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Abstract—We show that it is possible to identify individual
personality traits and measure group performance in a Post-
anesthesia Care Unit (PACU) using wearable sensors. We instru-
mented a group of 67 nurses working in the PACU of a Boston
area hospital with sociometric badges capable of measuring
physical activity, speech activity, face-to-face interaction, and
physical proximity. Using the data collected with these sensors
we were able to estimate the daily average length of stay (LOS)
and number of delays.

I. INTRODUCTION

Combining wearable technology with pervasive computing

devices, such as sensors or actuators, is an approach with

high potential for being an important part of IT solutions for

applications in hospital environments [1].

Our research group has developed several wearable sensing

platforms to automatically capture individual and collective

patterns of behavior, predict human behavior from uncon-

scious social signals, identify social affinity among individuals

working in the same team, and enhance social interactions by

providing real-time feedback.

Post-anesthesia care unit (PACU) monitoring reduces mor-

bidity and is the standard of care for post-surgical patients.

PACUs require large nurse to patient ratios, which contributes

to the cost of care [2]. Reducing the patient’s length of stay

(LOS) within the PACU can control or even lower costs. The

length of time a patient remains in the PACU is medically

attributed to the anesthetic drugs used during the operation

and additional side effects that may occur, such as nausea and

vomiting [3]. Previous studies demonstrate that as many as

20% of patients experience delayed discharge from the PACU

and over half of the delays may be personnel-related or due

to personnel shortages and inefficiencies [4].

We instrumented a group of 67 nurses working in the Post

Anesthesia Care Unit (PACU) of a Boston area hospital with

sociometric badges capable of measuring physical activity,

speech activity, face-to-face interaction, and physical proxim-

ity. Using the data collected with these sensors we have been

able to identify different personality traits and estimate the

daily average length of stay (LOS) and number of delays.

II. BACKGROUND

One of the first attempts to measure face-to-face interactions

between people using wearable sensors was the sociometer[5].

This wearable sensor package was used to learn social in-

teractions from sensory data and model the structure and

dynamics of social networks [6]. Pentland describes several

statistical learning methods that use wearable sensor data to

make reliable estimates of users’ interactions [7]. He presents

a detailed description of eigenbehavior modeling for learning

and classifying user behavior from proximity and location

data, and influence modeling for predicting the behavior of

a subject from another subject’s data. Our latest research

platform uses sociometric badges to measure and analyze

organizational behavior [8].

A. Personality

Over time researchers have tried to describe and measure

personality traits (individual tendencies to react emotionally

or behaviorally in a specific way) using various tests. The

most popular model is the “Big Five” model that describes

five personality traits [9]: Neuroticism (N), extroversion (E),

openness (O), Agreeableness (A), and conscientiousness (C).

B. Group Behavior

The study of groups has been a focus across the social

and behavioral sciences for over 50 years. Poole et al. have

described nine different interdisciplinary perspectives on small

groups [10]. We are particularly interested in the social-

evolutionary perspective which posits that group structure and

interaction reflect evolutionary forces that have shaped human

social behaviors over thousands of years. This perspective

treats groups as aggregates of individuals and views group

behavior as the product of individual behaviors that scale up

to the group level.

III. METHOD

A. Participants

The study sample was composed of 67 nurses who worked

in the PACU of a Boston-area hospital. Each nurse wore a

sociometric badge every day for a period of 27 days. In total

we collected 3,906 hours of data. The mean number of hours

each participant wore a badge was 7.18 hours per day (±4.17).

During this period a total of 1128 patients were admitted to

the PACU, with an average LOS of 235.66 (±261.76) minutes.
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At the end of the study participants answered a NEO-FFI

(NEO Five Factor Inventory) questionnaire [11] that contains

60 questions and is designed to measure the five personality

traits described in the background section.

B. Experimental set-up

The hospital has 50 Operation Rooms (OR). After surgery

is completed, patients are taken to the PACU, where they

are kept under supervision until they recover from anesthesia.

Thereafter they are admitted to the floor units where they

convalesce before being discharged. Patients without assigned

beds on the floors are kept in the PACU until vacancies on the

floors can be found. The PACU is a critical intermediary step

in the surgical patient throughput system and it consistently

experiences delays of various kinds. These delays cause hold

ups in the OR resulting in schedule disruptions, overtime work

and productivity losses. This translates into loss of revenue for

the hospital since the health-care system reimburses a fixed

sum for a particular surgical procedure irrespective of the

patient’s length of stay in the hospital [12].

We placed base stations next to each bed and phone in

the PACU in order to detect when the nurses were in close

proximity to a bed or a phone and track their location and

displacement patterns. There were 37 beds in the PACU, with

only 30 being used during the study and 12 phones distributed

around the room.

