toolbox [84].

IV. EXPERIMENTAL PROTOCOL AND RESULTS

Besides the PSYCHE system and methodology of signal pro-

cessing, an innovative aspect of this study is also represented

by the experimental protocol undertaken. In the following para-

graphs, the recruitment of eligible subjects, experimental pro-

cedures, and results are described in detail.
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TABLE II

CLINICAL LABELS ASSOCIATED WITH EACH PATIENT DURING

EACH ACQUISITION

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5 ACQ. 6

BP1 HY HY HY ES ES

BP2 HY MS HY HY

BP3 HY HY HY ES ES

BP4 DP DP DP DP DP ES

BP5 DP DP HY DP HY

BP6 HY HY HY ES ES

BP7 DP DP ES

BP8 MS MS DP DP DP ES

Recruitment of eligible subjects: Patient recruitment was per-

formed according to the following criteria.

1) Age between 18-65.

2) Presence of a mood episode at the moment of the recruit-

ment of any polarity (depression, hypomania, mixed).

3) Low risk of suicidality (as assessed as no thoughts of death

and no previous attempts).

4) No somatic or neurologic disorders that might be related

to bipolar disorders (e.g., thyroid alterations).

5) Absence of cognitive impairment.

6) Absence of substance abuse disorders.

7) Necessity of a change in treatment (treatment change is

defined as a augmentation of doses, introduction of or

switch to new drugs, introduction of physical treatments).

8) Willingness of all patients to sign the informed consent for

the PSYCHE project approved by the ethical committee

of the University of Pisa and Strasbourg.

Following this criteria, 15 patients were recruited in the PSY-

CHE project, seven in Pisa, and eight in Strasbourg. Among

these, we used for our study eight subjects for a total of 42

acquisitions (two from Pisa and six from Strasbourg) because

they had more than one long-term acquisition and at least one

mood change.

Details on the patients’ acquisitions as well as mood state

information are reported in Table II.

Experimental procedures: Patients BP1, BP2, BP3, BP4,

BP5, and BP6 were recruited in the out-patient University clinic

of Strasbourg, France. Patients BP7 and BP8 were recruited in

high-intensity clinical facilities (psychiatric ward and day hospi-

tal) at the University Hospital of Pisa, Italy. The protocol planned

a study entry visit when the patient was experiencing a depres-

sive, hypomaniac, or mixed phase. Patients were studied with

an average frequency of 2–3 times a month. Each patient was

evaluated and monitored from the day of the hospital admission

toward remission, i.e., until the reaching of an ES as long as such

a condition was presented within three months after the first visit.

In any case, in this study no more than six evaluations per patient

were performed. All clinical states were evaluated by clinicians

according to DSM-IV-TR criteria [45]. In this way, four possi-

ble clinical mood labels (depression, hypomania, mixed-state,

and ES) were assigned. The mood label associated with each pa-

tient’s evaluation was assigned independently with respect to the

previous ones. ES, i.e., clinical remission was defined by hav-

ing a score below threshold on a quantitative psychopathological

TABLE III

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP1

Dataset Hypomania Euthymia

Hypomania
Standard 91.99 8.01
Markov 88.64 11.36

Euthymia
Standard 80.40 19.60
Markov 29.20 70.80

Total Accuracies: Standard 55.79%; Markov 79.72%. Bold values
indicate the best correct classification results for each mood
state.

TABLE IV

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP3

Dataset Hypomania Euthymia

Hypomania
Standard 96.70 3.30
Markov 97.78 2.22

Euthymia
Standard 64.44 35.56
Markov 11.11 88.89

Total Accuracies: Standard 66.13%; Markov 93.33%. Bold
values indicate the best correct classification results for each
mood state.

TABLE V

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP2

Dataset Hypomania Mixed-State

Hypomania
Standard 97.03 2.97
Markov 86.46 13.54

Mixed-State
Standard 62.5 37.5
Markov 3.75 96.25

Total Accuracies: Standard 67.26%; Markov 91.35%. Bold
values indicate the best correct classification results for each mood
state.

