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Abstract Abstract 
Measuring body temperature is considerably important to physiological studies as well as clinical 
investigations. In recent years, numerous observations have been reported and various methods of 
measurement have been employed. The present paper introduces a novel wearable sensor in intelligent 
clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg 
grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for 
body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 
times higher than that of a bare FBG. This study combines large and small pipes during fabrication to 
implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in 
determining heat transfer between the body and its clothing. The mathematical model of heat 
transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis 
is presented. The simulation results show the capability of the material to correct the actual body 
temperature. Based on the skin temperature obtained by the weighted average method, this paper 
presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper 
back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left 
armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were 
obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result 
was ± 0.18°C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases 
when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to 
obtain accurate body temperature. 
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Abstract: Measuring body temperature is considerably important to 
physiological studies as well as clinical investigations. In recent years, 
numerous observations have been reported and various methods of 
measurement have been employed. The present paper introduces a novel 
wearable sensor in intelligent clothing for human body temperature 
measurement. The objective is the integration of optical fiber Bragg grating 
(FBG)-based sensors into functional textiles to extend the capabilities of 
wearable solutions for body temperature monitoring. In addition, the 
temperature sensitivity is 150 pm/°C, which is almost 15 times higher than 
that of a bare FBG. This study combines large and small pipes during 
fabrication to implant FBG sensors into the fabric. The law of energy 
conservation of the human body is considered in determining heat transfer 
between the body and its clothing. The mathematical model of heat 
transmission between the body and clothed FBG sensors is studied, and the 
steady-state thermal analysis is presented. The simulation results show the 
capability of the material to correct the actual body temperature. Based on 
the skin temperature obtained by the weighted average method, this paper 
presents the five points weighted coefficients model using both sides of the 
chest, armpits, and the upper back for the intelligent clothing. The weighted 
coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 
for the right armpit, 0.0936 for the upper back, and 0.0826 for the right 
chest were obtained using Cramer’s Rule. Using the weighting coefficient, 
the deviation of the experimental result was ± 0.18°C, which favors the use 
for clinical armpit temperature monitoring. Moreover, in special cases when 
several FBG sensors are broken, the weighted coefficients of the other 
sensors could be changed to obtain accurate body temperature. 
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1. Introduction 

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short 
segment of optical fiber that reflects particular wavelengths of light and transmits all the 
others. This reflection is achieved by adding a periodic variation to the refractive index of the 
fiber core, which generates a wavelength-specific dielectric mirror. Therefore, the FBG can be 
used as an inline optical filter to block certain wavelengths, or as a wavelength-specific 
reflector [1]. Recently, fiber Bragg gating sensors have demonstrated great advantage over 
electronic sensors for applications in intelligent structures, civil engineering, harsh 
environments, built health monitoring system and so on [2–4]. 

Intelligent clothing is the integration and intersection of electronic information, material, 
textile, and other related subjects. Such clothing is sensitive and can respond to environmental 
conditions and other factors; not only can it sense changes of both the environment outside 
and conditions inside the human body, it can also respond to these changes through a 
feedback mechanism in a timely manner. The features of intelligent clothing are portable, 
easy monitoring in real-time, and so on. Sensing, feedback, and reaction are its three essential 
factors [5,6]. A lot of achievements have been obtained in the research of intelligent clothing. 
In [7], a new wireless communication infrastructure to enable networking and sensing on 
clothing is proposed, also the architecture and technology of the fabric area network (FAN) is 
described. This technology proved to be emission-safe, low-cost and easy to maintain. In [8], 
garment design method is proposed for a specific task based on combinations of garment 
design and knitting technology to provide the required confining pressure, electrical and 
mechanical properties for the intelligent clothing. Experiments revealed that problems faced 
in intelligent clothing design, such as confining pressure, flexible electronic circuitry, and so 
on, could be successfully solved by the use of this method and can be applied in the future 
design of intelligent clothing. In [9], devices are defined and positioned solely by a weaving 
pattern, meaning that simple circuits could potentially be directly built into fabric during 
manufacturing which offers a novel approach for providing information routing within fabric 
and a major hurdle in electronic textile development. Perception, feedback and reaction are 
three elements of intelligent clothing. But in fact the conductive fiber and the cotton fiber 
blend together, which leads to the realization of receiving data from the embedded sensor. 
And the data can be transformed to a special receiver with the size of a credit card. This 
receiver can be put at the waist, can store information, and then indicate it on the mobile 
phone, family personal computer or wrist monitors, in order to monitor the important life 
characteristics of certain person, issuing a warning signal in time. According to the example 
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mentioned above, the conductive fiber and the cotton fiber blend together, the receiver of the 
intelligent clothing just has the size of a credit card, can be put at the waist, being used to 
store, monitor and send out signal. So the sensing of intelligent clothing has advantages such 
as convenience, accuracy, and feasibility. Being small, portable, compatible to yarn, and easy 
to weave into textiles, FBG sensors have become the most promising material of sensing 
element in forming intelligent clothing. 

