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Abstract: Hypovolemia is a physiological state of reduced blood volume that can exist as either
(1) absolute hypovolemia because of a lower circulating blood (plasma) volume for a given vascular
space (dehydration, hemorrhage) or (2) relative hypovolemia resulting from an expanded vascular
space (vasodilation) for a given circulating blood volume (e.g., heat stress, hypoxia, sepsis). This
paper examines the physiology of hypovolemia and its association with health and performance
problems common to occupational, military and sports medicine. We discuss the maturation of
individual-specific compensatory reserve or decompensation measures for future wearable sensor
systems to effectively manage these hypovolemia problems. The paper then presents areas of future
work to allow such technologies to translate from lab settings to use as decision aids for managing
hypovolemia. We envision a future that incorporates elements of the compensatory reserve measure
with advances in sensing technology and multiple modalities of cardiovascular sensing, additional
contextual measures, and advanced noise reduction algorithms into a fully wearable system, creating
a robust and physiologically sound approach to manage physical work, fatigue, safety and health
issues associated with hypovolemia for workers, warfighters and athletes in austere conditions.

Keywords: wearable sensors; compensatory reserve; cardiac decompensation; dehydration; physical
work capabilities; environmental stress and adaptation

1. Introduction

Hypovolemia is a physiological state of reduced blood volume that impairs physical
work capability [1], cognitive-motor function [2], and environmental stress tolerance [3,4].
Hypovolemia also increases risks for orthostatic intolerance [5], occupational accidents [6],
circulatory collapse and shock [7] and contributes to a variety of health issues [8]. Ac-
cordingly, hypovolemia is ubiquitous in occupational, military and athletics applications,
and can impact workers, warfighters and athletes alike. Historically, each hypovolemia
problem has been viewed independently, and mitigation approaches included providing
general guidance regarding fluid replacement, managing environmental exposure, em-
ploying work–rest periods or attempting wearable physiological monitoring. Previous
wearable physiological monitoring approaches were based on easily measured conven-
tional vital signs (e.g., body temperature, heart rate) often related to the specific exposure in
the field [9–11]. However, measures of standard vital signs are limited in their ability to pro-
vide individual-specific information about those at greatest health risk or with performance
impairments because they are not based on the understanding of underlying integrated
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physiological mechanisms associated with the adverse outcomes from hypovolemia. Com-
pensatory reserve and decompensation measures demonstrate great clinical promise for
monitoring and treating hemorrhage hypovolemia [7,12], and we argue these approaches
can be effectively applied to a broader set of hypovolemia problems [13]. However, the
broader use of compensatory reserve or decompensation measures, particularly in austere
field conditions where multiple stressors are combined with hypovolemia, pose several
technology and algorithmic challenges that preclude current approaches from translating
successfully to field settings.

We previously reported the significance of measuring the compensatory reserve as a
tool for advanced decision support in the clinical setting of life-threatening hemorrhage [14].
In this paper, we extend our previously published review by examining the physiology
of hypovolemia and its association with health and performance problems common to
occupational, military and sports medicine. We will discuss the maturation of compensatory
reserve and decompensation measures so future wearable sensor systems can be utilized to
effectively manage these hypovolemia problems. This manuscript is a companion to and
expands on our previously published review regarding applying compensatory reserve
and decompensation measures to the clinical problem of hemorrhage [14].

2. Hypovolemia and Cardiovascular Adjustments
2.1. Relative and Absolute Hypovolemia

Hypovolemia may exist as either absolute hypovolemia because of a lower circulat-
ing blood (plasma) volume for a given vascular space (e.g., dehydration, hemorrhage)
or relative hypovolemia resulting from an expanded vascular space (e.g., vasodilation of
skin or skeletal muscle) for a given circulating blood volume (e.g., heat stress, hypoxia,
sepsis). It is important to recognize that hypovolemia represents a compromise to an
individual’s capacity to compensate for conditions of low circulating blood volume or
flow. In many situations, both absolute and relative hypovolemia occur simultaneously,
thus synergistically augmenting the circulatory and metabolic problems for a given level
of blood volume reduction or systemic vasodilation (expanded vascular space), which
can adversely impact health and performance. Figure 1 illustrates the concept of normal
blood volume (normovolemia), absolute hypovolemia and relative hypovolemia. Factors
mediating hypovolemia, such as decreased blood or plasma volume, increased vascular
space and decreased total body water (dehydration), can change dynamically with multiple
perturbations (e.g., hemorrhage, sickness, hydration status, heat stress, cold and hypoxia)
and impair health and performance. Conversely, it will be presented that important phys-
iological adaptations from physical training and heat acclimation include blood volume
expansion, increased stores of oxygen in the body, and vascular changes that minimize
hypovolemia and contribute to performance improvements.
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Figure 1. Illustration of the concept of absolute and relative hypovolemia. Pink represents the
vascular (blood) volume and blue represents the vascular space. Absolute hypovolemia (reduction
in blood/plasma volume) can be mediated by factors such as hemorrhage or dehydration; relative
hypovolemia can be mediated by factors that increase vascular space such as increased cutaneous
vasodilation from heat stress, hypoxia, intense physical exercise, or systemic vasodilation from sepsis.
Image modified from [15].
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2.2. Hypovolemia from Dehydration

A body water deficit >2% of body mass (or ~3% of total body water) is defined as
dehydration and can occur from sweat loss in warm or hot conditions and/or diuresis from
cold, hypoxia and aquatic environment exposure or from sickness that causes vomiting or
diarrhea [8,16]. Dehydration elicits intracellular and extracellular water loss proportional
to water and solute deficits [8,16]. An iso-osmotic mediated hypovolemia (from cold,
high-altitude and aquatic exposure) results in greater plasma loss (and thus blood volume
reduction) for a given water deficit than hypertonic mediated hypovolemia from sweat
loss [16]. Plasma (the liquid portion of blood) accounts for ~50 to 60% of blood volume,
with the remainder represented by circulating cells. The difference in plasma loss between
isotonic and hypertonic dehydration can be explained by two factors: (1) an elevation
in intravascular osmotic pressure with hypertonic hypovolemia (less solute loss) pulls
intracellular water from tissue into the vascular space; and (2) substantial extracellular
solute (e.g., sodium, chloride) losses with isotonic hypovolemia translate to proportion-
ate fluid loss from both plasma and total body water [16]. Figure 2 demonstrates the
impact of a given body water deficit (based on body mass loss) on the magnitude of
hypovolemia (presented as percent change in plasma volume) from hypertonic (sweat
loss) and isotonic (Furosemide) mediated dehydration [16]. Note the isotonic dehydration
(Furosemide) elicited a greater plasma loss for a given body water deficit (dehydration
level). Thus, the dehydration-mediated hypovolemia and decreased preload are dependent
upon the magnitude and type of dehydration. Dehydration-mediated hypovolemia can
often be mixed by exposure to combinations of physical work, environmental stress and
sickness perturbations.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 26 
 

 

