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Wearable sensors for monitoring the physiological and

biochemical profile of the athlete
Dhruv R. Seshadri1, Ryan T. Li2, James E. Voos3, James R. Rowbottom4, Celeste M. Alfes5, Christian A. Zorman 6 and

Colin K. Drummond1

Athletes are continually seeking new technologies and therapies to gain a competitive edge to maximize their health and
performance. Athletes have gravitated toward the use of wearable sensors to monitor their training and recovery. Wearable
technologies currently utilized by sports teams monitor both the internal and external workload of athletes. However, there remains
an unmet medical need by the sports community to gain further insight into the internal workload of the athlete to tailor recovery
protocols to each athlete. The ability to monitor biomarkers from saliva or sweat in a noninvasive and continuous manner remain
the next technological gap for sports medical personnel to tailor hydration and recovery protocols per the athlete. The emergence
of flexible and stretchable electronics coupled with the ability to quantify biochemical analytes and physiological parameters have
enabled the detection of key markers indicative of performance and stress, as reviewed in this paper.
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INTRODUCTION

Biomedical sensors present an exciting opportunity to measure
human physiologic parameters in a continuous, real-time, and
nonintrusive manner by leveraging semiconductor and flexible
electronics packaging technology.1 These sensors incorporate a
broad range of advances in microelectromechanical (MEMS),2

biological and chemical sensing,3 electrocardiogram (ECG),4

electromyogram (EMG),5 and electroencephalogram (EEG)-
based neural sensing platforms.6 Biological and chemical
sensors are increasingly viewed as promising alternatives to
expensive analytical instruments in the health care industry
when specificity and selectivity criteria are met. The develop-
ment of electrochemical transducers has been especially
promising due to their low cost, simplicity, and portability.7,8

This has led to the development of commercial hand-held
sensors, such as ACCU-CHEK® by Roche Diagnostics, iSTAT® by
Abbot, and Lactate Scout® by Sports Resource Group for the
measurement of metabolites and electrolytes.3 However, these
sensors require blood samples thus posing as a barrier to their
utility in real-time monitoring for sports medicine. The
emergence of wearable biosensors to measure analytes from
eccrine sweat to assess the performance and mental acuity of
the athlete serve as next steps to assessing human performance.
This review discusses the application of wearable sensors to
measure analytes from saliva and eccrine sweat affecting athlete
performance and the use of such devices to assess the mental
acuity and stress of the athlete based on heart rate variability
(HRV), galvanic skin response, and biomarkers measured from
eccrine sweat. The discussions in this paper highlight advance-
ments in scientific literature and provide insight into the
commercial landscape of this growing field (Tables 1 and 2).

VALUE PROPOSITION FOR WEARABLES IN SPORTS

Sports teams are continuously searching for opportunities to
improve the performance and safety of their athletes to gain a
competitive advantage on the field. Over the last decade, time-
motion analysis systems such as video recording and computer
digitization have been utilized to measure human locomotion and
improve sports performance. While these techniques were once
state of the art, they were faced with questionable validity of the
acquired data, labor-intensive nature of collecting data, manual
hand-notation techniques, and the inability to track key metrics
such as biosignals, physiological parameters, and biochemicals, all
of which provide real-time data pertinent to the health and
performance of the athlete. Recent advancements in wearable
sensor technology from a device to systems standpoint have
provided new avenues to change this paradigm and are currently
being implemented by teams worldwide. While beyond the scope
of this review, one issue plaguing the wearables field is the
translation of the data to create actionable insight in its respective
clinical domain. Questions such as “what does one do with the
data” or “what does the data mean” have clouded the translational
utility of this technology. To circumvent such hurdles, sports
teams have recently hired “sports scientists” whose responsibilities
(among others) entail disseminating the data acquired from the
sensors into metrics comprehendible by coaches, trainers, players,
and key opinion leaders in an organization to complement current
rehabilitation therapies for the betterment of the athlete’s health
and performance. For example, data pertinent to player move-
ment from wearable devices has been used to inform coaches of
their players workout load to indicate which players are at a
higher risk to suffer a soft-tissue injury or those that should be
sidelined to prevent the occurrence or reoccurrence of an injury

Received: 17 May 2019 Accepted: 8 July 2019

1Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; 2Department of Orthopaedic Surgery, University

Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; 3University Hospitals Sports Medicine Institute, Cleveland, OH 44106, USA; 4Department of Cardiothoracic

Anesthesiology, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; 5Frances Payne Bolton School of Nursing, Case Western Reserve University, 9501 Euclid Avenue,

Cleveland, OH 44106, USA and 6Department of Electrical Engineering and Computer Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

Correspondence: Dhruv R. Seshadri (Dhruv.Seshadri@case.edu)

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

http://orcid.org/0000-0001-9773-9351
http://orcid.org/0000-0001-9773-9351
http://orcid.org/0000-0001-9773-9351
http://orcid.org/0000-0001-9773-9351
http://orcid.org/0000-0001-9773-9351
https://doi.org/10.1038/s41746-019-0150-9
mailto:Dhruv.Seshadri@case.edu
www.nature.com/npjdigitalmed


during high acuity training periods.9 The value wearable devices
are having in sports to track and correlate player workouts,
exertions, and loads to soft-tissue injuries can be traced to an
interview given by a coach in the National Football League (NFL)
where he affirmed that the use of such technology coupled with
insightful analytics and necessary athlete-specific recovery proto-
cols have shown to alleviate soft-tissue injuries in the team over a
2-year period.9

The use of wearable sensors for sports is at its infancy, with the
majority of devices currently used to measure movement-based
parameters such as distance, velocity, and acceleration. There
remains a major need to “quantify the athlete” by measuring
biochemical markers such as electrolytes, analytes, and

neuropeptides all of which are indicative of physical exertion
and fitness, fatigue, and mental acuity.

SENSOR APPLICATIONS FOR SPORTS MEDICINE

Biochemical composition of the athlete to optimize on-field
performance

Electrochemical wearable sensors have received considerable
attention recently because of their potential to monitor a wide
array of biomarkers in a continuous and non-invasive manner.3

The majority of existing wearable devices utilized in the sporting
community currently focus on monitoring physical or physiologi-
cal parameters (e.g., motion, HR, respiration rate, RR). However,

Table 1. Sampling of wearable technology companies with products applicable towards measuring biomarkers from eccrine sweat or saliva

Company Sampling of
products

Product type Product functionality Headquarters

BSX Technologies LVL Wrist-based device Hydration, fitness, heart rate, mood, and sleep Austin, TX

Eccrine Systems Sweatronics® Sweat sensor Analyte detection from eccrine sweat Cincinnati, OH

Epicore Biosystems N/A Epidermal sensor Wearable microfluidic sensor to measure lactate, glucose,
pH, and chloride ions

Cambridge, MA

Graphene Frontiers Six™ Sensors Device unit Graphene field effect transistor capable of detecting
biomarkers, proteins, and amino acids

Philadelphia, PA

GraphWear GraphWear Epidermal sensor Glucose and lactic acid measurements from sweat San Francisco, CA

Halo Wearables Halo H1 Wrist-based device Hydration monitoring Morgan, UT

Kenzen Echo H2 Patch Body temperature, biomarkers (pH, potassium, sodium) to
detect hydration, heart rate

San Francisco, CA

Nix N/A Hydrogel sensor Sweat-based biometric sensor to monitor hydration Boston, MA

Sano Sano Patch Non-invasive glucose measuring San Francisco, CA

Sixty Sixty Wrist-based device Hydration levels, heart rate, activity levels & calories burnt
as well as sleep tracking

Innishannon, Ireland

Xsensio Xsensio Epidermal stamp Energy-harvesting “Lab-on-skin” stamps to detect
biomarkers at attomolar concentrations

Lausanne, Switzerland

Data for this table was acquired from company websites and social media sites affiliated with each company

Table 2. Sampling of wearable technology companies with products applicable toward measuring the mental acuity and stress of the athlete

Company Sampling of products Product type Product functionality Headquarters

Bellabeat Leaf Urban, Leaf
Impulse, Leaf Chakra

Smart Jewelry Relates breathing to stress intensity San Francisco, CA

Halo Neuroscience Halo Sport Headset Utilizes neuropriming to increase the excitability of motor
neurons to assist with athletic training

San Francisco, CA

Interaxon Muse Headband Signal processing from EEGs to detect stress Toronto, Canada

