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Abstract

We propose to use wearable computers and sensor sys-
tems to generate personal contextual annotations in au-
dio visual recordings of meetings. In this paper we argue
that such annotations are essential and effective to allow
retrieval of relevant information from large audio-visual
databases. The paper proposes several useful annotations
that can be derived from cheap and unobtrusive sensors. It
also describes a hardware platform designed to implement
this concept and presents first experimental results.

1. Introduction

Interestingly, about 500 Tera Bytes of storage are suf-
ficient to record all audio-visual information a person per-
ceives during an entire lifespan1. This amount of storage
will be available even for an average person in the not so
distant future. A wearable recording and computing device
therefore might be used to ’remember’ any talk, any discus-
sion, or any environment you saw.

Today however, the usefulness of such data is rather lim-
ited by the lack of adequate methods for accessing and in-
dexing large audio-visual databases. Interestingly, humans
not only remember events and retrieve memories based on
information such as time, date, location, or content of a dis-
cussion. But humans use additional and personal experi-
ence and contextual information to remember and retrieve
memories. In this paper we propose to use wearable sensors
in order to enhance the recorded data to allow associative
access.

In that context, wearable computers are particularly in-
teresting since they allow a truly personal audio-visual
record of the environment of a person. Using a hat- or glass-
mounted camera and microphones attached to the chest or
shoulders of the person enable a recording from a first-
person perspective. Additionally, wearable sensors such
as accelerometers and biometric sensors can enhance the

1assuming a lifespan of 100 years, 24h recording per day, and 10 MB
per min recording results in approximately 500 TB

recording with additional, very personal information. That
sensor information can be used to annotate and structure the
data stream for later access.

Obviously, automatically annotating and structuring the
entire life-record of a person is an extremely ambitious and
probably too general problem. Therefore, this paper deals
with a more specific problem, namely the annotation of
meetings, which, in itself, presents a very diverse setting.
Most of us have many, maybe too many meetings every
week. Using a wearable to record such meetings won’t
make the meetings themselves more efficient. However, it
may allow the user to recall who he encountered, who dis-
cussed, who agreed or disagreed, and which arguments each
participant made. It may also make it easier to reconstruct
which, why, and how a decision was taken.

Meetings may take place in a room instrumented with
dedicated hardware. More generally however, meetings
also take place outdoors or in a mobile setting. Further, im-
portant discussions may take place during the break or on
the corridor. Wearable computers, which stay with the per-
son all the time, are particularly well suited for this more
general meeting scenario.

The contributions of this paper are firstly the discussion
of possible annotations of a meeting recording so as to fa-
cilitate associative retrieval (section 3). Secondly we inves-
tigate the use of audio data (section 4) and accelerometer
data (section 5) to automatically generate interesting anno-
tations. The feasibility of such annotations is shown experi-
mentally (section 6). Thirdly, we have designed and imple-
mented a distributed accelerometer network so as to extract
information about the user’s movements and postures (sec-
tion 5). Finally section 7 discusses the approach and gives
a brief outlook.

2. Related Work

The idea of computer-based support for human memory
and retrieval is not new. Lamming and Flynn for example
point out the importance of context as a retrieval key [11]
but only used cues like location, phone calls, and interac-
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tion between different PDAs. The conference assistant [5]
supports the organization of a conference visit, annotation
of talks and discussions, and retrieval of information after
the visit. Again, the cooperation and communication be-
tween different wearables and the environment is an essen-
tial part of the system. Rhodes proposed the text-based re-
membrance agent [17] to help people to retrieve notes they
previously made on their computer.

For speech recognition the automatic speech transcrip-
tion of meetings is an extremely challenging task due to
overlapping and spontaneous speech, large vocabularies,
and difficult background noise [1, 2]. Often, multiple
microphones are used such as close-talking, table micro-
phones, and microphone arrays. The SpeechCorder project
[8] for example aims to retrieve information from roughly
transcribed speech recorded during a meeting. Summariza-
tion is another topic, which is currently under investigation
in speech recognition [22] as well as video processing. We
strongly believe, however, that summarization is not enough
to allow effective and in particular associative access to the
recorded data (see section 3). It should be noted that those
methods are complementary to the proposed approach and
should be integrated eventually.

