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Abstract 

The accurate assessment of sleep is critical to better understand and evaluate its role in health 

and disease. The boom in wearable technology is part of the digital health revolution and is 

producing many novel, highly sophisticated and relatively inexpensive consumer devices 

collecting data from multiple sensors and claiming to extract information about users‟ behaviors, 

including sleep. These devices are now able to capture different bio-signals for determining, for 

example, heart rate and its variability, skin conductance, and temperature, in addition to activity. 

They perform 24/7, generating overwhelmingly large datasets (Big Data), with the potential of 

offering an unprecedented window on users‟ health. Unfortunately, little guidance exists within 

and outside the scientific sleep community for their use, leading to confusion and controversy 

about their validity and application. The current state-of-the-art review aims to highlight use, 

validation and utility of consumer wearable sleep-trackers in clinical practice and research. 

Guidelines for a standardized assessment of device performance is deemed necessary, and 

several critical factors (proprietary algorithms, device malfunction, firmware updates) need to be 

considered before using these devices in clinical and sleep research protocols. Ultimately, 

wearable sleep technology holds promise for advancing understanding of sleep health, however, 

a careful path forward needs to be navigated, understanding the benefits and pitfalls of this 

technology as applied in sleep research and clinical sleep medicine. 

Keywords. Wearables; Polysomnography, Validation, Actigraphy, Digital health, Sleep 
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The landscape for wearable sleep-tracking technologies 

Wearable sleep-trackers (e.g., wristbands, armbands, smartwatches, headbands, rings, sensor 

clips) are part of a larger consumer sleep technology (CST) family. CST includes smartphones, 

in-bed sensors, and contactless sensors, as well as other devices designed to enhance sleep and/or 

improve sleep behaviors such as neurostimulators, bio-feedback devices, and brainwave 

entrainment systems.  

We consider „wearable sleep-trackers‟ as those over-the-counter, relatively low-cost devices 

available without prescription or clinical recommendations. With many originally designed as 

fitness-trackers, these devices now claim to measure several bio-signals (e.g., heart rate and its 

variability, skin conductance, temperature), in addition to motion, from which information about 

behaviors, including sleep, can be extracted. Their accessibility (cloud-based platforms used for 

data storage and integration), usability (mobile user interfaces), novelty, and affordability has led 

to their widespread use and contributed to an increased awareness about the importance of sleep 

in the general population. 

Within the research and clinical sleep communities, there is growing recognition of the potential 

benefits of using wearable sleep trackers. Benefits include the easy accessibility of an incredible 

and unprecedented amount of information about sleep and other behaviors, collected in peoples‟ 

natural environments for extensive periods. Data can be collected at any time without active 

engagement from the users (who simply wear a device) and without the need of specialized 

technicians processing the data (which are usually provided in a summary form, such as total 

minutes spent asleep). However, despite these potential advantages, a fundamental issue is still 

unsolved. For many of the devices and associated systems, there are inadequate data available 

about their validity, accuracy and reliability in measuring the various sleep parameters and other 

indices, such as those reflecting cardiac function, that they report.  
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Although new regulatory models such as the Digital Health Software Precertification (Pre-Cert) 

Program (1) may ultimately affect the consumer wearable space, currently the US Food and 

Drug Administration does not regulate consumer-level wearables that provide “general wellness” 

information. There also is no consensus among sleep clinicians and research scientists on how to 

deal with the wearable boom, and no widely accepted standards as to how to implement the use 

of these devices in research and clinical sleep settings. 

Alarmingly, with little knowledge and understanding of the performance of consumer wearables, 

the use of these devices is growing exponentially within the scientific field. For example, the 

Fitabase website (https://www.fitabase.com/research-library/), which keeps track of publications 

using Fitbit devices in research, lists >650 abstracts and journal papers for the Fitbit devices 

alone. 

The focus of the current state-of-the-art review is on the use and validation of consumer 

wearable sleep-trackers and an evaluation of their utility in clinical practice and research. For the 

use and validation of other sleep technologies including mobile platforms for screening and 

monitoring sleep, the use of wearables in healthcare, please see (2-7). 