Neumitra Neumitra Watch Stress quantification Boston, MA

Prana Prana Waistband Measures breathing and posture San Francisco, CA

Sentio Feel Wristband Electrodermal activity, skin temperature, and blood
volume pulse

Palo Alto, CA

Thync Relax, Vibe Device unit Lowers stress biomarkers such as alpha amylase and buffers
stress response via heart rate variability and skin conductance.
Device placed on back of the neck

Los Gatos, CA

VivaLnk Vital Scout, Fever Scout Wireless Patch Detects stress via body temperature, respiration rate, sleep,
heart rate variability, activity

Santa Clara, CA

Vinaya Zenta Wrist-based device Optical, bio-impedance, and skin conductivity measurements
are translated via machine learning to detect stress

London, UK

WellBe WellBe Bracelet Bracelet Translates heart rate measurements into stress levels; provides
prognosis to lower stress

Madison, WI

Data for this table was acquired from company websites and social media sites affiliated with each company
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such devices, do not permit team trainers and physicians to
quantify the biochemical profile of an athlete in a real-time
manner with the goal of alleviating soft-tissue injuries, dehydra-
tion, or cramping. Proper hydration is key to success as under-
drinking can lead to hypohydration and over-drinking can lead to
hyponatremia (low-serum sodium concentration).10 Over the last
decade, significant progress has been made to develop wearable
electrochemical sensors that detect biomarkers non-invasively
from biofluids such as saliva and sweat, both of which are easily
accessible without impeding the performance of an athlete. In this
section, we review such wearable devices and discuss their utility
as it relates to sports medicine.

Saliva. Saliva is considered an attractive and emerging option
compared to direct blood analysis for quantifying biomarkers
related to human performance due to its noninvasive nature and
continuous supply11 (Table 3). In addition, biomarkers detected in
saliva such as alpha-amylase, glucose, lactate, phosphate, and uric
acid (UA) have been shown to have a good correlation with that
found in blood12 (Table 4). Initial work pertaining to electro-
chemical salivary sensors was conducted by Graf in the 1960s to
measure pH and fluoride ion levels on a partial denture.13 Salivary
sensors have been made based on screen-printing manufacturing
techniques.14,15 Researchers incorporated an amperometric enzy-
matic biosensor in polymeric mouthguards for monitoring salivary
lactate (Fig. 1a–c) and UA concentrations14 (Fig. 1d, e). Kim et al.
fabricated a mouthguard biosensor to measure lactate levels by
screen-printing three separate layers on a flexible polyethylene
terephthalate (PET) substrate (Fig. 1a). The first layer comprised of
the reference Ag/AgCl electrode, for interfacing to the electro-
chemical analyzer. The second layer, comprised of the working
and auxiliary electrodes, was printed from a Prussian blue-graphite
ink. Lactate oxidase (LOx) was coated on the working electrode
surface by electropolymeric entrapment in a poly(o-phenylene-
diamine) film. The third layer was printed by using a dielectric
paste and served as the insulator layer. The three printed
electrodes were attached to the mouthguard body via a double-
sided adhesive. Data from chronoamperograms for increasing
concentrations of lactate in phosphate-buffered saline medium
showed that the biosensor displayed a very high sensitivity
toward lactate, with current-signals proportional to the lactate
concentration. The chronoamperometric response of lactate in the
presence and absence of physiological concentrations of ascorbic
acid and UA showed that these potential interferences had a
negligible effect upon the lactate response and that the biosensor
system provided high selectivity to measure lactate in a
noninvasive manner. Sensor stability was tested over a 2-h period
with measurements of 0.05 mM carried out every 10 min. Results
from the corresponding chronoamperogram demonstrated a
highly stable response over a 2-h duration. Furthermore, the
biosensor tested favorably to measuring lactate levels in
unstimulated human saliva with good linearity and a correlation
coefficient of 0.988 (Fig. 1b). In addition, the biosensor demon-
strated stability over a similar 2-h period when treated with
unspiked human saliva (Fig. 1c). In another study, Kim et al.
fabricated a wearable salivary UA biosensor in a mouthguard (Fig.
1d, e). Mouthguard biosensors were screen-printed on a flexible
PET substrate with three layers. The first layer consisted of an
Ag/AgCl reference electrode as the current collector. The second
layer consisted of a Prussian-blue graphite ink as the reference
and counter electrodes. The third layer consisted of a dielectric
paste which served as the insulator. Each layer was thermally
cured after printing. The working electrode was modified with the
uricase enzyme and antibiofouling membranes. The efficacy of the
biosensor was successfully assessed in artificial saliva, undiluted
human saliva, and in a hyperuricemia patient with and without
medication control. The untreated hyperuricemia patient showed
a sustained high-SUA level for 5 h (Fig. 1e). Real-time testing of the

devices presented are needed to assess the true clinical efficacy of
such technology for sports.
In the following work, researchers fabricated a MEMS-based

sensor designed for the human oral cavity to enable the
noninvasive measurement of salivary glucose. The glucose
biosensor was comprised of a platinum and silver/silver chloride
electrode, with glucose oxidase (GOD) immobilized by entrap-
ment with poly-(MPC-co-EHMA) (PMEH), on a custom-fitted
monolithic mouthguard support with a wireless transmitter. The
researchers demonstrated the capability of the sensor and
wireless communication platform to monitor salivary glucose in
a phantom mandible mimicking the environment of the human
oral cavity. While a sensor embedded in a cavity may be far
removed for sports medicine applications, the work demonstrated
the ability to detect glucose, a key marker indicative of fatigue
levels. Recently, a collaborative team from PARC, a Xerox
Company, NextFlex, and the University of California, San Diego
fabricated a smart mouthguard biosensor to detect early signs of
dehydration, exhaustion, and mental state based on lactate and
glucose measurements from saliva.16,17 The sensor was fabricated
on a small, flexible plastic foil that was placed on a mouthguard.
An encapsulant was applied on top of the sensor to protect it from
saliva. Chronoamperometry, based on enzymatic oxidation of the
target species, was utilized as the electrochemical detection
method. The device enabled replacement of the electrodes to
measure other biomarkers such as UA.
While the application of mouthguards to quantify biomarkers is

relatively new from a commercial standpoint, there remains a
clinical need to validate the sensitivity and reliability of these
devices in real-time during athletic scenarios. The main drawback
of saliva being used for real-time measurements of human
performance compared to eccrine sweat is that it is limited to
sports which require mouthguard devices. In addition, analyte
concentrations found in saliva are far below those detected in
eccrine sweat (Table 4). Furthermore, current devices discussed in
literature have not shown continuous measurements of biomar-
kers from saliva to be possible (Table 3). Developing biosensors
with high sensitivity and stability is the initial step to develop
these devices for use in sports.

Eccrine sweat. Sweat provides an ideal source toward the
continuous and noninvasive measurement of biomarkers, such
as sodium, chlorine, potassium, lactate, calcium, glucose, ammo-
nia, ethanol, urea, cortisol, and various neuropeptides and
cytokines.18 Detection of biomarkers from eccrine sweat glands
pose tremendous advantages over those from urine, blood, tears,
and apocrine sweat glands. These, include their abundance on the
body (>100 glands/cm2), ease of access, sampling and detection
efficiency without foreign contamination during testing, and the
inability to degrade analytes19 (Table 3). Disadvantages of using
eccrine sweat, include skin contamination, existence of dried
sweat on the glands thereby skewing analyte measurements, and
low-sampling rates.18 Wearable devices capable of artificially
inducing sweat through the introduction of current (iontophor-
esis) can overcome hurdles associated with low-collection
volumes (e.g., attributed to weather) or skin contamination,20,21

as discussed later. However, there remains a need to ensure that
the administered current intensity does not cause cathodal
vasodilation or erythema, leading to discomfort to the athlete.22