Numerous diseases have fever as one of the early symptoms. Fever can be classified into 
two kinds. One is non-infectious fever, which occurs in cases such as in immunological 
diseases, tumors, and metabolic diseases. Among them, tumors are the greatest killers of 
human beings. The other kind is infectious fever, such as the H5N1 highly pathogenic avian 
influenza and Severe Acute Respiratory Syndromes (SARS), both of which have caused 
global panic in recent years. Thus, measurement of human body temperature is significant in 
the early detection of diseases, timely diagnosis, and treatment. 

This paper aims to investigate key problems of intelligent clothing for temperature 
measurement. Mainly, the focus is on the theories and methods of measuring human body 
temperature through distributed optical FBG in intelligent clothing. Then, a mathematical 
model of human body temperature is built, and ways to weave optical FBG sensors into the 
fabric are determined. Intelligent clothing can monitor, process, store, and provide data on 
human body temperature in real-time. In addition, among other benefits, such clothing is 
portable, affordable, and accurate in measurement. Moreover, continuous data of the patient’s 
body temperature changes can be provided for doctors and nurses, thereby allowing for 
correlation analysis by combining these data with other physical parameters. Thus, intelligent 
clothing can contribute to the timely detection of infection, tumors, and other diseases, such as 
SARS and the Avian Influenza. Furthermore, safe and accurate tele-monitoring of patients 
can be achieved, helping ensure that patients are treated in a timely manner [10–12] This 
achievement is significant and possesses great application value in promoting people’s health, 
especially that of old people and children who lack the ability of language expression. 

2. FBG fabrication and embedment 

2.1 Polymer package for FBG sensors 

A bare FBG has very low temperature sensitivity of 10 pm/°C at about 1,550 nm in 
wavelength. Thus, improving the temperature sensitivity of FBG will contribute enhanced 
precision. A novel FBG temperature sensor based on an FBG partly embedded in a polymer-
filled strip is designed in this paper. 

Figure 1 illustrates the configuration of the proposed temperature sensor. All the FBGs are 
embedded in a rectangle package with length, width, and thickness of 25, 8, and 3 mm, 
respectively. According to Fig. 1, inject polymer which is mixed evenly into two long strip 
model with length, after long time curing, two long strip polymer received. Grind a groove in 
the center of the polymer with fine sandpaper, polish smooth, and then put the bare FBG in 
the groove. Finally, fix and paste on the both side of the FBG until the structure is cured and 
taken shape. During the packaging process, the FBG is imposed a certain degree of 
prestressing to avoid the nonlinear and the distortion of the reflection wavelength shift date, 
which is caused by the chirp of the FBG. Fix FBG at both side of the substrate to make sure 
that the FBG located in the center of the substrate material and parallel to the base material, 
As a result, not only the good linear relationship between the FBG wavelength and the 
temperature is ensured, but also the stability of the sensor structure. In order to eliminate the 
effect of unstable force field on FBG, we add certain pretension on fiber Bragg grating in the 
process of encapsulation. In this way, the FBG is in a tension state and therefore a stable 
space position and force relation is always existed between the FBG and the substrate. So 
when we did the temperature experiment, the temperature character of FBG is stable. 
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Fig. 1. Sketch of polymer package for FBG. 