Richter and Le [10] propose a device which will use pre-
defined commands to record conversations and take low-
resolution photos. At the university of Tokyo [20] re-
searchers investigate the possibilities to record subjective
experience by recording audio, video, as well as heartbeat or
skin conductance so as to recall one’s experience from vari-
ous aspects. StartleCam [6] is a wearable device which tries
to mimic the wearer’s selective memory. The WearCam
idea of Mann [13] is also related to the idea of constantly
recording one’s visual environment.

3. Annotating a Meeting Recording

The ultimate goal of our system is to facilitate efficient
indexing and retrieval of the audio-visual data recorded dur-
ing meetings. The general idea is to support or ’extend’ the
human memory by means of a wearable computer. In this
context it is interesting to note that the human brain heavily
uses associative memory access. Humans not only retrieve
memories about an event based on time, date, name of a per-
son, or other precise attributes. Humans also remember and
retrieve things by context information such as the weather,
what happened before the meeting, who else was present, or
if people were agitated during a discussion. Therefore, this
paper proposes to enhance and annotate meeting recordings
by context information in order enable associative retrieval
of information.
Interesting Annotations for Meetings. It is standard to
generate summaries of meetings either in written or digi-
tal form. Those summaries however are not close enough

to how humans retrieve information from their memories.
Looking particularly at the envisioned meeting scenario we
have identified four classes of relevant annotations. Those
are different meeting phases, flow of discussion, user ac-
tivity and reactions, and interactions between the partici-
pants. The meeting phase includes the time of presenta-
tions, breaks, and when somebody is coming or leaving dur-
ing the meeting. The flow of discussion annotations attach
speaker identity and changes to the audio stream, and indi-
cate the level of intensity of discussion. It can also help to
differentiate single person presentations, interactive ques-
tions and answers, and heated debate. User activity and re-
actions indicate user’s level of interest, focus of attention,
and agreement or disagreement with particular issues and
comments. By tracking the interaction of the user with other
participants personal discussions can be differentiated from
general discussions.

Using Wearable Sensors to Annotate Meetings. Using
wearable sensors opens the opportunity to add relevant an-
notations from all four classes. In this paper we concentrate
on using audio to identify speakers and speaker changes.
We also propose a distributed accelerometer network to
identify the user’s reactions and activities such as walking,
standing, and sitting. Also hand movements, such as shak-
ing hands, have a clear social meaning which can be used
to detect interactions between participants. Additional in-
formation can be derived by correlating those two channels.
For example a speaker change together with head turning
indicates a shift in the focus of attention. Similarly, a coin-
cidence of a speaker change with head nodding or shaking
indicate agreement or disagreement with what is just said.
The advantage of our approach lies in the fact that complex
information can be derived with small and unobtrusive low-
power devices.

Collaborating Wearables. An interesting aspect of a meet-
ing is also how much the wearable devices of the individual
participants collaborate. In one extreme, a user might only
have access to the data recorded and annotated by his own
wearable. In that case the computing, sensing, and conse-
quently power requirements are quite high. In the other ex-
treme all participants possess a wearable and share at least
some information. In that case the decision who is present
or who is speaking is a much simpler task since it is rela-
tively simple to detect when the user of a wearable device
is talking (see section 4).

