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Traditional screening for COVID-19 typically includes sur-
vey questions about symptoms and travel history, as well 
as temperature measurements. Here, we explore whether 
personal sensor data collected over time may help identify 
subtle changes indicating an infection, such as in patients 
with COVID-19. We have developed a smartphone app that 
collects smartwatch and activity tracker data, as well as 
self-reported symptoms and diagnostic testing results,  
from individuals in the United States, and have assessed 
whether symptom and sensor data can differentiate COVID-19  
positive versus negative cases in symptomatic individuals. 
We enrolled 30,529 participants between 25 March and  
7 June 2020, of whom 3,811 reported symptoms. Of these 
symptomatic individuals, 54 reported testing positive and 
279 negative for COVID-19. We found that a combination 
of symptom and sensor data resulted in an area under the 
curve (AUC) of 0.80 (interquartile range (IQR): 0.73–0.86) 
for discriminating between symptomatic individuals who 
were positive or negative for COVID-19, a performance that 
is significantly better (P < 0.01) than a model1 that consid-
ers symptoms alone (AUC = 0.71; IQR: 0.63–0.79). Such 
continuous, passively captured data may be complementary 
to virus testing, which is generally a one-off or infrequent 
sampling assay.

Owing to the current lack of fast and reliable testing, one of the 
greatest challenges for preventing transmission of SARS-CoV-2 is 
the ability to quickly identify, trace and isolate cases before they 
can further spread the infection to susceptible individuals. As 
regions across the United States start implementing measures to 
reopen businesses, schools and other activities, many rely on cur-
rent screening practices for COVID-19, which typically include a 
combination of symptom and travel-related survey questions and 
temperature measurements. However, this method is likely to miss 
pre-symptomatic or asymptomatic cases, which make up ~40–45% 
of those infected with SARS-CoV-2, and who can still be infec-
tious1,2. An elevated temperature (>100 °F (>37.8 °C)) is not as com-
mon as frequently believed, being present in only 12% of individuals 
who tested positive for COVID-193 and just 31% of patients hospi-
talized with COVID-19 (at the time of admission)4.

Smartwatches and activity trackers, which are now worn by one 
in five Americans5, can improve our ability to objectively character-
ize each individual’s unique baseline for resting heart rate6, sleep7 
and activity and can therefore be used to identify subtle changes 
in that user’s data that may indicate that they are coming down 
with a viral illness. Previous research from our group has shown 
that this method, when aggregated at the population level, can  

significantly improve real-time predictions for influenza-like  
illness8. Consequently, we created a prospective app-based research 
platform, called DETECT (Digital Engagement and Tracking for 
Early Control and Treatment), where individuals can share their 
sensor data, self-reported symptoms, diagnoses and electronic 
health record data with the aim of improving our ability to identify 
and track individual- and population-level viral illnesses, including 
COVID-19.

A previously reported study that captured symptom data in over 
18,000 SARS-CoV-2-tested individuals via a smartphone-based 
app found that symptoms were able to help distinguish between 
individuals with and without COVID-191. The aim of this study is 
to investigate if the addition of individual changes in sensor data 
to symptom data can be used to improve our ability to identify 
COVID-19-positive versus COVID-19-negative cases among par-
ticipants who self-reported symptoms.

Between 25 March and 7 June 2020, our research study enrolled 
30,529 individuals, with representation from every state in the 
United States. Among the consented individuals, 62.0% are female 
and 12.8% are 65 or more years old. Of the participants, 78.4% con-
nected their Fitbit devices to the study app, 31.2% connected the 
data from the Apple HealthKit, while 8.1% connected data from 
Google Fit (note that an individual can connect to multiple plat-
forms). In addition, 3,811 reported at least one symptom (12.5%); 
of those, 54 also reported testing positive for COVID-19 and 279 
reported testing negative. The numbers of days per different data 
type and data aggregator system are reported in Table 1, while 
the symptoms distribution for symptomatic individuals tested for 
COVID-19, or not tested, is shown in Fig. 1.