2.2. Hypovolemia from Dehydration 
A body water deficit >2% of body mass (or ~3% of total body water) is defined as 

dehydration and can occur from sweat loss in warm or hot conditions and/or diuresis 
from cold, hypoxia and aquatic environment exposure or from sickness that causes vom-
iting or diarrhea [8,16]. Dehydration elicits intracellular and extracellular water loss pro-
portional to water and solute deficits [8,16]. An iso-osmotic mediated hypovolemia (from 
cold, high-altitude and aquatic exposure) results in greater plasma loss (and thus blood 
volume reduction) for a given water deficit than hypertonic mediated hypovolemia from 
sweat loss [16]. Plasma (the liquid portion of blood) accounts for ~50 to 60% of blood vol-
ume, with the remainder represented by circulating cells. The difference in plasma loss 
between isotonic and hypertonic dehydration can be explained by two factors: (1) an ele-
vation in intravascular osmotic pressure with hypertonic hypovolemia (less solute loss) 
pulls intracellular water from tissue into the vascular space; and (2) substantial extracel-
lular solute (e.g., sodium, chloride) losses with isotonic hypovolemia translate to propor-
tionate fluid loss from both plasma and total body water [16]. Figure 2 demonstrates the 
impact of a given body water deficit (based on body mass loss) on the magnitude of 
hypovolemia (presented as percent change in plasma volume) from hypertonic (sweat 
loss) and isotonic (Furosemide) mediated dehydration [16]. Note the isotonic dehydration 
(Furosemide) elicited a greater plasma loss for a given body water deficit (dehydration 
level). Thus, the dehydration-mediated hypovolemia and decreased preload are depend-
ent upon the magnitude and type of dehydration. Dehydration-mediated hypovolemia 
can often be mixed by exposure to combinations of physical work, environmental stress 
and sickness perturbations. 

 
Figure 2. Linear regression of plasma volume loss (hypovolemia) and body water deficit (percent 
change in body mass) relationship for hypertonic (sweat loss) and isotonic (Furosimide diuretic) 
dehydration [16]. 

2.3. Hypovolemia from Environmental Stress 
Hypovolemia is common with exposure to heat [1], cold [17], high-altitude [18] and 

aquatic [19] environments, and can impair subsequent physical work capabilities and ac-
centuate several health issues. During physical work in the heat, the most significant phys-
iological burden is the cardiovascular support of high skin blood flow for heat dissipation 
while recruitment of compensatory mechanisms attempts to maintain adequate blood 
pressure to perfusion tissues [20]. Warm–hot skin is associated with a greater cutaneous 
vasodilation (skin blood flow) and venous compliance (skin blood volume), which dis-
places blood away from the central circulation augmenting cardiovascular strain [1,20,21]. 
This increase in vascular space is often associated with a concurrent sweat loss-mediated 
hypertonic dehydration, which decreases blood (plasma) volume [20]. In addition, high skin 

Figure 2. Linear regression of plasma volume loss (hypovolemia) and body water deficit (percent
change in body mass) relationship for hypertonic (sweat loss) and isotonic (Furosimide diuretic)
dehydration [16].

2.3. Hypovolemia from Environmental Stress

Hypovolemia is common with exposure to heat [1], cold [17], high-altitude [18] and
aquatic [19] environments, and can impair subsequent physical work capabilities and
accentuate several health issues. During physical work in the heat, the most significant
physiological burden is the cardiovascular support of high skin blood flow for heat dissipa-
tion while recruitment of compensatory mechanisms attempts to maintain adequate blood
pressure to perfusion tissues [20]. Warm–hot skin is associated with a greater cutaneous
vasodilation (skin blood flow) and venous compliance (skin blood volume), which dis-
places blood away from the central circulation augmenting cardiovascular strain [1,20,21].
This increase in vascular space is often associated with a concurrent sweat loss-mediated
hypertonic dehydration, which decreases blood (plasma) volume [20]. In addition, high
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skin blood flow during heat stress is associated with plasma protein loss, which further aug-
ments the hypovolemia [22]. The dual perturbation of a reduced blood volume (absolute
hypovolemia) with increased skin blood flow (relative hypovolemia) can reduce the ability
to sustain cardiac output [23] and is an important physiological prerequisite to impair
exercise capabilities and induce heat exhaustion [1,21,24]. The warmer the environment,
the greater the impaired physical work capabilities for a given dehydration level [1].

Conversely, blood (plasma) volume expansion is an important heat acclimation adap-
tation that helps minimize cardiovascular strain and enable better sustainment of physical
work capabilities [25]. Plasma volume expansion of 10% to 20% is commonly associated
with short-term (1–2 weeks) acclimation to physical exercise, heat or a combination of
both [25–28]. Thus, these physiological adaptations to heat acclimation should moderate
the effects of subsequent hypovolemia. A recent study has demonstrated that long-term
(5.5 weeks) exercise-heat acclimation increased blood volume by expanding both plasma
volume and erythrocyte or the red blood cell portion of volume [29]. Depending upon
whether the blood volume expansion was induced by plasma volume or erythrocyte vol-
ume expansion, the impact on abating the impact of subsequent hypovolemia will likely
differ, with the latter being more effective [30].

During high-altitude exposure, there is a marked blood (plasma) volume reduction
(absolute hypovolemia) that is proportionate to the elevation ascended and duration
of residence [18]. This plasma volume reduction is primarily due to diuresis (isotonic
dehydration) as well as the loss of total circulating plasma protein [31–33]. For example,
at 2500 m (~8200 feet) plasma volume can decrease by ~10% on day 3 and by ~13% on
day 6 of residence [18]. In addition, physical work at high-altitude induces sweat rates
comparable to those at sea-level for a given exercise-heat strain [34], while respiratory water
loss is elevated [31], both contributing to dehydration. Furthermore, acute high-altitude
exposure can induce cutaneous vasodilation or relative hypovolemia [35]. Hypovolemia
contributes equally to hypoxia in impairing physical work capabilities at high-altitude and
may contribute towards symptomatology of Acute Mountain Sickness [3].

During cold stress there is a marked diuresis (isotonic dehydration) and blood (plasma)
volume reduction which is not altered by acclimatization status [17,36] For example, whole-
body cooling decreases plasma volume by ~12% in air and ~17% with water immersion [17].
It is important to note that simultaneous cold and water immersion accentuates the magni-
tude of hypovolemia, and these stressors often appear in concert. Cold exposure causes
peripheral vasoconstriction [37], reducing the vascular capacity, thus eliciting diuresis
and isotonic dehydration through the loading of central baroreceptors [26]. In cold envi-
ronments, hypovolemia issues typically occur if subsequently performing physical work
while wearing warm clothes or protective equipment thus inducing heat strain [36], which
induces a relative hypovolemia (skin and skeletal muscle vasodilation) upon the previously
suffered absolute hypovolemia. In aquatic environments (e.g., swimming and diving),
exposure to hydrostatic effects induces marked diuresis and isotonic dehydration through
the loading of central baroreceptors [19]. Hypovolemia problems typically occur when
transferring from an aquatic to land environment and attempting physical work, which
induces a relative hypovolemia upon the previously suffered absolute hypovolemia.