When wearables share information there is an obvious
question of trust. Sharing information among trusted wear-
ables however, is a rich source for additional information
such as the slides of a presenter, the transcribed speech from
the presenter, etc. In the near future it is most likely that
there will be a mixture of the two extremes so that the wear-
able should be designed to adapt to both scenarios in an
appropriate fashion.
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Figure 1. Identification Model for a Single
Speaker (left) and Segmentation Network
(right)

4. Audio Context: Speaker Segmentation

As pointed out earlier, a text-only transcript of a meet-
ing may not be sufficient for associative retrieval. The flow
of discussion indicates its intensity and allows to tell pre-
sentation from discussion. The transcription of speech in
our setting (multiple speakers, spontaneous or even simul-
taneous speech, large vocabularies, one microphone worn
by only one user) is still a very hard problem, despite recent
advances in speech recognition technology. In this paper we
therefore concentrate on finding speaker changes and iden-
tities.

In our setting we have the microphone attached to the
user of the wearable computer. We can exploit this fact
and detect, whether the user is speaking or someone else by
mainly looking at the energy of the recorded audio signal.
In section 6 we show that this method effectively improves
speaker recognition.
Related Work The problems of speaker recognition and
segmentation have been addressed by two fundamentally
different approaches, either based on clustering or using
Hidden Markov Models (HMMs). [9] uses agglomerative
clustering and [4] distance–based segmentation to detect the
most likely speaker changes and the Bayesian Information
Criterion to discard invalid changes. These methods com-
bine reliability with reasonable cost, but at the price of non
real–time performance.

The identification of speakers can also be done using
HMMs, similar to speech recognition. The topology of the
HMM is often distorted, since the identification of a speaker
is not based on any actual utterance and is therefore not re-
ally time-dependent. [3] uses a single state with 30 Gaus-
sians and [23] uses 32 parallel states for a single speaker
HMM. In the case of multiple speakers, each has his own
HMM and the Viterbi–algorithm allows speaker identifica-
tion in real-time. Since the speaker models need training
these approaches require audio data from each speaker in
advance.
Speaker Segmentation using Speaker Identification The
identification of speakers can also be used for speaker seg-

mentation [23]. In this paper we assume to know the partic-
ipating speakers. This allows to take the approach of Kim-
ber and Wilcox [9, 23], which performs in real–time and
produces a segmentation, as well as an identification of the
speakers. The HMMs are trained on 12 mel–cepstral coeffi-
cients over 20ms, non–overlapping windows. The topology
for one speaker HMM is depicted on the left of figure 1. In
our system we use � � �� states.

The speaker-HMMs are combined into the segmentation
network (see figure 1 on the right). The speaker models are
trained separately and the segmentation network is used for
recognition. The Viterbi algorithm finds the optimal path
through the HMM from one speaker to another and there-
fore detects speaker changes. � is selected empirically as
to discourage short speaker changes due to isolated speech
vectors. For training and recognition the HMM Toolkit
(HTK) [25] is used.

5 Accelerometric Analysis

Our approach to monitoring user’s activity and reactions
is based on the importance of human posture and gesture.
Most situations and activities can be characterized by a spe-
cific body position and/or limbs motion pattern. A person
presenting a talk is likely to be standing up, possibly slowly
walking back and forth, moving his arms gesticulating. By
contrast somebody eating lunch would be sitting, predom-
inantly looking down and periodically lifting a sandwich
from the plate to his mouth.

To detect postures and body parts motions we rely on a
network of 3 axis accelerometers distributed over the user’s
body. Each accelerometer provides us with information
about the orientation and movement of the corresponding
body part. The advantage of this approach lies in the small
size and energy efficiency of acceleration sensors. In addi-
tion with a modest amount of preprocessing only minimal
communication bandwidth is needed to read the relevant in-
formation. Thus such a network can be unobtrusively in-
tegrated in an arbitrary outfit. While much work has been
devoted to accelerometric context detection [24, 19, 18, 7]
with the exception of [15] which relied on several sensors
distributed over the hand the use of a distributed network
has not been studied.

A detailed description of our approach to movement and
posture recognition is beyond the scope of this paper. In-
stead the following section provides an overview of our
hardware and the principles used for the classification of
postures and motions from the sensor data.

