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Abstract— Unintentional falls are a common cause of severe
injury in the elderly population. By introducing small, non-
invasive sensor motes in conjunction with a wireless network,
the Ivy Project aims to provide a path towards more indepen-
dent living for the elderly. Using a small device worn on the
waist and a network of fixed motes in the home environment,
we can detect the occurrence of a fall and the location of the
victim. Low-cost and low-power MEMS accelerometers are
used to detect the fall while RF signal strength is used to locate
the person.

I. INTRODUCTION

A. Background

Falling can be a frequent and dangerous event for the

elderly population. It is estimated that over a third of adults

ages 65 years and older fall each year [1], making it the

leading cause of nonfatal injury for that age group.

Among older persons, 55 percent of fall injuries occur

inside the home. An additional 23 percent occur outside, but

near the home [2]. Traditionally, placing seniors in nursing

homes or other care centers has mitigated the dangers of the

elderly falling. However, with the advent of wireless ad-

hoc networks and low-power mote technology, we can now

approach the problem from a different perspective.

B. Motivation

The goal of the Ivy Project [3] is to provide an infrastruc-

ture of networked sensors that supports multiple applications

simultaneously. The sensor network, like ivy, would spread

throughout the environment, whether it is an office space

or home, linking leaves (motes) to the root (base station).

In general, the motes can be divided into two types: 1)

Fixed/infrastructure motes, for example attached alongside

the walls and corridors, and 2) mobile motes, whose geo-

graphical position can change over time.

In our application, this networked infrastructure is used

to detect when a person has sustained a fall and relay this

information across some medium such that immediate and

appropriate action can be taken. This is currently the focus

of the Ivy Project and motivates the experiments discussed

in this paper.

In addition, localization technology can be used to comple-

ment the fall detection. Seniors who are living by themselves

have problems getting help when they fall and may not

be able to describe where they are. Combined with the

fall detection technology, localization can detect where the

incident occurred and request the relevant services.

II. FALL DETECTION AND LOCALIZATION

A. Previous Work on Fall Detection

Accelerometry has been used in various studies and appli-

cations to objectively monitor a range of human movement,

for example to measure metabolic energy expenditure, phys-

ical activity levels, balance and postural sway, gait, and to

detect falls [4]. With respect to fall detection, there has been

relatively little work published. According to [4], the basic

approach of using accelerometry to detect the fall was first

published by [5], [6]. In this approach, a change in body

orientation from upright to lying that occurs immediately

after a large negative acceleration indicates a fall. These

two conditions have been incorporated into fall detection

algorithms using accelerometers [7], [8].

Reference [9] presents a fall detector worn on the wrist

that incorporates a multi-stage fall detection algorithm. The

first condition is the detection of a high velocity towards

the ground. Next an impact needs to be detected within

3 seconds. After impact, the activity is observed for 60

seconds, and if at least 40 seconds of inactivity are recorded,

an alarm is activated. The results were positive in the sense

that no false alarms were given, but also disappointing since

a large percentage of backwards and sideways falls were not

detected.

Reference [6] documents the design of the commercially

available Tunstall fall detector that uses a patented two-

stage detection algorithm. The detector wakes up from

the sleep state when a strong impact is detected. Then

a second sensor estimates the wearer’s orientation and if

he/she is in a lying state for a set time period, an alarm is

raised. Various locations for the device were considered and

it was determined that the waist was the optimum location

that suited the wearer and allowed reliable measurement of

impacts.

III. SYSTEM DESIGN

Our application utilizes TinyOS and Mica2Dot motes de-

veloped at UC Berkeley as a research platform for low-power

wireless sensor networks [10], [11]. The Mica2Dot mote is

equipped with the Atmel ATmega 128L microcontroller, 4

KB of RAM and a 433 MHz radio capable of data transfer
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Fig. 1. Fall detection sensor board

at 38.4 kbps with a radio range of 1000 ft, and is powered

by two AA batteries.

A. Fall Detection Sensor Board

The goal was to design an accelerometer mote that is

small and lightweight that can be worn comfortably with-

out obstructing normal activities. The fall detector board

has two dual-axis MEMS accelerometers (Analog Devices

ADXL210E) mounted at right angles to each other, such

that three orthogonal axes of acceleration can be measured.

The ADC in the microcontroller converts the analog output

of the accelerometers to an integer in the range [0, 1023],
corresponding to a measured voltage of [0, VDD]. Two AA

batteries power the accelerometer mote, chosen for their

widespread availability and relatively low cost. The mote

fits inside a plastic box measuring 1 1/8” x 3/8” x 1 5/8”,

while the batteries are enclosed in a separate small battery

pack slightly bigger than the size of the batteries themselves.