TABLE VI

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP4

Dataset Depression Euthymia

Depression
Standard 98.53 1.47
Markov 99.68 0.32

Euthymia
Standard 83.91 16.09
Markov 8.05 91.95

Total Accuracies: Standard 57.31%; Markov 95.81%. Bold
values indicate the best correct classification results for each
mood state.

rating scale (for depressive symptoms, score below 8 on the 16-

item quick inventory of depressive symptomatology clinician

rating and for manic symptoms score below 6 on the Young

Mania rating scale). The same thresholds were also used to de-

fine a change in mood state. During the study, treatment choice

remained at the discretion of the clinician as well as the change

of treatment in case of lack of response.

The wearable system was given to the patients in the afternoon

and collected after the morning. Patients receiving the PSYCHE

wearable monitoring platform were asked to wear the sensorized

t-shirt at all times until the battery ran out, i.e., approximately

18 h. Therefore, there was no need of particular experimental

conditions as the patient was free to perform normal activities.

As soon as the subject gave the t-shirt back, the data were

downloaded and stored in the database for further analysis.

Results: Classifications were performed according to the

methodology described in Section III and reported as intrasub-

ject evaluations. Tables III– X show the recognition accuracy in

terms of confusion matrices as well as the total average accuracy
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TABLE VII

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP5

Dataset Depression Hypomania

Depression
Standard 85.44 14.56
Markov 74.87 25.13

Hypomania
Standard 23.02 76.98
Markov 3.77 96.23

Total Accuracies: Standard 81.21%; Markov 85.55%.
resultsclassificationcorrectbesttheindicatevalues

Bold
eachfor

mood state.

TABLE VIII

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP6

Dataset Hypomania Euthymia

Hypomania
Standard 88.75 11.25
Markov 93.98 6.02

Euthymia
Standard 27.27 72.73
Markov 7.49 92.51

Total Accuracies: Standard 80.74%; Markov 93.24%. Bold
values indicate the best correct classification results for each
mood state.

TABLE IX

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP7

Dataset Depression Euthymia

Depression
Standard 96.34 3.66
Markov 97.47 2.53

Euthymia
Standard 45.56 54.44
Markov 13.33 86.67

Total Accuracies: Standard 75.39%; Markov 92.07%. Bold
values indicate the best correct classification results for each
mood state.

TABLE X

CONFUSION MATRIX OF SVM CLASSIFIER FOR BP8

Dataset Mixed-State Depression Euthymia

Mixed-State
Standard 65.86 26.42 7.72
Markov 78.08 13.70 8.22

Depression
Standard 13.79 78.52 7.69
Markov 4.51 93.90 1.59

Euthymia
Standard 22.60 24.66 52.74
Markov 7.53 8.22 84.25

Total Accuracies: Standard 65.71%; Markov 85.41%. Bold values indicate the
best correct classification results for each mood state.

obtained through the LOO procedure on nu-SVMs. Standard

dataset refers to an independently processed feature set, i.e.,

the feature set belonging to a specific acquisition of a patient

is taken as an input for the LOO-SVM classification without

performing any rescaling procedure. Markov dataset refers to

the proposed methodology, i.e., feature set is processed ad hoc

in order to consider information from the previous mood state

(see details on paragraph III).

According to the description of data processing reported in

paragraph III, n = 24 features constituted the feature space

dimension of both standard and Markov datasets. No dimen-

sionality reduction techniques were applied to reduce such a

dimension.

Since no patients had a maniac episode, we assigned four

labels: hypomania, depression, mixed state, and euthymia.

Patients BP1 and BP3 underwent five visits alongside long-

term ANS monitoring. Starting from a period of hypomania,

patients reached the ES. As shown in Tables III and IV, consid-

ering the proposed Markov dataset, the subjective ANS patterns

are well distinguished reaching more than 88% of accuracy

in recognizing the hypomaniac state. Concerning the results

obtained from data gathered from BP1, we report that higher

classification accuracy on hypomania class was achieved adopt-

ing a standard dataset. However, when using the same dataset,

high misclassification accuracy was obtained for the euthymia

class.

Likewise to BP1 and BP3, patient BP2 began the study show-

ing hypomaniacal psychosis. Then, depressive behaviors were

diagnosed changing the mood state to mixed state. Afterwards,

the previous observed hypomania state was observed twice. In

this case, more than 86% and 96% accuracy was reached in

distinguishing hypomania from mixed-state patterns.