5.1 Hardware

Each sensor node consists of two dual-axis accelerom-
eters from Analog Devices ADXL202E (combined allow
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measurement of linear acceleration in the 3D-space) and the
MSP430F149 low power 16-Bit mixed signal microproces-
sor (MPU) from Texas Instruments running at 6 MHz max-
imum clock speed. The MPU reads out the sensor signals
and handles the communication between modules through
dedicated I/O pins. Since our setup relies on the analog out-
puts of the accelerometers three second order Sallen-Key
low pass filters are also used. Optionally, a single-axis gy-
roscope can be mounted on the board.

Although the modules are miniaturized (28x34 mm)
even smaller devices are desirable at some locations such as
the head or fingers. Therefore, the modules are partitioned
and consist of two parts each: the main part with the mi-
crocontroller, the filters and amplifiers and a sub-part with
the sensors only which can either be mounted directly on
the main unit or connected by wires. Figure 2 illustrates the
assembly of a node and its block diagram. All modules are

MSP
430F149

Murata
1-D gyroscope

(optional)

Control
LEDs

2 x
ADXL202E

Filters

Gain Amplifiers
I/O

Interfaces

Figure 2. Left: Main-board, sub-board of sen-
sor node and 1/4 dollar coin, right: corre-
sponding block diagram of sensor node

powered from a single central power supply consisting of a
step down regulator and a small mobile phone or camcorder
battery. The power supply unit is part of a central control
module. This module is based on a GPS receiver (u-blox
GPS-MS1E) with an Hitachi SH-1 processor. Apart from
serving as a central control unit of the network and a serial
I/O-interface to a computer this module can also provide
absolute location information.
Network The communication within our sensor network is
based on a 3-wire bus. Two wires implement the commu-
nication between the nodes using the I2C-bus and the third
is used to synchronize all sensors. The sensor platform is
partitioned into subnetworks reflecting anatomical relations
between the body parts. For example all sensors on the
upper and lower leg and possibly foot constitute a single
subnetwork. Within such a subnetwork a particular sensor
module acts as a master which handles communication with
the other sensor nodes (slaves) within the channel. All the
masters of the subnetworks are slaves to an upper network
layer in which the central module with the Hitachi SH-1
processor serves as master. This two-layered hierarchical
network architecture allows to optimize communication in
terms of overall network load, since a considerable amount
of pre-processing can be done locally within a subnetwork.

Thus most of the communication between layers consists
of high level features represented by a few numbers rather
the large amounts of raw data. As a second advantage this
distributed data processing approach allows to reduce com-
putational load of the central master node in the first layer.
Figure 3 shows the hierarchical network structure with pos-
sible sensor locations. Sensors labeled 1 to 7 are used for
our experiments.

Central master

Master of subnetwork

Slaves of subnetworks

1

3

2

6

4

Sensor locations for experiments

2: Right wrist
3: Right lower arm
4: Right upper arm
5: Forehead
6: Chest
7: Left lower arm

1: Right upper leg

7

5

Figure 3. Hierarchical network with observa-
tion channels.