Comprehensive literature searches were performed across the main electronic databases of 

PubMed, Google Scholar, Web of Science and PsycINFO for studies published in the English 

language about use and validation of wearables sleep tracking technology. One or more of the 

following terms were used: “wearable”, “sleep”, “validation”, “accuracy”, “sensitivity”, 

“specificity”, “reliability”, “polysomnography”, “comparison”, “fitness-tracker”, “sleep-tracker”, 

“actigraphy”, “commercial device”, “Fitbit”, “Jawbone”, “Misfit”, “Basis”, “Withings”, 

“ŌURA”. Full-text manuscripts were reviewed for relevance. Studies evaluating device 

performance were included only if they used 1) standard polysomnography (PSG) as the main 

reference for comparison, and 2) showed “acceptable standards” for methodological rigor, 
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including adequate statistics and methods for PSG – device comparison (e.g., Bland-Altman 

method and/or epoch-by-epoch comparison). 

 

Objective measurement of sleep: Polysomnography and actigraphy 

PSG is the gold standard method to assess sleep and is the main reference for device validation. 

PSG is a comprehensive measure of sleep, based on the simultaneous recording of cortical 

(electroencephalogram [EEG]), submental muscle (electromyogram), and electroocular activity 

via the standardized positioning (international 10/20 EEG system) of scalp surface electrodes (8). 

As part of the PSG assessment, a number of additional physiological signals (e.g., 

electrocardiogram [ECG], respiration, leg movements, nasal pressure, oxygen desaturation and 

body position) are routinely assessed and help to characterize the complex nature of sleep and 

potential presence of sleep disorders. Following standardized visual rules based on the American 

Academy of Sleep Medicine (AASM) recommendations (8), sleep is manually scored in 30-s 

intervals by visual identification of specific phasic (e.g., arousals, K-complexes, spindles) and 

tonic (e.g., percentage of slow wave sleep within an epoch) features from the multiple EEG and 

physiological channels to assign each epoch as either: wake, N1, N2, N3 or REM sleep. PSG is 

usually confined to sleep laboratory research and clinical settings as it requires specialized 

equipment (a dedicated PSG acquisition system) and expertise (professionally trained personnel) 

for recording, scoring and interpreting PSG data. Although portable ambulatory PSG systems 

exist, the use of PSG is too expensive and impractical to be feasible for measuring sleep for 

prolonged periods outside of research studies. 

The accepted alternative to PSG for non-laboratory settings is actigraphy. Actigraphy devices 

(mainly wrist-worn devices) rely on an accelerometer to measure patterns of activity (motion) 

and estimate sleep/wake states accepting the simple assumption that motion implies wake, and 
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no-motion implies sleep. Due to their small size, comfort and waterproof properties, actigraphy 

devices are designed to be worn 24/7 and thus are suitable for prolonged recordings in non-

laboratory settings. The device‟s accelerometer detects the occurrence and degree of motion in 

multiple directions (e.g., 3-axis), which is converted into a digital signal to derive an activity 

count. Then, depending on the sleep-wake threshold of the algorithm, an epoch is determined as 

wake if its activity count exceeds the threshold, or sleep if it is below the threshold. Data can be 

stored at different rates, which contributes to how long a device can store continuous data. 

Owing to limitations in data storage, the majority of the literature using actigraphy is based on 1 

min resolution for data collection. Algorithms used by actigraphy are either provided by the 

manufacturer (e.g., Philips Respironics, Inc. Bend, OR) or publicly available (e.g., Cole–Kripke 

and Sadeh algorithms), and have been validated against PSG in healthy and clinical populations, 

on infants through the elderly (see 9, 10).  

