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Abstract: Gait analysis has traditionally been carried out in a laboratory environment using expensive
equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into
clinical applications as well as use during activities of daily living. Real-time gait analysis is key to
the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This
article presents a systematic review of wearable sensors and techniques used in real-time gait analysis,
and their application to pathological gait. From four major scientific databases, we identified 1262
articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most
sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors
and the shank and foot are the preferred placements. Insole pressure sensors are the most common
sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on
threshold or peak detection are the most widely used gait detection method. The heterogeneity of
evaluation criteria prevented quantitative performance comparison of all methods. Although most
studies predicted that the proposed methods would work on pathological gait, less than one third
were validated on such data. Clinical applications of gait detection algorithms were considered, and
we recommend a combination of IMU and rule-based methods as an optimal solution.

Keywords: wearable sensor; real-time gait detection; gait analysis; insole pressure sensors; inertial
measurement unit; pathological gait; gait rehabilitation; assistive device

1. Introduction

1.1. Motivation

Traditionally, performing gait analysis required a dedicated laboratory and expensive
equipment, which has limited its scope of applications. Recent advancements in technol-
ogy have led to reliable, affordable, and wearable sensors for gait analysis that enable
its use outside of a laboratory environment and during activities of daily living. One of
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its primary uses has been in diagnosing walking impairment in people with gait disabili-
ties [1–4] and inspires control mechanisms of exoskeletons [5,6] and prostheses [7], among
other applications [8–12]. More specifically, real-time gait analysis has proven essential in
applications necessitating real-time control such as exoskeletons and prostheses, as well
as gait rehabilitation involving Functional Electrical Stimulation (FES) [13,14] or Epidural
Electrical Stimulation (EES) [15].

Physiological human gait is a quasi-periodic, synergistic process involving the timely
actuation of several lower-limb muscles, well-coordinated by neurons in the brain and the
spinal cord [5]. Gait disorders and disabilities can arise due to various reasons including
amputation of lower limbs, neurological diseases such as Parkinson’s, cerebral palsy and
Huntington’s, as well as through stroke or paralysis following an injury to the brain or the
spinal cord. This review is particularly motivated by the use of real-time gait analysis in an
on-going clinical study (STIMO, ClinicalTrials.gov, NCT02936453): a First-in-Man study to
confirm the safety and feasibility of a closed-loop EES in combination with overground
robot assisted rehabilitation training for patients with chronic incomplete spinal cord injury
(SCI) [16].

We first carried out a systematic review and meta analysis across four major scientific
databases (Scopus, Web of Science, Cochrane and PubMed) to identify the current state
of the art in wearable sensor-based real-time gait analysis. We then extracted studies that
focused on pathological gait and analyzed the most common sensors and techniques used
in clinical applications.

1.2. Previous Reviews

Before moving into the details of our study, we will briefly discuss our analysis of
existing review articles from literature, the results of which are summarized in Table 1. It can
be noted from the table that reviews done so far are either specific to a particular category
of gait detection method, are not systematic, lack coverage across major citation databases
or focus only on wearable sensing. Furthermore, throughout the literature, we noticed the
synonymous usage of the terminologies gait detection, gait event detection, and gait phase
detection. Although we appreciate the specific difference in terminologies, for the sake of
brevity, we will use gait detection to imply gait event and/or gait phase detection.

Among the 11 review studies analyzed, only four of them were systematic reviews.
Taborri et al. [17] performed a systematic review on wearable and non-wearable sensors
used in gait detection. The study identified various wearable sensors such as inertial
measurement units (IMU), insole pressure sensors (IPS), electromyography (EMG) and
electroneurogram (ENG), and non-wearable sensors such as opto-electronic systems, force
plates, and ultrasonic sensors. The study, however, was limited to sensors and did not
provide any review of gait detection methods. Panebianco et al. [18] performed a systematic
review covering PubMed, Scopus, and Web of Science. Although the search keywords were
not restrictive to rule-based methods, all 17 of the studies involved were limited to rule-
based methods. Caldasa et al. [19] performed a systematic review across major databases
such as Web of Science, ScienceDirect, IEEE, PubMed/MEDLINE, SCOPUS, CINAHL, and
Cochrane, thereby ensuring an exhaustive coverage. However, the review was limited
to only artificial intelligence-based gait detection methods using inertial measurements,
resulting in only 22 studies that met the acceptance criteria. Chen et al. [20] performed
a systematic review focusing particularly on quantifiable gait measures and tangible
evaluation techniques that are based on wearable sensors, particularly inertial measurement
units (IMU). The study also includes a review of nonlinear analysis techniques such as
phase portrait, Poincaré map, Lyapunov exponent (for gait stability assessment), and
elliptical Fourier analysis (for gait complexity assessment). The study, however, did not
report any real-time gait analysis methods. It can be noticed from these systematic reviews
that they are either limited to review of sensors or to a specific category of gait detection
method or did not consider real-time gait detection methods. Finally, none of these studies
presented information about pathological aspects of wearable sensor-based gait detection.
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To the best of the authors’ knowledge, there does not exist a systematic literature
review that identifies various wearable sensing options, real-time gait analysis methods,
and presents pathological aspects of wearable sensor-based gait detection. We therefore
performed a systematic review and meta-analysis across the four major scientific databases
mentioned earlier, following the PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) standard [21], covering 1262 articles, as will be discussed in the
next sections.

Table 1. Previous reviews: gaps identified from existing review articles from literature, covering wearable sensor-based
gait detection.

References Focus of Review Database Covered Gaps Identified in Existing Reviews
Number of Articles

Included

Song et al. [8]
Health sensing techniques with a
particular focus on smartphone

sensing
Not specified Not a systematic review, no review of

gait detection methods -

Shull et al. [22] Clinical impact of wearable
sensing

MEDLINE, Science Citation
Index Expanded, CINAHL,

Cochrane

Not a systematic review, no review of
gait detection methods 76

López-Nava and
Muñoz-Meléndez [23]

Review on inertial sensors and
sensor fusion methods for human

motion analysis,

ACM Digital Library, IEEE
Xplore, PubMed,

ScienceDirect, Scopus, Taylor
Francis Online, Web of

Science, Wiley Online Library

Not a systematic review, no review of
gait detection methods, review limited

to inertial sensors
37

Novak and Riener [24] Sensor fusion methods in
wearable robotics Not specified Not a systematic review, no review of

gait detection methods -

Vu et al. [25]
Gait event detection methods

applicable specifically for
prosthetic devices

Scopus, ScienceDirect, Google
Scholar

Not a systematic review, review
restricted to one category of

rehabilitation devices
87

Rueterbories et al. [26]
Review of sensor configurations

and placements, and a brief
review of gait detection methods

Not specified Not a systematic review, gait detection
methods were reviewed very briefly -

Perez-Ibarra et al. [27]

Brief review comparing gait event
detection methods, sensors used,
placement of sensors and subjects

involved

Not specified Brief review, as a subset of the article 18

Taborri et al. [17] Wearable and non-wearable
sensors used in gait detection

Scopus, Google Scholar,
PubMed No review of gait detection methods 72

Caldasa et al. [19]
Artificial intelligence-based gait
event detection methods using

inertial measurements

Web of Science, ScienceDirect,
IEEE, PubMed/MEDLINE,

Scopus, CINAHL, Cochrane

Review was limited to only one type of
sensor and one type of gait detection

algorithm
22

Panebianco et al. [18] Rule-based methods PubMed, Scopus and Web of
Science

Review was limited to only one
category of gait detection algorithm 17

Chen et al. [20]
Quantifiable gait measures and
tangible evaluation techniques

that are based on wearable sensors

PubMed, IEEE Xplore, ACM
Digital Library, EBSCO and

Cochrane Library

No review of real-time gait analysis
methods 35

1.3. Structure of the Report

The remainder of the article is organized into three sections. In Section 2, we describe
the methods followed in setting up the systematic review. In Section 3, we present and
discuss the results regarding: the search results in general in Section 3.1, gait events and
gait phases in Section 3.2, wearable sensors in Section 3.3, algorithms used for wearable
sensor-based real-time gait analysis in Section 3.4, and interpretations towards clinical
applications in Section 3.5. Finally, in Section 4, we present the conclusions.