A minority of symptomatic participants (30.3%) who tested for 
COVID-19 had a resting heart rate (RHR) greater than two standard 
deviations above the average baseline value during symptoms. The 
change in RHR on its own (Table 1) did not allow significant dis-
crimination between COVID-19-positive and COVID-19-negative 
participants using the RHRMetric (area under the curve (AUC) of 
0.52 (interquartile range (IQR): 0.41–0.64)) (Fig. 2a).

Sleep and activity did show a significant difference among the 
two groups (Table 1), with an AUC of 0.68 (0.57–0.79) for the 
SleepMetric (Fig. 2b) and 0.69 (0.61–0.77) for the ActivityMetric 
(Fig. 2c), supporting that the sleep and activity of COVID-19 posi-
tive participants were impacted significantly more than COVID-
19-negative participants. Sleep and activity are slightly correlated, 
with a negative correlation coefficient of −0.28, P < 0.01.

To evaluate the contribution of all the data types commonly 
available through personal devices, we combined the RHR, sleep 
and activity metrics in a single metric (SensorMetric, Fig. 2d). This 
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improved the overall performance from the three sensor metrics to 
an AUC of 0.72 (0.64–0.80).

We also considered a model based only on self-reported symp-
toms (SymptomMetric, Fig. 2e), along with age and sex. With 
respect to the previously published model1, we measure a slightly 
lower AUC of 0.71 (0.63–0.79).

When participant-reported symptoms and sensor metrics 
are jointly considered in the analysis (OverallMetric, Fig. 2f), the 
achieved performance was significantly improved (P < 0.01) relative 
to either alone, with an AUC of 0.80 (0.73–0.86).

Discussion
Our results show that individual changes in physiological measures 
captured by most smartwatches and activity trackers are able to sig-
nificantly improve the distinction between symptomatic individu-
als with and without a diagnosis of COVID-19 beyond symptoms 
alone. Although encouraging, these results are based on a relatively 
small sample of participants.

This work builds on our earlier retrospective analysis demon-
strating the potential for consumer sensors to identify individuals 
with influenza-like illness, which has subsequently been replicated 
in a similar analysis of over 1.3 million wearable users in China for 
predicting COVID-198,9. In response to the COVID-19 pandemic, a 
number of prospective studies, led by device manufacturers and/or 
academic institutions, including DETECT, have accelerated deploy-
ment to allow interested individuals to voluntarily share their sen-
sor and clinical data to help address the global crisis10–14. The largest 
of these efforts, Corona-Datenspende, was developed by the Robert 
Koch Institut in Germany and has enrolled over 500,000 volunteers15.

As different individuals experience a wide range of symptom-
atic and biological responses to infection with SARS-CoV-2, it is 
likely that their measurable physiological changes will also vary16–18. 
For that reason, it is possible that biometric changes may be more  

valuable in identifying those at highest risk for decompensa-
tion rather than just a dichotomous distinction in infection sta-
tus. Because of the limited testing in the United States, especially 
early in the spread of the COVID-19 pandemic, individuals with 
more severe symptoms may have been more likely to be tested. In 
fact, the majority of symptomatic participants in our study did not 
undergo testing. However, using the optimal tradeoff of sensitiv-
ity and specificity on the ROC, we would predict that, of the 3,478 
symptomatic participants who did not undergo diagnostic testing, 
1,061 would have tested positive. Consequently, the ability to differ-
entiate between COVID-19-positive and COVID-19-negative cases 
based on symptoms and sensor data may change over time as testing 
increases, and as other upper respiratory illnesses such as seasonal 
influenza increase this fall.

The early identification of symptomatic and pre-symptomatic 
infected individuals would be especially valuable as transmission is 
common and people may potentially be even more infectious during 
this period19–21. Even when individuals have no symptoms, there is 
evidence that the majority have lung injury (according to computed 
tomography (CT) scans), and a large number have abnormalities in 
inflammatory markers, blood cell counts and liver enzymes18,22–24. 
As the depth and diversity of data types from personal sensors con-
tinue to expand—such as heart rate variability (HRV), respiratory 
rate, temperature, oxygen saturation and even continuous blood 
pressure, cardiac output and systemic vascular resistance—the abil-
ity to detect subtle individual changes in response to early infectious 
insults will potentially improve and enable the identification of indi-
viduals without symptoms.