Although the majority of studies report high sensitivity (ability to detect true sleep) and accuracy 

(overall ability to detect true wake and sleep), actigraphy is inherently impaired in detecting true 

wake (specificity) as it is unable to identify motionless wake. For studies that have included 

healthy participants, specificity ranged from 26.9% to 77%, (11-20), while others that have 

included a variety of patient groups report specificity values ranging between 32.5% and 80% 

(21-23). Although many studies report specificity less than 50%, this finding is often minimized 

or overlooked, and actigraphy is accepted as providing an accurate estimate of PSG. Studies that 

have assessed the accuracy of actigraphy (in the classification of PSG sleep and wake epochs) 

using the different sensitivity thresholds of the Philips Respironics algorithms (11, 15, 17, 21, 

23-25), as well as publicly available algorithms (15, 19, 26), have consistently shown that there 

is a trade-off between sensitivity and specificity. For example, for Philips Respironics 

algorithms, the “low” threshold requires smaller activity counts to deem an epoch as wake, 
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therefore increasing specificity but at the cost of sensitivity. Conversely, the “medium” threshold 

increases sensitivity at the cost of specificity, due to the greater activity count threshold required 

for wake. Whether researchers should aim for high overall accuracy and sensitivity and 

acknowledge that sleep is overestimated, or whether they should instead aim to more accurately 

detect wake at the cost of sleep is still an open question, and is probably best decided based on 

the object of the investigation. For example, if the aim of a study is to determine changes in the 

amount of sleep disruption following a sleep treatment, it would be better to prioritize high 

accuracy in wake detection. Differently, if the purpose of a study is to evaluate changes in time 

spent asleep across adolescence, an algorithm prioritizing accuracy in sleep detection would be 

preferred. Furthermore, although studies have validated particular devices and algorithms against 

PSG and have reported that some algorithms are more accurate than others (15, 19, 26), the 

differences between devices, algorithms, participant groups and study designs makes it very 

difficult to draw firm conclusions across studies as to which device and algorithm is best. In 

addition, studies have reported specific device × algorithm interactions (19) and threshold × 

group interactions (23), further complicating the conclusions that can be drawn between studies 

and populations.  

Although actigraphy has a number of advantages, there are limitations to consider. It is less 

costly than a PSG system, however, clinical devices are often upwards of $1000 each, which 

remains a limiting factor, particularly when sleep needs to be recorded on large datasets in 

populations like adolescents who may be reluctant to wear a research-grade device. Furthermore, 

although actigraphy does not require an “expert” to manually score sleep records or monitor 

recordings overnight, an experienced staff member with expertise in sleep analysis is still 

required to identify any issues with the actigram, such as artefacts or missing data. Additionally, 

although there are alternative algorithms which are publicly available, they are not integrated 
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into existing software, and require expertise to conduct further post-hoc analysis. Even when 

algorithms have been shown to be less affected by wake (e.g., regression algorithms (17)) they 

have not been widely evaluated or adopted and researchers often apply settings recommended by 

the manufacturer (e.g., “medium” sensitivity threshold), despite them not necessarily being 

appropriate for their sample. Thus, there is still no consensus on specific recommendations for 

different patient groups, devices and algorithm thresholds for actigraphy. 

Among the several limitations and the immobility of the actigraphy field (27), probably the cost 

of actigraphy and the requirement of technical staff and time for processing the data are among 

the main factors leading researchers and clinicians to consider consumer wearables as an 

alternative solution to easily collect sleep data in non-laboratory settings. 

 

Consumer wearable sleep trackers 

The availability and easy use of wearable sleep trackers contrasts with their hidden complexity, 

frequently leading to an erroneous adoption of these devices, and misleading interpretation of 

their outcomes.  

In the following sections, we aim to summarize the advances made in the sleep wearable 

consumer market, the published validation studies, and the main factors and challenges to 

consider before using a consumer wearable sleep tracker in clinical and research settings.  