2.4. Hypovolemia from Physical Work

Physical work increases the metabolic demands within active skeletal muscle, which
induces vasodilation and reduction in total peripheral resistance. The drop in total pe-
ripheral resistance is proportional to the metabolic rate. To meet the metabolic demands
of active skeletal muscles, cardiac output increases with work intensity as a product of
elevated heart rate and stroke volume [38]. Thus, physical work induces an acute relative
hypovolemia due to active skeletal muscle dilation and, if heat strain is present, a concur-
rent cutaneous vasodilation. With physical training, blood volume expansion translates to
greater filling of the cardiac ventricles, increased maximal cardiac output and improved
physical work capabilities [38,39]. An analysis of composite data from 18 physical training
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studies demonstrated ~10% increase in blood volume over the initial several weeks [40];
but some studies have reported much larger expansions, such as ~25% [38]. It is important
to note that the blood volume expansion is initially due to a plasma volume expansion
over the initial few weeks, but subsequently that expansion retracts as erythrocyte volume
expands during the following weeks [40]. Likewise, in addition to blood volume expansion
there is an increased vascular space due to increased capillarization and arterial remodeling
with physical training [38]. To achieve greater cardiac output with improved physical
work capabilities, there are cardiac hypertrophy and cardiac function improvements. All
of these cardiovascular adaptations from physical training follow different time courses
but are dependent upon each other to achieve greater cardiac output and contribute to the
improved physical work capacity [38]. Likewise, with physical inactivity and detraining,
the blood volume contracts and is partially responsible for a fall in maximal cardiac output
and physical work capabilities [39,41].

2.5. Cardiovascular Adjustments to Hypovolemia

Cardiovascular adjustments imposed by absolute and/or relative hypovolemia have
many commonalities, such as reduced cardiac filling, altered cardiac mechanics, arterial
pressures and arterial pressure waveforms. Figure 3 shows ventricular function curves
describing the cardiovascular problems imposed by hypovolemia while performing an
occupational work activity and then with a simultaneous isometric task. With hypovolemia,
there is reduced cardiac right atrial pressure, reduced cardiac ventricle filling (preload),
increased contractility and falling stroke volume with an elevating heart rate [7,20]. As
hypovolemia becomes more severe, cardiac output and blood pressure regulation are
challenged because reduced diastolic filling lowers end-diastolic volume and reduces stroke
volume, and consequently an elevated heart rate and cardiac contractility are required to
maintain cardiac output. However, an elevated heart rate implies that the cardiac cycle is
shortened, and this will lower the time for diastolic filling, which may further compromise
stroke volume and cardiac output [42]. A reduced cardiac output results in difficulty
to sustain the arterial blood pressure required for adequate tissue perfusion needed to
support performance. If the worker subsequently grasps a tool, an isometric reflex then
occurs which increases blood pressure, afterload and heart rate [43,44]. The reduced cardiac
filling from hypovolemia combined with increased afterload (from isometric and upper
body exercise) imposes a burden on the myocardium from increased oxygen demands
while working on an inefficient portion of the ventricular function curve, a condition that
will further reduce ejection fraction and increase the decline in cardiac output. Together,
these factors make it difficult to sustain the required cardiac output for tissue and organ
perfusion, and for workers with advanced heart disease, may potentially induce angina or
myocardial infarction.
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Figure 3. Ventricular function curves showing the sequence of cardiovascular events during hypov-
olemia while performing an occupational work activity. Hypovolemia causes reduced ventricular
filling or preload (1). Then, the body compensates by increased sympathetic tone, resulting in elevated
heart rate and cardiac contractility (2). During physical activity, the worker periodically performs
upper limb isometric tasks, thus increasing afterload (3). The result is decreased stroke volume and
increased myocardial oxygen demands.

Figure 4 provides cardiovascular data demonstrating the impact of relative hypov-
olemia mediated by experimentally elevating skin temperature that resulted in cutaneous
vasodilation [45]. With skin (Ts)warming, the total peripheral resistance (TPR), right atrial
mean pressure (RAMP), aortic mean pressure (AoMP), central blood volume (CBV) and
stroke volume (SV) decrease, while heart rate (HR) is elevated to sustain cardiac out-
put (CO). During heat exposure, this relative hypovolemia often can be coincident with
dehydration (absolute hypovolemia). The combination of both relative and absolute hy-
povolemia in conditions of hyperthermia will accentuate the reduced cardiac filling and
subsequently reduce cardiac output. As the metabolic demand for physical work increases,
a progressive cardiac output reduction (relative to control conditions) occurs due to greater
vasodilation in working skeletal muscles [23]. The hypovolemia-mediated reduction in
cardiac output translates to an inability to sustain blood pressure [21] as the left ventricu-
lar function is sustained [46]. Although cardiac afterload does not increase with relative
hypovolemia due to peripheral vasodilation, a marked increase in blood pressure is likely
to occur if an isometric task like gripping a tool or weapon is simultaneously performed.
With absolute hypovolemia, a compensatory elevation in sympathetic nerve output results
in peripheral vasoconstriction. The resulting elevation in peripheral vascular resistance
can increase arterial blood pressure (afterload), but this is more likely with hyperosmotic
hypovolemia dehydration because of a marked influence of elevated osmolality on sym-
pathetic nervous activity [47]. However, if dehydration (absolute hypovolemia) occurs
with marked heat stress (relative hypovolemia), the cutaneous vasodilation will offset the
increased sympathetic output for compensatory vasoregulation (decrease gut blood flow)
and not alter or decrease afterload.
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3. Identifying Integrated Physiological Signals of Compensatory Reserve
or Decompensation

For many occupational, military and athletic situations, an individual may suffer
marked hypovolemia, which impairs health, safety and performance. As discussed, hypov-
olemia can occur from dehydration or decreased total circulating protein and/or increased
vascular space from cutaneous and skeletal muscle vasodilation induced by environmen-
tal exposure or performing physical work. It is important to note that the physiological
responses to these conditions are highly individual, with some people exhibiting much
greater tolerance and capacity to compensate for the conditions than others [4,48,49].

Decision-support wearable technologies are needed that can measure the integrated
physiological compensation or decompensation providing ‘individualized’ assessment of
progression towards hypovolemia-mediated compromised capacity, or degree of physio-
logical adaptation to several stressors that protect against hypovolemia to sustain perfor-
mance [7,13,14]. A ruggedized wearable physiological monitoring system that can reliably
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measure the magnitude of integrated physiological compensation or decompensation from
hypovolemia would provide critical information to manage health, safety and optimize
performance [13].

