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Abstract

Global population growth, urbanization, and climate change worsen the immediate environment of many individuals. Elevated

concentrations of air pollutants, higher levels of acoustic noise, and more heat days, as well as increasingly complex mixtures of

pollutants pose health risks for urban inhabitants. There is a growing awareness of the need to record personal environmental

conditions (“the human exposome”) and to study options and implications of adaptive and protective behavior of individuals. The

vast progress in smart technologies created wearable sensors that record environmental as well as spatio-temporal data while

accompanying a person. Wearable sensing has two aspects: firstly, the exposure of an individual is recorded, and secondly,

individuals act as explorers of the urban area. A literature review was undertaken using scientific literature databases with the

objective to illustrate the state-of-the-art of person-based environmental sensing in urban settings. We give an overview of the

study designs, highlight and compare limitations as well as results, and present the results of a keyword analysis. We identify

current trends in the field, suggest possible future advancements, and lay out take-homemessages for the readers. There is a trend

towards studies that involve various environmental parameters and it is becoming increasingly important to identify and quantify

the influence of various conditions (e.g., weather, urban structure, travel mode) on people’s exposure.

Keywords Wearables . Mobile sensors . Participatory sensing . Air pollution . Noise . Thermal stress . Environmental stressors

Introduction

Wearable sensors are increasingly used to monitor environ-

mental pollution. This development is stimulated by re-

search in four fields of highest relevance: urbanization, cli-

mate change, digitalization, as well as innovations in hard-

ware development. Urbanization is leading to an increase in

traffic and consequently in noise and air pollution [66]. At

the same time, climate change is having a negative impact

on urban areas, e.g., resulting in more days of stagnant

urban atmosphere and heat. Therefore, environmental pol-

lution occurs more frequently, longer, and more intensively

with citizens suffering from its negative health impacts [94].

In this context, digitalization is a key driver for the devel-

opment of new ways to collect, assess, and monitor envi-

ronmental stressors with wearable sensor technologies

which help to explore the urban human exposome, which

is defined as the total of people’s exposure to environmental

factors throughout their lifetime [3].

When referring to wearable sensors in this review, we

mean small devices that can be easily carried by a person.

Some studies used reference or benchmark devices (in labo-

ratories or outdoors), to evaluate the precision of wearable

sensors, and some recent reviews and articles about wearable

sensor technologies evaluated their technical specifications

and performance parameters such as accuracy and precision

in different environmental contexts [13, 21, 39, 89, 120].

However, these kinds of evaluation studies are not what we

are focusing on in this review. What is missing, to the best of

our knowledge, is a comprehensive review of studies that used

wearable sensors for different environmental stressors in the

urban setting, focusing on personal exposure. With the help of
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this review, we want to answer the following questions: What

are current trends in these studies? What are the limitations

and gaps in the field? By doing this, we encourage researchers

to fill in the blanks and we highlight possible directions for

further enquiries. We begin by providing an overview of pol-

lutants in the urban setting, followed by a detailed description

of the review process. Next, we present the characteristics of

the selected case studies such as study design, equipment and

parameters, and limitations as well as a qualitative keyword

analysis. In the “Discussion” section, we synthesized the out-

comes of the case studies and provide take-homemessages for

the reader. The paper ends with “Conclusions” pointing out

topics that require further research.

Environmental Stressors of Individuals

Environmental pollution is the sum of all disruptive environ-

mental factors that influence or change the natural environ-

ment [71]. Many environmental stressors are harmful to peo-

ple’s health. This review focuses on three environmental fac-

tors that are expected to increase in frequency and intensity,

especially in urban areas: heat, air pollution, and noise [94].

Urbanization processes mostly densify the built environment,

resulting in adverse effects on urban climate and air quality

[1]. Environmental exposure of individuals is multi-factorial

and three important polluting factors are discussed in the fol-

lowing section [60, 61, 109].

Airborne Pollutants

Transport, industry, and agriculture are the main sources of air

pollution in cities [93]. The most investigated air pollutants in

the context of personal exposure are particulate matter (PM),

nitrogen oxides (NOx), carbon dioxide (CO2), ozone (O3),

black carbon (BC), and ultra-fine particles (UFP). Numerous

studies show the association between exposure to particulate

matter and an increased likelihood of, e.g., cardiovascular or

respiratory disease [65, 70, 129]; the other airborne pollutants

mentioned in this review are also associated with adverse

long-term health effects [19, 55, 111, 116]. To limit human

exposure to air pollutants, the European Commission provides

a legal framework [31], setting average limit values (time

reference from hourly to yearly), which have been binding

throughout Europe since 2010 [37]. Investigations show that

stationary measurements only determine representative con-

centrations for the location of the measurement and its imme-

diate surrounding [130]. While mobile measurements also

represent valid values for a certain radius varying on the mi-

croenvironment, stations are not able to determine individual

exposure at all [110]. Furthermore, subjective perception of

exposure to airborne pollutants has only been examined spo-

radically in studies so far [26, 48, 100].