These aspects should be taken as a starting point for researchers and clinicians to initiate a 

discussion about clarification and standardization for evaluating the accuracy and reliability of 

wearable sleep trackers. The conditions for which these new tools should be accepted and used in 

clinical and research settings need to be determined. Here, we propose initial guidelines to 

evaluate consumer wearable sleep technology. 
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It is important to recognize that consumer wearables are commercial devices designed for 

general consumers and are not specifically developed for clinical or research purposes. The 

algorithms used by these devices are proprietary and no raw data (direct sensor reading before 

any algorithms‟ implementation) are currently available. Also, wearable companies can change 

their algorithms without notice, an important aspect to consider when using a device over a 

certain period of time, and particularly for longitudinal studies. Although the number of 

validation studies is growing, validation clearly moves at a slower pace than the wearable 

industry, which keeps introducing new devices every year. Thus, evidence for the validation of a 

specific device model may be available when that model is no longer produced. 

Lastly, it is important to understand that the second generation of multisensory consumer sleep 

trackers is fundamentally different from the first motion-based generation of consumer wearables 

(and actigraphy). The use of multiple sensors should theoretically overcome some of the 

challenges in detecting sleep and wake patterns, as discussed next. However, there are no direct 

comparisons – at least in the public domain - between motion-based and multisensory consumer 

sleep trackers, and their theoretical advantages over the previous generation remain to be 

empirically proven. 

 

Advances made in sleep wearable technology: Toward a multisensory approach for sleep 

detection 

The first generation of consumer sleep wearables (e.g., Jawbone UP, Fitbit Tracker “original”, 

Fitbit Ultra, Fitbit Flex, Misfit Shine), similarly to standard actigraphy, extracted motion-based 

features from a built-in accelerometer-type sensor to measure wake and sleep. As for standard 

actigraphy, the limitation is that people can lie in bed awake for prolonged periods without 

moving, and in that case, the algorithm would misclassify wake epochs as sleep. For this reason, 

Copyright © 2019 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

A
C
C
E
P
T
E
D



the first generation of consumer sleep wearables were limited in detecting wake. Also, despite 

attempts to differentiate sleep stages using motion-based pattern classification algorithms (see 

28), these devices are limited to the binary detection of sleep and wake. Based on this intrinsic 

limitation, it is unlikely that further improvements in the levels of accuracy in sleep measurement 

(wake/sleep and sleep stage classification) will be achieved with motion-only based devices.   

More intriguing is the new generation of wearables. The technological advances in sensor 

technology including miniaturization, low power consumption, low cost, connectivity and 

functionality of bio-sensors, allow new-generation wearables to continuously record a broad 

range of bio-signals (see (5, 29), for a review about methods and measurements of relevant 

wearable digital parameters) using, for example, skin temperature and optical 

photoplethysmography (PPG) sensors in addition to motion sensors that may advance sleep stage 

classification (30, 31). 

Analysis of beat-to-beat cardiac information extracted from peripheral sensors such as PPG, can 

offer a valid approximation of ECG-derived heart rate variability [HRV; beat-to-beat variations 

in heart rate], a reliable indicator of cardiac autonomic nervous system (ANS) function, at least 

under conditions of minimal movement such as during sleep (see 32). For example, our group 

tested the accuracy of a multisensory sleep wearable (Fitbit Charge HR) against gold standard 

ECG in measuring heart rate during sleep in healthy sleepers, and we found an average ECG-

PPG discrepancy for heart rate of <1 bpm (33). The comparison was based on min-by-min 

averages of HR across the night since beat-to-beat PPG data is currently inaccessible from 

consumer wearables, and thus, beat-to-beat accuracy levels are still unknown. Also, it is 

unknown whether the level of accuracy we found in healthy sleepers can be maintained in 

patients with sleep disorders (34), as well as during wake-time activities when the accuracy of 

wearable-based HR data is more questionable (35). 
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The main rationale underlying attempts to stage sleep (e.g., “light [PSG N1+N2]”, “deep [PSG 

N3]” and REM) in addition to the dichotomous distinction between sleep and wake states, 

relying in part on derived HRV data, is based on the concept of central nervous system (CNS) 

and ANS coupling (see 36). Sleep is not merely reflected by changes in cortical EEG activity but 

is characterized by changes in several other bio-systems including the functioning of the ANS, 

which regulates the majority of the organism‟s internal functions (e.g., myocardial function, 

circulation, digestion) and mediates an individual‟s responses to environmental challenges. ANS 

measures fluctuate across the night under homeostatic and circadian influences, and these 

fluctuations, particularly those reflecting vagal function (e.g., high frequency HRV), are tightly 

coupled with fluctuations in CNS EEG indices (e.g., activity in the slow delta EEG frequency 

band) (36). 