The polymer used is the copolymerization of unsaturated polyester resin mixtures 
containing 5.0 wt% Methyl Ethyl Ketone Peroxide (MEKP) and 2.0 wt% cobalt naphthenate 
at 25 °C. Unsaturated polyester resins are produced by the polycondensation of saturated and 
unsaturated dicarboxylic acids with glycols. Such resins form highly durable structures and 
coatings when cross-linked with a vinylic reactive monomer, most commonly styrene. Their 
properties depend on the types of acids and glycols used and their relative proportions. MEKP 
is highly explosive, similar to acetone organic peroxide, but is slightly less sensitive to shock 
and temperature as well as more stable in storage [13] Cobalt naphthenate is a mixture of the 
cobalt derivatives of naphthenic acids; it is widely employed as catalyst because of its 
solubility in nonpolar substrates. Naphthenates, which are mixtures, help confer high 
solubility. The second benefit of these species is their low cost. A well-defined compound that 
exhibits many of the properties of cobalt naphthenate is the cobalt complex of 2-
ethylhexanoic acid. According to technical literature, naphthenates are described as salts, but 
they are probably also non-ionic coordination complexes with structures similar to that of 
basic zinc acetate. 

We use the method of curve (in Fig. 2) fitting calculated the temperature sensitivity of the 
FBG is 150pm/°C. As shown in 2, with the polymer, the FBG’s temperature sensitivity is 150 
pm/°C, which is almost 15 times higher than that of a bare FBG. Figure 3 shows the spectrum 
of polymer-packaged FBG sensors. 
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Fig. 2. Wavelength increment and temperature for polymer-packaged FBG sensors and bare 
FBG sensors. 
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Fig. 3. Spectrum of polymer-packaged FBG sensors. 

2.2 Embedment of FBG sensors into fabric 

FBG sensors can be embedded into textile fabrics. The textile substrates could be woven, non-
woven, or knitted fabrics. In incorporating the optical fiber sensors, non-woven fabrics have 
the advantage of a very large surface area because of the presence of small-sized fibers. 
Moreover, the levels of mechanical stresses involved in the incorporation of optical fiber 
sensors in non-woven fabrics are much lower than those in the case of woven or knitted 
fabrics, thereby leading to less fiber breakages, especially when silica optical fibers are used. 

The FBG sensors are embedded into the fabric by combining large and small pipes 
together in fabrication, while keeping optical fiber and sensors complete, unbent, and 
harmonious with the activities of fabric warp and filling. During the manufacturing process, 
the clothing is divided into several blocks to weave and implant the sensors in the 
corresponding place, to keep pipes in their exact places, and to prevent them from being 
destroyed. After the sensors are implanted, the chain draft of weaving is changed so that the 
sensors will remain in place within the pipes and not move around. When all of the weaving is 
completed, the blocks are sewn together. 

By using large and small pipes together in the fabrication method, we divide fabric into 
three parts. The first part is manufactured by plain weave. The second part is manufactured by 
tubular tissues and plain weave, as a part to implement large pipe. The third part uses the 
structure of small pipes covered by large pipes. When we manufacture the third part, we keep 
the pipe orifice open to form a cylindrical hollow bag, implant FBG sensors into it, and 
change the chain draft. Then we can continue to fabricate the second part and the first part to 
finish encapsulating FBG sensors into fabric. 

The completed fabric is shown in Fig. 4, which adopts the implanting method of covering 
small pipe with large one to form a cylindrical hollow bag, and fulfill the consistency between 
activities of warp weave and filling weave without influencing the outward appearance of the 
fabric. 