2. Method: Setting up the Review

2.1. Choice of Databases

Haddaway et al. [28] classified scientific literature databases into two categories:
Academic Citation Database (ACDB) and Academic Citation Search Engine (ACSE). ACDBs
include the traditional Boolean string-based search engines such as Scopus, Web of Science
and PubMed, while ACSEs include Google scholar and semantic/natural language-based
search engines such as Microsoft Academic Search and Semantic Scholar. We first explored
both categories before making a choice.
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We considered nine of the most popular ACDBs in our selection process: CINAHL,
EBSCO, ACM digital library, IEEE Xplore, Science Direct, Scopus, Web of Science, Cochrane,
and PubMed. CINAHL, EBSCO, and ACM digital libraries were not included in the study
because of a lack of access to them. We could not include IEEE Xplore since it limits the
number of search terms to 15, which is noticeably lower than the number of keywords
used in this study (see Table 2). However, this should not impact the comprehensiveness
of our study, since IEEE articles are already indexed in Scopus and Web of Science. Science
Direct was not included, as a recent update in their search keyword input framework
limited us from inputting all our keywords, thereby making it unsuitable for our systematic
review. However, this should not impact the comprehensiveness of our study since Science
Direct and Scopus share the same database [29] and come from the same parent company
(Elsevier). Finally, we decided not to include ACSEs in the review primarily because of
deficient repeatability and reproducibility of search results, among other factors [28,30–32].
The remaining databases were thus Scopus, Web of Science, Cochrane and PubMed. ACDBs
such as Scopus and Web of Science use a selective procedure to safeguard against low-
quality or low-impact material being indexed [33], while Cochrane and PubMed are
expected to add more clinically relevant studies.

2.2. Choice of Keywords for Search

To establish an appropriate search phrase, a pre-search was carried out first, collecting
a list of keywords used by gait analysis researchers. In an attempt to find an optimum
keyword-combination from the list, we analyzed these keyword-combinations by taking the
conducted search results (from Scopus) to VOS-viewer [34], a metadata analysis software.
VOS-viewer performs clustering of search results based on title, abstract and keywords
of corresponding articles and illustrates the results graphically as shown in Figure 1.
This gives us a bigger picture of the nature of articles returned by the search engine for the
corresponding choice of keywords. The size of each node indicates the relative relevance
(based on the frequency of occurrence of keywords) of that topic among the list of articles
returned by the search query. This procedure was iterated and refined several times before
arriving at the final search phrase listed in Table 2. We believe that it made the decision-
making less subjective and biased. Although this study is not limited to any particular
wearable sensor, we included the keywords ‘IMU’ and ‘insole’ (see Table 2) explicitly so as
not to miss out articles related to these two types of sensors, while also retaining the word
‘sensor’ in the search phrase to make it inclusive for every other type of wearable sensors.

Table 2. Keyword combination used for search in Scopus database which resulted in 697 articles
(see Figure 2). The same keyword combination was used in the other databases as well, except
adapting syntax to individual search engines.

realtime OR “real time” OR online
AND

gait OR walking OR locomotion OR “lower limb” OR “lower body” OR
leg OR “lower extremity”

AND

analysis OR detection OR evaluation OR assessment OR estimation OR
reconstruction OR tracking

AND

wearable OR portable OR mobile
AND

sensor OR “inertial measurement unit” OR accelerometer OR IMU OR gyroscope OR
insole OR in-sole
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Figure 1. Word cloud showing most frequently occurring keywords present in search results for a search query in Scopus
(for instance, see Table 2), visualized by the software VOS-Viewer [35]. The size of each node indicates the relative relevance
(based on the frequency of occurrence of keywords) of that topic among the list of articles returned by the search query.
Connections between nodes were not used in refining the search terms.

2.3. Carrying Out the Review in a Systematic Manner

In this study, we followed the PRISMA standard for systematic review. A total
of 1262 articles were part of the review, including 1221 articles retrieved from the four
databases (see Figure 2) and an additional 41 articles added later from bibliographies of
the former. Figure 3 shows the PRISMA flow diagram illustrating the screening procedure
followed. The screening procedure was performed independently by the two lead authors
of our study. Studies for which the authors had difference of opinion on their exclusion
(such as studies that were at the border line of the exclusion criteria) were mutually
discussed and decided upon. Although assessment of paper quality is not mandated
by the PRISMA standard, the authors’ choice of databases ensured that low-quality and
low-impact material was not considered.

We classify the most commonly used gait features into intra-stride (within stride) and
inter-stride (between strides) features, and into temporal and spatial features. Intra-stride
features are of higher granularity, looking at the gait in more detail, while inter-stride
features are of lower granularity. The choice of each depends on the application. Examples
of each category are listed in Table 3.
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In this review, we focus on intra-stride temporal gait features (ISTGFs), the rationale
being that inter-stride features can be obtained from related intra-stride features (e.g., stride
duration and cadence can be obtained from temporal information of consecutive heel
strikes). We therefore believe that detecting sufficient ISTGFs is sufficient for insightful gait
analysis in practice. In addition, ISTGFs are necessary for real-time control applications
such as in the clinical study [16] that has served as a particular motivation for this review.
Hence, studies not estimating the ISTGFs (such as indoor localization algorithms, gait
reconstruction methods and activity classification methods) were excluded from this review.

697 356 43

125

125

695 335 41

791

695/ 695

45/ 335

34/ 41

17/ 125

Scopus Web of
Science

Cochrane PubMed

Number of records retrieved
from each database

Number of records after
removing self-duplicates

Adding unique articles
sequentially

Total number of unique

records

Figure 2. Collecting unique articles from the databases was carried out sequentially, starting with Scopus where 697 articles
were extracted and of which 695 unique records were identified. Out of the 335 unique records identified from Web of
Science, 290 articles already appeared in the results from Scopus and hence the remaining 45 unique records were added.
Similarly, 34 from Cochrane and 17 from PubMed were added to the list of unique records.

Table 3. Classification of the most commonly used gait features into intra-stride and inter-stride as
well as into temporal, spatial, and spatio-temporal features. The scope of this review is primarily
limited to the intra-stride temporal gait features (ISTGFs) highlighted in blue.

Features Intra-Stride Features Inter-Stride Features

Temporal

Gait events
Gait phases

Step duration Stride duration
Swing/stance duration Cadence

Spatial Step length Stride length

Spatio-temporal

Joint angles
Segment angles, segment positions

Joint torques
Ground reaction force

Centre of pressure
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Records identif ed through

database search (1221)

Records identif ed through

other sources (41)

Records after duplicates removed

(832 = 791+41)

Records screened for relevance
(title-abstract) (832)

Full text articles assessed for
eligibility (153)

Studies included in qualitative
analysis (113)

Studies included in quantitative
analysis, if any (99)

Records excluded (title-abstract) (679)
- Studies not involving gait analysis
- Studies not estimating ISTGFs
- Studies exclusively devoted to sensor development
- Studies involving non-wearable systems
- Studies involving non-bipedal systems
- Studies involving activity classif cation

- Extended conference abstracts

Full text articles excluded with reason (40)
- Studies not involving gait analysis
- Studies not estimating ISTGFs
- Studies exclusively devoted to sensor development
- Studies involving non-wearable systems
- Studies involving non-bipedal systems
- Studies involving activity classif cation
- Journal-conference duplicate versions

Figure 3. PRISMA flow diagram illustrating the screening procedure. Reasons for exclusion and the number of articles retrieved
at each stage are indicated in red. In addition, 832 articles were left after removing duplicates. Out of those, 679 articles were
eliminated through title-abstract screening, based on a set of exclusion criteria as listed in the PRISMA flow diagram. The
remaining 153 articles qualified for full-text screening, of which 40 were excluded and the remaining 113 qualified for full-text
review. Out of these, 99 articles were also used for quantitative analysis. ISTGF—intra-stride temporal gait feature.