5.2 Recognition Methodology

Most approaches to activity recognition using wearable
accelerometers rely on parameters that are more or less di-
rectly derived from the raw accelerometer data [14, 16].
Often automatic clustering algorithms are used to derive
features used for classification [21]. By contrast our ap-
proach emphasizes physical models of human motion and
the decomposition of complex motions into elementary pos-
tures and gestures of each body part. This is possible
since the distributed, multisensor accelerometer network
provides detailed information on every relevant body part.
The following summarizes the underlying physical model
and sketches our feature extraction procedure. The features
provide an excellent separation between the relevant move-
ments and postures so that in many cases simple, easy to de-
rive decision trees are sufficient for reliable recognition. For
complex, more ambiguous motions statistical pattern clas-
sification algorithms like HMM and neural networks can be
applied.
Physical Model The readings of the accelerometers con-
sist of three components: gravity, change of speed and cen-
tripetal forces. The gravity component can be used to deter-
mine the orientation of a sensor (and with it the correspond-
ing body part) in the vertical plane. The change of speed
part of the reading is the basis for motion analysis. The
centripetal force results from rotational motions of the limbs
with respect to the corresponding joints. In most cases this
component of the reading is not used.
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In general for any single sensor the above components
are non separable. However in most cases approximate
separation can be achieved either by frequency separation
of the acceleration signal or by appropriate sensor place-
ment. The gravity contribution showing the orientation of
the body parts is predominantly contained in the low fre-
quency part of the sensor signal often remaining unchanged
for seconds. By contrast any strong acceleration of the body
parts is likely to last no longer then a few tenths of a second.
In terms of sensor placement we utilize the fact that for sen-
sors placed close to a joint of an arm or leg the readings will
be dominated by the gravity contribution.
Feature Extraction The features used for the recognition
of user activity are the approximate orientation and motion
patterns of the relevant body parts. They are derived from
the sensor reading in several steps.

First for each sensor the output is filtered and separated
into low (� ���) and ’high’ (� ���) frequency compo-
nents. In the next steps the readings from the sensors on the
torso are propagated down in the network hierarchy allow-
ing the bottom sensors (located at the limbs and the head)
to compute their motion relative to the torso. To this end
the low frequency component is used to compute the orien-
tation of the corresponding body parts in the vertical plane.
The high frequency component is analyzed for motion arti-
facts. After this initial evaluation phase the results are prop-
agated up through the network to the control node. Using
the knowledge about the anatomical constraints of the hu-
man body together with the previous position and motion
state the controller combines the data from the individual
sensors to an overall approximate description of the posture
and motion pattern. This is forwarded to the main computer
unit that performs the actual classification of the situation
and user activity.

6 Experiments

We acquired audio and acceleration data to validate our
idea and evaluate the methods described in sections 4 and 5.

6.1. Speaker Recognition

To validate the audio retrieval algorithms we conducted
several experiments with increasing difficulty. We used
either desktop microphones or a wearable clip–on micro-
phone (Sony ECM TS-125).
User vs. the World Since we are considering personal an-
notations, the information whether the user or somebody
else is speaking is highly interesting. The wearable mi-
crophone allows to use a simple energy-thresholding algo-
rithm for distinguishing between ‘Me’ and ‘Not-Me’, which
proves to be very successful. The recording of a 41 minute

Sequence Recognition Error

Reading One 1.6 %
Reading Two 0.0 %

‘Clean’ Dialog 11.5 %
‘Normal’ Dialog 11.4 %
Clip–on Mic 1 5.9 %
Clip–on Mic 2 9.2 %

Table 1. Speaker Recognition Experiments

meeting has been labelled and tested. Using energy thresh-
olding on 0.1 second intervals we achieve an error rate of
1.2 %, which will be sufficient for many retrieval applica-
tions.

Controlled Setting A set of six recordings of increasing
difficulty is used to evaluate the performance of the speaker
recognition algorithm. See table 1 for a summary of the re-
trieval results. One male and one female speaker recorded
them. Two sequences of 4 minutes each recorded with desk-
top microphones are used as training data. The first two
lines of table 1 show recognition results on these training
sets, which are obviously good.

The same two speakers were recorded, using the same
desktop microphones, involved in a dialog. The first lasts
about 10 min and is ‘clean’, i.e. contains distinct pauses be-
tween the speakers, no simultaneous speech and little laugh-
ter. The second (4 min) is a ‘normal’ unconstrained dialog.
Considering, that the problem is harder, the lower perfor-
mance is quite natural (see the 3rd and 4th row of table 1).

Finally the same speakers recorded two dialogs where
one of them wore the wearable microphone. Since the mi-
crophones changed, both sequences had to serve both as test
and as training sequences. The last two rows of table 1 show
the corresponding results.