Heat Stress

Due to their own climatic conditions, cities have higher tem-

peratures than their surrounding areas and urban areas will be

affected by heat waves more frequently in the future [42, 49].

Urban heat island effects impair the performance of healthy

inhabitants [4, 47] and affect the elderly in particular [28]. For

a comprehensive assessment of heat exposure at the level of

individuals, subjective heat perception is an important comple-

ment to objective exposure [11, 45, 62]. Surveys have shown

that, although perceived heat stress is not age-dependent, retired

people can better adapt to heat than working people, as they

have more flexible daily routines [40]. Temperature observa-

tions are mainly gathered by the national weather services.

Meanwhile, a denser network of stationary measurements has

been established through publicly accessible sensors, which

bring together weather stations operated by citizens in all larger

cities as an internet-based network. This improves the possibil-

ities to investigate small-scale temperature differences [85].

Noise

Motor vehicles, rail traffic, air traffic, and industry are the main

sources of noise pollution [59].Noise pollution is amatter of sound

frequency and intensity measured in decibels (dB) or dB(A) (dB

adjusted for the sensitivity of the human ear) and is perceived very

subjectively. Adverse health effects include heart disease and sleep

and concentration disorders [7, 86, 90, 113, 123]; dementia and

diabetes have also been associated with noise [17, 102]. The

WorldHealthOrganization estimates that inWestern Europe, over

one million healthy life years are lost annually to noise-related

diseases [127]. There is consensus that current guidelines and limit

values do not sufficiently promote health-protective urban plan-

ning [2, 125, 126]. The EU Environmental Noise Directive does

not address individual noise exposure. This gap might be closed

by individual worn sensors that record the personal exposure as

well as the urban distribution of noise.

From Stationary to Mobile Measurements

In accordance with guidelines for environmental protection,

stationary or model-based concepts still dominate as ways to

calculate and estimate urban stressors. However, the ultimate

criterion for an individual’s health is her/his exposure, which

needs to be assessed in more detail. Avoidance of exposure is a

way to prevent adverse effects and becomes increasingly im-

portant in scientific discourses and socio-political discussions

[58]. There are two options for this adaptation. On the one hand,

the built environment that influences the extent of environmen-

tal stressors can be changed. On the other hand, adaptation can

also be behavior-based, e.g., when people consciously decide to

change their mobility behavior in everyday life [50], which
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requires awareness, motivation, and knowledge of alternative

courses of action [54]. For behavior-oriented adaptation, it is

important to be able to evaluate personal exposure. A person’s

geographical area of action shapes her/his individual exposure

and health [30, 57, 98, 103]. Recent exposure studies also em-

phasize the importance of microenvironments along the daily

routes of citizens [24, 25, 33, 83].

Personal exposure assessments that follow a mobile approach

are still underrepresented in exposure and health research and the

geographical context has not yet been studied in depth [22].

Wearable environmental sensors are also a key technology to

push the research field of citizen science [38]. Volunteered geo-

graphic information (VGI) can be collected by participatory sens-

ing approaches to map personal environmental stressors [76].

VGI is a form of citizen science where laypeople contribute

digital data that is used by other citizens but can also serve sci-

entific investigations [27, 44]. Methods in VGI include GPS

tracking and geotagging text/picture reports. Subjective experi-

ences and perceptions regarding the environmental situation can

thereby supplement measured information to provide a compre-

hensive understanding of its human health effects.

A vision for the future is to combine mobile sensors with

stationary sensors. Budde et al. [15] presented a project in

which they developed a network of different sensors. They

worked on algorithms for distributed calibration and

verification of data sources as well as implemented interfaces

between devices, databases, and end-users. In the future, this

approach can ensure that large sensor networks can be created

in which the different sensors with their respective advantages

work together smartly.