Other major reasons for exclusion are listed in the PRISMA flow diagram (see Figure 3).
Studies not involving bipedal systems, studies not involving wearable systems, and studies
devoted purely to (wearable) sensor development are directly excluded. When both a
conference version of an article and its extended journal version appeared in our search
results, the conference version was excluded. In a rare observation, we noted two sets of
nearly duplicate conference publications from the same set of authors [7,36–38]. In this case,
only the latest ones were considered for further review. Finally, if an article was found to
compare, list, or review multiple gait event detection methods introduced in other studies,
the original studies were included in the review rather than the former.

3. Results and Discussion

3.1. Search Results

The systematic review resulted in the identification of 1262 studies, as indicated in
Figure 3. After removal of duplicates, we were left with 832 unique studies. Out of these,
113 and 99 qualified for qualitative and quantitative analysis respectively. Studies that
underwent qualitative analysis influenced our discussions while quantitative analysis
resulted in the extraction of metadata that was presented throughout the paper. The
14 studies not included in the quantitative analysis did not contain all the necessary
metadata and therefore did not contribute directly to the metrics presented.

Review studies cited in Section 1.2 have an average of 30 full-text articles per review,
with a maximum of 76 by Shull et al. [22]. The present work is thus one of the most
comprehensive reviews on the subject.
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3.2. Gait Events and Gait Phases

Irrespective of the type of wearable sensors used and the type of real-time gait analysis
methods followed, here we will briefly discuss the two major ISTGFs from literature: gait
events and gait phases.

Researchers followed different terminologies for various gait events. Some authors
prefer to use initial contact (IC) (or sometimes touch down) instead of being more specific
as to whether the contact is with heel strike (HS) or with toe strike (TS). Although HS is
most often the obvious initial contact in unimpaired gait, it is not necessarily the case with
impaired gait. For instance, initial contact in the case of toe walking could be TS instead
of HS. Similarly, some authors prefer end contact or foot off instead of using the more
explicit terminologies: toe off (TO) or heel off (HO). On the other hand, for gait phases,
researchers tend to use consistent terminology to decompose stance and swing: loading
response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal
swing [6,39–42].

A detailed count of gait events and gait phases used in the resulting studies is shown in
Figure 4a,b respectively. TO and HS are the most widely identified gait events irrespective
of the type of sensor used. A total of 42 studies detected TO while 45 detected HS,
suggesting the high relevance and ease with which these events can be identified from gait
signals. Among the gait phases, swing (22 studies) was the most widely identified gait
phase followed by mid-stance (17 studies).

3.3. Sensors

In order to have an overview of relevant wearable sensors available on the market,
a survey of off-the-shelf devices was conducted. Wearable sensors identified include pri-
marily IMUs, insole pressure sensors (IPS), electromyography (EMG) sensors, goniometers,
inclinometers, electromagnetic trackers, and stretch sensors. However, only three main
types of wearable sensors could be identified among the 99 studies that featured in the
quantitative analysis of our review: IMU, IPS, and a combination of the two. The dis-
tribution of sensors used is shown in Figure 5a and discussed in the following sections.
A check was performed on the Scopus database to ensure that our explicit addition of
search terms regarding IMU and IPS were not heavily biasing the results. In fact, only 98
additional studies were found compared to the 725 identified without the search terms, and
we therefore conclude that their explicit addition was not responsible for the dominance of
these sensor types.
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(a)

N
u
m
b
e
r
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LR MSt TSt St ISwPSw MSwTSw Sw

(b)
Figure 4. (a) Distribution of studies based on the detected gait events; (b) distribution of studies based on the gait phases
identified. Gait events/phases reported with greater (temporal) specificity are shown in magenta while gait events/phases
reported with less specificity are shown in blue. For instance, initial contact (IC, blue) is not specific as to whether the contact
is with the heel or toe while heel strike (HS, magenta) and toe strike (TS, magenta). TO—toe off, HO—heel off, FO—foot off,
HS—heel strike, TS—toe strike, IC—initial contact, FF—foot flat, LR—loading response, MSt—mid-stance, TSt—terminal
stance, St—stance, PSw—pre-swing, ISw—initial swing, MSw—mid-swing, TSw—terminal swing and Sw—swing.
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3.3.1. Inertial Measurement Units

Inertial measurement units (IMUs) are sensors combining accelerometers and gy-
roscopes to measure linear acceleration and angular velocity of the body to which it is
attached. Optionally, it also comes with a magnetometer that can estimate the magnetic
north based on the earth’s magnetic field and is sometimes called an inertial-magnetic
measurement unit. As shown in Figure 5a, we notice that IMUs are the most widely used
sensors with 77% of studies using it either alone (67%), or in combination with IPSs (10%).

6%

10%

17%

67%

IMU (69)
IPS (18)
IMU + IPS (10)
Other (6)

(a)

11%

12%

21%

26%

30%

IPS (31)
Force plate/ pressure mat (13)
Motion capture/ Video (27)
Other means (12)
Not validated (22)

(b)
Figure 5. (a) Distribution of studies based on the type of wearable sensors used; (b) distribution of studies based on the
type of sensors used for ground-truth validation of IMU-based gait analysis. Absolute number of studies in each category is
listed within parentheses. IMU—inertial measurement unit, IPS—insole pressure sensor, EMG—electromyography sensor.

Appropriate sensor placement often simplifies or even eliminates any calibration re-
quired for gait detection algorithms. Gyroscopes are invariant to translation in position [39]
since the angular velocity of a rigid body is the same at any point along the body (assuming
the orientation of the sensor remains the same with respect to the body segment). They
are also unaffected by gravity and are less prone to noise. Accelerometers, on the other
hand, are reported to be more noisy, subject to the influence of gravity and sensitive to
both position and orientation. The sensitivity to sensor orientation is typically avoided by
considering the norm of acceleration instead of acceleration along individual axes. The
influence of gravity is often used to estimate the orientation of the sensor with respect to
the earth frame of reference (in combination with additional constraints such as the Earth’s
magnetic field).

With IMUs, various possibilities for sensor placement exist and researchers have tried
a number of approaches for gait-related studies, placing IMUs on different body segments
or combinations thereof. The approaches are quantified in Figure 6. Among the studies
which used IMUs, the shank was the most widely preferred lower-body segment for gait
analysis (with 39 studies) closely followed by the foot (with 38 studies).