In the past, the normality of a specific biometric parameter, such 
as RHR, duration of nightly sleep or daily activity, was based on pop-
ulation norms. For example, a normal RHR is generally considered 
anything between ~60–100 b.p.m. However, recent work looking at 
individual daily RHRs over two years found that each person has a 

Table 1 | Participants’ characteristics and device data

Total Any symptom COVID-19 positive COVID-19 negative P value

Demographic data

number of participants 30,529 3,811 54 279 –

Female 18,922 (62.0%) 2,828 (74.2%) 43 (79.6%) 199 (71.3%) 0.65

Age group (years)

Under 35 7,052 (23.1%) 1,184 (31.1%) 17 (31.5%) 71 (25.4%) 0.52

35 to 50 10,357 (33.9%) 1,522 (39.9%) 23 (42.6%) 121 (43.4%) 1.00

51 to 65 9,038 (29.6%) 857 (22.5%) 12 (22.2%) 64 (22.9%) 1.00

Over 65 3,899 (12.8%) 219 (5.7%) 1 (1.9%) 21 (7.5%) 0.22

Fitbit users 23,922 (78.4%) 3,306 (86.7%) 46 (85.2%) 237 (84.9%) 1.00

Apple users 9,522 (31.2%) 1,219 (32.0%) 21 (38.9%) 94 (33.7%) 0.66

Sensor data

Available days (IQR)

 RHR 322 (131–387) 325 (153–396) 312 (98–377) 300 (119–392) 0.70

 Sleep 249 (48–373) 273 (105–383) 283 (52–362) 246 (70–375) 0.56

 Activity 394 (370–412) 407 (379–415) 404 (375–410) 401 (374–413) 0.57

Mean change (s.d.)

 RHR (b.p.m.) 0.0 (2.84) 0.40 (3.18) 1.15 (4.83) 0.61 (3.68) 0.33

 Sleep (min) 0 (54) 3 (59) 57 (92) 4 (68) <0.01

 Activity (steps) 52 (2,659) −323 (2,771) −3,533 (4,418) −208 (3,086) <0.01

Summary of the collected data and demographic information about the cohort. Available days are specified for each data type, with median and interquartile range (IQR) values. Mean changes (and s.d.) in 

resting heart rate (RHR), steps and sleep from baseline (−21 to −7 days) to symptomatic period (0 to 7 days) are reported; for individuals with no symptoms we consider 6 March 2020 as day 0. P values 

of a two-sided Fisher’s exact test applied to COVID-19-positive and COVID-19-negative participants are also reported.
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relatively consistent RHR, for them, that fluctuates by a median of 
only 3 b.p.m. weekly6. On the other hand, what would be considered 
a normal RHR for an individual can vary by as much as 70 b.p.m. 
(between 40 and 109 b.p.m.) between individuals. The potential 
value in identifying important changes in an individual’s RHR as an 
early marker for COVID-19 infection is suggested by the descrip-
tion of 5,700 patients hospitalized with COVID-194: at the time of 
admission, a greater percentage of individuals had a heart rate of 
>100 b.p.m. (43.1%) than had a fever (30.7%). Similarly, work in pri-
mate models of other viral and bacterial infections found that a sig-
nificant increase in heart rate can be detected ~2 days before a fever25.

Just as individuals have heart rate patterns that are unique to 
them, the same is true for sleep patterns. Although population 
norms for sleep duration have been defined by one-time survey 
data26, longitudinal analysis of daily sleep over several years sup-
ports much greater variation in what is normal for a specific indi-
vidual7. Recognizing what is normal for an individual enables much 
earlier detection of deviations from that normal.