For the experiment on the FBG temperature measurement, a light path and demodulation 
circuit is built based on the Fabry-Perot (F-P) tunable filter. The FFP –TF2 filters we used are 
come from American Micron Optics Ics. The tuning range is 1520-1570 nm, the tuning speed 
is 5 Hz, and the tuning voltage is 0-10V, which is ideal for low cost, high volume applications 
and low power requirements. As Fig. 5 shows, under the control of the output drive voltage 
and the tunable narrow-band light source, which is composed of a broadband light source 
SLED, isolators, and F-P filters in optical path demodulator, different center wavelengths of 
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the narrow-band light are exported; these enter into the sensitive passage through a coupler. 
After passing through the photoelectric detector, the reflected light of the FBG sensors, which 
are implanted in the intelligent clothing, turns off the electrical signals, commencing the 
analysis of the wavelength after sampling in the signal processing. 

 

Fig. 4. Picture of embedment of FBG sensors into fabric, (a) Front side of the fabric, (b) Back 
side of fabric. 

 

Fig. 5. Schematic diagram of the demodulation system for body temperature measurement in 
intelligent clothing. 

The fiber Bragg grating adopted by this paper is prepared by the phase-mask method, 
which is one kind of UV-written fiber Bragg grating. The rate of its peak reflectivity is close 
to 100%. Its side mode suppression ratio is about 29dB. The range of wavelength is 0.4 nm 
when the bandwidth is 3 dB. The range of wavelength is 0.8 nm when the bandwidth is 30 dB. 
As shown in Fig. 6, the central wavelength of the five FBGs are respectively 1532.6, 1533.4, 
1540.4, 1542.1, and 1548.4 nm. The FBGs’ temperature sensitivity are 148.2, 141.5, 146.2, 
146.6, and 150.2 pm/°C. 

This study uses C8051F060 and LPC2106 to collect and process wavelength signals. 
C8051F060, which is a microcontroller for data acquisition, includes several key 
enhancements to the CIP-51 core and its peripherals to improve overall performance and the 
ease of use in end applications; also included are mixed-signal system-on-a-chip MCUs with 
59 digital I/O pins, and two integrated 16-bit 1 Msps ADCs. LPC2106 consists of an 
ARM7TDMI-S CPU with emulation support, the ARM7 local bus for interface to on-chip 
memory controllers, the AMBA advanced high-performance bus for interface to the 
interruption controller, and the VLSI peripheral bus for connection to on-chip peripheral 
functions. LPC2106 configures the ARM7TDMI-S processor in little-endian byte order. 
Considering A/D output voltage signal in C8051F060 as the control of the F-P filter drive 
voltage through photoelectric conversion, the reflected light of FBG is amplified and filtered 
by the signal conditioning circuit. The output of the signal conditioning circuit is then 
sampled and stored with the help of C8051F060, followed by the pre-processing of the 
sampled data before being sent to LPC2106 through the serial port to achieve the core 
demodulation algorithm, which provides the results of the temperature algorithm. 
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Fig. 6. Spectrum of five series polymer-packaged FBG sensors. 

3. Heat transfer mathematical model of FBG sensors 

The human body is a heating element. Heat comes from metabolism, and a part of it reaches 
the surface of human skin by blood circulation, and then spreads to the external environment 
through microclimate and clothing. When the external temperature is lower than human body 
temperature, a temperature gradient will occur between the human skin and environment. This 
leads to heat transmission toward the clothing surface through microclimate and clothing, and 
then heat spreads to the environment in the form of conduction, convection, and radiation 
[14]. As FBG sensors, studied and implanted into intelligent clothing, cannot by itself cling to 
the human body, the physical model of this heat transmission between the human body and 
FBG sensors is actually the model of body, air layer, and clothing when detecting body 
temperature, as shown in Fig. 7. 

 

Fig. 7. Heat transmission model between body and clothed FBG sensors. 

The constant motion of people, who are in clothing, keep heat transmission in a 
dynamically changing process. The air under the clothing cannot be completely static. Thus, 
while the temperature difference between various fabrics results in heat transmission, the 
movement of air molecules also leads to natural convection. For this reason, this study has 
chosen tight underclothes during the design of intelligent clothing; the space for air is small 
enough to stop convection from forming, allowing the study of heat transmission. 