A growing body of evidence indicates that wake and sleep stage classification could benefit by 

combining motion data and autonomic features (e.g., heart rate, HRV indices) (see 31, 37, 38-

40). It remains unclear whether other recorded bio-signals (e.g., skin temperature, skin 

conductance (41)) will advance sleep staging in the future. However, at this juncture, the 

correspondence of these bio-signals with sleep-related EEG features and PSG stages is less 

evident, and future research is warranted to determine whether their addition could improve 

wake-sleep classification. 

Our group provided promising results for the first validation studies of the new generation of 

multisensory wearables for PSG stage classification in healthy individuals, with reasonable 

differentiation of “light sleep” (PSG N1+N2) and REM sleep, although classification of slow 

wave sleep and wake were less consistent (42, 43) ( see Table 1). Also, these multisensory 

wearables still had relatively low specificity in detecting wake. 
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There could be several reasons for this failure, among which, the most likely seems to be that 

attempts to classify sleep stages using multisensors is still in the early stages. As reviewed in 

(36), sleep is characterized by a sophisticated range of phasic, coordinated cortico-cardiac 

oscillations, reflecting the complexity of the dynamic communication between central and 

periphery. To leverage this complexity to achieve new improvements in sleep staging and sleep-

wake classification, the wearable industry may benefit from input from domain experts within 

the sleep science and other fields (e.g., Network Physiology (44)) investigating the 

characterization and dynamic interactions of multiple aspects of central and peripheral systems 

which underlie the generation of different physiological states (sleep/wake, „light‟, „deep‟ and 

REM sleep). 

We should also acknowledge that these devices are facing the challenge of performing 4 choices 

(wake, “light”, “deep”, and REM sleep) compared to the simplest dichotomous choice between 

sleep and wake, impacting their ability to discriminate between sleep and wake. Further, for 

validation studies relative to PSG, any automatic sleep scoring algorithm is referenced to 

manually-scored epochs of sleep. The AASM manual scoring system for PSG has high inter- and 

intra-scorer variability (45, 46), challenging the notion of stability of the gold-standard reference 

method, although a 10% of disagreement between scorers in the 5-choices (wake, N1, N2, N3, 

REM sleep) for PSG sleep staging is tolerated. 

Finally, the influence of factors like demographics (e.g., age, sex) and environmental conditions 

(e.g., stress exposure, evening medication or alcohol use, environmental temperature) on the 

multiple signals recorded by these devices (e.g., HR and its variability) (see Section 5.1), and 

thus their capability in accurately staging sleep, should not be underestimated.  
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Validation of sleep wearables 

 

Results of validation studies 

New wearable devices and algorithms are introduced on the market every year. Due to the 

dynamic field, and the slow pace of scientific validations, it is challenging to provide an overall 

picture for the accuracy of wearable sleep trackers. Table 1 summarizes studies in chronological 

order that have examined the performance of wearables against gold standard PSG. Fitbit (33, 

42, 47-54) and Jawbone (28, 52, 55-58) sleep trackers are among the wearables more frequently 

tested against PSG. In some studies, both consumer-based wearable devices and standard 

actigraphy were simultaneously used, together with PSG. In this review, we did not consider any 

direct comparison between wearable devices and standard actigraphy or sleep logs (see Section 

5.2), which are summarized elsewhere (2). 

It is important to realize that what we call “validation studies” are actually “second-step 

validations” whereby post-processed signals (e.g., heart rate) (see 33) and derived behaviors 

(e.g., sleep) are compared against gold standard methods; any comparison based on raw data is 

not available due to the black box nature of these devices. These limitations cannot be easily 

overcome. For details about algorithm validation and sensor validation see (6). 