3.1. Compensatory Reserve

The compensatory reserve measure (CRM), a novel concept introduced by Convertino
and colleagues, provides a single indicator, measured peripherally with noninvasive sen-
sors, that could represent the sum of compensatory responses to hypovolemia and a
validated index of potential cardiovascular instability [7]. The CRM uses a deep convo-
lutional neural network to compute the distance or similarity between recorded vascular
signal segments from either a non-invasive continuous blood pressure waveform or a
transmissive photoplethysmogram (TPPG) waveform to a library of arterial waveforms
recorded from subjects with known CRM as shown in Figure 5 [50]. The label from the
library waveform with the closest distance or highest similarity to the incoming waveform
is then assigned as the prediction value for the incoming waveform. The library used for
comparisons contains noninvasive blood pressure waveforms recorded from more than
260 healthy subjects (men and women aged 18 to 55 years) who underwent graded lower
body negative pressure (LBNP) to induce central hypovolemia until they reached a point
of decompensated shock, which was labeled as 0% compensatory reserve [13]. “Decom-
pensated shock” refers to the point at which the ongoing trauma or stress to the body
overwhelms the body’s compensatory measures. For the CRM, 0% or “decompensated
shock” was defined as the point during the LBNP protocol at which the subject experienced
presyncope, indicating inadequate blood circulation to the brain. The subject’s normal
baseline is then defined as 100% CRM, during which their body is not under any strain.
The CRM’s performance in detecting and monitoring hypovolemia due to hemorrhage has
been well documented [7] and we will present data demonstrating its sensitivity to heat
stress, dehydration and physical exercise.
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Figure 5. The conceptual framework of the compensatory reserve measure (CRM) algorithm. The
input waveform from the current subject is compared to a library of more than 650,000 waveforms
recordings collected from more than 260 subjects exposed to experimentally-controlled progressive
reductions in central blood volume by lower-body negative pressure to generate an estimated
individual compensatory reserve measurement (CRM). Image modified from [50].

3.2. Validation of Compensatory Reserve for Heat Stress, Dehydration and Physical Exercise

The compensatory reserve measure has been shown to be sensitive to hypovolemia
induced by heat stress, physical exercise, dehydration, resting recovery and rehydration.
Figure 6 presents results from experiments designed to determine if CRM differences could
be observed with whole-body hyperthermia (heat stress) and if such differences would
correspond to decreased tolerance to progressive hypovolemia induced by lower body
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negative pressure (LBNP) [51]. Healthy subjects underwent LBNP when normothermic
(core temperature 37 ◦C) and hyperthermic (core temperature 38.3 ◦C), and after sweat-
induced dehydration of 2% of their body mass. Mean baseline CRM were 92% on both days,
however the cutaneous vasodilation during hyperthermia was associated with <50% in
baseline CRM with a more rapid cardiovascular collapse. These data demonstrate that CRM
is sensitive to relative hypovolemia induced by hyperthermia. During the euhydration
(hydrated) and dehydration experiments all subjects were hyperthermic (core temperature
38.2 ◦C), thus experiencing relative hypovolemia (cutaneous vasodilation from hyperther-
mia) or relative with absolute hypovolemia (dehydration). CRM was initially lowered with
dehydration compared to euhydration, and with LBNP the dehydrated subjects demon-
strated a lower CRM with a more rapid onset of cardiovascular collapse (i.e., reduced
physiological performance). Interestingly, the impact of dehydration with hyperthermia
on CRM between experiments was initially more modest than with hyperthermia alone.
These data demonstrate that CRM is sensitive to relative and absolute hypovolemia and
their additive effects with increasing LBNP causing greater simulated hypovolemia.
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Figure 6. Compensatory reserve measures for normothermic vs hyperthermic subjects (left) and
euhydrated vs dehydrated subjects (right) during progressive lower body negative pressure (LBNP)
experiments. Data are means and 95% confidence intervals, with the solid lines at the bottom
indicating statistically significant differences from baseline. Image modified from [13].

Several studies have demonstrated that CRM changes are sensitive to vasodilation and
cardiovascular perturbations associated with physical exercise [52,53]. Figure 7 presents
compensatory reserve values from subjects during progressive intensity cycle ergometer
exercise until they achieved their maximal oxygen uptake (VO2max). CRM progressively
decreased with increasing exercise intensity to an asymptote at ~20%. This response is
logical as a greater oxygen uptake should translate to greater active vasodilation or relative
hypovolemia. The asymptote at 20% suggests that blood pressure regulation was not the
limiting factor for maximal intensity exercise.

It is reasonable to anticipate that if this exercise was performed during heat stress
conditions, CRM would have deceased further indicating muscle oxygen delivery as a
more limiting factor.

Figure 8 provides the plotted measurements of compensatory reserve influenced by
simultaneous exposure to physical exercise with heat stress and then resting recovery. In
this figure, a human subject performed progressively increasing levels of physical exercise
in a hot environment of 100 ◦F air temperature. Note the dramatic progressive reduction
in compensatory reserve from a resting value of 91% in a room controlled at 75 ◦F air
temperature to a significantly compromised level of <30% after only 20 min exposure
to exercise and heat. After exercise was terminated and the subject recovered in the hot
conditions, the compensatory reserve was restored to nearly 80%, suggesting that ~50% of
the capacity to compensate for hypovolemia was attributed to the metabolic demand (active
muscle vasodilation) of physical exercise while the remaining ~10% could be explained by
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the cutaneous vasodilation induced by heat. In this regard, a measurement of compensatory
reserve provides an accurate integrated indicator of the individual’s physiological status
for continued successful performance.
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intervals) with the final difference shown by the red arrow on the x-axis. Image from [13].
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Figure 8. Compensatory reserve measured in a human subject during a 20-min graded cycle ergome-
ter exercise performed at 100 ◦F air temperature. Each bar represents the average response over
1 min. Bar colors: green, compensatory reserve >60%; yellow, compensatory reserve ≤60% and >30%;
red, compensatory reserve ≤30%. BL, baseline; W, watts. Image modified from [52].

Figure 9 provides the plotted measurements of compensatory reserve influenced by
45 min of running exercise with dehydration and the impact of subsequent rehydration [52].
With each bar representing a 3-min average measurement, a reduction in compensatory
reserve was reported from a resting standing position ≥92% to 28% after exercise was
terminated. It should be noted that the longer exercise duration (45 min vs. 20 min) vs
the previous experiments should have resulted in greater dehydration. Compensatory
reserve was restored to approximately 60% within 10 min of the cessation of metabolic load
created by the exercise and continued to recover to baseline levels of >90% as fluid ingestion
reversed the absolute hypovolemia created by prolonged exposure to physical exercise
with an unknown amount of dehydration. In this regard, a measurement of compensatory
reserve provided an accurate integrated indicator of the individual’s physiological status
and a way to assess recovery from heat stress and dehydration.
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3.3. Future Capabilities Required to Further Advance the CRM