Methods

Due to the rapid development in sensor technology in recent

years, we have decided to include publications from the past 5

years in this review. Scientific articles published between

January 2015 and February 2020 were searched from the da-

tabases Science Direct and ISI Web of Knowledge using the

following keywords: wearable/sensor/VGI/pollution/personal

exposure/individual exposure/personal sensing/individual

sensing/mobile sensing/air/noise/heat. The keywords were

used in various combinations. This led to several duplicate

results, which were removed in the next step. In addition to

the database search, the reference lists of selected and suitable

papers were scanned for further case studies. Duplicates and

publications that are not journal papers or conference papers

were removed from the total of 197 papers (see Fig. 1). The

abstracts of these papers were screened to check whether the

case studies met the criteria for inclusion in the review. These

Fig. 1 Selection of case studies
for the review oriented on the
PRISMA flow diagram

419Curr Pollution Rep (2021) 7:417–433



criteria were (i) the use of wearables, (ii) measurement of

environmental parameters, and (iii) that the study took place

in urban regions (Fig. 2). In a next step, the remaining 78

studies were studied in detail and it was checked again wheth-

er the inclusion criteria were met, as in some cases this was not

evident from the abstracts.

Parameters of interest were identified from the selected

papers, which were captured in a table including the follow-

ing: authors, year, pollutant, measured parameters, study lo-

cation, number of participants, data collection period(s),

equipment, results, research questions, and study limitations.

The studies could then be compared based on these parame-

ters. In addition, a keyword analysis was carried out using the

MaxQDA software.

A potential limitation of this review might be that it is

possible that not all relevant studies were identified, for exam-

ple, because they used other keywords/synonyms than those

which we used in our search. It is also possible that selective

reporting within the studies could lead to distortions in the

analysis of the results and the limiting factors. Another limi-

tation is that the research was carried out by only one person.

Results

Figure 2 shows rising numbers of scientific publications focusing

on wearable sensors used to monitor environmental pollution in

general. Categorizing the selected and reviewed case studies in

terms of exposure and year of publication (Fig. 3), we find that

initially, wearable sensor applications were mainly used to mea-

sure air pollution (12 publications in 2015), but this dominance

decayed quickly and soon noise and thermal recordings received

similar interest. Most importantly, wearables for thermal expo-

sure are still underrepresented in studies exploring the urban

Fig. 2 Database search at Science
Direct for “wearable,
environment, pollution”

Fig. 3 Reviewed case studies in
terms of environmental pollutant
and year of publication
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environment. The most recent developments (particularly since

2019) show that multi-parameter wearables are increasingly

used, which appears to be an adequate development, given the

multi-factorial environmental situation in urban regions.

The analyzed papers can be grouped into the following

categories according to their main subject: transport/

commuting mode with regard to spatial and temporal variabil-

ity (11 articles), microenvironment (indoor/outdoor) pollution

(8 articles), individual perception/exposure to pollutants (8

articles), health-related data in combination with data about

pollution (6 articles), sensor and app development and evalu-

ation (14 articles), pollution in multiple locations and local

variability (4 articles), and development of pollution maps

and basis for simulation (5 articles) (detailed information is

given in the Appendix).

Study Design

In the following chapter, the case studies are analyzed and

compared using parameters for study design such as location,

mode of sensing, number of participants, participant group,

duration, sampling period, and time of the year.

The study locations were distributed over five continents

(Fig. 4): About half of the European air pollution exposure

studies were located in Barcelona (or one of their multiple

locations was Barcelona). Two studies had multiple locations

in Europe [34, 35]; noise studies were most often conducted in

Paris. The geographical distribution indicates that wearables

were mainly used in large metropolises in Europe and North

America. Thermal studies are focused on cities in the USA.

When considering themode of sensing, the case studies can

be divided into two groups: (1) 17 studies let the participants

carry out the measurements continuously for one or more days

and took place indoors (e.g., at home or at work) and outdoors,

with the aim of comparing the results [10, 18, 23, 35, 41, 51,

69, 77–79, 81, 87, 95, 104, 108, 115, 128], and (2) 14 studies

were limited to the outdoor routes of the participants. Within

this group, a further classification can be made according to

studies in which the participants (a) travel given routes [20,

32, 56, 88, 114] and (b) travel freely chosen routes [34, 43,

72–74, 91, 96, 105, 118, 121] with one ormultiple commuting

modes (e.g., car, bus, on bicycles, and by foot). While many

studies on air and multiple pollutants required participants to

use predefined routes, studies on noise exposure collected data

from people moving freely through the city and only few

focused on predefined streets and places [5, 6]. Measuring

indoor noise is of no interest in the selected studies. There

are thermal studies which measured both indoor and outdoor

[11, 52, 62, 107, 117, 119, 122] and some that only consider

outdoor measurements [8, 36]. The specialty of the tempera-

ture parameter is that the outdoor temperature influences the

indoor temperature (it should be noted here that this indoor

temperature can be influenced by air conditioning systems).

This results in exposure to high temperatures not only

Fig. 4 Overview of the
geographical regions considered
by the 55 reviewed case studies
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outdoors but also indoors, especially at night. Practices to

adapt to extreme heat are the focus of several studies (e.g.,

[107, 119, 122]), which requires both the indoor and outdoor

temperatures to be recorded.