A strategy of test, trace and isolate has played a central role in 
helping control the spread of COVID-19. However, testing comes 
with many challenges, including the enormous logistical and cost 
hurdles of recurrently testing asymptomatic individuals. In addition, 
testing in a population with very low prevalence can lead to a high 
proportion of false positive cases. A refined predictive model, based 
on personal sensors, could enable an early, individualized testing 
strategy to improve performance and lower costs. Early testing may 
make the use of a contact tracing app more effective by identifying 
positive cases in advance and allowing for early isolation.

DETECT (and similar studies) also represent the transitioning of 
research from a dependence on brick and mortar research centers 
to a remote, direct-to-participant approach now possible through a 
range of digital technologies, including an ever expanding collec-
tion of sensors, applications of machine learning to massive data-
sets, and the ubiquitous connectivity that enables rapid two-way 
communications 24/727,28. The promise of digital technologies is 
that their evolution will continue to bring us closer to identifying 
the best combination of measures and associated algorithms that 
identify infection with SARS-CoV-2 or other pathogens. However, 
it is equally critical to develop and continuously improve on an 
engaging digital platform that provides value to participants and 
researchers. This has proven to be extremely challenging, with a 
recent analysis of eight different digital research programs involv-
ing 100,000 participants having a median duration of retention of 
only 5.5 days29. Digital trials such as DETECT also do come with 
unique challenges to assure privacy and security, which can only 
be dealt with by effectively informing participants before consent, 
storing the data with the appropriate level of security and providing 
access to the data only for research purposes30. App-based contact 
tracing, which is not part of DETECT, is an especially sensitive and 
ethically complicated use of digital technology that can be used to 
address the pandemic31.

Our analyses are dependent entirely on participant-reported 
symptoms and testing results, as well as the biometric data from 
their personal devices. Although this is not consistent with the his-
torically more common direct collection of information in a con-
trolled laboratory setting or via electronic health records, previous 
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Fig. 1 | Frequency of symptoms among participants. Participants who reported at least one symptom were divided into three groups: participants who 

tested negative for COVID-19 or positive for COVID-19 and participants who were not tested. The frequencies of the indicated symptoms in each of these 

three groups are shown. P values of a two-sided Fisher’s exact test applied to COVID-19-positive (54 individual subjects) and COVID-19-negative (279 

individual subjects) participants are reported. Symptoms with a significant difference (P < 0.05) are marked with an asterisk.
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work has confirmed their value and their accuracy beyond data 
routinely captured during routine care32–34. Additionally, individuals  
owning a smartwatch or activity tracker and having access to 
COVID-19 diagnostic testing are unlikely to be representative of 
the general population and may exclude those most affected by 
COVID. Although a recent survey found no racial or ethnic varia-
tion in smartwatch or activity tracker usage (23%, 26% and 21% 
for Black, Hispanic and White individuals, respectively), the lowest 
percentage of users were identified in those with the lowest annual 
earnings (12%), the lowest educational attainment (15%) and in 
those over age 50 (17%)5. In the future, if the value of wearable 
devices to improve individual health is confirmed, this gap in usage 
will need to be proactively addressed to assure health equity. The 
decreasing cost of these devices, some now less than US$35, will 
help decrease the financial barriers to accomplishing this. Finally, 
in the early version of the DETECT app we were not able to track 
the duration or trajectory of individual symptoms, care received and  
eventual outcomes.

These results suggest that sensor data can incrementally improve 
symptom-only-based models to differentiate between COVID-19- 
positive and COVID-19-negative symptomatic individuals, with the 
potential to enhance our ability to identify a cluster before more 
spread occurs. Such a passive monitoring strategy may be comple-
mentary to virus testing, which is generally a one-off, or infrequent, 
sampling assay.
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Fig. 2 | Prediction of COVID-19 from self-reported symptoms and sensor data. a–f, Receiver operating characteristic curves (ROCs) for the discrimination 

between COVID-19-positive (54 individuals) and COVID-19-negative (279 individuals) cases based on the available data: RHR data (a); sleep data (b); 

activity data (c); all available sensor data (d); symptoms only (e); symptoms with sensor data (f). Models are based on a single decision threshold. Median 
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one-sided Mann–Whitney U test are reported.