BP4 experienced depressive psychosis for the whole course of

the illness, reaching good affective balance after five monitoring

sessions. In order to take into account the unbalanced number of

available examples per class, two different learning rates were

considered in the SVM training phase, giving the euthymic

examples four times more penalty with respect to the depressive

examples. As the two considered states are very different in

clinical terms, the two patterns resulted strongly distinguished

with a recognition accuracy as high as 99.68%.

BP5 showed mood swings between depressive and hypomani-

acal psychosis. Despite the fact that about 25% of the depressive

patterns were confused with the hypomaniacal ones, the hypo-

mania states were recognized with more than 96% accuracy.

Likewise for BP1, results obtained on data gathered from BP2

and BP5 show that in using the standard approach, a higher clas-

sification accuracy for one class is associated with a very low

and insufficient accuracy on another one. Like BP4, patients

BP6 and BP7 displayed severe pathological behavior before

reaching the euthymic condition. Accordingly, accuracy greater

than 86% was obtained in recognizing such states.

BP8 showed mood swings among three states such as the

mixed state, depression, and euthymia. This case is very inter-

esting for this study as we obtained interesting performance,

considering a three-class pattern recognition problem (see

Table X).

For each patient, higher total accuracy was obtained consider-

ing mood states as a Markov chain rather than using a standard

approach. Although a further statistical analysis revealed that

there are no differences between the sensitivity values given

by the two methodologies, significant differences were found

concerning the specificity values (p < 0.02) and total accura-

cies (p < 0.01) according to the nonparametric Wilcoxon signed

rank test for paired data performed on all the subjects. Moreover,

in order to generalize these results, it is worthwhile mentioning

that we tested the classifier also when data were normalized

with respect to a casual mood status achieving also lower per-

formances than the proposed Markovian approach.

V. CONCLUSION AND DISCUSSION

In conclusion, we presented a novel wearable system com-

prised of textile technology and biosignal processing able to

recognize the mood status of bipolar patients by means of

a personalized hardware and software platform. An effective
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methodology of signal processing based on a mood history-

dependent, long-term HRV analysis allowed for obtaining robust

recognitions validated in a dataset consisting of eight patients

who were monitored for up to 18 h and up to six times, thus col-

lecting more than 400 h of data. As bipolar disorder is a chronic

illness having a high impact on society [40]–[43], research that

aims to establish a reliable decision system to support clinical

diagnoses is much needed. Physicians, in fact, currently rely

on rating scales and questionnaire scores [46]–[48] without any

objective clinical clues. Moreover, a typical feature of bipolar

disorder is that it is a chronic yet remittent disorder. Patients can

experience periods of relative well-being with possible abrupt

relapses.

A portable remote system able to detect and predict mood

changes will be important for obtaining very useful clinical

information even in the absence of direct contact with the

physician. This will allow for a more rapid and efficient use

of medical treatment and a shortening of the symptomatic pe-

riod. Although research work reported on biomarkers having

statistical difference among different mood states [29], [32],

[34]–[36], [49]–[53], a single-variable approach is not suffi-

cient to robustly characterize mood swings [9]. Starting from

the consideration that a correlation might exist between mental

disorders and ANS dynamical changes, we successfully applied

a multiparametric approach as a decision support system for the

diagnosis of bipolar disorder. Such information is gathered by

means of a wearable, comfortable, and unobtrusive monitoring

systems: the PSYCHE platform. ANS signals are acquired over

a long term as the mood has been defined as a long-lasting, dif-

fuse, affective state, not associated with a specific trigger [85].

Therefore, no specific tasks are required in using the PSYCHE

system. HRV was chosen as a good noninvasive marker of the

ANS activity [38], [39], especially effective in emotion recog-

nition systems [70], [86]–[90].

Here, we propose a personalized approach that identifies

mood states as intrasubject analysis taking into account the

temporal dynamics of the illness. This consideration represents

the great novelty of our approach and is implemented consider-

ing the ANS dynamics among mood fluctuations as a Markov

stochastic process [54], i.e., each mood state refers to the pre-

vious one. As literature supports, Markov’s theory has been

successfully applied to model human emotions [55].