The temperature field among the human body, air layer, and clothing changes all the time, 
making heat transmission a dynamic process. In other words, heat transmission is unstable. 
Armpit temperature is clinically regarded as body temperature, and the method of its 
measurement is to dry perspiration under the armpit, place the mercury side of a thermometer 
deep in the armpit, and bend the patient’s arm to keep the thermometer in place at about 5 cm 

#164653 - $15.00 USD Received 14 Mar 2012; revised 30 Apr 2012; accepted 3 May 2012; published 9 May 2012
(C) 2012 OSA 21 May 2012 / Vol. 20,  No. 11 / OPTICS EXPRESS  11746



higher than the breast. The time spent measuring the temperature is regarded as the time of 
building a heat balance between the body surface and the thermometer. Afterward, for 
example, in 3 min, the heat transmission can then be regarded as steady-state heat 
transmission, which can then be analyzed and examined accordingly. 

This paper establishes finite element models of heat transmission among the human body, 
air layer, and clothing. A cylindrical air element is used with l length l, r radius, and dr 
thickness from microclimate area. The equivalent heat conductivity is �, specific heat capacity 
is c, density is �. The �, c, and � are all functions of temperature (T), whereas T is the function 
of �, indicating time and r, namely, �(r, �), c(r, �), �(r, �). Figure 8 shows the cylindrical 
element. 

 

Fig. 8. Strip-shaped micro-cell. 

According to the law of energy conservation, for elements during any interval d�, the heat, 
including that flowing into the element and that produced by the element itself, is equal to the 
heat consisting of the heat flowing out of the element and the heat increasing in the element’s 
internal energy. Heat transmission inside the intelligent clothing is only the transmission of 
heat, and thus, no origins of heat are inside the element. The heat balance is shown as Eq. (1): 

 .in out dq q q� �  (1) 

where qin is the heat flowing into the element, qout is heat flowing out, and qd is the heat 
increasing the element’s internal energy. 

According to Fourier’s law [3,5], 

 2 .in

t
q rl d

r
� � ��

� �
�

 (2) 

 
2

2
2 2 2 [ ( , )]2 .out

t t t t
q r dr r dr r r dr

r r r rr
� � �� �� � � �� � � � �

� � � � �
� � � ��

 (3) 
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t
q rlc r r d� � � � �

�
�

�
�

 (4) 

Substituting Eqs. (2), (3), and (4) into Eq. (1) yields a mathematical model of heat 
transmission among the human body, air layer, and clothing as Eq. (5): 

 
2

2
[ ( , )] ( , ) ( , ) ( , ) ( , ) .

t t t t
r r r r r c r r r

r r r r
� � � � � � � � �

�
� � � � �

� � �
� � � ��

 (5) 

Solving the heat transfer problem, in essence, is solving the differential equations of heat 
transfer. Additional conditions, called definite conditions, for characterizing the problem are 
required to obtain the temperature and pressure distribution for the specific heat transfer. For 
the unstable state heat transfer process, two aspects of definite conditions are required, 
namely, the initial and boundary conditions of the temperature and pressure distribution. The 
heat transfer differential equations and definite conditions constitute the complete 
mathematical description of the heat transfer problem. 
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The temperature and pressure distribution in clothing microclimate are initially known, 
which are the external environment temperature Ta and pressure Pa. Thus, the initial condition 
is 

 	 
 	 
,0 , ,0 .a aT r T p r p� �  (6) 

The internal boundary condition of clothing microclimate is the expression of heat flux on 
the skin surface, which contains the radiant exothermicity between the skin and the inner 
surface of the clothing, as well as the heat conduction caused by the temperature gradient. 
According to the expression of heat flux, the internal boundary condition of heat transmission 
in microclimate is as follows: 

 12 .w bf

t t
r q q c dv

r
� � �

�
� �

� � � �
� �

 (7) 

where qw1 is the heat flux of the skin surface W/m2, qbf is the radiant exothermicity between 
the skin surface and the inner surface of the clothing W/m2. 