Although these numbers give us a better understanding of the preference followed
in literature, they alone do not necessarily tell us whether these segments are the ones
that provide the richest information of gait or if preferring these segments over others
makes it easy to identify ISTGFs from gait data. Some researchers attempted to give a
clearer answer to these questions. Li et al. [43] compares IMU signals from the thigh, the
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shank and the foot based on what they call, the “energy of acceleration,” which is the norm
of raw acceleration minus gravity. They argue that the “energy of acceleration” (when
inspected graphically) appears to be relatively more “stable” (i.e., constant) in the foot
compared to the other two body segments and hence recommend IMU placement at the
foot. Mazilu et al. [12], in the context of freezing of gait, reports 98% or more detection
performance for all three body segments, suggesting that the question of optimal sensor
placement is irrelevant in the context of freezing of gait. Jasiewicz et al. [44] report that,
upon comparison of three rule-based gait event detection methods, the method based on
foot angular velocity and linear acceleration was significantly more accurate than that of the
method based on the shank for spinal cord injured (SCI) subjects. Taborri et al. [45] made
a similar observation for a hidden Markov model (HMM)-based classifier. They report
that the accuracy of a HMM-based classifier for gait event detection was better when the
angular velocity of the foot was used rather than of the thigh or the shank. The relatively
high preference for the foot could also be justified by the results from neuro-behavioral
experiments suggesting that limb endpoints are the primary variables used to coordinate
locomotion in animals and humans [15]. Bejarano et al. [46] analyzed four signals—linear
acceleration in forward and vertical direction, angular velocity, and segment angle normal
to the sagittal plane—for the thigh, the shank, and the foot. Acceleration components were
discarded (after a preliminary investigation) due to noise and vibrations while the root
mean square error between each cycle (as well as the average) was computed for the other
two signals. For both angular velocity as well as segment angle, sensors placed on the
shank were identified with noticeably low root mean square error and hence the authors
recommended using the shank as the preferred location for IMU placement.

Number of Studies
Total Single Placement Placement Combinations

Head 2 2
Trunk 10 3
Upper Limb 2 1
Thigh 20 5
Knee 2 1
Shank 39 23
Foot 38 25

1 1 5 4 4 2 1 1

Figure 6. Number of studies using inertial measurement units (IMUs) that placed the sensor(s) on specific anatomical locations. Single
placement contains studies where sensor(s) were placed only in one anatomical location. Placement combinations’ columns indicate
studies where sensor(s) were placed in more than one location. Each relevant location is marked by a shaded cell and the number of
studies using this combination is indicated at the bottom of the column. The total indicates the sum of studies where the sensor(s) were
placed on that given anatomical location.

Much like the inter-segment IMU placement problem just discussed, a user could
also place the IMU at a different position and orientation within a given body segment,
each time it is attached to the body. Such intra-segment differences may result in unde-
sirable variations across data sets and across subjects. This is typically avoided by using
a mount/socket so that the sensor falls into the same location every time it is inserted.
Anwary et al. [47] suggests that the optimal location for IMU placement on the foot is the
medial arch followed by the Achilles tendon.

Raw signals from IMUs are noisy, particularly the accelerometer signals, and thus
filters are widely used. Meta-analysis on preprocessing filters used in the case of IMUs
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revealed that 39 out of 69 studies used at least one preprocessing filter, 31 of which
used a low-pass filter among which 15 used the Butterworth low-pass filter. Note that
preprocessing filters add to the latency in data processing, which is undesirable in a
real-time system.

The orientation measured by an IMU is often useful in gait analysis. One way to
estimate the orientation is by integrating the angular velocity from the gyroscope. However,
due to gyroscopic bias, such an approach is prone to drift from numerical integration.
Under static conditions, accelerometers can be used to estimate the inclination with respect
to the gravity vector, while magnetometers can be used to estimate orientation with respect
to the Earth’s magnetic field (magnetic North). Since acceleration measurements from
accelerometers are prone to noise, estimating the orientation outside of static conditions
is not accurate from instantaneous sensor data. Magnetometers, on the other hand, are
sensitive to external magnetic fields. Sensor fusion methods combine the information
from accelerometers, gyroscopes, and magnetometers (or a subset of these) to provide a
better estimate of the orientation of the sensor. Kalman filter-based and complementary
filter-based methods are the two most popular sensor fusion methods used for estimating
orientation from IMUs. Casamassima et al. [48] compared these two methods based
on accuracy, computational cost, and energy efficiency and concluded that the Kalman
filter-based method was their preferred choice. Two of the most popular methods using
the complementary filter are proposed by Mahony et al. [49] and Madgwick et al. [50].
Cirillo et al. [51] observed that a version of the extended Kalman filter-based method
that offers similar performance to the two took approximately one order of magnitude
more time to process a sample in the MATLAB/Simulink environment and two orders
of magnitude more time in an embedded system environment. Overall, Kalman filter-
based methods are known to be more accurate but computationally demanding, while
complementary filter-based methods are known to be computationally light and fairly
accurate [52].

Within the context of walking, accuracy of orientation (and position) estimation using
IMUs can be enhanced using additional constraints from the foot–ground interaction.
The zero velocity update (ZUPT) algorithm or one of its variants are typically used to
compensate drift. The algorithm exploits the fact that, during a part of the stance phase,
the stance foot is quasi-static. During this moment, the linear and angular velocity of the
foot is assumed to be zero and the drift errors due to integration are reset. Yang et al. [53]
estimated the stance duration from thresholds set on both angular velocity and acceleration,
which helped in correctly applying the ZUPT. Skog et al. [54] compared four different
detectors to identify the zero velocity interval—”acceleration moving variance detector, the
acceleration magnitude detector, the angular rate energy (ARE) detector, and a generalized
likelihood ratio test detector, referred to as the SHOE”—and concluded that both ARE and
SHOE performed with very high accuracy. Inspired by this, Refs. [48,55] used a threshold
on the ARE to estimate the ZUPT interval by hypothesizing that the IMU is stationary when
ARE is below the threshold. Other variants of ZUPT are also attempted [56,57]. In [57],
the foot inclination angle, obtained by integrating the gyroscope signal, was reset to zero
during the stance phase based on input from an IPS.

Often, sensors regarded as the gold standard, providing ground-truth information,
are used to validate results obtained from IMU-based gait analysis. Figure 5b illustrates
the distribution of those sensors used in validating IMU-based gait analysis. Among the
studies which used IMU-based gait analysis, it can be observed that IPSs are the most
widely used sensors for validating the results with 31 studies compared to 27 studies
using motion capture/video. In addition, they are the only wearable sensor to be used
for validation.

3.3.2. Insole Pressure Sensors

An insole pressure sensor (IPS) measures the pressure distribution at the foot, which
is widely used to estimate the COP along with other gait parameters such as step count,
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duration of the gait cycle, swing duration, stance duration [58], and foot–ground interaction
events (such as HS or TO). IPSs are available in different variants based on optoelectronic
sensors, force-sensing resistors (FSRs), capacitive sensors, and piezoelectric sensors, which
are based on polyvinylidene difluoride (PVDF) films [59]. PVDF films lack durability,
although they are reliable and inexpensive. FSRs, on the other hand, are highly durable,
flexible, and inexpensive. The reliability of FSRs is low when estimating the magnitude of
force in real-time, but FSRs perform well in detecting the temporal information such as
the instant of application of force, as shown by [59], and hence are good candidates for
real-time gait event detection. Delgado-Gonzalo et al. [60] report that IPSs have a short
lifespan, although the claim is not adequately validated. We noticed in our review that 38
out of 59 studies are from 2014 or later, possibly suggesting that IPSs have become more
reliable over the years.

IPSs are the second most widely used wearable sensor with 57% of the studies using
it either for sensing (28 studies, see Figure 5a) or validation (31 studies, see Figure 5b). It is
the only wearable sensor to be used in validation studies, which arguably makes it the
gold standard in wearable sensing [61]. IPSs are often considered as an alternative to force
plates in validation studies due to several advantages including cost factor, wearability, and
unconstrained movement that allows natural gait in both indoor and outdoor environments.
Despite these advantages, there are some constraints to consider. IPSs are typically placed
inside the shoe and are thus subject to pressure between it and the foot, which can lead to
non-zero pressure readings even when the foot is in swing phase [42,59]. Although IPSs
are comparable to force plates when it comes to estimation of temporal features, using
them for real-time ground reaction force estimation is not recommended since it takes a
considerably longer time to reach the set value compared to a force plate [59].