The sociometric badges and base stations broadcasted their

ID every 5 seconds using a 2.4 GHz transceiver (TRradio = 12
transmissions per minute) and each time another badge or base

station received a radio packet it logged the sender’s ID and

the radio signal strength. This allowed us to track the location

of the nurses and detect when they were in close proximity

to other nurses, beds or phones. The badges also transmitted

their ID every 2 seconds using an infrared (IR) transceiver

(TRir = 30 transmissions per minute).

C. Procedure

The daily average and standard deviation of the badge

features described in the measurements section were calculated

for each participant. We used correlation analysis to identify

personality traits from the individual daily features, and step-

wise multiple linear regression analysis to predict the daily

average LOS and number of delays from the daily features

aggregated across subjects.

IV. MEASUREMENTS

The sociometric badges shown in figure 1 are capable

of measuring physical activity, speech activity, face-to-face

interaction, and physical proximity.

A. Physical activity

A 3-axis accelerometer signal sampled at fs ≥ 30 Hz

captures the full range of human movement since 99% of the

acceleration power during daily human activities is contained

below 15 Hz [13]. The acceleration signal vector magnitude

(|~a′

i|) provides a measure of the degree of movement intensity

Fig. 1. Wearable sociometric badge

that includes the effect of signal variations in the three axes

of acceleration [14]. From the 3-axis accelerometer signal we

calculate the following features every minute:

• (F 1) Mean accelerometer signal magnitude

• (F 2) Standard deviation of signal magnitude

• (F 3) Power or signal energy

B. Speech activity

Several speech enhancement and speech recognition front-

end systems based on band-pass filter banks have been shown

to be effective in detecting speech [15], [16]. The sociometric

badges have an analog band-pass filter bank that divides the

speech frequency spectrum [85, 4000] Hz into four frequency

bands: f1 from 85 to 222 Hz, f2 from 222 to 583 Hz, f3

from 583 to 1527 Hz, and f4 from 1527 to 4000 Hz. We

compute the speech volume modulation from the output of

filter 1, since that is where the majority of the speaking energy

resides. The amount of speaking time per minute is simply

calculated by counting the number of samples in one minute

where the volume modulation is v(i) > 0. The band-pass

filters also allow us to detect voiced and unvoiced speech and

calculate the voiced speaking time. The following features are

calculated from the filtered speech signal every minute:

• (F 4) Mean volume modulation

• (F 5) Standard deviation of volume modulation

• (F 6) Speaking time

• (F 7) Voiced speaking time

C. Face-to-face interaction (f2f)

IR transmissions can be used as a proxy for the detection

of face-to-face interaction between people [5]. In order for

one badge to be detected through IR, two sociometric badges

must have a direct line of sight and the receiving badge’s

IR sensor must be within the transmitting badge’s IR signal

cone of height h ≤ 1 meter and radius r ≤ h tan θ, where

θ = ±15◦. We define the amount of face-to-face interaction

as the total number of IR detections per minute divided by

the IR transmission rate (TRir). Using the IR detections we

calculate the following features every minute:

• (F 8) Face-to-face interaction time

• (F 9) Number of different people with f2f interaction



D. Proximity

RSSI (radio signal strength indicator) is a measure of the

signal strength between transmitting and receiving devices.

An average threshold was determined experimentally in order

to detect when two badges were in close proximity to each

other (at a distance of less than 3 meters) by collecting RSSI

measurements over an extended period of time under different

environmental conditions. The time spent in close proximity to

another person, a bed, and a phone are calculated by dividing

the number of radio packets with RSSI > RSSIth by the radio

transmission rate (TRradio). Using the proximity detections

we calculate the following features every minute:

• (F 10) Time in close proximity to other people

• (F 11) Time in close proximity to a bed

• (F 12) Time in close proximity to a phone

Table I shows the notation that we use when we refer to the

daily features.

V. RESULTS

We will use the following notation to distinguish between

daily features calculated across days and daily features calcu-

lated across subjects:

µ(F n)D denotes the average of daily feature F n across

days.

σ(F n)D denotes the standard deviation of daily feature F n

across days.

µ(F n)S denotes the average of daily feature F n across

subjects.

σ(F n)S denotes the standard deviation of daily feature F n

across subjects.

Table II shows the correlation coefficients between the daily

badge features (mean and standard deviation across days)

from each participant’s sensor data and the results of their

personality test grouped by behavior description. These results

do not imply causality and can be interpreted as follows:

• Neuroticism. The higher the daily percentage of f2f time,

and the more variation across days in the daily percentage

of f2f time, the more neurotic.

• Extroversion. The lower the daily average time in close

proximity to a bed or phone, the lower the daily variation

in time in close proximity to a phone (phone call length),

and the less variation across days in the daily variation in

time in close proximity to a phone, the more extrovert.

• Openness. The higher the daily variation in physical

activity, the less variation across days in daily variation

in speaking time, and the more variation across days in

the daily average time in close proximity to a phone, the

more open.

• Agreeability. The less variation across days in the daily

average speech volume modulation, the less variation

across days in the daily variation in speech volume

modulation, and the less variation across days in the daily

percentage of time in close proximity to a bed, the more

agreeable.