Despite several differences existing among studies, participants usually wore the wearable sleep 

trackers (and standard actigraphy) on the wrist of the non-dominant hand, for a fixed time, from 

lights-off to lights-on. The majority of studies were conducted in the laboratory and only a few 

studies have been conducted in free-living conditions (49, 51, 53, 57, 59). The latter point needs 

to be carefully considered since performance may differ at home relative to controlled in-lab 

conditions. Data from the first-generation motion-based wearables were usually manually 

extracted in a 1-min resolution and then matched with the resolution of PSG, or vice versa. In 
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contrast, recent studies have been able to directly compare PSG and device epochs with a 30-s 

resolution, the same resolution used for PSG sleep stage classification. 

To date, there are no accepted standard rules or regulations on how to evaluate and interpret the 

performance of commercial wearable sleep trackers and there is a wide range of validation 

measures used between studies. Overall, wearables show high sensitivity (above 90%) in 

detecting sleep but lower specificity in detecting wake, which is reflected in a general 

overestimation of PSG total sleep time (TST) and underestimation of wake after sleep onset 

(WASO), a performance that is in line with the majority of actigraphy literature (10). In studies 

that used both a consumer-wearable and clinical actigraph, compared to PSG, in the same 

participants, this pattern was still evident (47, 50-52, 55, 58, 59). Studies assessing the 

performance (accuracy in wake and sleep stage classification) of the second generation 

multisensory wearable devices  in healthy participants, indicated a relatively higher performance 

in classifying PSG N1+N2 (“light sleep”) (42, 43, 54, 58) and PSG REM sleep (60-75% 

agreements) (42, 43, 54, 58), compared to a relative lower performance for PSG wake and N3 

sleep classification (42, 43, 54, 58). A relatively poorer performance for REM detection was 

found in one study testing a multisensory device in patients with hypersomnolence and mix sleep 

disturbances (58) (see Table 1). 

 

Impact of nocturnal wake periods and age on device performance 

Several studies have shown that greater sleep disruption (i.e., increased wake intrusions during a 

sleep period) exacerbates PSG-device biases, for actigraphy (see 17, for an example) as well as 

consumer wearables. In an adult sample of midlife women wearing Jawbone UP over two PSG 

nights, the PSG-device discrepancies in detecting WASO as well as TST were greater on the 

night with the higher amount of PSG WASO (56). Similarly, in a sample of adolescents wearing 
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ŌURA rings, we found that the PSG-device discrepancy in assessing WASO depended on the 

amount of PSG wakefulness (43). In several other studies, the relations between PSG-device 

discrepancies and alterations in PSG sleep were not directly tested but observed as a qualitative 

interpretation of the Bland-Altman plots (see section below for details about Bland-Altman 

plots). Similarly, the presence of sleep disorders, possibly driven by increases in the amount of 

PSG sleep disruption, may also affect devices performance. However, few studies directly tested 

device performance in patients with sleep disorders (see Section 7 and Table 1 for details), 

reporting mixed results, probably due to the use of different wearables and sample 

characteristics. 

Factors other than sleep disruption also affect device performance. For example, some evidence 

suggests that performance may vary as a function of age, particularly in children and adolescents. 

When testing a sample of sixty-five healthy adolescents, our group showed that with increasing 

age, the performance of Jawbone UP significantly shifted from underestimating to 

overestimating TST and SE, and from overestimating to underestimating SOL and WASO (28). 

Similar results were provided by Toon et al. (55), who tested Jawbone UP against PSG in groups 

of preschool children, primary school children, and adolescents. In contrast, age, body mass 

index and sex did not affect device performance when testing a novel multisensory wearable (the 

first version of the ŌURA ring) in forty-one healthy adolescents (43). Therefore, it remains 

unclear if age, particularly across different developmental groups, affects the performance of 

motion-based wearables only. More research aimed to understand the factors accounting for 

variations in device performance across age is needed. 
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Detecting naps with wearable devices 

Since consumer wearables may be worn around the clock, they have the potential of being used 

to track sleep outside of the nocturnal period. To our knowledge, few studies have assessed the 

performance of consumer sleep trackers in measuring daytime naps. Cook et al. (58) investigated 

the capability of the Jawbone UP3  to correctly identify the number of sleep-onset REM periods 