Unlike IMUs, sensor placement is not a challenging problem for IPS. While the user
could place the IMU anywhere within the body segment of interest, IPSs are almost always
placed in the subject’s shoe, making them fall into the same position with respect to the foot.
The traditional approach to place FSRs within an IPS has been to place them at specific
hotspots such as the heel, toe, first, and fifth metatarsals. Such IPSs require the correct foot
size of the subject so that FSRs are aligned with the correct hotspots. Senanayake et al. [42]
reported errors in measurement owing to subjects involving varying foot sizes (6–11) while
the IPS was at a fixed size (eight). Lin et al. [62] reported robustness against this offset,
caused by the size mismatch of the IPS with the foot, by using the derivative of pressure
signals. The authors used an array of 48 pressure sensors, giving a better resolution than the
conventional approaches, which place a few FSRs at carefully chosen hotspots. The authors
of [63,64] followed a similar approach using a pressure signal from the IPS and its first
derivative while using an IPS with 64 optoelectronic sensors. With IPSs getting better in
resolution, the approach is shifting towards packing as many sensors within the insole
as possible so as to collect data throughout the feet and identify the hotspots not at the
hardware end, but later at the software end during signal processing. When used in
real-time, this demands more bandwidth for communication and computational power to
process the additional information.

In contrast to IMUs where 39 out of 69 studies at least used a preprocessing filter, only
six out of 28 studies related to IPS used any sort of preprocessing/filtering. Instead, these
studies relied directly on the raw signal from the IPS, likely contributing to shorter latency,
an advantage when it comes to real-time systems.

3.3.3. Combination of IPS and IMU

A new kind of product that is emerging in the wearable sensor market is an IPS
combined with an IMU, such as Moticon Science from Moticon GmbH, Munich, Ger-
many, Stridalyzer from Retisense, Bangalore, India and Arion Wearable from ATO-GEAR,
Eindhoven, The Netherlands. Such a set up allows combining the advantages of both
types of sensors. Ten out of 52 studies used a combination of IPS and IMU (in addition
to the studies that used IPS separately for validating IMU-based gait detection results).
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Depending on the product, it is possible that the position of the IMU is fixed relative to the
IPS, thereby minimizing the errors caused by differences in IMU placements between and
within segments as well as across data sets and subjects.

3.3.4. Other Wearable Sensors

Other wearable sensors used for gait detection include Electromyography (EMG)
sensors, rotary encoders, laser range finders, flex sensors, and capacitive shank orthosis.
Other than EMG sensors, all the other sensors measure kinematics. EMG sensors, on
the other hand, measure electrical activity in muscles, which gives them an inherent
advantage that signals appear earlier than the corresponding movement from muscle
activation [5]. Fleischer et al. [65] reports that EMG signals appear 20–80 ms before the
resulting contraction begins. This should contribute to early sensing and hence decrease
latency in control. Farmer et al. [66] presented an auto-correlation model that takes EMG
signals as input to predict the ankle angle, which is claimed to predict around 100 ms in
advance. Despite this advantage, which is particularly important in real-time gait detection,
it is interesting to note that only one out of the 99 studies used EMG sensors. This could
partly be because of usability constraints: the skin is typically prepared by shaving body
hairs and applying abrasive gel to increase signal-to-noise ratio, and the sensor is taped to
the skin in order to keep the contact constant and reduce motion artifacts. It could also be
owed to the fact that EMG signals require more preprocessing/filtering and EMG signals
of persons with certain impairments (primarily neurological deficits) can be weak and hard
to interpret. Furthermore, EMG-related parameters are subject-dependent and can change
regularly due to varying conditions of the skin and body state, such as sweat. Correct
sensor placement is also non-trivial and requires some training because the sensor should
be placed as close as possible to the belly of the appropriate muscle. This approach may be
less appropriate for lay users thus limiting its application. Evaluation of EMG patterns are
mostly done using classification algorithms and less often using physiological models [65].

3.4. Real-Time Gait Analysis

We classify various gait analysis methods identified from literature into three main
categories: time domain-based, frequency domain-based, and time-frequency domain-
based. Table 4 shows various real-time gait analysis methods used by researchers based on
this classification, some of which are discussed in greater detail in the subsequent sections.

In summary, we observe that the rule-based methods are the most popular, with a
majority of the studies using it, likely due to their simplicity and intuitiveness compared to
other computationally expensive solutions. Phase portraits and adaptive oscillators are
among the limited number of methods noted for continuous gait phase estimation. Wavelet
transforms are seen as more suitable for fast motion transitions, and the method may serve
as a better candidate in gait phase estimation than adaptive oscillators.

Performance of the different methods is not compared quantitatively since evalu-
ation criteria varied from one study to another, which makes an objective comparison
difficult. For instance, a study that was intended for impaired gait but was tested only with
unimpaired subject can present better results that need not translate to impaired subjects.

3.4.1. Rule-Based Methods

Rule-based methods are the most widely used gait detection technique, employed
by 63 out of the 99 studies. The wider adoption of the method could be attributed to
their simplicity, intuitiveness, and less computational complexity involved (and hence less
latency in the real-time processing).
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Table 4. Classification of studies based on the type of gait analysis methods used; the number of
studies which followed a type of method is listed in the table. Note that a few studies were counted
in more than one category when those studies involved more than one method.

Domain Algorithm Number of Studies

Time domain

Rule-based methods 63

92

Fuzzy inference system (FIS) 4

Machine learning (ML) 19

Phase portrait (PP) 1

Other 5

Frequency domain
Adaptive oscillator (AO) 4

5
Spectral analysis 1

Time-frequency domain
Wavelet transform (WT) 3

4
Empirical mode decomposition 1

One way of implementing a rule-based method is by setting a threshold on the raw
or processed signal from the IMU (for instance, on the acceleration, angular velocity,
segment orientation angle, or joint angle). Rule-based methods often employ multiple rules
built on conditional statements (typically, if-else logic) that are connected using inequality
constraints or logical AND/OR operators.

Sometimes, threshold-based techniques are replaced with peak detection techniques.
One disadvantage of peak detection is that the presence of a peak can be confirmed only
after both the rising edge and the falling edge appear. This may introduce a delay in gait
event/phase detection depending on which part of the peak the event/phase temporally
overlaps with. Maqbool et al. [7] followed such an approach wherein the shank angular
velocity in the sagittal plane is used with a window of 80 ms before confirming the peak,
while Ref. [37] additionally used accelerometer signals.

Instead of using predetermined thresholds, Ref. [58] proposed an adaptive threshold-
based method which automatically computes and updates the threshold in real-time. This
is done through what is called the “dynamics of sensor data”, defined as a function of
linear acceleration and angular rate, averaged over the last five data samples. The adaptive
threshold is used to distinguish between swing and stance phase.

Rule-based approaches are also popular in the case of IPSs , with several studies using
threshold or peak detection based approaches on IPSs, either to distinguish between stance
phase and swing phase or between multiple gait phases [57,67–70]. Lin et al. [62] set a
threshold on the first derivative of the pressure sensor data in identifying HS and TO and
reports that it makes the detection robust against spurious signals, offset variation between
IPSs and between-subject variations. Hanlon et al. [71] used a similar approach of setting a
threshold on the derivative of the pressure sensor while additionally using a threshold on
the accelerometer data along with its first and second derivative.