The heat transfer from the temperature gradient also occurs at the outer boundary of the 
clothing microclimate. Hence, the external boundary condition is given by the following: 

 22 .w

t t
r q c dv

r
� � �

�
� �

� � �
� �

 (8) 

where qw2 is the heat flux between the air layer and the external environment W/m2. 
The parameters involved in the clothing microclimate heat transfer model are not constant; 

they are the variables of the physical parameters of time and temperature changes. The 
variation of these variables is discussed below with detailed expression. 

The thermal conductivity of dry air g� is 

 2 5 2 2(2.438714 0.7784798 10 0.17553068 10 ) 10 .g t t� � �� � � � � �   

This formula can be applied to temperatures between 0 and 200 °C, whereas the absolute 
error is less than 20.0156 10 / ( . ).w m C� 
�  

The thermal conductivity of the saturated moist air s� is 

 2 3 2 2(2.38874 0.8798147 10 0.1150367 10 ) 10 .s t t� � �� � � � � �   

This formula can be applied to temperatures between 0 and 90 °C, whereas the absolute 
error is less than 20.033 10 / ( . ).w m C� 
�  

The specific heat of dry air gC� is 

 1 3 21005.28 0.260338 10 0.6370071 10 .gC t t�
� �� � � � �   

This formula can be applied to temperatures between 0 and 200 °C, and the absolute error 
is less than 2.5 / ( . C).J kg 
  

The specific heat of the saturated moist air sC� is 

 2 3990.56 8.75522 0.39159 0.55695 .sC t t t� � � � �   

This formula can be applied to temperatures between 0 and 80 °C; the absolute error is 
less than 4.2 / ( . C).J kg 
  

The density of dry air g� is 

 5 21.2926 0.00463 1.2619 10 .g t t� �� � � �   
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This formula can be applied to temperatures between �50 and 200 °C, and the absolute 
error is less than 30.0214 / .kg m  

The density of saturated moist air s� is 

 3 4 21.23669 0.6238325 10 0.9965985 10 .s t t� � �� � � � �   

This formula can be applied to temperatures between 0 and 90 °C; the absolute error is 
less than 0.0. 

The microclimate air layer is divided into a finite number of net units using the finite 
analysis method; afterward, the differential equations in the thermal field are converted to 
nodal equations, and the temperature of each unit node of the net is generated by numerical 
calculation [12–14]. The thermal analysis module of the ANSYS finite element software is 
used to finish the modeling of FBG temperature field in intelligent clothing; this tool reflects 
the temperature measurement error when the human body wears intelligent clothing. 

In the finite element model, 0.5 mm is set as the thickness of the air layer, 2 mm is the 
thickness of FBG, and 2 mm is the thickness of the cotton fabric, where the thermal 
conductivity coefficients are 0.027, 0.19, and 1.2 W/m.K under normal conditions, 
respectively. Figure 9 shows the temperature field model established in this study. 

 

Fig. 9. Temperature finite element model for intelligent clothing. 

The study divides the above model into gridding by ANSYS, in which 36 °C is set as the 
temperature of the body. The range of the temperature of the external environment is 25 °C–
35 °C, with a temperature increasing interval of 1 °C. The Choi map will then appear (Fig. 
10). The date of the map shows that when the body temperature is constant, the external 
environment temperature increases by 1 °C, and the FBG-measured temperature will increase 
by 0.04 °C. The relationship between the change of the external environment temperature and 
the change of the FBG-measured temperature is then acquire. The body temperature is set to 
33 °C–42 °C, with 0.5 °C as increment. The Choi map is produced when the external 
environment temperature is 25 °C. The date of the map supports the analysis that when the 
external environment temperature is constant, a smaller difference of the value between the 
body temperature and the ambient temperature is observed along with the more accurate FBG 
temperature measurement. During the experiments, temperature deviations can be used in the 
correction of the FBG temperature measurement as a way of increasing the accuracy of the 
FBG temperature measurement. 