(SOREMPs) during a multiple sleep latency test in patients with hypersomnolence/mixed sleep 

disturbances, while Sargent et al. (60) tested the capability of Fitbit Charge HR in detecting 

daytime naps in athletes. Both studies showed strong limitations of these devices in automatic 

daytime sleep assessment. These limitations could be due to specific algorithm requirements for 

a minimum duration of sleep to allow sleep classification which are, so far, unknown to the 

users. For example, currently https://help.fitbit.com/ reports that “Naps at least an hour in length 

will be automatically detected by your device and stored in your sleep history”, and in another 

help section states that “Your device needs at least 3 hours of sleep data to estimate your sleep 

stages, so you won’t see sleep stages for shorter naps”. Also, the poor performance in detecting 

naps may be due to the low specificity of wearables (including actigraphy) in distinguishing 

sleep from quiet wakefulness. Daytime sleep is common in pediatric and older adult populations 

as well in some sleep disorders (e.g., narcolepsy) or shift-workers, and frequently overlooked 

compared to night-time sleep (see 61). The ability to automatically track day-time sleep (even < 

1h) is extremely important. Wearable companies should provide clear guidelines about the 

daytime sleep tracking capability of their devices, including whether and how the daytime sleep 

periods are merged with nighttime sleep (e.g., a 30 minutes nap plus a 6 h nocturnal sleep is 

displayed as a total of 6 h and 30 minutes of sleep) or showed as two separate sleeping periods. 

Future studies need to investigate the ability of wearables not only to assess nighttime sleep, but 

all sleeping periods during 24h. 
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Detecting sleep onset and offset with wearable devices 

Another frequently overlooked aspect of wearables, is the ability of a device to accurately assess 

the onset and offset (morning awakening) of sleep. This is particularly important given that the 

timing of sleep onset and offset directly affect the determination of the sleep duration and its 

derived measures. Sleep onset is PSG-defined as the first epoch of any sleep stage, according to 

AASM criteria (8). In contrast, standard actigraphy determines sleep onset based on immobility 

time thresholds (see 62) within “rest intervals” determined by sleep diaries checked off-line by 

expert scorers. Event markers, used by individuals pressing a button on the device, and 

information about light exposure from embedded light sensors may also be available on some 

actigraphy models and used to determine lights-off and lights-on times. 

The new generation consumer sleep-trackers use proprietary algorithms to automatically 

determine bedtime. Thus, lights-off and lights-on are determined without asking any active 

engagement from users (the off-line adjustment of these intervals is still available for some 

devices). However, commercial devices, like actigraphy, are limited in reliable determination of 

lights-off times, making it challenging to determine sleep onset latency without supplementary 

information from users about their self-reported lights-out times. Pesonen and Kuula (59) 

investigated the accuracy of a consumer device in determining onset and offset of sleep in 

children and adolescents, compared to PSG in an at-home setting. In that study, there were no 

significant differences in the onset and offset of sleep as derived by the Polar A370 sleep tracker 

compared to those determined by PSG. However, in the group of adolescents, although the mean 

differences were not significant, the standard deviation of the differences for the sleep onset 

estimation was quite wide (38 min) suggesting high variability in device performance for sleep 

onset time between individuals. Similarly, in healthy young adults, Liang and Martell (53) found 

that most of the time (68%) there was a positive delay (between 0 and 20 min) in sleep onset 
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estimation from Fitbit Charge 2 compared to a single channel PSG at home, whereas in 24% of 

the cases, the delay was >20 min. Further research is needed to address the accuracy of consumer 

devices in determining timing for onset and offset of sleep (as well as the timing of REM onset, 

and the onset and offset of NREM-REM sleep cycles), particularly in populations in which sleep 

timings are altered (e.g., delayed sleep phase syndrome).  