Although the CRM has been validated in its ability to track physiological changes
in many different scenarios, it is potentially limited for use in humans in ambulatory or
field settings in its current form, as it requires the use of either a noninvasive continuous
blood pressure monitor (i.e., Finapres) or a transmissive (T) PPG sensor [14]. Continuous
noninvasive blood pressure systems, while used in clinics and research labs, are far too
bulky and expensive for an individualized monitoring device. Additionally, the TPPG
sensor type is generally considered too obtrusive for wear-and-forget use, as it has to
clamp over the recording site, which is most often a finger or sometimes an earlobe [54].
These locations are likely motion sensitive or hindering to the wearer. Moreover, many
commercially available TPPG (or pulse oximeter) devices such as those frequently seen in
hospitals and clinics have substantial filtering and automatic gain control built in, forcing
the waveforms to be smoothed and homogenized. While this is optimal for their designed
function of providing heart rate and SpO2 measurements, rich waveform information
that could be used to estimate CRM is lost. The CRM has also not yet been validated
in the presence of motion artifacts and external vibrations that will likely degrade the
recorded arterial waveforms. A ruggedized wear-and-forget form factor is much more
likely to be widely adopted for longitudinal monitoring for occupational, military and
sports use [13,14]. Thus, a later section of this review will examine emerging wearable
mechanical sensors, such as the seismocardiogram (SCG), which should be able to provide
complementary or additional information to expand upon the current CRM. The SCG
records the acceleration of the chest wall due to heart contraction and blood ejection
movements as valves open and close.

One advantage of adding SCG signals to the CRM could be to decouple changes in the
signals used for deriving CRM that are related to peripheral effects—e.g., vasodilation and
altered vascular stiffness—from changes that are related to central effects—e.g., reduced
preload. The substantial reduction in CRM for the hyperthermic individuals in Figure 6
(left) vs Figure 6 (right) even at 0 mmHg of LBNP suggests that peripheral vasodilation
(from the hot environment) may be confounded to some extent with reduced compensatory
reserve. PPG signals are very sensitive to ambient temperature and skin temperature
in their waveform characteristics [55,56], and thus the combination of PPG (a peripheral
measure) with SCG (a central measure) might be advantageous in future work to predict
cardiovascular instability in individuals exercising in the heat. Finally, though the CRM
has presented a convenient single metric to encapsulate a patient’s cardiovascular status,
it utilizes a black-box deep learning approach for waveform comparisons that does not
provide a direct linkage between algorithm features and physiological phenomena. An
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example feature that could be extracted for use with the current setup is measurement of
arterial oxygen saturation, which will vary due to changes in altitude or sickness and could
be combined with compensatory reserve [57].

3.4. Blood Volume Decompensation Status: Multi-Sensor Fusion with Explainable AI

Encouraged by the results from CRM, a collaboration led by Inan and colleagues
recently developed the blood volume decompensation status (BVDS) metric [12,58]. The
goal of the BVDS metric builds from that of the CRM—to develop a single metric that
represents the integrative compensatory response based on some aspect of PPG feature
changes, and thus can be used to represent an individual’s compensatory reserve or de-
compensation status. One main difference between the BVDS and the CRM algorithmic
approach is that the BVDS approach makes use of multi-modal cardiovascular sensing. A
second main difference is that the BVDS approach leverages explainable AI approaches
such that the exact features of the waveforms driving the output result can be individually
examined from a physiological perspective. Thirdly, rather than using a TPPG sensor,
the BVDS was developed with a reflectance-mode photoplethysmogram (RPPG) sensor,
which can be placed anywhere on the body. Beyond capturing vascular information, elec-
tromechanical information from the heart is integrated into the BVDS metric by recording
the electrocardiogram (ECG) and seismocardiogram (SCG) signals. This customized and
modular sensing system design including ECG, SCG and RPPG sensors can be deployed in
a wearable patch or smartwatch as shown in Figure 10 [59,60].
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Figure 10. Device form factor. Electrodes for a single-lead ECG, photodiodes and LEDs to record
the PPG, and tri-axial accelerometers and gyroscopes (internal to the devices) to acquire the SCG
signal can be customized and modularized to work in multiple form factors. The left side shows
the watch-based approach described in [60], while the right side shows an updated version of the
chest-worn patch originally described in [59].

The BVDS metric has thus far been limited to a single preclinical animal (pig) study
and is thus at an earlier stage of development. In this study, the animals underwent both
relative and absolute hypovolemia through graded vasodilation and hemorrhage, as well
as resuscitation with whole blood. ECG, SCG and RPPG were recorded continuously
through the experiment. As shown in Figure 11, the inclusion of the ECG allows for
feature extraction on a heartbeat-by-heartbeat level. A limited set of clinically relevant
features was extracted from the ECG, SCG and RPPG signals. This set includes the pre-
ejection period (PEP) and left ventricular ejection time (LVET) cardiac timing intervals,
their ratio (PEP/LVET), the RPPG pulse arrival time (PAT) and pulse transit time (PTT),
the plethysmography variability index (PVI) and RPPG amplitude, as well as heart rate
(HR) and heart rate variability (HRV) measures. An initial model was developed using
only the hemorrhage data recorded from the noninvasive sensors and compared to another
model created with an analogous feature set extracted from simultaneously acquired
invasive catheter blood pressure waveforms [58]. The BVDS model was further developed
as data from the relative and absolute portions of the experiment were used together
to train the random forest regression model with leave-one-subject-out cross validation



Sensors 2022, 22, 442 13 of 25

to create a more generic metric of decompensation status [12]. The feature importance
output by this model is shown in Figure 12, indicating that electromechanical features of
cardiac performance were the most important predictors. This result shows that the ECG
and SCG signals contain information that is very relevant to decompensation status or
compensatory reserve. In particular, the ratio of PEP/LVET was the most important feature.
In the literature, PEP/LVET has been shown to be a clear indicator of left ventricular
performance [61,62] and changes in PEP/LVET have been shown to correlate with different
stages of lower-body negative pressure [63].
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Figure 11. BVDS feature extraction. While the CRM evaluates 30-s segments of the recorded arterial
waveform signal, the BVDS metric uses the ECG to segment and analyze all signals on a heartbeat-
by-heartbeat level. Fiducial points are detected in each heartbeat and used to calculate cardiac timing
intervals and a handful of other clinically relevant features.
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Figure 12. Feature importance for the BVDS model, as output by the random forest algorithm in [12].
Electromechanical features include the pre-ejection period (PEP), left ventricular ejection time (LVET)
and their ratio, PEP/LVET along with heart rate (HR) and multiple measures of heart rate variability
(HRV). Vascular features include the distal (and normalized) pulse arrival time (PAT), the distal pulse
transit time (PTT), the PPG amplitude and the plethysmograph variability index (PVI). PEP/LVET is
the most important feature for this model by a large margin, and six of the top seven features are
from an electromechanical signal. This result highlights the relevance of including the ECG and SCG
signals in predicting cardiovascular decompensation. Image modified from [12].
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3.5. Validation of Decompensation Status