Rule-based methods are often implemented as finite-state machines (FSM). Pap-
pas et al. [57] reported an FSM that considers four states: swing phase, stance phase,
HS, and TO. Seven transitions were defined between these four states based on input from
the IPS and the foot pitch angle. The IPS used three FSRs, one each on the heel, and first
and fourth metatarsals. The FSRs were used as foot switches to identify if and when weight
was applied at these hotspots. It was the only study that considered both stroke and spinal
cord injured subjects. The latter were able to walk short distances with or without crutches,
but no ASIA impairment scale (AIS) score was mentioned. The study reported above 99%
detection reliability for both unimpaired and pathological gait, with detection delay always
less than 90 ms. The method is often considered as a benchmark in literature for gait event
detection.

Lambrecht et al. [72] used the same to benchmark the performance of three versions of
peak detection-based FSM implemented by them. The three methods differed in their input
signals, which were chosen from: shank angular velocity, shank segment angle, ankle joint
angle, heel linear velocity, toe linear velocity, shank position, foot angular velocity, and foot
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angle. The methods were otherwise identical in that the state transitions were defined from
TO to mid-swing to IC to foot-flat to HO and back to TO. Although the study reported
better performance, it is to be noted that the data were extracted using motion capture
and is therefore hard to replicate using a wearable sensor (such as linear velocity and
position). Hence, the corresponding FSMs may not be easily transferable to a system based
on wearable sensing. Furthermore, a direct quantitative comparison between [57] and [72]
would be questionable since the data-set used by the former involved both unimpaired and
impaired gait while the one used by the latter only involved unimpaired subjects walking
on treadmill.

3.4.2. Fuzzy Inference System

An advanced version of the rule-based technique is the fuzzy inference system (FIS).
Instead of using thresholds to specify binary states (true or false scenarios) to decide state
membership, an FIS fuzzifies the input variable and provides a continuous map between
input and output variables based on a systematically designed rule base. González et al. [73]
fuzzified the input from pressure sensors placed at the heel, the hallux, and the first and
fifth metatarsals into fuzzy variables and defined a rule base whose outputs are gait phases.
Senanayake et al. [42] followed a similar approach of fuzzifying four FSR variables while
also using the knee angle, obtained from IMUs at the thigh and the shank, as the fifth fuzzy
variable. However, the use of additional sensors appears to be counterproductive since
a quick comparison of the latencies reported by both approaches reveals that the former
(latency less than 77 ms) performed better than the latter (latency less than 300 ms).

One disadvantage of FIS is that it requires the state membership functions to be set by
the user [74] and then be adapted each time to a new subject or data set for optimal perfor-
mance, similarly to what is done with thresholds as discussed in Section 3.4.1. The adaptive
neuro-fuzzy inference system (ANFIS) provides a workaround which combines the benefits
of artificial neural networks (ANN) and FIS by letting the nonlinear membership functions
be learned through the neural network, provided that sufficient training data sets are avail-
able. Lauer et al. [74] combined ANFIS with a subtractive clustering method to identify
state membership functions followed by a supervisory control system (if-then rules) to
prevent gait events from being identified in the reverse order. The subtractive clustering
algorithm provided a quick method of estimating the minimal number of clusters required,
and these clusters formed the initial shape of the state membership functions. A similar
two-level approach using FIS with a supervisory function was also implemented by [13].

3.4.3. Machine Learning

Machine learning (ML) methods are the second most widely used gait analysis tech-
nique, with 19 out of 99 studies using them. ML approaches have been gaining popularity
in recent years as 18 out of 19 studies are from 2012 or later. The Hidden Markov model
(HMM) is the most favored with nine out of 19 studies using this approach. Abaid et al. [3]
used angular velocity of the foot in the sagittal plane as input to the HMM, while Ref. [45]
used angular velocity of the thigh, the shank and the foot in the sagittal plane. In both
cases, FSR based IPSs were used for creating a labelled data set, which is necessary for
training the model. Chen et al. [75] used inputs from both IPSs and accelerometers and
used a third order fast Fourier transform followed by a principal component analysis for
feature generation which was then fed to a support vector machine classifier to identify
the gait phases. The study considered five ISTGFs and reported a 97.26% success rate for
initial contact. Overall, machine learning techniques reported noticeably high accuracy
with 10 out of the 15 studies (which reported at least some quantitative metrics) reporting
above 91% accuracy. It is also interesting to note that 11 out of 19 studies detected at least
four ISTGFs, which is much higher compared to most of the rule-based methods discussed
in Section 3.4.1.
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3.4.4. Phase Portrait

Among all the algorithms that were listed in Table 4, only a few studies used contin-
uous gait phase estimation methods. The idea of continuous gait phase estimation is to
have a variable keeping track of the progress of gait, continuously and bounded within the
gait cycle. Quintero et al. [76] estimated continuous gait phase in real-time from the phase
portrait of the hip angle and its derivative. Here, the phase portrait angle of the hip is
considered as the continuous gait phase variable—placing the hip angle on the horizontal
axis and its derivative on the vertical axis, a phase portrait angle is the angle subtended
on the horizontal axis by the line joining the origin to a point on the phase portrait. The
hip was chosen based on a more extensive study (although offline) carried out by [77],
which reports that the phase angle obtained from the phase portrait of the hip is linearly
and monotonically increasing, and bounded, even under perturbations. The phase portrait
was scaled by a factor estimated by the ratio of difference in maximum phase angle and
minimum phase angle to the difference in the first derivative of the same, so as to improve
the monotonicity and linearity. These properties were further improved by filtering, at the
expense of some delay. Although the method performed well in unimpaired subjects [76]
and the offline analysis reported robustness to perturbations [77], it remains to be seen how
the method would work with pathological gait in real-time.

3.4.5. Adaptive Oscillators

An adaptive oscillator (AO) is a frequency domain method that can synchronize to any
periodic or pseudo-periodic input signal without any preprocessing [78]. Yan et al. [79] used
peak detection to identify a gait event, based on the occurrence of a desired bio-mechanical
event (e.g., max hip flexion angle, heel strike). This is used to mark the initialization of a
new gait cycle, following which continuous phase estimation of the current gait cycle is
carried out using adaptive oscillators. Chen et al. [6] developed a robust adaptive oscillator-
based gait phase estimation which is reported to be working robustly even for abnormal
gait. HMM was used for gait event detection which in turn was fed to AOs, instead of
feeding the entire gait signal continuously. The robustness, according to the authors, is due
to the fact that gait events were the only information needed to achieve synchronization
which minimized the influence of gait abnormality on the algorithm.

3.4.6. Wavelet Transform

Wavelet transform (WT) is a time-frequency domain method that uses basis functions
localized in both the time and frequency domain, through so-called wavelets analogous
to sinusoids in a Fourier transform (see Figures A1 and A2 in Appendix A for a detailed
description of WT). Features that are identifiable in the frequency domain can therefore be
localized in the time domain, for example characteristic high-frequency content during heel
strike. Aminian et al. [80] reported that TO and HS events consist of combined features that
can be well resolved in the time-frequency domain. They identified distinctive features in
the shank angular velocity involving some medium- and high-frequency content with sharp
characteristic peaks. A discrete wavelet transform (DWT) with fifth-order Coiflet wavelets
was used to enhance gait events in the signal, thereby enabling easier identification of
global maxima corresponding to the gait events. This identification was followed by
customized rules that found specific peaks in the time domain to confirm TO and HS.
Coiflet wavelets were chosen because they resemble characteristic peaks observed in the
angular velocity signal. Although the study reported accurate temporal estimation of TO
and HS, it should be noted that it was only tested on unimpaired subjects and implemented
for offline analysis.