The number of participants in the analyzed studies varied

over a wide range. In eight of the air pollution studies, the

participants using the wearable sensors were scientists who

most likely work within the project [20, 32, 73, 78, 105,

114, 118, 128]. Their focus was on the feasibility of data

collection and device evaluation and not on the measurement

of a person’s personal exposure. Three heat studies recruited

ground management workers as they are particularly exposed

during outside work [11, 107, 117]. The number of partici-

pants in heat studies varied between 23 [62] and 81 [11]. The

other studies involved participants in a range between 4 and

300 (Fig. 5), except Picaut et al. [99], who used a smartphone

app and report that more than 24,000 participants contributed

to around 85,500 measurement paths [99]. Studies of air pol-

lutants and multiple exposures involved mostly volunteers

and it appears that more recent studies recruited a larger num-

ber of participants than previous studies.

The case studies focused on different participant groups,

thereby examining different aspects of exposure. Four of the

air pollution studies recruited participants from former health-

related studies [34, 41, 56, 95]. Also recruiting participants

with pre-existing health issues, Ryan et al. [108] studied 20

children with asthma. Bekö et al. [10] and Dons et al. [35]

underline that their participants were in good health. Some

studies were conducted with school children [95, 104, 108]

or graduate students [69]. Some studies focused on occupa-

tional groups: Louwies et al. [77] recruited nurses and three

studies involved ground workers [11, 107, 117].

The duration of the case studies varied between 2 and 40

days; some studies were focused on a particular time of the

day, e.g., peak-hours [20, 105, 114] for air pollution exposure,

or comparing rush hours and off-peak times [6, 53, 101] in

noise studies. In most of the heat studies, a sampling period of

5 days, or the so-called work week, was applied [8, 11, 107,

117, 119]. Obviously, heat exposure is most relevant during

the summer months and this is reflected in the seasonal pattern

of thermal studies (Fig. 6). Measurements of air pollution and

multiple exposure studies are spread throughout different

times of the year. Noise studies are not uniformly distributed

over all seasons, which might be a random pattern due to the

low number of studies.

Parameter and Equipment

In the following chapter, different parameters measured in the

case studies are categorized and described. In addition, we

give an overview of the utilized sensor equipment.

Figure 7 shows that measurements of gaseous pollutants

(NOx, COx, O3) are quite scarce in air pollution studies, while

particulate matter was frequently recorded and measured in

many different forms (mass concentration PM, particle number

concentration PNC, black carbon BC, ultra-fine particulates

UFP, total suspended particles TSP). Seven studies utilized a

questionnaire or diary (e.g., demographic data, activity logs).

Some studies, such as Lefevre and Issarny [67] and Lefevre

et al. [68], applied different stages of participation each with a

different number of participants: participants who measured

with a smartphone app, filled out questionnaires, and participat-

ed in workshops. Eight studies additionally collected data about

the participants’ health (medical data; it should be noted that

Fig. 5 Overview of sample sizes in the case studies
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this review is not focused on discussing the results that emerge

from the evaluation of the medical data). Figure 7 also reveals

an important weakness of the thermal case studies performed

with wearables: most studies only measured temperature, but

did not capture other important contributions to thermal com-

fort, such as radiation, air humidity, and wind speed. This is

certainly due to the technical difficulties of measuring the ad-

ditional components and, so far, only some initial attempts have

been made to develop devices that conveniently register these

components (e.g., Nakayoshi et al. [92]).

In contrast to air, noise, and multiple exposure studies, only

a minority of the thermal case studies collected GPS data of

their participants as well as data about the participants’

movement (location, acceleration, questionnaires). Some

studies set their focus on investigating the thermal effects on

individuals and did not capture GPS data since the focus is not

on the spatial characteristics of the parameter. Others did not

involve GPS, as data about personal mobility are confidential

[52]. Runkle et al. [107] as well as Sugg et al. [117] identified

a subset of their participants who were willing to use GPS

trackers and utilized geo-locations in combination with self-

reported activity logs. GPS records were synchronized with

the recordings of the environmental sensors by using a

timestamp. The positions of the recordings can be assigned

to land cover categories [117] or utilized to create population

density surfaces and maps [119].

Fig. 6 Seasonal distribution of
measurement periods
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In some studies, participants reported their location:

indoor (home, work, visiting a friend/relative, church,

store, and other), outdoor (work, recreation, visiting a

friend/relative, activities, and shop), and in-transit (vehi-

cle, walking and work), as well as their activities while

sensing [107, 117, 119], e.g., by degree of activity (heavy

Fig. 7 Overview of measured parameters in the case studies
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(jogging), moderate (walking), resting (no activity); [36]).