Although the BVDS metric has only been validated in a single study thus far, it
has shown promise as a globalized metric for predicting decompensation status in both
relative and absolute hypovolemia as well as for resuscitation with whole blood following
hemorrhage. The overall prediction results from this study are shown in Figure 13. In this
figure, all predictions for all heartbeats for all pigs over the course of the entire protocol
(baseline, relative and absolute hypovolemia and resuscitation) are aggregated. The mean
and standard deviation for all graded decompensation status levels are shown, as well as
the line of best fit through the means for each level. Status levels were defined such that
0% represents a baseline period and 100% represents full cardiovascular decompensation.
Intermediate gradations were designated based on the percentage of blood removed during
the hemorrhage portion of the experiment. As this model was created with data from
separate interventions for relative and absolute hypovolemia and used to predict on
hypovolemic, resuscitation and baseline periods, this represents a more generalized metric
of cardiovascular decompensation status as compared to the previously published result
focused on absolute hypovolemia alone.
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Figure 13. The BVDS metric performance in predicting decompensation. The line of best fit through
the mean of the aggregated predictions for all animals during all portions of the experiment is shown
in red. BVDS levels range on a scale from 0 to 100, with 100 indicating full decompensation status.
The slope of the line (0.65) is an indicator of the overall prediction accuracy, while the R2 value of
0.93 is an indicator of the prediction consistency between BVDS levels. Standard deviation bars are
also shown for each level, indicating the consistency of predictions within a single decompensation
level. Image modified from [12].

The wearable chest-worn patch [59] that provides measures of simultaneous ECG,
SCG and PPG (and thus could be used to monitor BVDS) has been used in other studies
that are relevant to our discussion here. The most pertinent data may have been generated
in a study designed to segregate patients with compensated and decompensated heart
failure [64]. In heart failure, patients are generally hypervolemic rather than hypovolemic,
while still experiencing poor circulation and perfusion. Additionally, environmental stres-
sors and exercise exacerbate their poor cardiac performance, particularly for patients with
decompensated heart failure. In this study, the structure of the SCG signals recorded with
the patch was studied in 45 patients with heart failure before and after a standard six-
minute walk test, after which a similarity score was computed from the graph representing
the structure of the SCG data in the spectral domain. As seen in Figure 14, significant
differences in the SCG signal structure were found between decompensated heart failure
patients at admission and at discharge after receiving treatment. It is notable that some
patients responded much better to the treatment than others, again highlighting the need
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for individual-specific metrics of performance. Specifically, decompensated patients had
a higher graph similarity score comparing their SCG before and after the walk test than
did compensated patients, indicating a higher similarity in contractility and cardiovascular
hemodynamics between rest and recovery, meaning their cardiovascular systems were
unable to compensate for the strain of exercise. In short, the decompensated patients expe-
rienced a lower compensatory reserve than compensated heart failure patients. In turn, we
would expect heart failure patients (and those who are yet to be diagnosed) to experience a
lower operating compensatory reserve and a faster decline of their reserve than healthier
patients for a similar amount of physical activity, including activity in the workplace.
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3.6. Advancements and Next Steps

The BVDS metric requires validation in additional studies. As the initial algorithm was
developed in an animal model, new datasets should be curated from human subjects with
realistic progression of perturbations that includes both relative and absolute hypovolemia.
Realistic noise sources should also be included in this development in the form of data
from both free-moving subjects and those being transported in multiple classes of vehicles.
Advanced modeling techniques, such as the graph analysis described for the heart failure
study, and other techniques ,such as transfer learning and time series analysis, should
be explored.

The previously constructed wearable sensing patch for ECG, SCG and environmental
context sensing was designed for use in patients with heart failure—a frail population of
older patients that would wear the device around the home and during normal activities of
daily living. To enable usage of this patch for wearable sensing in the context of human
performance—i.e., occupational, military, and sports applications—the hardware should be
ruggedized, appropriately miniaturized, and validated with a broad range of environmental
testing scenarios. For example, the hardware and adhesives must be designed to tolerate
high moisture levels such as heavy sweating. The mechanical coupling integrity of the
sensing system to the chest should be evaluated at high levels of vibration that could result
from motion artifacts or other external vibration sources, as well as in the presence of fluids
such as sweat or blood. To this end, some initial testing and validation work has been
conducted at Georgia Tech with healthy human subjects performing various exercise tasks
both indoors and outdoors, and with signals being measured in the presence of external
vibrations [65–67].
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When it comes to addressing motion artifacts, there are two main stages that should
be considered. The first is developing customizable signal quality indices (SQI) to remove
portions of the recording that contain too much noise. The second stage then takes the
output from the SQI and processes the signal in the presence of remaining noise. ‘Mo-
tion artifacts’ include any noise sources related to the user—physical movement, speech,
interference from clothing or gear, etc. The SCG and PPG have been criticized for their
susceptibility to motion artifacts; however, recent studies demonstrate that PPG and SCG
can be ruggedized for free-range use. Clifford and colleagues have developed quality in-
dices for hospital-grade ECG and PPG signals and shared them through their open-source
cardiovascular waveform toolbox on PhysioNet [68]. An SQI developed specifically for
SCG signals (but that can be applied to other signals such as PPG) is presented in [69]. This
study retroactively stratified SCG heartbeat quality recorded from subjects during rest,
exercise and recovery. Heartbeats from the SCG were segregated based on their similarity to
a template beat, allowing for higher quality beats to be identified during the noisier periods
such as exercise. Multiple groups have made progress on the second stage processing for
SCG and PPG signals. Yang et al. utilized an adaptive filtering technique to effectively
process SCG recordings in walking subjects [70]. Additional studies have indicated that
using a gyroscope along with an accelerometer to record the SCG can improve signal
feature estimations, possibly due to differing levels of noise in the linear and angular
domains [71,72]. By including an array of sensors and leveraging independent component
analysis, Yang et al. were able to extract relevant cardiac timing intervals from the SCG
in both walking and jogging subjects, tested up to 4.6 mph [73]. Beyond SCG improve-
ments, multi-wavelength PPG analysis shows promise for developing more robust feature
extraction methods [60,74]. Adaptive filtering and signal deconstruction/reconstruction
approaches have also been utilized for analyzing PPG recordings from subjects during
moderate and intensive exercise [75,76].

The problem of reducing the impact of external vibration sources, such as vehicles, on
SCG and PPG recordings has been less-thoroughly explored than the problem of reducing
motion artifacts in general. One group recorded the SCG of a single subject for an entire
day, including commuting to and from the office in a subway train [77]. To process the
portions with subway noise, Di Rienzo et al. utilized an ensemble averaging approach prior
to annotating the heartbeats. In a separate study, Lin et al. combined SCG recordings with
accelerometer recordings taken on a subway train and used an ensemble empirical mode
decomposition approach to remove the vehicular noise [66]. Similar approaches could
potentially be used to remove noise from additional transport vehicles or other external
vibration sources. A summary of the current state of the noise reduction stages (signal
quality indexing, motion artifact and external vibration removal) is contained in Table 1.

Table 1. Summary of Ruggedization Metrics.