NATuRE MEDICINE | VOL 27 | JAnUARy 2021 | 73–77 | www.nature.com/naturemedicine76

https://doi.org/10.1038/s41591-020-1123-x
https://doi.org/10.1038/s41591-020-1123-x
https://www.color.com/new-covid-19-test-data-majority-of-people-who-test-positive-for-covid-19-have-mild-symptoms-or-are-asymptomatic
https://www.color.com/new-covid-19-test-data-majority-of-people-who-test-positive-for-covid-19-have-mild-symptoms-or-are-asymptomatic
https://www.color.com/new-covid-19-test-data-majority-of-people-who-test-positive-for-covid-19-have-mild-symptoms-or-are-asymptomatic
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
http://www.nature.com/naturemedicine


LETTERSNATURE MEDICINE

 6. Quer, G., Gouda, P., Galarnyk, M., Topol, E. J. & Steinhubl, S. R. Inter- and 
intraindividual variability in daily resting heart rate and its associations with 
age, sex, sleep, BMI and time of year: retrospective, longitudinal cohort study 
of 92,457 adults. PLoS ONE 15, e0227709 (2020).

 7. Jaiswal, S. J. et al. Association of sleep duration and variability with body 
mass index: Sleep measurements in a large US population of wearable sensor 
users. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2020.2834 
(2020).

 8. Radin, J. M., Wineinger, N. E., Topol, E. J. & Steinhubl, S. R. Harnessing 
wearable device data to improve state-level real-time surveillance of 
in�uenza-like illness in the USA: a population-based study. Lancet Digit. 
Health 2, e85–e93 (2020).

 9. Zhu, G. et al. Learning from large-scale wearable device data for predicting 
epidemics trend of COVID-19. Discrete Dynamics Nat. Soc. 2020,  
6152041 (2020).

 10. Mishra, T. et al. Early detection of COVID-19 using a smartwatch. Preprint at 
medRxiv https://doi.org/10.1101/2020.07.06.20147512 (2020).

 11. Natarajan, A., Su, H.-W. & Heneghan, C. Assessment of physiological signs 
associated with COVID-19 measured using wearable devices. Preprint at 
https://doi.org/10.1101/2020.08.14.20175265 (2020).

 12. Evidation Health and BARDA Partner on Early Warning System for COVID-19 
(Evidation, 2020); https://evidation.com/news/
evidationhealthandbardapartner/

 13. Tempredict Study (Oura Health, 2020); https://ouraring.com/ucsf-tempredict- 
study

 14. Covidentify (Duke University, 2020); https://covidentify.covid19.duke.edu/
 15. Corona Datenspende (Robert Koch Institut, 2020);  

https://corona-datenspende.de/science/en
 16. Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 

patient sera. Cell 182, 59–72 (2020).
 17. Sharma, R., Agarwal, M., Gupta, M., Somendra, S. & Saxena, S. K. in 

Coronavirus Disease 2019 (COVID-19) (ed. Saxena, S.) 55–70  
(Springer, 2020).

 18. Tabata, S. et al. Clinical characteristics of COVID-19 in 104 people with 
SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective 
analysis. Lancet Infect. Dis. 20, 1043–1050 (2020).

 19. Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic 
control with digital contact tracing. Science 368, eabb6936 (2020).

 20. Chau, N. V. V. et al. �e natural history and transmission potential of 
asymptomatic SARS-CoV-2 infection. Clin. Infect. Dis. https://doi.
org/10.1093/cid/ciaa711 (2020).

 21. Jing, Q. L. et al. Household secondary attack rate of COVID-19 and 
associated determinants in Guangzhou, China: a retrospective cohort study. 
Lancet Infect. Dis. 20, 1141–1150 (2020).

 22. Meng, H. et al. CT imaging and clinical course of asymptomatic cases with 
COVID-19 pneumonia at admission in Wuhan, China. J. Infect. 81,  
e33–e39 (2020).

 23. Inui, S. et al. Chest CT �ndings in cases from the cruise ship ‘Diamond 
Princess’ with coronavirus disease 2019 (COVID-19). Radiol. Cardiothorac. 
Imaging 2, e200110 (2020).