Originally, the accelerometer mote was intended to be

worn on the arm or wrist, similar to a watch, but previous

experiments [6], [9] have shown that the frequent and severe

movements of the arm in everyday activities make it difficult

to use the acceleration forces observed in that part of the

body to determine the activity performed. Other studies on

fall detectors have placed them on the waist for more success

[6]. Clearly, the placement of the device on the body is of

primary concern. Some of the criteria are that it should be

comfortable and that the device itself should not pose a threat

to the wearer in the event of a fall. For our experiments, we

attached the mote to a belt worn around the waist.

IV. METHODOLOGY FOR FALL DETECTION

In order to detect a fall, the sampled acceleration data

can be processed locally at the mobile mote or forwarded

back to the base station, where a powerful computer can do

it. Having a computer do the processing allows for faster

and more sophisticated analysis such as pattern matching,

but places a great burden on the network. The data would

need to be continually transferred over the network when the

device is on. Since the aim is to detect a simple fall event,

it is more efficient and plausible to process the data locally

at the mote, even with its limited processing and storage

capabilities. When a fall has been detected, the mobile

mote can then send an alert back to the base station, and

the computer can then take the necessary measures, such as

notify an emergency center.

A. Detecting Impact

For reliable operation of the fall detection system, fall

events should not be missed while false positives should be

minimized. In experiments of common, safe activity such

as walking and sitting, and dangerous activity as in falling,

the resulting analysis sought to identify how to reliably

distinguish the fall from normal activity. As expected, the

magnitudes of acceleration in falling are generally greater

than those in normal activity. Setting thresholds for each of

the three axes of measurement does not work well, because

it does not cover all the possible directions of impact in a

uniform way.

To consider the acceleration uniformly, the norm of the

three axes can be taken, which is the magnitude of accelera-

tion in three-dimensional space when the three acceleration

values are for the same point in time. The mote’s processor

samples the three accelerometers sequentially, but when sam-

pled fast enough this is acceptable for estimating the norm.

The norm is calculated at the rate that the accelerometers are

sampled and when it exceeds a threshold then it is possible

that a fall has occurred.

The threshold can be set based on empirical data. The

smallest acceleration measured from a fall was about 3 G,

but usually ranged up to several G’s higher. Normal activity

usually does not exceed 3 G, but occasionally may during

some rigorous movements, for instance in jumping, running

or sitting down abruptly. Since there is some overlap in

the ranges of the acceleration norm between safe activities

and falling, we need another way to distinguish falling from

normal activity for a more robust algorithm.

B. Observing Orientation

From the experimental data, it is evident that a limited

measure of the orientation of the mote could be easily

determined when it is stationary or moving very slowly. In

the absence of actual acceleration with respect to the ground,

the accelerometers detect the normal force of gravity, 1 G,

directed upward from the ground. This force is always

present and is a static component in the acceleration data.

When the mote is stationary, the norm reflects the normal

force, and so it is possible to infer the orientation of the

mote with respect to an imaginary vertical line.

Over a finite time interval, assuming the orientation is

unchanged, if the initial and final velocities are the same,

then for a given axis, the average accelerometer reading is

that due to the normal force of gravity. It was observed that

averaging over a 1-second window of data worked well for

estimating orientation, even when the mote was moving as

it would in normal activities such as sitting, bending over,

etc.

When a person falls, he or she undergoes a large change in

position from before the fall to after. The simplest example

would be from standing upright to lying flat, an orientation

change in the mote of 90 degrees. The actual change in
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orientation may be more or less than that, depending on

the initial and final position of the person, but in any case,

there is usually such a change, except for special cases

like when a person rolls off the bed. From the orientation

information, such an angle of change can be estimated using

the dot product of the acceleration vectors before a fall and

after, where the vectors are from averaging over 1-second

windows.

Letting t0 be the time of impact, we estimate the orienta-

tion one second before falling, at t0 − 1, by averaging over

[t0 − 1.5, t0 − 0.5], and 2 seconds after falling, at t0 + 2,

by averaging over [t0 + 1.5, t0 + 2.5]. Those numbers are

reasonable considering the short amount of time it takes from

one losing balance to hitting the ground, and the possibility

of some movement after the first impact is detected. The

algorithm also considers the case when multiple impacts are

detected, as may be the case when falling down stairs, and

estimates the orientation after falling, at tn + 2, where tn is

the time at which the last impact is observed. That is, no

more impacts are observed in (tn, tn +2]. The angle change

that constitutes a change in orientation can be set arbitrarily

based on empirical data.