Table 1 presents the correlation analysis between the numerical simulation results of the 
thermal field and the temperature tested by FBG under stable conditions. The Pearson related 
coefficient is 0.990, P = 0.000, whereas the relationship between them is a strong positive 
linear one. 
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Table 1. Correlation Analysis of the Temperature Measured by FBG and Simulated by 
ANSYS 

  Measured by FBG Simulated by ANSYS 

Measured by FBG 
Pearson Correlation 1 .990(**) 

Sig. (2-tailed) 0 .000 
N 240 240 

�������� �������� �������� ���	
�� ����	�
�� ���
���� ���
�� ����
��� ����
� ����	
  

Fig. 10. Predicting temperature distribution in intelligent clothing using ANSYS. 

4. Body temperature weighted model of intelligent clothing 

To measure human body temperature, optical fiber grating temperature sensors are distributed 
to five places, namely, left chest, right chest, left armpit, right armpit, and at center of the 
upper back. As different parts of human body have different temperatures, the data obtained 
from these five places are not the same. Thus, a weighted model is proposed for the data to 
derive the final temperature of the human body. 

Skin temperature is an important parameter in human physiology. When human beings 
exchange energy with the environment, skin becomes the interface. The mean skin 
temperature becomes a significant value in calculating human energy loss as well as in 
analyzing thermoregulation and other physiological activities. According to the characteristics 
of dissection, the human body can be divided into several parts with similar dissecting 
structures and temperature distributions: head, torso, arm, leg, and so on. Subsequently, one or 
more measuring points can be set on each part, and these temperature data by can be weighed 
by weighted coefficients from the proportion that these parts occupy in the entire area of the 
human body. The total score is the human body weighted mean skin temperature (Ts), which 
can be shown as the following formula: 

 1 1 2 2 .s s s n snT C T C T C T� � ���  (9) 

In this formula, TS1, TS2, and TSn represent the temperature of each part in centigrade, and 
C1, C2, and Cn represent the weighted coefficients of each part in the non-dimensional 
analysis. 

The information about skin temperature used in the equations above mostly comes from 
testees who were naked or wearing single layer under slightly hotter or warm environment. 
Under such environment, skin vessels were stretching or in normal state, leading to total skin 
temperature’s evenly distributed, so non-weighted method and one point thermometry can 
work well. However, when people wear thick clothing, especially in cold environment, skin 
temperature and its distribution will be physiological reaction to the comprehensive function 
of environmental temperature, clothing, and body activities, and the skin temperature 
distribution is uneven, so it becomes difficult to get accurate mean skin temperature through a 
few skin temperature measuring points. Nielsen ever did an experiment on people wearing 
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thick clothing at 10 °C [15]. He created thirteen points equation based on Qlesen four-point 
method, and then selected this as the standard to compare with other eleven weighted 
equations. The result showed that Teichner six-point method and Ramanathan four-point 
method all had some differences with the standard skin temperature, only Mitchell twelve-
point method, Gagge-Nishi eight-point method and Hardy-Dubios seven-point method had 
high consistency frequency with the standard skin temperature. In Nielsen’s opinion, 
multipoint weighted method was the best in cold environment. 

As the intelligent clothing currently under investigation is mainly for the upper body, this 
work proposes a new five-point method that is an improvement of the Hardy-Dubios seven-
point method by setting two FBG temperature sensors on the chest and armpits, and another 
between the two shoulder blades on the upper back. According to related papers, the breast 
temperature should be the highest and followed by the armpit temperature. The armpit 
temperature has almost no difference between the right and the left sides, whereas the upper 
back temperature should be the lowest. Hence, the data obtained from these five measuring 
points should yield the weighted average for the mean skin temperature. 

The weighted coefficients of these five FBG sensors are C1, C2, C3, C4, and C5 which are 
0.0826, 0.3706, 0.3706, 0.0936, and 0.0826, respectively, according to the table. 

In special cases, when some FBG sensors are broken, the weighted coefficients of the 
other sensors can be changed to generate the accurate body temperature. These cases can be 
categorized into the following conditions: 

1. If a sensor placed on the breast or under the armpit is not working, while others work 
well, the temperature measured by the sensor on the symmetrical side of the broken 
sensor can be used because the temperature on the right breast is the same as that of 
the left breast, similar with the two armpits. 