Wearable Meeting In order to validate our approach we
recorded an entire meeting of 31 minutes. One of the four
participants (the ‘user’ in the following) was equipped with
a clip-on microphone. Using HMMs as described in section
4 results in a recognition error of 18 %. As described above,
the distinction between the wearer of the microphone and
‘the others’ can reliably be made using an energy threshold.
Using an energy threshold and only applying the HMM-
algorithm for the remaining part of the audio sequence re-
sults in an overall decrease of the error rate down to 9%.
Given, that the user was relatively far apart from the oth-
ers and constantly moving, these results are very promis-
ing. Again we should point out that the raw error rate is
not a very good measure to evaluate the usefulness for re-
trieval. We do believe that the obtained recognition rates are
sufficient for retrieval.
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Figure 4. Retrieval Error on different segment
lengths

6.2. Retrieval

Analyzing the results from the previous section reveals
that most speakers are identified correctly but that some-
times the time of the speaker change is not very accurate. A
substantial part of the error rates of table 1 are due to this.
In many retrieval scenarios however we are more interested
who is speaking i.e. which speakers participate in a dis-
cussion rather than to know exactly at what time somebody
speaks.

Motivated by this fact we propose a scheme that allows
trading error rate of speaker identification against its time
accuracy. More specifically we start looking for a specific
constellation of speakers using long segments and shorten
them incrementally. In order to avoid looking into wrong
segments and missing correct segments, we need a low er-
ror rate for long segments. At the same time however we
can allow for a rather coarse time accuracy. Once we are
looking into shorter segments, we are interested in listening
to actual utterances of specific people therefore relying on a
higher accuracy at what time somebody speaks or not.

Figure 4 shows a plot of the error rate of the speaker
identification versus the length of the time segments used
for recognition. The figure corresponds to the result for the
‘clean’ dialog, which has the highest error rate in our exper-
iments (see table 1). It can easily be seen, that the error rate
drops quickly under 1% for segments of only 40 seconds.
We can hence decrease the error significantly by enlarging
the segment in question. The price is obviously that the time
accuracy of the speaker is decreased. This result supports
the validity of the above mentioned retrieval scheme.
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Figure 5. Raw accelerometer data for the
’stand up, handshake, sitdown’ sequence.

6.3 Accelerometric Activity Detection

To verify that relevant indexing cues can be detected us-
ing our distributed accelerometer network we have looked
at different event sequences typical for a meeting scenario.
In this section we present the results from three selected se-
quences.
Measurement Setup All measurements have been made
with the accelerometer axes aligned with the three princi-
pal body axes: Longitudinal axis (vertical axis through the
body in the upright position), Horizontal axis (perpendic-
ular to longitudinal axis and runs from left to right), and
Sagittal axis (axis that runs from front to back). The assign-
ment of the body axes to the axes of the accelerometers have
been made for the anatomical position that is when a person
is standing upright with the head, eyes and toes pointing
forward, feet together with arms by the side. The palms of
the hands are also pointing forward.
Greeting a New Participant In the first experiment the
subject is sitting on a chair, hands on the table. From this
position he stands up, shakes hands with a newly arrived
meeting participant and sits down again. In this context the
acceleration of the vertical and sagittal axes of the upper
legs and the chest as well as the vertical and longitudinal
axes of the the right wrist are of particular interest. The
raw sensor data from the above channels is shown in fig-
ure 5. The left leg is omitted since it is virtually identical
to the right leg signal. The sequence contains two ’standup
and shake hands’ events. For the first one the features ex-
tracted using our signal processing algorithm are shown in
the six diagrams in figure 6. For each channel the left di-
agram shows the filtered low frequency component which
is proportional to the vertical orientation of the correspond-
ing body part. The leg channel shows the transition of the
upper leg from horizontal (sitting) to vertical (standing) po-
sition and back. The chest channel shows a forward lean-
ing motion of the torso characteristic for sitting down and
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Figure 6. Low (left) and high (right) frequency
components from the relevant channels in the
’stand up, handshake, sitdown’ sequence.

standing up. Taken together the two channels provide a re-
liable indication of the user standing up and sitting down.
The low frequency component of the hand channels shows
the user’s arm falling into a vertical position as he stands up
followed by a more horizontal orientation during the actual
handshake and another vertical horizontal transition as the
user sits down. Of the high frequency components shown
on the far right only the hand channel shows a significant
change of amplitude which can easily be identified as the
vertical handshake motion.