Hass and Ellis [52] also inquired for activities that may

influence experienced temperatures (e.g., use of air con-

ditioners, minimizing outdoor work, drinking fluids,

wearing light clothing, wearing a hat, reducing activities,

seeking shade). Hass and Ellis [52] as well as Kuras et al.

[62] registered the experienced temperature of the partic-

ipants by selecting their thermal comfort from several

possible categories (cold, neither hot nor cold, warm,

hot, very hot).

Some studies also acquired demographics and socioeco-

nomic data to analyze associations with environmental data

[11]. Sugg et al. [117] and Kuras et al. [62] asked their partic-

ipants for information about, e.g., age, race, gender, housing

status, activities during the week, lifestyle, occupation, orien-

tation towards the neighborhood, use of indoor and outdoor

spaces, and public and private cooling resources. In studies

aimed at exploring health effects, participants’ height, weight,

and body composition were registered together with health

symptoms [117, 119].

Considering the utilized equipment, we find that micro-

aethalometers are frequently used (9 studies, see Fig. 8 in

the Appendix). For noise measurements, smartphones were

utilized almost exclusively. The volume of noise was regis-

tered as dB or dB(A) and some authors recorded the 1/3

octave band spectrum [6, 29]. Current smartphones contain

embedded microphones capturing sound pressure levels

from 30 to at least 120 dB [5, 46] or attach an external

microphone to the smartphone to measure noise levels.

Examples of noise-measuring smartphone applications are

as follows: Sound Meter [9], ISEISense [53], Ambiciti [67,

68] , Ci tySoundscape [75] , iNoiseMapping [82] ,

NoiseCapture [99], Ear-Phone [101], and others [5, 124].

Lefevre and Issarny [67] and Lefevre et al. [68] reported

that their app uses a calibration technique, as the embedded

microphones of the smartphones can be very heteroge-

neous. Aspuru et al. [5] argued that older participants expe-

rienced the sensor techniques as rather complex and not

very intuitive, while younger participants considered it

practical, user-friendly, manageable, and intuitive. For mul-

tiple exposure measurements, many authors developed their

own personal monitoring systems, often by composing sets

of multiple devices (see Fig. 8 in the Appendix for

references and details given therein).

In temperature-measuring studies, most thermal sensors

did not have any ventilation unit and sun protection shield,

which might have resulted in unreliable measurements of air

temperature. An exception was Bailey et al. [8] who utilized a

“fire weather monitor” measuring temperature, relative hu-

midity, heat stress index, dew point, wet bulb temperature,

and air pressure. Hass and Ellis [52] and Liu et al. [74] addi-

tionally registered humidity data and Bernhard et al. [11] mea-

sured the light intensity.

Limitations Faced by the Case Studies

Several studies limited the variety of their sensors due to cost

and usability issues (e.g., Nieuwenhuijsen et al. [95] decided

to measure only black carbon as it is a marker for traffic-

related air pollution). However, most authors realized the need

of additional parameters, such as the inhalation rate [118],

which was not directly measured, but estimated [78]. Data

about traffic fluxes [114] and the details of travel modes [10]

and air exchange rates in the different means of transport [72]

are also lacking in most studies. Several studies mention the

number of participants [18, 95] and the number of days [10,

72, 78, 114] as limiting factors, especially for studies with

children who are limited in their participation capacities

[95]. Lefevre et al. [68] emphasized that a critical mass of

participants as well as a greater involvement of policy-

makers in the case studies would lead to more relevant repre-

sentations of the urban noise environment.

Limitations caused by the sensors refer to battery life [18],

the noise of the sensors [108], their weight [41, 108], and

wearing comfort [78] which limited the time, for which par-

ticipants could be asked to wear them [9]. Some sensors re-

quired a specific data analysis setup, which was tailored to a

specific location [6]. In one study, the sensors produced lots of

detailed data, so that internal storage reached its limits [41].

Often the technical solutions combining sensors and

smartphones are limited to a specific smartphone model [5].

Furthermore, the sensors’ precision and reaction time influ-

ence data accuracy. Some authors report on sensors, which

cannot detect variation of parameters below a given level

[78] and on limitations in response time, leading to inaccura-

cies in the quantitative description of very rapid personal ex-

posure events [18, 19].

Studies of heat exposure might suffer from incorrect logs,

e.g., participants marked “outside,” but have been inside a

restaurant [11] or drove air-conditioned vehicles [117], or

log information was incomplete in general [52]. This could

also be the case for volunteers’ recordings of personal ap-

praisals, their habits, and whether they were wearing the sen-

sors correctly [8]. More accurate indoor/outdoor activity pat-

terns might be inferred from solar radiation monitors [122].