TABLE III

PREDICTION OF DAILY AVERAGE LOS IN MINUTES FROM BADGE

FEATURES ACROSS SUBJECTS (p < 0.005)

Predictors R R2 F RMSE β

σ(F 1
µ)S −0.72 0.52 18.11 36.32 −1387.52

σ(F 8
%)S 0.53 0.71 19.39 29.07 2909.17

σ(F 12
% )S 0.16 0.79 19.21 25.24 −53.5

TABLE IV

PREDICTION OF DAILY AVERAGE NUMBER OF DELAYS (GOING OUT OF

THE PACU) FROM BADGE FEATURES ACROSS SUBJECTS (p < 0.05)

Predictors R R2 F RMSE β

σ(F 2
µ)S 0.46 0.21 4.48 3.95 −189.53

σ(F 12
µ )S −0.60 0.56 10.37 3.02 206.63

Tables III and IV show that it is possible to explain the

variation in the daily average LOS in minutes (R2 = 0.79) and

the daily average number of outgoing delays (R2 = 0.56) from

the aggregated features across subjects. In the case of LOS, the

variation in physical activity intensity, face-to-face interaction

time, and time in close proximity to a phone across subjects

played an important role. Low variation across the nurses’

level of physical activity (either all nurses having high levels

of activity or low levels of activity) and high variation across

the nurses’ face-to-face interaction time was an indication

of extended LOS. In the context of the PACU these results

can be interpreted as either most PACU nurses being busy

(high activity levels) or waiting for bed availability (low

activity levels). The variation across the nurses’ face-to-face

interaction time could be an indicator of poor communication

among nurses. The variation in the detection of nurses in

close proximity to a phone could be an indicator of lack of

advanced notification to the receiving unit of an impending

patient transfer.

When estimating the daily number of delays the variation

across subjects in their individual physical activity variation

throughout the day and the average time they are in close

proximity to a phone (which could be related to phone call

length) were the most predictive features. This means that a

high variation across the nurses’ daily activity levels (having

alternate periods of high activity and low activity during the

day), coupled with the variation in the time they spend in close

proximity to a phone, is an indication of increased number of

delays in the PACU.

VI. CONCLUSIONS

The use of pervasive technology in healthcare management

has the potential to improve organizational performance by

allowing healthcare providers to identify bottlenecks and inef-

fective behaviors. We presented experimental results that show

that it is possible to identify individual personality traits and

measure group performance (reflected in the average LOS and

number of delays) from low-level sensor data. This is a first

attempt to measure and model organizational performance at

the individual and group levels.



TABLE I

DAILY SENSOR FEATURES, WHERE h(k) = 1 IF F 1(k) > 1 (WHEN WEARING THE BADGE), AND h(k) = 0 IF F 1(k) ≤ 1 (WHEN NOT WEARING THE

BADGE)

Daily feature Notation Calculation

Average F n
µ

1
P

K

k=1
h(k)

PK

k=1 F n(k)h(k)

Standard deviation F n
σ

q

1
P

K

k=1
h(k)

PK

k=1 [F n(k)h(k) − F n
µ (k)]2

Percentage of time F n
%

1
P

K

k=1
h(k)

PK

k=1 F n(k) > 0

TABLE II
CORRELATION COEFFICIENTS BETWEEN MONTHLY BADGE FEATURES AND PERSONALITY TRAITS. *p < 0.05, **p < 0.01.

Personality Dimension

N E O A C
Behavior Description Feature

Physical activity µ(F 2
σ)D -0.03 -0.07 0.37* -0.14 -0.09

Speech activity σ(F 5
µ)D 0.07 -0.16 -0.18 -0.43** -0.006

σ(F 5
σ)D 0.09 -0.13 -0.24 -0.41** 0.12

σ(F 6
σ)D 0.11 -0.006 -0.36* -0.18 0.02

Face-to-face µ(F 8
%)D 0.35* -0.08 0.004 0.06 -0.18

σ(F 8
%)D 0.41* -0.09 0.02 0.06 -0.26

Proximity σ(F 11
% )D 0.06 -0.18 -0.16 -0.34* 0.16

µ(F 11
µ )D -0.003 -0.36* 0.11 -0.26 0.18

µ(F 12
µ )D 0.15 -0.39* 0.22 -0.24 -0.11

σ(F 12
µ )D 0.25 -0.27 0.32* -0.18 -0.20

µ(F 12
σ )D 0.12 -0.36* 0.22 -0.20 -0.14

σ(F 12
σ )D 0.31 -0.34* 0.17 -0.31 -0.08

Our results argue in favor of using wearable sensors to study

group behavior, and incorporating behavioral data into patient

scheduling systems to reduce the patient’s LOS and save

costs by minimizing the number of delays. We plan to extend

this research to multiple groups and entire organizations.

Future work includes modeling, simulation and optimization

of individual and group behavior from sensor data.
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