 24. Long, Q. X. et al. Clinical and immunological assessment of asymptomatic 
SARS-CoV-2 infections. Nat. Med 26, 1200–1204 (2020).

 25. Milechin, L. et al. Detecting pathogen exposure during the non-symptomatic 
incubation period using physiological data. Preprint at bioRxiv https://doi.
org/10.1101/218818 (2017).

 26. Sleep and Sleep Disorders (Center for Disease Control and Prevention, 2020); 
https://www.cdc.gov/sleep/data_statistics.html

 27. Steinhubl, S. R., Wol�-Hughes, D. L., Nilsen, W., Iturriaga, E. & Cali�, R. M. 
Digital clinical trials: creating a vision for the future. NPJ Digit. Med. 2,  
126 (2019).

 28. Steinhubl, S. R., McGovern, P., Dylan, J. & Topol, E. J. �e digitised clinical 
trial. Lancet 390, 2135 (2017).

 29. Pratap, A. et al. Indicators of retention in remote digital health studies: a 
cross-study evaluation of 100,000 participants. NPJ Digit. Med. 3, 21 (2020).

 30. Coravos, A. et al. Modernizing and designing evaluation frameworks for 
connected sensor technologies in medicine. NPJ Digit. Med. 3, 37 (2020).

 31. Bradford, L. R., Aboy, M. & Liddell, K. COVID-19 contact tracing Apps: a 
stress test for privacy, the GDPR and data protection regimes. J. Law Biosci. 
https://doi.org/10.1093/jlb/lsaa034 (2020).

 32. Rivera, S. C. et al. �e impact of patient-reported outcome (PRO) data from 
clinical trials: a systematic review and critical analysis. Health Qual. Life 
Outcomes 17, 156 (2019).

 33. Basch, E. et al. Overall survival results of a trial assessing patient-reported 
outcomes for symptom monitoring during routine cancer treatment. JAMA 
318, 197–198 (2017).

 34. Bell, S. K. et al. Frequency and types of patient-reported errors in electronic 
health record ambulatory care notes. JAMA Netw. Open 3, e205867 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

NATuRE MEDICINE | VOL 27 | JAnUARy 2021 | 73–77 | www.nature.com/naturemedicine 77

https://doi.org/10.1001/jamainternmed.2020.2834
https://doi.org/10.1101/2020.07.06.20147512
https://doi.org/10.1101/2020.08.14.20175265
https://evidation.com/news/evidationhealthandbardapartner/
https://evidation.com/news/evidationhealthandbardapartner/
https://ouraring.com/ucsf-tempredict-study
https://ouraring.com/ucsf-tempredict-study
https://covidentify.covid19.duke.edu/
https://corona-datenspende.de/science/en
https://doi.org/10.1093/cid/ciaa711
https://doi.org/10.1093/cid/ciaa711
https://doi.org/10.1101/218818
https://doi.org/10.1101/218818
https://www.cdc.gov/sleep/data_statistics.html
https://doi.org/10.1093/jlb/lsaa034
http://www.nature.com/naturemedicine


LETTERS NATURE MEDICINE

Methods
Study population. Any person living in the United States over the age of 18 years 
old is eligible to participate in the DETECT study by downloading the iOS or 
Android research app, MyDataHelps. A�er consenting into the study, participants 
are asked to share their personal device data (including historical data collected 
prior to enrollment), report symptoms and diagnostic test results, and connect 
their electronic health records. Participants can opt to share as much or as little 
data as they like. Data can be pulled in via direct application programming 
interface (API) with Fitbit devices, and any device connected through Apple 
HealthKit or Google Fit data aggregators. Participants were recruited via the study 
website (www.detectstudy.org), media reports and outreach from our partners at 
Fitbit, Walgreens, CVS/Aetna and others.

Ethical considerations. The protocol for this study was reviewed and approved 
by the Scripps Office for the Protection of Research Subjects (IRB 20–7531). All 
individuals participating in the study provided informed consent electronically.