Once the two fall conditions are met, an alert is forwarded

back to the base station via the fixed mote network, and

appropriate action can be taken, such as calling for medical

assistance and determining the location of the individual.

While we can accurately determine the location of the

individual by measuring the radio signal strength between

the mobile node and the fixed nodes, this process will not

be discussed here. The flowchart in Fig. 2 summarizes the

fall detection algorithm.

V. EXPERIMENTS AND EVALUATION

A. Accelerometer Experiments

Several experiments were performed using a test board

built for the purpose of accelerometer data collection, which

includes two orthogonally positioned dual-axis MEMS ac-

celerometers with ±10 G range, as described previously.

Two martial arts students were recruited to demonstrate some

common fall motions while wearing the sensor boards. Over

10 trials (5 for each person), we found that the average

peak acceleration measured was about 6.9 G for falling

backwards and 12.7 G for falling sideways. Fig. 3 shows the

norm of the acceleration observed during a fall backwards.

There are several important points to notice: 1) Between time

t = 1s and t = 1.5s, there is a small dip, indicating a short

period of freefall; 2) At time t = 1.75s, there is a large

peak, indicating impact; 3) After peak of impact, there is a

dampening effect, as the force of landing is absorbed by the

body and the ground; 4) The initial and final accelerometer

reading remains constant at approximately 1 G, as expected.

Similar results were observed for falling sideways.

To ensure a robust methodology for fall detection, it is

important to verify that normal activities do not produce

false positives. It was originally proposed that due to the

large impact from falling, normal activities would not create

nearly large enough accelerations to trigger any alarm. To

Fig. 2. Fall detection algorithm

Fig. 3. Acceleration observed while falling backwards

verify this claim, the test subjects were also asked to perform

some normal activities such as walking and sitting. Over 4

trials (2 for each person), we found that the average peak

acceleration for walking reached only 1.9 G. In 10 trials, the

average peak acceleration for sitting down was 2.5 G. It is

interesting to note that the action of sitting down is somewhat

similar to that of falling. Namely, it is basically a short period

of controlled downward acceleration followed by a small

impact. The ability to distinguish between these similar

events is critical to the success of our system. Luckily,

the measured peak acceleration for sitting is much less than

the average of 6.9 G observed from falling backwards. In

addition, there is usually little of no orientation change
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Fig. 4. Acceleration observed while sitting

Fig. 5. Acceleration observed while walking

involved when sitting down, even if a large magnitude is

detected. As shown in Fig. 4, the acceleration profile of

sitting looks very similar to that of falling, with the notable

difference that the magnitude is much smaller.

Compared to other designs for a wearable fall detector,

the methodology as described benefits largely in two ways.

Other devices rely mainly on threshold detection while

paying little attention to orientation change. Although the

commercially available Tunstall fall detector considers the

final orientation of the wearer, it only raises alarm if the

user is in a lying state. Many times, a fall may occur near

walls or furniture, which may result in the user being in

a reclined position. Using a differential measurement of

orientation, this change from standing upright to reclining

can be detected.

Since only the change in orientation is considered, the

algorithm is much less prone to user error. With an absolute

orientation detection method, it is imperative that the device

be worn properly so the correct orientation can be detected.

However, by using the change in orientation, this requirement

is mitigated, thus avoiding many of the problems caused by

improper use of the device.

VI. CURRENT AND FUTURE DEVELOPMENT

In this paper, we have demonstrated the feasibility of using

a wireless sensor network to detect fall events. Interestingly,

we observed that different activities have unique acceleration

profiles. Also, amplitudes and frequencies of movement

vary with the size and weight of the wearer, which suggest

that the design can be improved by customization, whether

for individuals or groups with similar activity levels. For

example, Fig. 5 clearly shows the periodic nature of walking,

which suggests that frequency analysis may be a possible tool

to better distinguish between events. The threshold algorithm

can also be tuned in software to more reliably distinguished

falls from safe activity.

While the system discussed in this paper works well for

an indoor environment, it relies heavily on a fixed network

to relay events. Current development involves building a

sensor mote which can operate outside of such a network.

For example, a GPS chip has been integrated with the current

design to provide localization outside the home. We also

hope to combine the sensor board with a cellular device

so that wireless communication is possible outside a fixed

network.
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