2. If a sensor on the upper back is not working, while others work well, the upper back 
temperature measurement can be disregarded. Data from the other sensors can then 
be calculated using new weighted coefficients C1, C2, C3, and C5 which are 0.0788, 
0.4212, 0.4212, and 0.0788, respectively. 

3. If the two sensors on the breasts are not working, while others work well, the data of 
the two sensors can be disregarded. The data from the other sensors can then be 
calculated using new weighted coefficients C2, C3, and C4 which are 0.4361, 0.4361, 
and 0.1278, respectively. 

4. If the two sensors under the armpits are not working, while others work well, the data 
of these two sensors can be disregarded. The data of others can then be calculate 
using new weighted coefficients C1, C4, and C5 which are 0.3112, 0.3776, and 
0.3112, respectively. 

In considering these special situations, the weighted coefficients can be changed to 
guarantee the result of the experiments in real time even when some sensors are not working. 

5. Conclusions 

The FBG used in the experiment is encapsulated in unsaturated polymer resin. From the FBG 
sensors with 0.15 nm/°C sensitivity coefficient at the temperature of 33 °C–42 °C based on 
the improved packaging technology, the sensor’s sensitivity coefficient is almost 15 times that 
of the bare FBG. Figure 5 shows an intelligent clothing sample which has implanted FBG 
sensors. The sensors are placed in the right chest, right armpit, left armpit, upper back, and 
left chest. In the experiment, the center wavelength data of the FBG sensors reflect the light 
first, prior to combining them with the sensitivity coefficients of the five FBG sensors. 
Afterward, the temperature measurements of the five points can be obtained through analysis 
and calculation using the formula. The temperature measured by the FBG error is ± 0.18 °C 
compared with the medical mercury thermometer, whereas the accuracy of the body 
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temperature measurement is 0.1 °C. This accuracy meets the requirements of this study. The 
correlation is significant at the 0.01 level (two-tailed). 

Using distributed FBG sensors to measure human body temperature, this study has 
acquired a sample of intelligent clothing and examined the heat transmission mechanism from 
many aspects, including the basic theory of human physiology, human thermal balance, and 
the theory of aerial heat transmission. A mathematic model of heat transmission for the 
human skin, the air, and clothing has also been established. This model provides the 
theoretical basis of human temperature measurement using intelligent clothing with 
distributed FBG sensors and demonstrates the planting of optical fiber grating into the 
clothing. This paper also proposes that the model, which is an improvement of the Hardy-
Dubios seven-point method, confirms the measuring points of distributed FBG sensors in 
intelligent clothing. In the experiment, the difference between the body temperature measured 
by the distributed FBG sensors in intelligent clothing and the analog data of the thermal field 
has no statistical significance. Thus, the temperature measured by the distributed FBG sensors 
can be used to represent human body temperature in clinics. 

Based on this, the researchers intend to expand research in intelligent clothing to cover the 
measuring and recording of real-time physiological information, such as human respiration, 
heartbeat, blood pressure, and other physiological signals. At the same time, some social 
trends, such as the growth of population aging and the increase of public awareness on health 
care, will change the form of pure hospital treatment into another form that combines the 
hospital, community, family, and individual. Thus, wearable biomedical instruments, which 
are non-intrusive, non-invasive, and continuously being monitored, will become important 
monitoring and diagnostic devices under this new type of medical model. These tools can 
detect and process physiological signals, extract signal characterization, transmit data, and 
have other basic functions. Life-intelligent clothing can monitor patients’ suffering from heart 
disease or high blood pressure and the state of illness in a timely manner. Consequently, 
patients can ask for treatment and prevent complications and death. More importantly, 
intelligent clothing can record the physiological parameters of athletes, soldiers, astronauts, 
and others. These data can be used in the research on human physiology and health 
conditions. Life-intelligent clothing can then be applied widely in many fields, such as 
medical treatment, sports, military, and aeronautics. 
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