Statistical analysis. Only participants with self-reported symptoms and COVID-
19 test results were considered in this analysis. For each participant, two sets of 
data were extracted: the baseline data, which included signals spanning from 21 
to 7 days before the reported start date of symptoms, and the test data, which 
included signals beginning at the first date of symptoms to seven days after 
symptoms. Three types of data were considered from personal sensors: daily 
resting heart rate (DailyRHR), sleep duration in minutes (DailySleep) and activity 
based on daily total step count (DailyActivity). The daily resting heart rate is 
calculated by the specific device35. The total amount of sleep for a given day was 
based on the total period of sleep between 12 noon of the current day to 12 noon of 
the next day. When multiple devices from the same individual provided the same 
information, Fitbit device data were prioritized, for consistency. Overlapping data 
were combined minute by minute, before aggregating for the whole day.

A single baseline value per individual was extracted for each data type by 
considering the median value over the individual’s baseline data. This value is 
representative of a participant’s ‘normal’ before the reported symptoms. The 
baseline value was compared to the test data as follows:

RHRMetric ¼
max DailyRHR test data½ ð Þ �median DailyRHR baseline data½ ð Þ

4:00

SleepMetric ¼
mean DailySleep test data½ ð Þ �median DailySleep baseline data½ ð Þ

56:06

ActivityMetric

¼
mean DailyActivity test data½ ð Þ �median DailyActivity baseline data½ ð Þ

2; 489:85

Values were normalized to have a unitary IQR using normalization parameters 
calculated on all data recorded. For all these metrics, values close to zero indicate 
small variations from baseline values. This allows us to focus on intra-individual 
changes, which are minimally affected by the inter-individual variability due to 
the specific sensor’s hardware and estimation algorithms. For the metric based 
on symptoms only, we adapted the results from the study by Menni et al.1 to our 
available data:

SymptomMetric ¼ �1:32� 0:01 ´ ageð Þ þ 0:44 ´ gender male ¼ 1; female ¼ 0ð Þð Þ
þ 1:75 ´DecreaseInTasteSmellð Þ þ 0:31 ´Coughð Þ þ 0:49 ´ Fatigueð Þ

The multivariate logistic regression model from Menni et al. combined 
symptoms, age and gender to predict an infection. The parameters were optimized 
by the authors on a large dataset including over 2 million people, 18,401 of which 
had undergone a COVID-19 test.

A simple manual metric aggregation strategy without optimization was used 
to enable a clear understanding of the benefits provided when data from multiple 
sources were considered together. The aggregated metrics were

SensorMetric ¼ RHRMetric=10 þ SleepMetric � ActivityMetric

OverallMetric ¼ SensorMetric þ SymptomMetric

The main outcomes are ROC curves for each of the proposed metrics. 
The curves are obtained by considering a binary classification task between 
participants self-reported as COVID-19-positive and COVID-19-negative. The 
models are based on a single decision threshold, which is directly compared to 
the metric values, with the aim of minimizing overfitting issues while providing 
a fair comparison. Confidence intervals, reported with a confidence level of 
95%, are estimated using a bootstrap method by repeatedly sampling the dataset 
with replacement. The sampling is performed in a stratified manner; that is, the 
balance of the classes is maintained over all experiments. Values for sensitivity 
(SE), specificity (SP), positive predictive value (PPV) and negative predictive 
value (NPV) were also calculated (Fig. 2). SE and SP are defined as the fraction 
of positive and negative individuals correctly classified, respectively, while PPV 
and NPV are the fraction of individuals predicted as positive and negative that 
are correctly classified, respectively. These values are based on the point in the 
ROC with the optimal tradeoff between sensitivity and specificity, which may 
vary depending on the shape of the curve. For each metric analyzed, we applied 
the one-sided Mann–Whitney U test with the alternate hypothesis that the 
underlying model of the positive class is stochastically greater than the negative 
class. All statistical tests were evaluated using the Python package scipy version 
1.5.2. The comparison metric to assess the overall performance was the AUC  
of the ROC.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All interested investigators will be allowed access to the analysis dataset following 
registration and pledging to not re-identify individuals or share the data with a 
third party. All data inquiries should be addressed to the corresponding author.
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