3.5. Towards Clinical Applications

3.5.1. Sensor and Algorithm Choice

The motivation of most studies to develop real-time gait analysis techniques was
to apply them in gait rehabilitation. Although many of the studies anticipated their
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proposed methods to work on pathological gait, less than one-third of studies included
impaired/pathological gait for validation (31 studies out of 99). When considering clinical
applications, the algorithm performance is only one of equally important requirements.
The approach must also use sensors that are durable, easy to manipulate, and require a
relatively low setup time—in other words, the approach should be simple and user-friendly.
Finally, the algorithm must be validated on a sufficient sample of the target population
in order to to take into account the unique characteristics of the target impairment and to
account for the higher inter-subject variability present in impaired gait.

In Sections 3.3 and 3.4, we concluded that IMUs are the most common sensor and that
rule-based methods are the most common algorithm type, when considered individually.
Machine learning approaches are the next most common, under which we combine the
hidden Markov model, support vector machine, and Bayesian approaches amongst others.
In Table 5, we consider studies that were validated at least on unimpaired subjects (84 out
of 99), since we deem these more relevant when it comes to applications, compared to
studies that were not validated on subjects at all. The studies are listed according to the
method used. We then quantify the number of studies using IMUs for each algorithm
type and notice that IMUs remain dominant for both rule-based and machine learning
approaches with 75% and 87%, respectively. This does not come as a surprise as they are
good candidates for clinical applications: they can easily be placed/removed on/from
the relevant body segment and avoid mechanical stress relatively well during typical use.
IPSs, the second most popular sensors, are more cumbersome as they must be placed in
the shoe and taken out for recharging. For persons with impaired hand-function, this is a
point that cannot be neglected. For certain gait impairments where orthopaedic insoles
are prescribed, the additional sensorized insole may cause discomfort or provide skewed
signals. Lastly, they are subject to repeated mechanical stress, making them considerably
less durable.

Improved usability and versatility can be observed with rule-based approaches com-
pared to machine learning. In fact, only 11% of studies using a rule-based method required
the placement of more than one IMU per leg, in contrast to 53% of machine learning
approaches. This means applications using the rule-based methods typically require a less
complex sensor setup, which would be preferable to the end-user. Furthermore, in 84% of
studies using rule-based methods, the approach could be used independently for one leg
or the other, compared to 47% for machine learning. This means that rule-based methods
can be more easily tailored to specific use-cases, such as providing unilateral assistance.

Validation of rule-based and machine learning methods was done on 485 and 138
unimpaired subjects, respectively, which is an average of roughly nine subjects per study
for both categories. Impaired and unimpaired gait, however, can vary significantly and
thus these numbers speak little towards clinical applications. As stated previously, less
than one third of studies were found to validate on impaired subjects, which mirrors
findings by Perez et al. [27] that not many real-time gait detection algorithms are validated
on populations with gait impairments. Despite this fact, literature and our previous
observations are pointing towards IMUs and rule-based methods as primary candidates
for clinical applications.

3.5.2. Impaired Gait Considerations

IMUs and rule-based algorithms are the preferred option amongst the studies that
validated on impaired subjects. These studies are listed exhaustively in Table 6 and the
combination amounts to 67%. We categorized the target impairments into two classes
based on how they were presented in the respective studies—first, generally diminished
ambulatory function, where gait is impaired due to general degeneration of the locomotor
system, such as with Parkinson’s disease, osteoarthritis, Huntington’s disease, diplegic
cerebral palsy (CP), ageing, or spinal cord injury (SCI). Second, unilateral loss of ambulatory
function, where gait is impaired on one side of the body, such as amputation, stroke, and
hemiplegic CP.
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Table 5. Distribution of gait detection techniques for studies that validated on unimpaired subjects. Details on the usage of
inertial measurement units (IMU) are presented together with the total number of unimpaired subjects the algorithms types
were validated on. ML—Machine learning.

Algorithm

Total
Num-
ber of

Studies

Number of
Studies that
Used IMU

Number of
Studies That
Used More

than One IMU
per Leg

Number of Studies
Where the Proposed
Method Can Work
Independently on

Either One of the Legs

Total
Number of

Unim-
paired

Subjects

References

Rule-based method 51 38 4 32 485
[7,14,27,37,39,44,46,55,
57,59,60,62,68,69,71,72,
79,81–111]

Fuzzy inference system 3 0 0 0 14 [42,73,112]

Hidden Markov model 8 7 3 2 70 [3,6,40,45,64,113,114]

Support vector machine 2 1 1 0 30 [75,115]

Bayesian 2 2 2 2 18 [116,117]

Other ML methods 3 3 2 3 20 [118–120]

Phase portrait 1 1 0 1 1 [76]

Lookup table 1 1 0 1 1 [121]

Other time domain methods 4 2 1 1 42 [122–125]

Adaptive oscillators 4 1 1 0 29 [6,79,83,126]

Wavelet transform 3 3 0 3 61 [80,127,128]

For generally diminished ambulatory function, rule-based algorithms can exploit the
fact that gait features typically become less prominent but are not lost. This means that gait
remains periodic and features on which rules can be built exist. Applications seeking this
category should focus primarily on understanding the unique gait features of the target
population. Behboodi et al. [86] used such an approach for gait detection in children with
diplegic CP. The authors circumvented the lack of an identifiable heel strike in equinus gait
by using angular velocity at the shank, which still shows characteristic peaks, valleys, and
zero-crossings.

On the other hand, unilateral loss of ambulatory function typically means that gait
features remain on the unimpaired side but are lost on the other. A gait event detection
method must thus be extended to additionally capture the irregularities on the impaired
side. One approach is presented by Perez et al. [27], who derived a rule-based algorithm
from eight other studies, but corrected detection rules that would fail with impaired
gait. The authors claim that, whereas normal gait is regular and smooth, the thresholds
typically used to detect gait events are tricked by the irregularities found in neurological
impaired gait.

Depending on the impairment, assistive devices such as walking frames or orthoses
and training devices such as body-weight support systems or exoskeletons can enable or
enhance locomotion. The prominence of gait features can then depend on the assistive
device. For example, while considering complete SCI patients with functional electrical
stimulation (FES), Skellyet al. [13] chose to perform gait event detection using a fuzzy
inference system as it can specifically accommodate for the relatively large step-to-step
variability observed in FES gait. In Jasiewicz et al. [44], for example, algorithms were
significantly under-performing during gaits exhibited when using walking aids. Similarly,
with active neuroprostheses such as EES, the stimulation itself can substantially modify the
gait pattern [16].
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Table 6. Algorithm types categorized with respect to the impairment of subjects on which they were validated. Impairments
are categorized based on how they were characterized in the respective study. The number of impaired and unimpaired
subjects involved in the study suggest the reliability and popularity of the given algorithmic approach for that specific
impairment. Note that some studies (such as [63]) are listed more than once in the table depending on whether they
employed more than one category of impaired subjects. FIS—Fuzzy inference system, ANFIS—Adaptive neuro fuzzy
inference system, HMM—Hidden Markov model.