Limitations of the study results are often caused by the

study time and location. While in recordings of short dura-

tion the sample size might be insufficient (only one week of

data deny observations of the effect of the day of week [62]),

long-term studies might be biased by the volunteers’ per-

ceptions and their adaptive change of behavior during the

study [121]. Some bicyclists sought routes further away

from busy traffic streets and this might reduce exposure by

about 30% on average [96]. Hass and Ellis [52] reported an

unintended influence by the researchers, as they made par-

ticipants aware that they were investigating the differences

in exposure and actions and behaviors between heat wave
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and normal conditions which may have influenced the par-

ticipants’ reported adaptive actions.

The lack of data on further exposure factors not measured

in a study (e.g., carbon monoxide, nitrogen dioxide) can con-

found the observed associations between measured data of

PM, TVOCs, and heart rate variability [74]. Kuras et al. [62]

argue that for an improvement of the results, it would have

been necessary to integrate additional data, e.g., socioeconom-

ic data on the scale of city, the neighborhood, and household

as well as biophysical data.

Data quality was often more difficult to guarantee as the

number of the participants and the amount of data collected

were increasing. To improve quality, post-processingmethods

can be implemented [99]. GPS accuracy can be lowwhich can

annihilate the reliability of the measurement. The orientation

of sensors and the location they were attached to (e.g., on top

of each shoe, hanging on lanyard under front of shirt) have

also had an influence on the results of measurements [36, 106,

107, 122].

For thermal sensors, the influence of direct sunlight/radiant

heatwas reported as an important factor in several studies [11,

52, 62, 63, 117]. Errors in humidity measurements occurred, if

sensors detected sweat through clothing or participants

remained near air conditioning vents [52]. Bernhard et al.

[11] and Bailey et al. [8] observed differences between records

of wearables and the data registered by fixed weather stations,

occurring due to different sampling frequency and spatial dis-

tance. In some cases, weather conditions had a strong influ-

ence on the results; e.g., cloud cover may have reduced heat

waves and their influence on participants [52]. Extreme envi-

ronmental conditions, such as temperatures higher 40°C,

disrupted the performance of the CO, NO, and NO2 sensors

[23]. Okokon et al. [96] discussed the influence of wind and

rain events on measurements, especially while cycling. Data

accuracy can be improved by merging data of different

sources [11, 117]. This is necessary, particularly with low-

cost sensors [84].

Results of the Case Studies

Exposure in different environments was compared by several

authors. In the studies, in which measurements were taken

over a period of one or more days, it was found that the

participants spend a large part of the time indoors.

Nevertheless, the highest pollutant concentration was not

measured at home [18], but in passive transportation [10,

69] and/or during commuting [10, 69, 72, 95, 104, 108].

Interestingly, several authors [73, 88, 118] observed that pol-

lutant concentrations had higher variations within single

routes, as compared to the variability during a given day.

They identified peaks of high concentrations, especially in

UFP concentrations, when travelling at low speeds and when

a bus stopped close to traffic light intersections. Spinazzè et al.

[114] described the influence of the monitoring period on

exposure and reported the highest measured exposures for

walking or cycling along high-trafficked routes and while

using public buses. Do Vale et al. [32] further pointed out

the influence of the slope of a street on the inhalation rate.

Sociodemographic characteristics of the volunteers are of-

ten associated with their exposure (for heat exposure, see [11,

52, 62, 106]). Correlations between personal exposure and

health have been analyzed and associations were found be-

tween blood pressure and subchronic black carbon exposure

in healthy adults, which suggests that black carbon exposure

can lead to cardiovascular health effects [77]. Dons et al. [34]

conducted their air pollution exposure study under real-life

conditions with 120 participants, combining qualitative and

quantitative methods. The authors evaluated existing methods

to estimate inhaled dose and highlighted the differences be-

tween these methods [35], based on their large and unique

data set collected in three cities, over three seasons, covering

a range of personal factors, meteorological conditions, and

local conditions [35].

From the data gathered by personal sensors, several authors

developed pollution, noise, and heat maps [6, 82] and com-

bined these data with the information of fixed monitoring

stations [29, 101] or with the participants’ subjective observa-

tions [5, 99]. Lu and Fang [78] present their results of mea-

suring personal exposure of a participant using 3D

visualization and constructed personal air pollution and health

risk maps based on an individual’s 2-day ozone exposure,

intake, and danger zones in Houston, TX. A comparison with

fixed stations was conducted by Rivas et al. [104], who

showed that personal BC concentrations were 20% higher

than in fixed stations at schools. Similarly, Ma et al. [79]

found that exposure estimates generated by monitoring station

assessment versus real-time sensing assessment varied sub-

stantially. In combination with other factors, this could gener-

ate considerable differences in the estimation of personal pol-

lution exposure. Steinle et al. [115] emphasize the need for

personal exposure measurements to get reliable data about the

real individual exposure.