Modulating the current intensity and subsequent current density
of the epidermis through the use of hydrogel-based electrodes
could be a viable first step in alleviating such reactions on the skin.
Wearable devices to measure biomarkers from sweat must adhere
to the following set of requirements: (1) the sweat analyte must be
correlated to those found in blood circulation, (2) the sweat rate
must be steady or measured as a result of analyte dilution or
sensor-dependencies on sweat rate, (3) sweat must be transported
and coupled to sensors in an expeditious manner to minimize
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analyte exchange with the skin or transport materials themselves,
and (4) continuous raw data needs to be shown for the measured
analyte in both sweat and blood to ensure that various
confounding factors have been resolved (e.g., influence of
changing pH or salinity, sensor reversibility, or body motion
artifacts).23 The need to minimize body motion artifacts are crucial
for sports to prevent false sensor readings or cause the sweat flow
to accelerate or even reverse. In this section, we highlight the
scope of this technology by discussing commercial devices and
those presented in recent literature to measure specific analytes
crucial to human performance such as sodium, chloride,
potassium, lactate, calcium, and glucose (Table 4).
Companies, such as Epicore Biosystems, Halo Wearables,

GraphWear, and Kenzen Wear are currently developing epidermal
sensors for sweat detection. Epicore Biosystems has established
large volume manufacturing for the continuous and noninvasive
measurement of various biomarkers from eccrine sweat.24

The company has partnered with the Gatorade Sports Science
Institute, Seattle Mariners (MLB), US Air Force (USAF), and the
Shirley Ryan AbilityLab to further test and validate their devices.
Halo H1 has developed the first noninvasive wristband sensor for
monitoring hydration levels in athletes by utilizing optical and
electrical sensors.25 The sensor tracks hydration levels at a cellular
level in the bloodstream and utilizes an algorithm to rank the
levels out of 100; green (68–100), fully hydrated, yellow (35–67),
caution to hydrate soon, and red (1–34), need to hydrate
immediately.25 GraphWear has fabricated a graphene-based
epidermal sensor, which adheres to the torso, to detect glucose
and lactic acid for assessing hydration levels.26 GraphWear
Technologies has piloted their sweat sensor technology with a
professional football team.27 Similarly, Kenzen Wear’s Echo patch
is an epidermal sensor, adhered to the torso, which monitors
sodium and potassium from sweat in addition to measuring pH
and skin temperature.28

Sodium and chloride. Sodium (Na+) and chloride (Cl−) ions are
the most abundant electrolytes in sweat. Replacing Na+ and Cl−

levels after high-intensity situations is instrumental in maintaining
electrolyte balance due to their role in stimulating hydration.29–31

The total Na+ loss from sweat is a function of whole-body (WB)
sweating rate and sweat Na+ concentration ([Na+]); thus,
quantifying sodium loss from sweat is vital in expediting player
recovery and minimizing soft tissue injuries brought about by the
onset of dehydration.32 Total whole-body sweat loss and WB
sweating rate can be estimated. In the equations presented below
EX is during exercise, Pre-ex is pre-exercise, Post-ex is post
exercise, WSBL is whole-body sweat loss, and WSBR is WB
sweating rate (Eqs (1–3)). Baker et al. developed a model to
calculate the WB sweat Na+ concentration using absorbent
patches from the forearm33 (Eq. (3)). Total WB sweat Na+ loss
can be estimated from total sweat loss and WB sweat [Na+] (Eqs
(4) and (5)).

WBSL Lð Þ ¼ BodyMassPre�ex � ðBodyMassPost�ex � Fluid Intakeex þ UrineOuputexÞ½ :

(1)

WBSL L=hð Þ ¼ WSBL=ðExercise DurationÞ: (2)

PredictedWB Sweat Naþ½ �
mmol

L

� �

¼ 0:57 ´ forearm sweat Naþð Þ þ 11:05: (3)

WB Sweat Naþ½ �loss mmolð Þ ¼ WBSweat Loss�WBSweat Naþ½ �:

(4)

WB Sweat Naþ½ �loss mgð Þ ¼ WBSweat NaþLoss � 22:99
mg

mmol
:

(5)
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Sports scientists compared the sweat rates, sweat sodium
concentrations, and sodium losses in three groups of NFL players
on a single team (backs and receivers [BK], linebackers and
quarterbacks [LB/QB], and linemen [LM]) during the second week
of two consecutive training camp periods.34 Sterile sweat patches
were applied to the right forearm after the skin was cleaned and
the patches were removed during practice and analyzed via flame
photometry. The study showed large variations in sweat Na+

concentration between BKs and LB/QB but not between LB/QB
and LM. Profuse sweaters required increased dietary consumption
of sodium to compensate for such losses during the preseason.
This study is significant in that it is the first study pertaining to the
quantification of sweat sodium losses to monitor hydration in
professional NFL players on a single team utilizing an epidermal
patch. A summary of current techniques, challenges, and
recommendations used to measure sweat loss and sweat rate
are presented in Table 5.
The detection of Na+ via the use of epidermal sensors has been

reported in the literature as well. Bandodkar et al.35 reported the
successful fabrication and analytical performance of an epidermal
tattoo potentiometric sodium sensor for continuous noninvasive
monitoring of sodium from eccrine sweat. The screen printed
device withstood mechanical deformation without impeding
analyte detection and wireless transmission thereby highlighting
its translational potential for the sporting community.35 Monitor-
ing the change in Cl− concentration in a noninvasive manner
along with or independent of sodium measurements utilizing
wearables can expedite treatment and recovery to mitigate soft-
tissue injuries. While there remains an unmet medical need to
measure Cl− levels in real-time for sports, researchers successfully
developed a wrist-based potentiometric wearable device capable
of detecting Cl− concentrations over time from sweat for cystic
fibrosis monitoring.36 The sensor was placed on human subjects
by a wristband or adhesive tape and tested during exercise to
demonstrate the feasibility of this technology as a wearable
device. While the use of such adhesion platforms is not
appropriate for long-term use in sports, the electrochemical
performance and stability of the device demonstrates promise for
athletics. In the another study, researchers fabricated a wearable
and flexible electrochemical amperometric Na+ sensor.37 The
sensor was composed of a multiwall carbon nanotube (MWCNT)
nylon-6 mat resulting in a flexible and conductive sensor. The
MWCNTs were functionalized with a cyclo-oligomeric clixarene to
selectively form a supramolecular complex with sodium ions.
Upon complex formation, the charge carriers migrated from the
layer to impede current flow to allow the detection of sodium ions
at physiologically appropriate levels for healthy and ailing
individuals. In another study, a solid-contact ion-selective elec-
trode and a liquid-junction-free reference electrode were com-
bined together on a dual screen-printed substrate for the
detection of sodium from eccrine sweat.38 The optimized solid-
contact potentiometric strips were integrated with micro-fluidic
chips (PotMicroChip) and connected to a passive pump to deliver
sweat samples. The system was connected to a miniaturized
wireless communications platform entrapped in a 3D printed case
to make it wearable. Sodium concentrations were monitored
continuously on healthy volunteers during stationary cycling
sessions using the device. Comparison of these results to that of
current analytical techniques such as atomic absorption spectro-
scopy, ion chromatography, or commercial sodium meters (e.g.,
AquaTwin™) would serve as a first step to validate Na+ sweat
sensors.38

Potassium. Potassium (K+) concentrations in plasma predict
muscle activity.39 An increase in K+ concentration ([K+]) during
exercise can be explained by the electrical activity in the
exercising muscles.39 Potassium efflux rate is directly proportional
with that of exercise intensity. Potassium is eliminated from theTa
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blood by a proportional regulator which may be the Na+–K+

pump of the exercising muscle.39 Extracellular K+ is indirectly
linked to the pump stimulus and the rate of reuptake is
proportional to that of extracellular accumulation. The rate of
sweat K+ loss has been reported to be indirectly related to sweat

flow rate, but the underlying mechanism is unclear and requires
further investigation.40 Nonetheless, final sweat typically has a [K+]
similar, albeit with a slightly broader range (~2–8 mmol/L), to that
reported for blood plasma.29,41,42 Thus, measurement of K+ levels
could provide tremendous value to gauge and assess the workout

Fig. 1 Mouthguard biosensor for the continuous monitoring of metabolites from saliva. a Mouthguard biosensor with the integrated
printable electrodes. The Prussian Blue working electrode is coated with the PPD-LOX layer for salivary lactate monitoring. b Testing of the
mouthguard biosensor from (a) in human saliva showed that the device responded favorably to changes in lactate level with a correlation
coefficient of 0.988. c Testing of the mouthguard biosensor from (a) to untreated human saliva over a 2-h period demonstrated a highly stable
response. The good stability is reflective of the PPD coating against co-existing fouling constituents. d Salivary uric acid biosensor with a
wireless amperometric circuit board. Chemically modified Prussian-Blue carbon comprised the working electrode. The amperometric printed
circuit board (PCB) was the size of a 1 cent coin. e Translational utility of the mouthguard demonstrated the ability of the device to measure
salivary uric acid levels over a 5-h period in a healthy volunteer (black) vs. that of a patient with hyperuricemia (black). Figures were
reproduced with permission from Kim et al.14 (a–c) and Kim et al. (d, e).15

Table 5. Summary of current techniques, challenges, and recommendations used to measure sweat loss and sweat rate to assess athlete

performance

Current and emerging techniques Description

Absorbent patches • Easy to apply, comfortable for the athlete, cost efficient. Worn on locations all over the body (e.g., lower back,
forearm, thighs, calf, upper back, forehead) thus permitting measurement from apocrine and eccrine sweat.