Impairment Algorithm Type Sensor Type References
Number of

Impaired Subjects
Number of

Unimpaired Subjects

Parkinson’s disease Rule-based method
IMU [55] 16 12

IMU [104] 5 15

Wavelet transform IMU [127] 48 40

Osteoarthritis Support vector machine IMU + IPS [75] 14 10

Huntington’s disease HMM IMU [63] 10 0

Cerebral palsy

Rule-based method
IMU [86] 5 7

IPS [92] 3 8

ANFIS EMG [74] 8 0

HMM IMU [113] 10 10

Spinal cord injury
Rule-based method IMU [44] 14 26

FIS IPS [13] 3 0

Elderly
Spectral analysis IMU [129] 92 0

HMM IMU [63] 10 0

Amputee Rule-based method

IMU [7] 1 8

IMU [37] 1 9

IMU + IPS [69] 3 5

IPS [110] 1 1

Stroke Rule-based method

IMU [130] 2 0

IMU + IPS [131] 1 0

IMU [132] 1 0

IMU [90] 4 10

IMU [133] 1 0

IMU [104] 4 15

IMU [134] 6 0

IMU [97] 10 22

IMU [135] 2 0

IMU [27] 1 1

HMM IMU [63] 10 0

Unspecified Hemiplegia/
Hemiparesis

Rule-based method IMU [14] 10 10

HMM IMU [3] 10 10

Performing algorithm validations with impaired subjects is essential for advancing
clinical applications, but, in doing so, patient safety should not be neglected. All studies
in Table 6 besides three, [75,133,135], explicitly state having received ethics approval and
obtained informed consent. However, only nine out of 27 mention any safety considerations
in their text and only one study has a dedicated section. We recommend that a section on
safety always be included in future studies, covering a basic risk analysis and mitigation
put in place, and documenting potentially hazardous system failures during experiments.
Some example considerations would be preventing skin irritation, ensuring that sensors
do not fall off while walking, or verifying that sensors can be securely manipulated by
the target population. Such a section will help the community accelerate meaningful
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development of sensors and algorithms for gait detection and build trust towards their use
in clinical applications.

4. Conclusions

In the present work, we performed a comprehensive systematic review and pro-
vided a broad overview on wearable sensors and methods used in real-time gait analysis.
We performed meta-data analysis and identified trends among researchers such as the
most sought-after gait events, body segments for IMU placement, and sensor types for
ground truth validation of IMU-based gait detection methods. Studies that validated
on subjects with impaired gait were then extracted and sensors and methods for clinical
applications discussed.

Based on popularity in our findings, we recommend performing gait detection in a
subject by using a rule-based method to determine toe off and heel strike. We propose
that an IMU is placed on either the foot or shank, and insole pressure sensors are used as
ground-truth for validation. When investigating new gait detection methods for clinical
use, it is crucial that they are evaluated on their target population and across relevant
conditions such as using various walking aids.

One of the limitations of the present review is that the performance of gait detection
methods could not be compared quantitatively due to the heterogeneity of the metrics used
across the algorithm types. Therefore, we suggest that future studies report performance
metrics that would allow benchmarking with respect to comparable methods.

In our review method, we did not consider clinical applications explicitly. However,
a subset of the reviewed publications revealed that the algorithm performance can be
heavily influenced by gait impairments up to a point where the impairment dictates the
algorithm choice. We believe it is a very relevant direction worth further systematic investi-
gation.

Real-time gait detection using wearable sensors provides an unprecedented means to
deliver clinical interventions for people with gait impairments. As opposed to traditional
gait detection equipment, wearable sensors can inherently be used in an ambulatory setting,
and, compared to offline gait analysis, real-time gait detection can be integrated in closed-
loop control. The right combination of sensor and gait detection method thus enables the
development of assistive devices that have the potential to increase the effectiveness of
rehabilitation and improve the lives of people with ambulatory deficits.
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Appendix A. Background of Wavelet Transform Method

One way to extract gait cadence is through frequency spectrum analysis. The two
prominent peaks in the frequency spectrum analysis of gait signals (e.g., angular velocity
of the foot) correspond to stride frequency and step frequency (first and second harmonics).
Cadence can be evaluated from one of the two peaks. However, to extract cadence in
real-time, we need to perform a Fourier transform (FT) over a window of data streamed
continuously, the so-called short-time Fourier transform.

STFT suffers from poor resolution in the time-frequency domain [11]. To improve
the resolution in one domain, the resolution in the other domain must be compromised.
For instance, to get better resolution of frequency content, we need to provide it with a
larger (time) window of data, thereby reducing the resolution in the time domain, resulting
in output cadence evaluated over a larger interval (see Figure A1). Hence, STFT can be
considered as a suitable technique for long duration, steady-state walking (quasi-periodic
with no abrupt changes), but not for fast motion transitions [11].
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Figure A1. An illustration of the STFT (short-time Fourier transform) implementation in real-time. In the lower left plot, the
sagittal plane angular velocity (ωf) of the foot is shown in grey. The window of sample used during the snapshot (at around
time t = 38 s) is highlighted in blue. The upper left plot shows the frequency spectrum corresponding to time t = 38 s. The
red and yellow dots represent the paths traced over the duration by the peaks corresponding to the first harmonic (stride
frequency) and the second harmonic (step frequency), respectively. In the right plot, the time-frequency domain output (of
the entire data set) from an offline implementation of STFT is shown in blue dots while the corresponding output from the
implementation in real-time (for the first harmonic) is shown in the red dots. Note that the sampling interval is slightly
irregular in the real-time implementation due to computational complexity associated with STFT. It can be observed that
there is a clear separation between the first, second, and third harmonics (the green lines border the first harmonics, which
corresponds to the stride frequency).

The constraint of the resolution trade-off can be overcome with a wavelet transform
(WT). Much like an FT, a WT also decomposes the signal based on a set of basis functions.
While these basis functions are sinusoids in the case of FTs, the basis functions in the case
of WTs are wavelets. The difference is that, while sinusoids only differ in their frequencies,
wavelets are localized both in the time and the frequency domain. Therefore, unlike STFT,
which uses windows of fixed size in time domain, a WT uses windows of varying size in
the time-frequency domain, increasing the time resolution with high frequency signals and
vice versa [136,137].

There are two variants of discrete wavelet transform (DWT). The first variant, where
‘discrete’ implies discretized time-frequency domain while otherwise being identical to
continuous wavelet transform (CWT), is described in [137] and implemented in [11].
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Han et al. [11] used this version of DWT to extract step frequency/cadence and reports
that WT performs better than STFT in estimating step frequency when fast motion changes
occur. The second variant, which is filter bank-based, is described in [136] and imple-
mented in [138]. Klingbeil et al. [138] carried out step detection using this version of DWT
with a Daubechies wavelet. Here, the signal is split into the so-called detail levels and
then reconstructed with detail levels spread across 0.8 Hz to 3.2 Hz (assuming most of the
gait signal is in this range), followed by step detection using thresholds. The MATLAB
implementations of both version of DWT are available, but the former is called by the name
cwt (because of its resemblance to CWT), while the latter is called by the name dwt. Note
that, although Refs. [11,138] carried out the study in real-time, these studies were limited
to step detection and step frequency, but not ISTGF detection. Our own implementation of
wavelet transform for gait detection, based on cwt, is shown in Figure A2.
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Figure A2. An implementation of wavelet transform for gait event detection. Sagittal plane angular velocity (ωf) of the foot
(top left plot), which is in time domain, was first transformed into time-frequency domain using wavelet transform (right
plot). Then, the high-frequency region was condensed into time domain (bottom left plot) by evaluating the cross section
area of the magnitude of wavelet transform. A real-time implementation of the method was limited by computational
complexity. HFC—high frequency content.

One limitation of WT is the high computational complexity required for such an
implementation, which we also noticed in our own implementation presented in Figure A2.
Since WTs involve comparing the signal to wavelets, the transform at the beginning and
end of the signal are less reliable because the wavelet cannot be overlapped completely
with the extreme ends of the signal. This leads to the so-called cone of influence, a region
outside of which the result of wavelet transform is no longer reliable. This is usually of
low significance in offline analysis since the entire signal is available for analysis at once;
however, in real-time analysis, the cone of influence becomes more important. This is
because what we are interested in for every iteration is the transform of the latest sample
of data, which is precisely where the reliability is poor.
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