Lefevre et al. [68], as well as Ventura et al. [124], promoted

mobile phone sensing as a promising complement to the state-

of-the-art approaches to urban monitoring, resulting in high

spatial resolution maps related to urban environmental condi-

tions and human activity.Crowd-sensing allows new forms of

citizens’ participation in urban contexts which enables them to

take part in political processes: gathering data and raising

awareness for urban exposure could improve citizens’ quality

of life and may support decision-makers in urban planning

procedures [75].

Some studies report about sensor development and

evaluations. Cao and Thompson [18] developed a portable,

easy to use, sensitive, and low-cost ozone sensor. Gaskins,

Hart [41] presented their AirBeam2 personal monitor, which
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is low cost, able to collect multiple size fractions of PM data

every second, portable, and able to track GPS location, and

allows participants to observe their real-time exposure infor-

mation. They compared it with the emmET, which has a high

level of accuracy, collects data for a long period of time with-

out burdening the participant, but is restricted by only mea-

suring the indoor home environment as it is not portable.

Personal sensor measurements have also been compared to

those from more expensive instruments. It turned out that

personal sensors are more closely correlated with expensive

research instruments than with the government monitors [56].

Keyword Analysis

The work on this review revealed a high diversity of topics

that have been related to human exposure. Therefore, it is

helpful to identify what the hot topics are and where there

are still research gaps. Therefore, a descriptive analysis of

keywords (all words in the articles) was performed. All 55

papers were scanned using the software MAXQDA

Analytics Pro (v2020, word counts, and code maps). All

words were counted and listed by frequency (see list in attach-

ment). Additionally, clusters of words with close occurrence

in the articles were generated. Four clusters appear in the

cluster map (see the Appendix). One large cluster around the

keywords “personal,” “health,” and “pollution” reveals that

they are often related to mobility (walking, cycling, traffic,

activity, behavior) or locations (spatial, home, school). The

more interesting results are the three single word clusters of

“weather,” “microenvironment,” and “commuting.” These

keywords seem to be only rarely used together with the first

cluster. It is shown that “microenvironment” is not closely

related to school, home, walking, or cycling as these terms

might represent specific microenvironments. Probably the

keyword has been used for different types of microenviron-

ments; however, there is no consistent use, indicating further

research needs. We also conclude that aspects of weather in

relation to personal exposure require more attention in further

research. Many studies performed their sensor tests or mea-

surements under optimal weather conditions. Weather is of

high relevance for measuring exposure values but can also

influence human behavior to a large extent [14].

Discussion

After reviewing the case studies based on their characteristics

of study design, parameters, and equipment, as well as the

limitations and results of the studies, we will interpret these

results in this chapter and at the end formulate short take-home

messages for the readers. We refer to the questions formulated

in the “Introduction” section onwhich direction the studies are

developing and what sort of limitations and gaps appeared,

allowing us to show up directions for further enquiries in the

field.

Studies on personal exposure to urban stressors can help to

realistically assess and avoid misclassification of individual

exposure loads in the future [63]. Due to the current technical

developments and the fact that a large number of people own

smartphones, it is feasible to use wearables to measure envi-

ronmental parameters, as they are relatively cheap and many

people already own personal devices. As this review showed,

in case studies in the field of noise pollution, smartphones are

already the most frequently used device in combination with

an app. The trend towards increasing precision and decreasing

prices of wearables will probably allow researchers to involve

even more participants in the studies of air pollution and heat

stress in the future and thereby gain more data and achieve

greater reliability and generalizability of the research results.

However, authors of future studies have to trade strengths for

limitations (see Table 1) of wearables depending on their

study design.

The number of multi-case studies increased within the

last years. In addition, a number of studies stated the need

to integrate additional parameters. One challenge to tackle

now is to develop sensors for the simultaneous measure-

ment of multiple parameters. Most case studies of the re-

view have taken up this challenge and focused on sensor and

app development and evaluation. One difficulty here is to

consider aspects of wearing comfort, as sensors must be

pleasant for the participants, especially if one strives for

Table 1 Strengths and limitations
of the use of wearables + - Measurement of individual exposure

- Multiple measuring points/all areas of a city can be explored

- Ability to record participants’ perception and track their behavior

- Low price

- - Mostly lower precision than stationary sensors (due to smaller size and lower costs)

- Additional influencing factors (besides weather) must be identified (e.g., location of sensor on the body,
urban structure)

- Limitations caused by battery performance

- Falsifications and inaccuracies in data caused by human error
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longer measuring times. However, the size of the sensors is

often directly related to their accuracy and battery life. It has

to be weighed carefully between the desired measurement

accuracy [99], budget, and wearing comfort. Another diffi-

culty is to develop sensors with respect to usability and

human–computer interaction (HCI) aspects, which play an

important role in participants’ acceptance [16]. This aspect

still plays a subordinate role in the presented case studies

and should be given more attention in future studies.