• Analytically complex, requires baseline sample, time intensive analysis. Accuracy could be cause for
concern as eccrine sweat dries on surface

Wearable sensors • Continuous measurements and actionable insight possible to inform athlete recovery protocols

Challenges and recommended practices for measuring whole-body sweating rate

Varied conditions • Test conditions (e.g., intensity, environment, and season) specific to athlete’s training and competition
• Conduct multiple tests with athletes to determine sweating rate under various conditions

Body mass change (nonsweat) • Fluid and food intake, respiratory water loss and substrate oxidation, urine output, stool output

Quality control • Fluid and food intake, respiratory water loss and substrate oxidation, urine output, stool output

Challenges and recommendations for measuring sweat [Na+] using absorbent patches

Varied conditions • Test conditions (e.g., intensity, environment, and season) specific to athlete’s training and competition
• Conduct multiple tests with athletes to determine sweat [Na+] under various conditions

Background contamination methods • Check for background [Na+] levels and subtract from measured sweat [Na+] values

Skin surface contamination • Clean skin immediately prior to application and dry with a sodium-free gauze or towel

Anatomical location • Place in location where maximum sweat can be collected (e.g., lower back)

Adhesion • Shave area of skin where patch will be adhered
• Use appropriate adhesive which will stick to stratum corneum and not cause irritation to the skin

Hidromeiosis • Limit patch time on the skin and change patches frequently. Use patches with high absorbent capacity. This
will help prevent patch saturation

Analysis time • Transport samples in an appropriate manner to prevent contamination and to inform athletes in a prompt
manner to inform and positively effect recovery strategies
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intensity, exercise load, and physical exertion of athletes. Xu
et al.43 devised a low-cost method to mass produce disposable
portable sensors for point of care testing of K+ from blood serum.
The sensor was comprised of poly(3,4-ethylenedioxythiophene)
(PEDOT) doped with poly(styrenesulfonate) (PSS) and screen-
printed on carbon-based ion-selective and reference electrodes.
Polyvinyl chloride (PVC) membranes with and without ionphore
valinomycin were coated on the PEDOT/PSS layer to form
potassium ion-selective and reference electrodes. The sensor
demonstrated a smaller and faster response compared to current
standard of care (e.g., clinical laboratory electrolyte analyzer) and
required a smaller blood sample volume. However, while such
core-sensor technology is promising, it remains impractical for
sports medicine. Gao et al. developed a flexible sweat sensor for
the real-time detection of Na+, lactate, K+, glucose, and skin
temperature.44 Real-time sweat [Na+] and [K+] measurements
were conducted concurrently on six subjects engaged in outdoor
running. Sweat [Na+] and [K+] were deemed stable throughout
running in euhydration trials (with water intake of 150ml per
5 min) after the initial [Na+] increase and [K+] decrease. An
increase in sweat [Na+] and a smaller increase in sweat [K+] were
observed in dehydration trials (without water intake) after 80 min
when subjects had lost a large amount of water (~2.5% of body
weight). Ex situ measurements of [Na+] and [K+] from collected
sweat samples demonstrated similar phenomena. The researchers
hypothesized that this trend was caused by increased blood
serum [Na+] and [K+] with dehydration and increased neural
stimulation. We expand on this particular work in the section
about glucose measurement from eccrine sweat.

Lactate. Lactate and ammonia are small molecules produced
during anaerobic activity in the absence of adequate oxygen.45,46

Plasma lactate concentrations closely approximate those of sweat
lactate and provide an indication of body exertion and exercise
intensity.47 A hybrid epidermal wearable device comprised of
screen-printed three-electrode amperometric lactate biosensors
and two-ECG electrodes was fabricated for concurrent real-time
measurements of lactate and electrical activity in the heart.48 A
hydrophobic coating was placed between the two sensor groups
to increase the impedance between the ECG and amperometric
electrodes thereby preventing crosstalk between the sensor
groups. By combining both types of sensors, this wearable device
served as a combinatorial platform for physicochemical and
electrophysiological monitoring. Real-time monitoring showed
that the ECG compared to current wearable devices was not
affected by concurrent lactate detection. In addition, lactate levels
measured by the biosensor closely approximated the expected
sweat-lactate profile for increasing intensity workouts. In another
study, a biosensor using luminol as the signaling species was
fabricated for lactate detection.49 Lactate was oxidized under
the catalysis of immobilized lactic dehydrogenase and pyruvate
oxidase with nicotinamide adenine dinucleotide as the coenzyme
to yield hydrogen peroxide. The formation of hydrogen
peroxide enhanced the electrochemiluminescence of luminol
thereby permitting the detection of lactate. A detection limit of
8.9 × 10−12mol/L and an average recovery of 101.3% was
obtained when utilizing athlete sweat samples during a training
course. Adaptation of this device into a wearable could greatly
increase its utility for continuous monitoring during training. In
another study, a flexible and wearable patch was fabricated to
measure lactate, sodium, pH, and temperature.50 The sensor was
designed to transport sweat via an array of microneedle-type
sensors (50 μm diameter) which were incorporated into the
microfluidic channel. The potentiometric sodium ion sensors were
fabricated using a PVC functional membrane deposited on an
electrochemically deposited internal layer of PEDOT. The pH
sensing layer was based on a highly sensitive membrane made
from iridium oxide. The amperometric-based lactate sensor

consisted of doped enzymes deposited on top of a semiperme-
able copolymer membrane and outer polyurethane layer. A
double-layered adhesive was used to secure the 180 μm thick
patch to the skin of six healthy subjects prior to cycling and
running. Clinical testing showed that perspiration commenced
10–15min into the warm up period with increasing sweat rate
during exercise due to thermoregulation. Sodium and lactate
levels increased with an increase in exercise intensity reflecting a
rise in anaerobic metabolism. Temperature readings of the sensor
varied between 20 and 40 °C across subjects. In the same study,
sodium, lactate, and cortisol levels from saliva were detected via
various assays. Sodium and lactate levels demonstrated the same
correlation as noted with sweat; however, salivary cortisol levels
exhibited the largest variation among the subjects. These results
suggest that cortisol could be a more sensitive marker for stress,
as is discussed later.

Glucose. Monitoring glucose levels is crucial for controlling
fatigue levels in athletes.51 The concentration of glucose in
human sweat is in the range of 10–200 µM20, and researchers have
sought to assess the correlation between blood glucose and sweat
glucose levels52,53 (Table 4). La Count et al.54 modeled the
transport of sweat glucose and key electrolyte concentrations to
those found in blood. The glucose model, calibrated under a
variety of experimental conditions including electrical enhance-
ment, demonstrated a ten-minute blood-to-sweat lag time and a
sweat/blood glucose level ranging from 0.001 to 0.02, depending
on the sweat rate. Understanding lag times and transport kinetics
is key to developing biosensors to accurately measure analytes
such as glucose which affect the performance of athletes.
Researchers fabricated epidermal polymeric electrodes for the