Ruggedization Measure Purpose Major Challenges State of the Art Opportunities for
Advancement

Signal Quality Indexing

Assess noisy portions of
the signal to determine

whether they are
salvageable for feature

extraction

Determining an appropriate
comparator (i.e., template)

to recognize “good” signals,
particularly in changing

physiology

[68,69]

Address specific wearable
issues: sensor misplacement;
realistic varied noise sources
such as clothing interference,

speech, body movement,
fluids, etc.

Motion Artifact Removal
Mitigate the effects of

noise due to movement of
the subject

Tracking physiology during
periods of extended motion

[78] (ECG)
[76] (PPG)
[73] (SCG)

Multimodal, multi-sensor
analysis; realistic varied noise

sources; sparse estimation;

External Vibration
Removal

Mitigate the effects of
noise from the

environment such as from
transport vehicles

Semi-periodic in-band noise
sources

[79] (ECG)
[66] (SCG)

Methods specific to
reflectance-mode PPG; noise
data from multiple vehicle

types; multimodal,
multi-sensor analysis
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Table 1. Cont.

Ruggedization Measure Purpose Major Challenges State of the Art Opportunities for
Advancement

Moisture Resistance
Protect sensors and signals

from fluid interference
(e.g., sweat, blood, mud)

Fluids can block or short
sensors and distort signals [80,81]

Improved packaging; machine
learning or signal processing

methods for detecting and
adjusting to fluid interference

Activity Recognition
Provide context for

physiological
measurements

Large amounts of data
required with consistent

labeling
[82,83] Multi-modal and additional

domain transfer techniques

4. Future Technology Advancement Opportunities
4.1. Contextual Measures

In terms of predicting specific physiological outcomes, additional context can help
limit the number of false positive and false negative indicators output by the system. For
example, activity recognition could keep the system from alerting to a supposed acute
injury when the subject has simply climbed a long flight of stairs. The system could also
use environmental context such as ambient temperature to better forecast a user’s reserve
levels when the current level of activity is sustained in that temperature.

With the inclusion of an accelerometer into the BVDS design comes the potential to
perform activity recognition and monitoring to provide context for compensatory reserve
predictions. Exploration of accelerometer and IMU-based activity recognition has spanned
systems with a single sensor [84–86] as well as systems with many sensors [87,88] in
an effort to classify activities, such as rest, walking, running and cycling as well as to
detect more discrete events, such as falling [89]. Other groups have estimated energy
expenditure [90], with some groups utilizing additional sensors, such as barometers [91]
or a pressure sensor in the shoe to evaluate the amount of weight born by the user [92].
Physiological features, such as heart rate, have also been added into the calculation for
improved estimation [93]. However, Murakami et al. evaluated 12 different popular
commercially available accelerometer-based devices in 2019 and concluded that more
work is needed in the area of physical activity energy expenditure prediction for wearable
devices [94].

An et al. recently published a method called AdaptNet, in which they leverage the
triaxial accelerometer data from a chest patch for robust activity recognition. Using data
from multiple domains, they accurately identified subjects standing at rest, walking on level
ground, walking at a decline, and walking at an incline both with and without stairs [83].
Using this type of approach, a monitoring device could record the duration and perhaps
metabolic intensity of the user’s physical activity [95] and evaluate changes in the compen-
satory reserve due to that activity level and perhaps other environmental stressors. A user’s
individualized compensatory reserve change in response to a particular level of energy
expenditure may then be learned by the system, and anomalous behavior deviating from
this individualized response can potentially indicate performance degradation resulting
from any number of factors, such as inadequate sleep, hydration, or nutrition. Periods of
anomalous responses can then be alerted to the user prior to negative sequelae, resulting in
setbacks in training regimens for athletes, for example, or higher risk of musculoskeletal
injury from excessive fatigue.

We discussed how the impact of physical activity on the compensatory reserve can be
adjusted due to environmental variables. Beyond activity recognition, additional context
surrounding the environment as well as some more information from the user could be
beneficial in estimating their true compensatory reserve. The first of these metrics is
temperature [96,97]. Ideally, the user’s skin temperatures would be monitored from one or
several sites, as well as ambient temperature [20]. Although temperature sensors are now
sufficiently miniaturized and commonplace, accurately measuring these temperatures in
practice using a wearable device or system is non-trivial due to mixed heating effects from
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multiple sources. Secondly, an altimeter or barometer could allow the device to keep track
of physiological changes potentially due to altitude (hypoxia) or atmospheric pressure as
well as improved activity recognition and energy expenditure.

4.2. Integration

We envision a future that incorporates elements of the CRM with advances in sensing
technology, multiple modalities of cardiovascular sensing (as seen in the BVDS metric),
additional contextual measures and advanced noise reduction algorithms into a fully wear-
able system, creating a robust and physiologically sound estimation of the free-living user’s
compensatory reserve or decompensation status during physical work and environmental
exposure. Such a system would enable quantification and management of previously
discussed hypovolemia issues to optimize health and performance. This wearable system
could consist of a chest-worn patch, though it could also be contained in a watch, or in-
clude additional sensors and hardware in occupation-specific gear. If the entire system is
contained in a watch, it should be noted that all signal measurements would not be fully
continuous—the user would take measurements intermittently throughout the day during
rest periods while pressing the watch against their sternum (as seen in Figure 10) to record
the ECG and SCG. Though leading to fewer readings throughout the day, one benefit of
this approach is an appreciable reduction in motion artifacts. Alternatively, a benefit of
the complete wear-and-forget form factor such as the chest patch allows for continuous
measurements, including while the subject may be unconscious due to regular sleep or
injury. To be fully useful, this system would require a method for giving feedback to the
user about their physiological state in an effort to prevent dehydration and heat stress, or to
a supervisor or health practitioner for other use cases, such as injury. Recent developments
in wearable sensing can allow for improved and increasingly viable form factors for the next
generation of devices used to predict a user’s compensatory reserve. For example, advances
in biosignal-specific integrated circuits [98] as well as flexible and stretchable circuitry [99]
motivate the design of smaller, less-obtrusive and more comfortable wearable devices.

Figure 15 shows a futuristic scenario with a worker wearing a device on the chest that
is capable of measuring the advanced CRM or BVDS metric. The processing steps described
in prior sections that are required for continuous measurements from a free moving subject
are shown in the green boxes. First, signal recordings from the device go through a
series of noise reduction steps that include a determination of signal quality as well as
external vibration and user-generated motion artifact removal. The required features for
the predictive model can then be extracted from the clean signals. These features are then
fed to the prediction pipeline that includes evaluation of context and activity recognition
before estimating the user’s compensatory status and providing feedback on that status to
the user.

To create this vision of the next level of compensatory reserve or decompensation status
models, all required sensors first need to be combined into a single wearable or realistic
system of wearable devices. Challenges, such as capturing the temperature correctly
in the face of multiple heat sources (including the device itself), need to be addressed.
Additionally, there are challenges with processing and storing data from multiple sensors
and questions about how to power the device(s), along with decisions to be made about
how to interact with the user and others appropriately to maintain patient privacy.