Head Movements during Discussion The second scenario
concentrates on head movements. As described in section 3
head motion is an important indicator of the user’s reaction
to events and his focus of interest. In particular, sponta-
neous nodding and head shaking is a good sign of agree-
ment or disagreement with a particular issue or comment.
Using the head channel from a sensor mounted on the fore-
head we have looked at nodding, head shaking, and head
turning events. Figure 7 shows the features extracted from
the longitunal channel of the sensor for a typical nodding
event. The low frequency channel is essentially constant,
since the amplitude of the nodding motion is too small and
the frequency too high. The high frequency channel con-
tains a sequence of ’bumps’ corresponding to the individual
nods, which can easily be identified with simple signal anal-
ysis techniques. Looking at the other sensors in the network
we can be sure that the bumps result from head motions.
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Figure 7. Low (left) and high (right) frequency
components from the head channel for a typ-
ical head nodding motion.

Figure 8. Examples of different postures that
can be recognized by our system.

Thus head nodding can be reliably detected using the fea-
tures extracted with our approach. A corresponding pattern
can be found for head shaking and head turns in the signal
of the horizontal or sagittal axis.
Complex Gestures and Posture Simple gestures like nod-
ding, shaking ones head or raising shoulders constitute just
a small and simple subset of human body language. As
shown in [12] the human body language is rich and com-
plex with a variety of postures and gestures that can be used
to deduce peoples attitudes and emotions. Many elements
of body language involve facial expressions and subtle ges-
ture nuances that are beyond the scope of our network of
accelerometers recognition approach. However, there are
a number of other potentially interesting expressions that
we can reliably recognize. The third scenario exemplifies
this by showing how sensors placed on the arm, the chest
the head and the upper leg can be used to distinguish two
different postures. To this end we have considered the pos-
tures shown in figure 8, which could be interpreted as ’con-
centrated’ (left) and ’laid back’ (right). Figure 9 shows the
appropriately processed low frequency components of the
sensors axes most affected by the change of orientation of
the corresponding body parts.

7 Discussion and Outlook

Using wearable computers to record and annotate meet-
ings is an interesting application of wearable computing
with great potential. In this paper we propose to automat-
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Figure 9. Raw data (left) and the prepro-
cessed low frequency component of the rele-
vant channels for a change between the pos-
tures shown in figure 8

ically generate personal annotations and personalized con-
textual information from wearable sensors. In particular,
we show the feasibility to segment an audio stream into se-
quences assigned to different speakers. This allows us to re-
construct the speaker flow. We also introduce a distributed
accelerometer network to analyze the body movements and
postures of the user. Those cues are a first step to enable
and facilitate efficient indexing and retrieval of audio-visual
meeting recordings.

Obviously, many issues remain to be addressed. As far as
complex postures and gestures are concerned, recognition is
just part of the problem. In many cases the correct interpre-
tation of complex body language poses a great challenge.
Obviously, there are a number of other sensor types that
could potentially be useful to annotate meeting recordings.
In particular, physiological data about the user may prove
valuable to asses the user’s reaction to events and the im-
portance of issues. Wearable cameras are also a rich source
to recognize faces, objects, and situations. Since the pro-
posed system should be used by a human an appropriate
interface to the indexing methodology has to be developed
and evaluated. Also the usefulness of the proposed cues as
well as additional cues should be evaluated on a large num-
ber of real-life meetings. We would also like to point out the
important issue of privacy which is a legal and even more so
an ethical issue linked to audio-visual recordings [8, 10].
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