individual or combinatorial detection44,55 of lactate,56 sodium,57

potassium,58 glucose,59,60 cortisol.61 As previously mentioned, Gao
et al.44 fabricated an epidermal sensor on a PET substrate for the
concurrent and continuous detection of sodium, lactate, potas-
sium, glucose, and skin temperature. The sensor for skin
temperature compensated for the temperature dependence of
the enzymatic reactions. The flexible electrode was connected to a
corresponding module for signal processing and subsequent
wireless transmission to a Bluetooth device. The flexible nature of
the device allowed it to be worn around the wrist (analogous to
that of current commercialized wrist-based wearables) to provide
direct contact with the sweat on the skin surface. The work filled
the gaps between signal processing, filtering, and amplification for
the real-time wireless transmission of analyte concentrations
during stationary and ambulatory conditions. While such devices
can flex (low bending stiffness, excellent utility at low-bending
radii), they cannot stretch (inelastic, do not have a low modulus,
and do not have the capacity to account for large strain
deformations).62 As such, disparity between the nonstretchable
mechanics of the electrode coupled with the stretchable
mechanics of the skin can lead to electrode delamination
especially during high-acuity sporting activities.62 Work to develop
electrochemical biosensors into elastic forms is now focused on
stretchable functional materials such as carbon nanomaterials63

that can be screen printed onto elastomeric substrates. Abellan-
Llobregat64 reported on the fabrication of a printable and highly
stretchable device based on platinum (Pt)-decorated graphite for
sweat glucose detection. The electrode measured the reduction of
hydrogen peroxide by chronoamperometry using glucose oxidase
immobilized on Pt-decorated graphite. This device was applied on
human perspiration samples and demonstrated a strong correla-
tion between glucose concentration in perspiration and glucose
concentration in blood, as measured via a commercial glucose
meter. In a proof-of-concept study, a printed flexible tattoo-based
glucose sensor was fabricated for glycemic monitoring.65 The
device utilized reverse iontophoretic extraction of interstitial
glucose and an enzyme-based amperometric biosensor. In vitro
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studies using the biosensor demonstrated a linear response
toward physiologically relevant glucose levels with negligible
responses from electroactive species. The device was applied on
human subjects during eating to measure glycemic levels. Results
showed that the sensor correlated with that of a commercial
glucose meter. The preliminary study suggested that the tattoo-
based iontophoresis-sensor platform could be efficacious for
diabetes management and could be relevant to monitor
biomarkers from biofluids indicative of human performance. In
another study, Koh et al.55 developed a closed microfluidic system
that directly harvested sweat from the pores to measure lactate,
glucose, hydronium ions (pH), and chloride. The microfluidic
system was comprised of a bottom polydimethylsiloxane (PDMS)
layer of 500 µm, imprinted with the necessary geometry (uniform
depth, 300 µm), and filled with reagents for colorimetric analysis.
The flexible and stretchable sensor adhered to multiple locations
on the body without chemical or physical irritation by using
biocompatible adhesives, soft device mechanics, and water-tight
interfaces. The device routed sweat to the four channels to permit
the simultaneous detection of the various biomarkers. Further-
more, the device provided the option for wireless interfaces to
external devices for image capture and analysis. The device
proved to be efficacious when tested on humans during cycling.
Such devices could be commercialized and translated for other
sporting events such as football or soccer. Further work regarding
the miniaturization of such devices or the combination of sensor
interfaces for simultaneous measurements along with the ability
to mass produce sensors would enhance the utility of this
technology for sports. Bariya et al.66 developed roll-to-roll (R2R)
gravure printed electrochemical electrodes on 150m flexible PET
substrate rolls for the detection of pH, K+, Na+, Cu2+, glucose, and
caffeine (Fig. 2a, b). The team utilized inks and electrode
morphologies designed for electrochemical and mechanical
stability to achieve devices with uniform redox kinetics. The work
represented a significant step towards large-scale, low cost
fabrication of disposable wearable sensors for applications in
sports medicine and health-related applications. In another study,
Martín et al.67 developed a microfluidic epidermal device for the
detection of glucose and lactate (Fig. 2c–e). The device is
composed of two soft, conforming PDMS layers, along with a
double-sided adhesive layer (Fig. 2c). The first PDMS layer
integrates with the electrode system, while the second PDMS
layer contained the microfluidic channels (inlets and outlet) and
the detection reservoir. The device adhered to the skin sweat
pores to route sweat toward the electrochemical sensor while
concurrently enduring repetitive mechanical deformation by the
wearer. A representative time-lapse analysis of the sweat flow
profile within the microfluidic device when applied to the lower
back of a healthy volunteer during exercise activity (in the absence
of sensing electrodes) was shown over a 15-min period (Fig. 2d).
On-body real-time monitoring of sweat lactate and glucose levels
was performed on two healthy human subjects during indoor
cycling over a 20-min period (Fig. 2e). The continuous monitoring
of the amperometric sweat lactate response from the subjects
with the LOX-modified flow detector demonstrated an increase of
the current signal as the sweat sample entered and filled the
detector reservoir. The same trend was seen when measuring
glucose levels using GOX-modified electrodes. The trend in
measuring glucose levels from eccrine sweat matched that of
blood glucose values; however, the need to prevent sample
contamination remains the next step for long-term non-invasive
glucose measurements utilizing such technology.

Translating sweat sensor technology for sports. Recently reported
wearable devices for eccrine sweat analysis offer promising
approaches utilizing microfluidics (Fig. 2f–h)68 or iontophoresis
(Fig. 2i)23 to alleviate hurdles associated with sample contamina-
tion and/or sample volume. Microfluidic platforms enable

collection of sweat from the skin surface by connecting to eccrine
sweat glands from various locations on the body with opportu-
nities to scale the size and form-factor of the device to the
application of interest. The ability to extract sweat in this manner
for laboratory analysis is crucial but relies on postcollection
analysis. Colorimetric assays provide a promising alternative that
circumvent the need for electrochemical measurements, asso-
ciated power supplies, and external hardware for data commu-
nication. Sekine et al.68 developed a fluorometric approach to
detect Na+, Cl−, and zinc (Zn2+) from eccrine sweat captured in a
wearable microfluidic device utilizing a smartphone-based fluor-
escence-imaging module (Fig. 2f–h). Reaction of the probes in
microreservoirs with the specified ions lead to changes in the
fluorescence excitation intensity, as detected by a smartphone
outfitted with an optics module. The ion concentrations deter-
mined using this platform on human subjects exercising on an
elliptical trainer (sweat Cl−, 28–31mM, Zn2+ ~2.5 µM, Na+

35–50mM) matched those obtained using traditional laboratory
methods such as ion chromatography for Cl− (28mM), ICP-MS for
Zn2+ (3.6 µM), and atomic absorption for Na+ (36 mM). Such
technology utilizing microfluidics to measure sweat rate and
hydration levels from sweat (indicative of changes in Na+

concentration) could provide significant advantages compared to
currently utilized sweat patches previously reviewed earlier (Table
5). Building upon previously published work by the Rogers Group,
Reeder et al.69 developed a waterproof, epidermal, microfluidic
wearable device capable of adhering to the skin to capture, store,
and analyze sweat while fully underwater. The technologies
introduced utilize polymeric materials such as poly
(styrene–isoprene–styrene), SIS, for skin-compatible microfluidic
platforms to enable low rates of water penetration, water vapor,
and water-borne chemistries from the surrounding environments
for long-term use (hours). Furthermore, the design of the
microfluidic channels prevent contamination from aquatic envir-
onments without impeding the flow of sweat to the sensor. The
sweat rates in swimmers is lower than that of athletes on land and
has been shown to range from 0.33 to 1.6 l/h, depending on the
workout intensity and water temperature.70–72 Monitoring sweat
rates, hydration, and ion concentrations is imperative to tracking
the performance and health of athletes in events such as ultra-
endurance triathlons. The robust and water-tight bonding to the
skin, under extreme conditions, enabled the device to adhere to
the swimmer’s body for greater than two hours. Clinical studies
demonstrated the ability of the device to measure local sweat
chloride concentrations, local sweat loss, sweat rate, and skin
temperature during intense physical activity in controlled, indoor
conditions and in open-ocean swimming during the IRONMAN
triathlon. To the best of our knowledge, the published work by
Reeder et al. represents the first example in current literature in
assessing the utility of such technologies during high-acuity and
high-stress sporting situations.
The weather and outside air temperature play a major hurdle in

sweat-sensing technology for sports. For example, an elite-level
athlete training in a humid environment would generate large
volumes of sweat compared to the same athlete training in a cold
climate. Given the small sample volumes generated and captured by
wearable sweat sensing devices, how can such technology be useful
for athletes in cold-weather environments? We hypothesize that the
ability to stimulate sweat via iontophoresis could solve this issue.
Hauke et al.23 developed and validated a continuous and blood-
correlated sweat enzymatic sensor with integrated sweat stimulation
to detect ethanol (Fig. 2i). Ethanol was selected because it is 1:1
between sweat and blood due to its lipophilic nature. Sweat
stimulation by iontophoresis involved three novel steps discussed in
this work. The first part involved membrane isolation of the sweat
stimulant from the skin to prevent sweat from diluting out the
desired analyte. The second part involved the use of carbachol as
the stimulant to enable a steady generation of sweat over a long
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period of time (hours to days). The third was the use of a sudomotor
axon reflex sweating to minimize mixing of the old and new sweat
thereby minimizing sample contamination. The continuous nature
of the data when tested on two human subjects allowed for analysis
of blood-to-sweat lag times that ranged between 2.3 and 11.41min
for the onset of the ethanol signal. Further work is needed to study
the operation of the device for 24 h or longer and with a broader
range of analytes specifically of interest to sports performance.
Nonetheless, the work confirmed that sweat can be stimulated and
the desired ions or analytes can be measured in a continuous
manner to correlate with that in blood.