It is important to mention that a multitude of machine learning models have been
developed to predict undesirable patient states with regards to hemorrhage detection and
general cardiovascular instability. For example, support vector machines have been used
in noninvasive estimates of simulated and actual hemorrhage severity [100,101], though
it should be noted that these models were used to separate 2–3 classes of severity rather
than have a continuous output and were also not individual-specific. Other studies have
utilized random forest, support vector machines, k-nearest neighbors and neural network
algorithms to model risk of cardiorespiratory instability in the hospital through integrated
monitoring systems [102–104]. K-nearest neighbors, random forest, gradient boosted trees
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and logistic regression with L2 regularization were used to classify hypotensive events in
time series data from the ICU [105]. However, all of these models rely heavily on standard
vital signs (e.g., blood pressure, heart rate, SpO2, respiratory rate) acquired in the hospital
setting, some of which come through invasive measures. Though vital signs have proven to
be inferior in sensitivity and specificity compared to measures of the compensatory reserve
regarding their application to wearable systems [14], the CRM and BVDS metrics currently
report patient status in the moment and do no look-ahead forecasting of compensatory
states, which could be extremely beneficial for the user and healthcare personnel.
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Figure 15. Processing stages in an example use case. Noisy signal recordings from a ruggedized
chest-worn sensor (brown) go through a signal quality assessment and then motion and external
vibration removal prior to feature extraction. Once high-quality features are extracted from the
signals, predictions and evaluations of context, activity and reserve or decompensation status can be
made. This summarized information is then relayed back to the user.

In parallel with developing the physical system, advanced machine learning models
leveraging approaches such as graph analysis, transfer learning and time series analysis
will need to be developed that incorporate both the CRM and BVDS methods along with
additional contextual measures. To be most effective, these models will need to be created
from rich datasets that are curated from a diverse population performing multiple tasks in
austere environments. The datasets must contain real physiological challenges, true to life
sensor noise, and gold standard reference measures for the physiological challenges.

4.3. Applications and Opportunities

Heat strain is a common problem for workers, warfighters and athletes due to a
combination of performing vigorous physical work, exposure to environment heat, and/or
wearing heavy clothing, uniforms or protective equipment [20]. Currently, occupational
and military communities measure heat strain in workers and warfighters by monitoring or
estimating core temperature alone or with heart rate [9,10]. This is because it was previously
believed that if core temperatures were maintained <38.5 ◦C, most workers can complete a
work shift and that ~39.2 ◦C was the upper limit of safe physiological tolerance [106–109].
Unfortunately, such general guidance does not hold for individuals. Many individuals
performing physical work can well-tolerate higher core temperatures (>40 ◦C) without
impairing work capacity or health, especially when the skin is cool [20,110]. Likewise, if
the skin temperatures are fairly high, core temperature tolerance can be 38.5 ◦C or lower in
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some individuals [111]. For example, individuals working at moderate metabolic rates (that
are common for occupational and military tasks) with high skin temperatures (such as when
wearing protective clothing or in hot-humid conditions) there is a normal bell distribution
between core temperature and incidence of heat exhaustion [111]. Likewise, combining
heart rate with core temperature measures does not provide a reliable safety index of an
individual’s tolerance to exercise-heat strain [10]. When monitoring free-living workers,
heart rate can be influenced by work intensity, isometric tasks and other confounding factors
beyond heat strain or dehydration. As discussed, a primary physiological mechanism
impairing physical work capacity with heat strain and dehydration is often cardiovascular
in origin [20,24]; thus, it is logical to monitor each individual’s compensatory reserve or
decompensation status rather than set core temperature or heart rate thresholds to manage
heat strain exposure.

As discussed, hypovolemia from dehydration or environmental exposure and/or
physical work can adversely affect health and performance, thus motivating the need
for continuous physiological monitoring. We argue that the estimation of cardiovascular
strain should incorporate mechanical measures that can include PPG and SCG signals such
that the effects of reduced preload on cardiac performance can be more directly assessed.
Moreover, single vital sign or feature-based approaches are insufficient, and thus machine-
learning techniques should fuse multiple waveform features to capture the complex nature
of the physiological response to hypovolemia. For example, blood pressure itself may
be often regulated until physical or heat exhaustion, while arterial and pulse pressure
instabilities or altered cardiomechanics might result much earlier due to afferent signaling
representing baroreceptor unloading and changes in tissue perfusion and cardiac filling and
vascular resistance. By sensing these cardiovascular instabilities, one could then predict
impending physical exhaustion beforehand, which is what Convertino and colleagues [7]
demonstrated to occur with hemorrhage prior to cardiovascular collapse (loss of blood
pressure regulation) or accompanying perturbations of dehydration and heat stress with
orthostatic challenges [51].

Likewise, diarrhea and vomiting induced dehydration are serious military and civil-
ian problems during both combat deployments and humanitarian missions as they are a
major cause of mortality in developing nations. Though a robust wearable system for mea-
surement of compensatory reserve or decompensation status would not directly measure
hydration status [16], monitoring the associated circulatory impact of this perturbation
will provide a proxy measure [51]. As individuals consume or are administered fluids, the
vascular volume will be restored and improve cardiovascular stability, resulting in recovery
from dehydration—or if combined with body cooling recovery from hyperthermia, and
a measure of compensation or decompensation could indicate how close the person is to
“full recovery” from either these individual or combined hypovolemia stressors. Thus, a
compensatory reserve or decompensation measure would provide objective individualized
guidance regarding work–rest ratios and recovery break management.

Physiological adaptation to physical work (physical training) and heat stress (heat
acclimation) both require blood volume expansion and central hemodynamic changes to
overcome the vasodilation challenges and maintain cardiovascular stability associated
with improved work capabilities [25,38,39]. Stressor adjustment decisions for physical
training and heat acclimation (whether to increase training intensity or heat stress exposure)
are often based on work performance improvements and/or easily measured vital sign
reductions for a given stress. Determining work performance improvements usually
requires separate standardized evaluations (with identical conditions) and there is often
debate over which easily measured vital sign provides the most effective index [112]. A
measure of cardiovascular stability and decompensation, during any non-standardized
condition, would provide an important integrated measure regarding the compensatory
status needed to support the task and monitor training and acclimation adaptations.



Sensors 2022, 22, 442 21 of 25

5. Summary

The manuscript provides several examples of occupational, military and sports
medicine hypovolemia problems that could be managed with wearable technology and
machine learning for optimizing health, safety and physical work capabilities. We have
discussed the biological rationale for compensatory reserve and decompensation status
and shown their sensitivity to numerous hypovolemia perturbations in human and animal
models. We have highlighted recent technology advances that will enable this approach for
wearable monitoring—decision aid systems for free-living workers in austere conditions.
Finally, we have described the needed technology and algorithm advances to make effective
individualized management of hypovolemia for a variety of common occupational, military
and sports applications.
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