Another approach that appears in this context and should

be taken into account in the future is the inclusion of artifi-

cial intelligence. For example, in some situations, the sen-

sors could decide for themselves whether a measurement

should be carried out in a specific situation or not [101].

Taking these aspects into account would probably also min-

imize the occurrence of human error, which was stated as a

limitation in many of the studies [8], and thus lead to more

analyzable data.

The studies focusing on transport, commuting modes,

and microenvironments show a variety of conditions

influencing the measured data, such as ventilation, street

geometry, traffic situation on the street (e.g., stopping at

traffic lights), duration of stops, travel direction (uphill/

downhill), weather conditions, and many more. Future stud-

ies should aim to identify these conditions and quantify their

impact. Especially when creating maps and simulations,

these influences must be integrated. For instance, the influ-

ence of weather conditions on measurement results is not

well investigated. This also leaves the open question,

whether the sensors are suitable for extreme environmental

conditions such as extreme heat or extreme air pollution.

Taking a look at the case study regions in this review, most

research on environmental pollutants in urban environ-

ments has been done in Europe (especially air and noise

pollution). It would be interesting to see more studies con-

ducted in areas with higher exposure to environmental pol-

lutants, such as in Asia and Africa. For example, compara-

tive studies could be aimed at two locations, in which know-

how and equipment are shared through cooperation.

Three types of measurements can be identified: mobile,

stationary and subjective perception of exposure. It would be

interesting to see studies showing these combined. Options

(e.g., 3D visualization) to analyze and combine the multiple

parameters have also be developed.

Some studies in this review stated that most people spend

the majority of time indoors and not outdoors or moving.

Certainly, it should be emphasized that the high peak expo-

sures of individuals occur outdoors, and these events seem

to be most relevant for negative health effects in the long

term. There is however only little evidence for this hypoth-

esis and more studies should investigate the ratio of time

and intensity of environmental exposure for potential health

effects. Also, sociodemographic characteristics have an

influence on the exposure and therefore on the health effects

for individuals. In future studies, this influence should be

quantified and methods to assess the health impact should

be improved.

Even though this review’s focus was not on exposure stud-

ies incorporating medical data, it should be mentioned that

there is a trend to combine environmental personal data with

biomonitoring sensors in order to track individuals’ health

parameters, such as blood pressure, stress levels, or heart rate

[80]. In addition to medical data, it can also be interesting for

future studies to collect data of emotional perception to urban

space [12, 64, 97, 112, 131], e.g., parameters of subjective

perception of environmental pollution, and to investigate their

relation to environmental parameters.

Based on these findings, we formulated five take-home

messages for the reader:

1. Development of new sensors is absolutely necessary with

regard to the trend towards multiple exposure studies and

with respect to usability and human–computer interaction

(HCI) aspects.

2. Personal exposure varies depending on different influenc-

ing factors (e.g., mode of transport, urban structure). The

characterization of these factors concerning the extent of

their influence and how they influence each other as well

as the influence concerning the mode of transport should

be further explored.

3. It would be desirable to carry out future studies in regions

that have been underrepresented here (e.g., Africa, Asia),

but are of particular interest due to high exposure levels as

well as high population density.

4. Studies should investigate the association between expo-

sure time and intensity and health effects of environmen-

tal exposure in different environments.

5. The rapidly advancing development of sensors will en-

able them to be widely used in the near future.

Conclusions

With this review, we give an overview of the growing num-

ber of case studies within the last 5 years applying mobile

sensors (wearables) to measure environmental parameters

in urban space. Such a review has been missing so far. We

did a literature review and analyzed the characteristics

(study design, parameters, and equipment) of 55 case stud-

ies as well as synthesized their limitations and results. Our

study shows that there is a growing number of studies that

use wearables to measure multiple parameters and thus con-

tribute to research of the human exposome. There is a need

to develop new sensors that can simultaneously record mul-

tiple parameters and are easy to use. Since there are many
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factors that influence the measurement data, it is necessary

to identify and quantify them in order to avoid biased results

in future studies.
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