Human performance is a function of the physical demands of the
sport coupled with the mental acuity exerted on the athlete. In this
section we have focused on the former. In the next section, we will
focus on the latter, an emerging area where much research and
development remain to be accomplished.

Mental acuity of the athlete to optimize on-field performance

Monitoring stress levels can help manage the well-being of an
athlete through a season.73 A stress reaction triggers the release of
hormones such as epinephrine and cortisol. There are three

Fig. 2 Wearable sensors to monitor the biochemical status of the athlete by detecting biomarkers from eccrine sweat. a R2R gravure
manufacturing of electrochemical sensors on PET substrates. b Real time, in situ measurement of sweat pH from the sensor depicted in panel
(a). c Schematic of the microfluidic sweat collection device. Top-down and cross-sectional views are provided. d Photographs depicting the
time needed to fill the microfluidic reservoir from panel (c) using an optimized four-inlet design when sweat is generated during
nonstationary conditions. e Continuous lactate and glucose monitoring via the Lox and GOx-modified electrodes from panel (c) on a healthy
subject. f Protocol for performing a fluorometric assay using a microfluidic device to detect zinc, sodium, and chloride levels: (1) collecting
sweat using a skin-interfaced microfluidic device, (2) peeling away the black shield, and (3) capturing a photo of the device using a
smartphone interfaced with the device with an optics module. g Fluorescence images of the detected analytes from the microfluidic device
detailed in panel (f) and the dependence on fluorescence intensity on concentration. Images of the microreservoirs for the assays before
(upper) and after (lower) filling with sweat collected under visible light illumination. Changes of the fluorescence and its normalized intensity
are shown at various concentrations and depicted for sodium and chloride. h Subject wearing the microfluidic device from panel (f) during
testing. Photographs of the device without the black shield after sweat collection is shown under visible light and under blue light emitted by
a smartphone. i After the patch is applied, sweat stimulation involved the iontophoretic delivery of carbachol. Sweat is picked up from the
skin by the hex-wick and transported to the sensors to measure ethanol concentration and then transported onto the waste pump. In vivo
test data carried over 3.5 h on a subject is shown. The ethanol bolus occurred at the start time and only thirty minutes of sensor results are
depicted previous to the ethanol bolus. Figures were reproduced with permission from Bariya et al.66 (a, b), Martín et al.67 (c–e), Sekine et al.68

(f–h), and Hauke et al.23 (i)
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primary methods to monitor stress levels for athletes: (1) self-
reporting (current method), (2) multimodal physiological analysis,
and (3) body-fluid analysis74 (Table 6). The self-reported method is
disadvantageous to measure human stress levels due to the lack
of standards for stress status and the inability to assess the
wellness and mental acuity of the athlete in a real-time manner.75

We focus our attention on monitoring stress levels via the latter
two methods and focus our attention on the application of
wearable sensors to measure HRV, skin conductivity, and
biomarkers such as Cortisol and Orexin A from eccrine sweat
(Fig. 3).

Stress and athlete recovery. Optimal training, well-balanced diet,
and recovery form the foundation of success of an athlete.
Balancing training intensity as a function of workout schedule or
duration with recovery enables athletes to maximize their
performance and further the player development process. Over-
training without adequate rest may lead to the overtraining
condition, which is characterized by decreased performance and
subsequent detriments to long-term health. A systematic objec-
tive assessment of an athlete's recovery is crucial to prevent
overtraining. Recovery should be constantly evaluated for
optimizing the stress exerted on the body and for avoiding both
over- and undertraining when seeking the most efficient training
regimen.
The human nervous system is made up of the central and

peripheral nervous system with the latter comprised of two
divisions, the voluntary and autonomic system (ANS). The
voluntary nervous system is concerned mainly with movement
and sensation whereas the ANS controls functions over which an
individual has less conscious control (e.g., cardiovascular system).
Stress reactions are the way the human body tries to cope with

the demands of the surrounding environment. Positive stress can
be considered as “getting the job done”. Negative stress causes
emotions and reactions deleterious to the human body. A stress
reaction causes the activation of the ANS and the production of
stress hormones along with an increased HR and an increased
force of heart contractions.76 While there currently lacks a formal
definition of stress in scientific literature, we postulate that stress
can be physiologically characterized by a reduced recovery of the
neuroendocrine reaction and sympathetic dominance of the ANS
function.77 Recovery can be characterized as parasympathetic
dominance. The magnitude of the neuroendocrine response
reflects the metabolic and physiological demands required for a
given activity.77 In other words, the body should adapt to the
demands put upon it in various situations. Problems arise when
the body is not able to adapt to changing demands. The body
needs to utilize more sympathetic activity during stressful periods,
active working, or during physical activity. Parasympathetic
activity should be dominating the ANS activity during the sleep
period. Monitoring such activity in a noninvasive manner provides
tremendous insight into the physiological and mental status of an
athlete to maximize performance, health, and safety.

Heart rate variability. The ANS plays a major role in modulating
the HR. The heart contracts according to an automatic, or intrinsic,
rhythm regulated by the sinus node. The normal resting HR in a
sitting position ranges between 60–80 beats/min due to the
sympathetic and parasympathetic nervous systems, hormonal
factors, and reflexive factors.78 Fluctuations in HR caused by
respiration are referred to as respiratory sinus arrhythmia (RSA).79

Specifically, HR increases during inspiration and decreases during
expiration. The fluctuation in the time between successive
heartbeats is called HRV (Fig. 3a).

Table 6. Comparative analysis of various stress measures to evaluate the mental acuity of the athlete

Measure Advantages Limitations Utility of CM for HPA

Stress–response
questionnaire

• Easy to perform,
• Large sample sets possible • Cost
efficient

• Subjective measures
• Lack direct link to stress
response
• Time intensive process

No. Teams do not have the time to conduct
such questionnaires constantly

Physiological interviews • More personable than a generic
questionnaire
• Higher likelihood of detailed
analyses

• Time consuming process
• Need for trained interviewees

No. Teams do not have the time to conduct
such questionnaires constantly

Heart rate variability • Objective and non-invasive method
to assess the ANS

• Not easily interpretable as stress
varies with time
• No standard to quantify stress
level based on HRV

Yes. Wearable devices exist. Formal clinical
studies needed to assess their use-case
for sports

Blood pressure • Noninvasive and objective
measurement possible

• Continuous measurements are
challenging
• Direct link to stress levels have
not been formally identified

Yes. Wearable devices exist. Formal clinical
studies needed to assess their use-case
for sports

Brain Activity (e.g., EEG,
neuropriming)

• Noninvasive and objective measure
of chronic stress

• Difficulty in measuring long-
term.
• Very limited use-case in sports.