Our methodological approach accounts for clinical course

during a mood fluctuation. The onset of a new mood state brings

the past clinical history along, and the identification of the next

state is more accurate if the previous one is considered. From a

point of view purely speculative, our approach goes beyond the

rigid application of DSM-IV-TR labels, but introduces the new

concept that the clinical diagnosis is looking backward. Bet-

ter understanding of the patient’s mood status can be achieved

considering the dynamics of the disorder rather than the single

observation treated as completely independent. For instance,

patients with bipolar disorders present different clinical signs

whether a depressive episode follows or precedes a maniac

status [91].

Experimental results are very satisfactory. Considering pa-

tients with a mood label such as depression, hypomania, mixed

state, and ES, we are able to distinguish subjective mood states

with high accuracy, especially when a pathological clinical sta-

tus is compared with the reference euthymic status (e.g., eu-

thymic versus depressed, and euthymic versus mixed state).

Moreover, the comparison of the obtained findings through

Markov mood state modeling with a standard approach, inspired

by Valenza et al. [9], further confirms the crucial role played

by the long-term dynamics of pathological mental states. A

further statistical analysis, in fact, revealed that a reliable and

significantly higher specificity values are achieved only when

the temporal dynamics of the illness is taken into account.The

translational clinical application of the proposed methodology

is not a challenging task, as ECG monitoring systems are widely

available even in a portable fashion (e.g., standard ECG holter).

However, as the proposed methodology focuses on the intrasub-

ject classification, the new training phase has to be performed

for every new patient. Ideally, such a training phase requires

at least four acquisitions of physiological data that cover all

the possible mood states, although a minimum switch of two

mood states is strongly needed. Moreover, during such a train-

ing phase, doctors have to determine the mood states during

each of the acquisitions. Then, these labels together with phys-

iological data can be used to train the classifier. Only after this

training phase, the proposed system will be able to diagnose the

patient without an input from doctors. Major improvements of

the system are expected solving the intersubject variability issue

for the mood classification.

While the proposed experimental procedure provides for car-

rying out normal life activities, it is worthwhile mentioning that

different life activities could be easily associated with different

HRV dynamics. Using the methodology proposed in this study,

such changes are minimized considering long-term, history-

dependent dynamics referred to as one of the four possible

pathological mood states. Given the high classification accuracy,

it is indeed possible to hypothesize that the few misclassified

samples can be interpreted as either algorithmic/mathematical

artifacts or physiological outliers, i.e., events not related to mood

markers for any reason (including also misleading daily activi-

ties).

The impact of this research will open new opportunities to

create a closed loop between patients and clinicians through

continuous communication and feedback that facilitates disease

management by fostering a new collaboration, with more au-

tonomy and empowerment for the patient. Constant monitoring

and feedback (to both patients and physicians) are the new keys

to managing the illness, to helping patients, to facilitating inter-

action between patient and physician, as well as to alerting pro-

fessionals in case of relapse and depressive or manic episodes,

and as a ultimate goal, to identifying signal trends in order to

predict critical events. Moreover, the possibility of introducing

other past mood states to the analysis and mood state labeling

features is intriguing also from a clinical point of view. This

is because it introduces the idea that mood disorders cannot be

considered to be a series of independent and stand-alone states,

but rather a chronological sequence of mood states that are re-

lated to each other. Previous studies have been limited to not

considering this issue and may be one of the possible reasons
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for their lack of ability to discriminate mood status at single

subject levels.

Considering mood episodes as interlinked will possibly lead

not only to a better characterization of the mood state and a

better comprehension of psychophysiology of mood disorders,

but also to the possibility of predicting the clinical course of the

disorder itself. Further studies with a larger number of recruited

patients will be provided a more complete understanding and

knowledge of HRV and ANS alterations in bipolar disorders,

therefore allowing for the assessment of the most important fea-

tures related to pathological mental states. Currently, the pro-

posed approach is under development in the framework of the

PSYCHE project, which is an European research Project that

aims at developing a pervasive and personalized monitoring

system for care assessment in mental health.
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