Yes. Wearable devices exist. Formal clinical
studies needed to assess their use-case
for sports

Skin conductance • Noninvasive
• Fabrication of epidermal electronics
makes this route possible long-term

• Results obscured by eccrine
sweat during workout
• Limited utility during physical
activity

No. Currently there are no commercial
sensors (sampling of devices exists in
literature)

Biomarkers (e.g., Cortisol,
Orexin A)

• Ability to detect key biomarkers
indicative of stress from bodily fluids

• Current technology is relatively
immature
• Scientific results are mixed
• Sample analysis often requires
laboratory equipment

No. Currently there are no commercial
sensors (devices exist based on those in
literature)

CM continuous monitoring, HPA human performance assessment
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The sympathetic and parasympathetic nervous systems main-
tain cardiovascular homeostasis by responding to beat-to-beat
perturbations that are sensed by baroreceptors and chemorecep-
tors.80 During physical activity, the parasympathetic activity is first
withdrawn and then sympathetic nerve activity is augmented to
meet the metabolic demands of the behavior.81 Concurrently, HR
increases and HRV decreases with increasing exercise intensity.
Monitoring HRV provides useful knowledge for observing the
interplay between the sympathetic and parasympathetic nervous
systems, and is reflective of ANS activity.82 Thus, a low HRV (short-
time interval) is suggestive of a stressful period whereas a
prolonged HRV (long-time interval) is suggestive of a calm period.
HRV remains the most common method to determine the stress.
The training status of athletes may affect HRV.83,84 Overtraining is
caused by long-term stress or exhaustion due to imbalance
between training, other external/internal stressors, and recovery.
HRV is also affected by the training load of individual exercise
sessions; the higher the training load, the lower the HRV after

exercise.85 Thus, HRV is context dependent so the overall
environment the athlete is in must be factored in prior to
monitoring and subsequent diagnosis.
The quantification of ANS function is possible by calculating

parameters pertinent to HRV according to time-domain, fre-
quency-domain, and nonlinear analysis of consecutive RR intervals
of an ECG waveform.86 These parameters represent various
components of the sympathetic and/or parasympathetic system
of the ANS. For example, the high-frequency component derived
by the frequency domain analysis denotes the parasympathetic
activity.87 Successful derivation of these HRV parameters is
dependent on the recording quality, the subject’s activity during
the recording, the removal of artifacts, the detection of arrhythmic
beats, and the recording duration (seconds to days). ECG
monitoring (and subsequent derivation of stress from HRV levels)
via the use of wearable sensors poses several challenges for
athletics.88 Firstly, surface EMG, increased electrode impedance,
respiration induced baseline drift, and electrode contact

Fig. 3 Monitoring the mental acuity of the athlete via measurement of heart rate variability, skin conductivity (galvanic skin response), or
biomarkers from eccrine sweat. a Schematic illustrating the derivation of heart rate variability from an ECG. The ECG presented herein is
depicting respiratory sinus arrhythmia. Heart rate increases thus decreasing the time between successive RR intervals during inhalation and
exhalation. The change in time between successive RR intervals is called heart rate variability, expressed in ms. Short heart rate variability is
indicative of high-stress levels whereas long heart rate variability is indicative of a calm period. b Human stress monitoring patch affixed to a
human wrist (c) Performance of the pulsewave sensor from panel (b) for varying differential pressure of heart beat depending on the heart
rate of 50 BPM, 145 BPM, and 220 BPM as a function of the change in time. d Performance of the pulsewave sensor from panel (b) for varying
differential pressure of heart beat depending on the heart rate of 50 BPM, 145 BPM, and 220 BPM as a function of output voltage. e Image of
an epidermal sensor applied to the forearm of a healthy volunteer to detect cortisol levels from eccrine sweat. f Real-time response of the
molecularly selective and control devices after completion of physical exercise. The cortisol response was recorded using the output
measurement and the data were represented as a change of drain current vs. time at a low voltage. g The data demonstrated a good
correlation with standard cortisol ELISA methods for cortisol detection with an RSD of 5% for the two measurements. Figures were
reproduced with permission from Firstbeat Technologies80 (a), Yoon et al.74 (b–d), and Parlak et al.111 (e-g)
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movement can cause noise and motion artifacts.88 Secondly,
heterogeneity in the QRS complex often poses challenges to
identify the RR interval.89 Lastly, a reported drawback in most ECG-
based wearable devices that do not record standard ECG
derivations is their inability to distinguish some arrhythmias and
ectopic beats.90 The recent FDA clearance of the ECG sensor on
the Apple Watch 4 could enable a shift in this regard; however,
clinical validation of such technologies is greatly needed to negate
concerns posed by clinicians regarding its efficacy.91–93 A recent
systemic review sought to investigate if wearable devices provide
an accurate and reliable measure of HRV parameters during rest
and exercise.94 Eighteen studies were selected: sixteen of them
utilized ECG–HRV technology and two of them utilized
photoplethysmography-pulse rate variability (RV) technology. All
of the studies looked at the accuracy of wearable devices in RV
detection during rest, while only eight of them evaluated their
accuracy during exercise. The correlation between ECG-derived
HRV and the wearable RV was validated during rest but declined
as exercise intensity was increased. The study concluded that
wearable devices such as the BlueLeza HRM Blue, Carre
Technologies Hexoskin, Garmin wrist-watches, Polar H7 HR
Monitor, VivaLnk Vital Scout Patch, and Whoop Strap 2.0 may
provide a promising alternative solution for measuring RV;
however, more robust studies in nonstationary conditions are
needed specifically with larger subject populations to fully derive
their clinical utility for sports.

Skin conductivity. Multimodal physiological monitoring permits
the continuous and consistent detection of stress.74 The human ANS
is responsible for the changes in stress levels when excited by
various stressors. Skin temperature, skin conductance, and arterial
pulsewave signals among other ANS responses are necessary for a
multimodal physiological data analysis.95 These signals are categor-
ized into acute or chronic stress. A negative correlation exists
between peripheral skin temperature and chronic stress levels,96,97

while a positive correlation exists between skin conductance on the
palm and volar wrist with chronic and acute stress levels.95 To
characterize stress, arterial pulsewave signals are transformed into
HRV, which represents the chronic stress level and an individual’s
stress vulnerability.98 Research-oriented stress monitoring devices
are bulky and must be worn or carried for everyday use. Thus,
development of epidermal or wrist-based sensors for multimodal
physiological data detection and analysis would greatly aid in
advancing this field. Researchers have developed and fabricated an
epidermal sensor for the multimodal physiological data analysis of
stress via measurement of skin temperature, skin conductance, and
arterial pulsewave signals (Fig. 3b–d).74 The stress patch measured
skin temperature with a sensitivity of 0.31Ω/°C, skin conductance
sensitivity of 0.28 μV/0.02 μS, and a pulse wave response time of
70ms.74 The patch categorized the four types of human emotions
(surprise, anger, stress, and sadness) based on a singular vector
machine algorithm. While beyond the scope of the study, we
hypothesize that such technology could have utility to measure the
wellness of athletes in a real-time manner. Clinical testing in this
regard is necessary and currently lacking.
The galvanic skin response, GSR, (otherwise referred to as the

electrodermal activity, EDA) refers to changes in sweat gland activity
that are reflective of the intensity of one’s emotional state.
Emotional levels change in response to the environment—if an
event is deemed scary, threatening, joyful, or emotionally relevant,
then the subsequent change in GSR is reflective in the emotional
response. This change increases eccrine sweat gland activity. Thus,
measuring biomarkers from eccrine sweat using wearable sensors
could be useful in measuring stress levels in a noninvasive manner
to assess the mental acuity of athletes real-time. Furthermore, the
development of sensors capable of measuring both GSR/EDA and
biomarkers from eccrine sweat indicative of stress and fatigue could

be extremely useful in providing a holistic measure of the mental
and physiological status of the athlete.

Biomarkers indicative of stress levels. Prior work to measure stress-
related biomarkers has utilized high-performance liquid chroma-
tography (HPLC),99 enzyme-linked immunosorbent assay,100 radio-
immunoassay kit,101 or a HPLC mass spectrometry (MS) system.102

In addition, EEG has been utilized as a noninvasive means to
measure stress levels by placing electrodes on the human scalp
which measure oscillations of the brain’s electric potential.103,104

Collaborative research undertakings, such as the Online Predictive
Tools for Intervention in Mental Illness (OPTIMI), have recorded
EEG and ECG activity, voice analysis, electronic diaries, and cortisol
sampling to monitor an individual’s mental state.105 These existing
methods are limited for use in sports applications due to the
significant cost and technical expertize required. Thus, measuring
stress-indicative biomarkers in a non-invasive manner would
greatly advance this field.
Cortisol is a steroid hormone secreted from the adrenal glands

in response to stress as a product in the hypothalamic–pituitary
adrenal pathway.102 Cortisol is responsible for maintaining home-
ostasis in the body via the regulation of neural, immune,
cardiovascular, metabolic, and endocrine systems.102 Cortisol
has been measured in human blood,106 serum,107 urine,107

saliva,107,108 hair,109 interstitial fluid,110 and most recently eccrine
sweat.111 In a recent study, Jia et al. sought to further understand
and quantify cortisol in human eccrine sweat by utilizing
LC–MS.102 The study detected one isomer that had a similar
hydrophobicity, retention time, and fragmentation patterns to
that of cortisol found in eccrine sweat. Prior studies have shown
that the levels of certain molecular markers in eccrine sweat are
comparable to those found in human plasma. Marques-Deak
et al.112 compared baseline levels of cytokines, such as IL-1α, IL-1β,
IL-6, TNF-α, IL-8, and TGF-β in plasma and eccrine sweat, and
showed that the measured cytokine levels were comparable to
that of circulating levels in plasma.112 Prior work using biosensors
to measure stress and cognition has focused on the measurement
of a wide array of biomarkers (10−6–10−12M) such as Orexin-A,113

cortisol,110 dopamine,114 neuropeptide Y,115 and interleukin-6
(IL-6).116 Parlak et al. developed a multifunctional layered wearable
organic electrochemical sensor for the non-invasive detection of
cortisol from eccrine sweat (Fig. 3e–g).111 The team integrated an
electrochemical transistor and a biomimetic polymeric membrane,
which permitted the detection of cortisol. The sensor, combined
with a microcapillary channel array, was integrated in the sensor
thereby providing precise sample delivery to the sensor interface.
Ex situ testing, performed by spraying artificial sweat with
increased cortisol concentrations on the forearm, and real-time
testing during exercise, demonstrated the utility of the device to
measure cortisol (Fig. 3e–g). The study suggested that the ability
of the sensor to be adapted for the detection of other molecules
(noncharged biomolecules and hormones) from eccrine sweat.
Orexin peptides and their corresponding receptors in the brain

contribute to autonomic control, attention, feeding, memory,
sleep, and stress.113 Measuring serum levels of Orexin A can aid in
predicting mood and cognitive performance in athletes.113

Noninvasive measurement of several neuropeptides utilizing
functionalized antibodies or peptide-decorated semiconductors
has been reported.117,118 Hagen et al. utilized interdigitated zinc
oxide field effect transistors (ZnO FETs) to detect Orexin A by
binding a bifunctional peptide to both the ZnO semiconductor
and the neuropeptide.113 The binding was transmitted to an
electrical signal and the sensor selectivity was able to detect
concentrations of approximately 100 aM in water, 10 fM in filtered
human saliva, and 1 nM in filtered fetal bovine serum. The sensor
platform demonstrated the potential of an FET device to measure
a wide array of biomarkers in complex biofluids; however,
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development of improved sensitivity and stability of biosensors is
required for the real-time detection of such biomarkers.113

The utilization of wearable sensors to measure the aforemen-
tioned biomarkers represents a significant opportunity to monitor
stress levels in athletes.119 However, a majority of the devices
presented in both scientific and commercial literature are not yet
validated in clinical studies for real-time assessment of human
performance. Companies such as VivaLnk, Sentio Feel, and Interaxon
Muse have devices that can monitor and detect stress levels in real-
time via measurement of electrodermal activity, HRV, or utilizing
signal processing methods from EEGs. In addition, devices such as
those by Halo Neuroscience can potentially improve cognition
during athletic training sessions by utilizing neuropriming to increase
the excitability of motor neurons.120 Research showed that
transcranial direct current stimulation at low currents (e.g., <2mA)
applied over the scalp induced changes in brain excitability for an
extended duration to result in synaptic and nonsynaptic functional
changes.121,122 Clinical trials by Halo Neuroscience have shown that
this effect can significantly improve player performance and
training.120 Leveraging the data acquired from such devices,
analytical platforms can be implemented to correlate biomarker
concentrations with stress levels as a function of time to help an
athlete eliminate costly errors during high-acuity situations. In
addition, training regimens can be developed to expedite player
development process and enable the athlete to reach their peak
performance at a faster rate. The need to develop multi-modal
sensors integrating various parameters such as biochemical markers,
HR, HRV, sleep, and/or skin conductivity (as a function of GSR) to
accurately measure stress levels coupled with their clinical validation
in nonstationary conditions is greatly needed to enable athletes to
maximize their performance, recovery, and health. Lastly, there
remains an unmet medical need to differentiate between physical
and mental (psychological) stress to understand the physical and
mental demands of the athlete. We hypothesize that the develop-
ment of multimodal sensor technology could enable such distinc-
tions to be made via an array of factors that are indicative of various
stressor types.

OPPORTUNITIES AND FUTURE OUTLOOK

The emergence of IC fabrication strategies, flexible electronics,
device design, and e-garments has revolutionized the develop-
ment of soft electronics and biological and chemical sensor
technologies toward advancing sports medicine.123–127 The
wearables field has recently seen a variety of devices for detecting
position and motion, coupled with the emergence of clinical
studies to assess their validity in professional or collegiate sports
teams. However, as previously mentioned, devices seeking to
measure biosignals, biomarkers, and biomechanical parameters
are challenged by the device technology itself and systems level
issues associated with data analytics/data mining.
On the device side, first and foremost, there remains a need to

develop the sensing technology, and packaging approaches
designed for robust and easy-to-wear systems that increase
detection sensitivity as well as improve the signal to noise ratio,
specifically at the interface between soft sensing components and
rigid electronics. Second, reducing the overall power of the device
is crucial to moving these devices past the initial prototype stages.
Third, moving toward Application Specific Integrated Circuit (ASIC)
technologies to consolidate electronics and reduce power
consumption will help play a role in their miniaturization and
inclusion in garments or other modalities for athletics. Lastly, to
lower cost, it will be crucial to scale sensor production into volume
via panels or roll-to-roll manufacturing platforms, as previously
reviewed in the work from Bariya et al.66,128

On the systems side, there remains a need to improve analytics
and data mining techniques to translate the acquired data from
these sensors into actionable protocols for the athletes. The primary
function and role of data mining for biomedical devices and sensors,
includes: (1) data acquisition via the wearable sensor, (2) data
transmission from the athlete to team trainer, (3) data integration, (4)
data storage, and (5) data security and privacy.129 Consideration of
such issues has led to improvements in data filtering, signal
processing, and noise removal. To solve such problems, data mining
techniques such as wavelet analysis for artifact reduction and data

Fig. 4 Emergence of machine learning could heighten the translational utility of wearable sensor technology for sports. Data acquired from
wearable sensors can be inputted into machine learning models to predict athlete performance, likelihood of suffering a noncontact injury,
inform hydration status to alleviate soft-tissue injuries, or accurately diagnose cardiac arrhythmias
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compression, rule-based methods for data summary and transmis-
sion, and Gaussian processing for secure authentication have been
implemented.129 There remains an unmet medical need to further
develop acute-to-chronic workload ratio models from wearable
devices to hone in on ranges indicative for the sport of interest.
Current models focus in on only select sports such as Australian
Football, Cricket, or Rugby. The emergence of machine learn-
ing130,131 and artificial intelligence132 toward this translation is
critical for the growth of the wearables field (Fig. 4). Kitman Labs
utilizes machine learning platforms and motion technology to
diagnose and uncover an athlete’s unique stress response and
various movements.133 Clinical studies utilizing wearable sensors
for sports medicine can enable researchers to gain access to a wide
array of data sets thereby allowing the training of analytical models
to accurately, efficiently, and precisely predict athlete injuries
based on workload profiles to ultimately translate the acquired
sensor data into actionable protocols for sports-medical personnel.
With such advancements, one could envision a platform which
translates these physiological parameters and biomarkers to
provide key medical personnel a real-time status of how the
athlete is performing and advise the trainer and team physician as
to the necessary recovery protocol for the individual. Open-source
platforms such as the American Heart Association Precision
Medicine Platform (powered by Amazon Web Services, AWS)134

to allow researchers to upload data from clinical studies will be key
to advancing the translational utility of this field for sports
medicine. Ultimately the goal of wearable sensors for sports
medicine is to develop a multimodal, nonintrusive device towards
the non-invasive, continuous, and combinatorial measurement of
both physiological parameters and biomarkers. Succeeding at each
of these current technological roadblocks both from the device
and systems side will enable the translation of this technology to
greatly aid team physicians and sports-medicine trainers to
efficiently and accurately monitor and tailor treatment plans to
maximize player performance and minimize injury.
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