 

Testing and understanding the performance of a consumer wearable sleep tracker 

To aid comparison across studies, it would be beneficial to use standard means of testing 

validity. Figure 1 outlines our recommended steps for evaluating the performance (validity) of a 

wearable against PSG, and these steps are further discussed here.  

When validating a sleep device, controlled in-laboratory PSG should be the reference. However, 

given the barriers and limitations of in-laboratory PSG (e.g., cost, time, artificial setting) and the 

need for evaluation of wearable devices in more naturalistic settings (where wearables are used), 

the utilization of validated unattended ambulatory PSG (Type II, comprehensive portable PSG) 

is also appropriate. This is particularly true in evaluating the performance of wearable devices in 

convenient populations in which ambulatory PSG is routinely used, like in the evaluation and 

management of sleep-related breathing disorders (63). One of the main challenges in the PSG-

device comparison in at-home environments is the accurate selection of the time windows for 

comparison, particularly the bed-time (lights-off) which is usually determined by participants‟ 

self-reported data. Careful instructions for logging lights-off and lights-on times for both night-

time and day-time sleep may partially overcome the limitation. Any direct comparison between 

wearables and standard actigraphy for device validation should be avoided. In fact, this may 

result in inconclusive and misleading outcomes. When both wearables and standard actigraphy 

are used in conjunction with PSG, both devices should be compared directly with PSG and data 
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outcomes interpreted accordingly. It is also important to consider that the current PSG scoring 

system (64) is similar to the one introduced almost 50 years ago (see 65), which relies on the 

discrete arbitrary and visual determination of sleep composition. Given that, we believe that PSG 

records used in study validation should always be double scored (two independent scorers) to 

avoid potential rater-specific biases in the outcomes. A high (usually >90%) inter-scorer 

agreement (or inter-rater reliability) should be set. 

 

Synchronization 

In validation studies, the first step is to guarantee an accurate PSG-device synchronization. 

Although most wearable devices do not disclose specific timing about how sleep parameters or 

epoch-by-epoch staging is calculated (e.g., server clock, device clock), synchronization is 

critical, particularly when performing epoch-by-epoch (EBE) analysis. We recently showed the 

impact of PSG-device synchronization misalignments on PSG-device discrepancies (42). 

At a minimum, synchronization of the computer times where PSG and the wearable devices are 

running should be performed; however, this procedure does not guarantee an accurate PSG-

device synchronization given that the precise onset/offset of the automatic device sleep staging 

algorithm is unknown. In our lab, it is common practice to start the PSG recording (time 0) at a 

rounded time (e.g., 22:32:00). 

 

Direct comparison between PSG and wearable outcomes 

Comparing PSG outcomes and PSG-equivalent sleep outcomes provided by the device via 

statistical tools is the first step in assessing the reliability of any sleep tracker. Within-subject 

tests (e.g., t-tests, repeated measure ANOVAs) compare the mean and standard deviation (SD) 

of several outcomes of the devices versus PSG. This step is fundamental to interpret potential 
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significance in overestimating/underestimating PSG outcomes by the device, forming the basis to 

interpret Bland-Altman biases (see below). However, these analyses do not account for the 

heterogeneity of the participants‟ behavior, i.e., high variability in their behaviors, such as some 

subjects having very high and other subjects very low amounts of WASO. The latter issues can 

be overcome using mixed-effects models which can account for both the average population 

behavior and the natural heterogeneity of participant outcomes (66).  

 

Concordance and agreement between PSG and wearables 

The Bland-Altman plot is the most important tool to assess concordance between instruments 

and should be used to evaluate the overall performance of a device, by plotting the PSG-device 

discrepancies (y-axis) against the PSG values (x-axis), for each parameter of interest (the most 

common are TST, WASO, time spent in N1, N2, N3, REM sleep). In the original Bland-Altman 

plots, mean differences between devices are plotted on the x-axis (67), but since PSG is the 

accepted gold standard method for sleep assessment, a more conservative approach using PSG as 

a reference is recommended. While the Bland-Altman plots allow a visual (qualitative) 

assessment of both agreement and heteroscedasticity (i.e., whether there is an increase error as a 

function of the magnitude of the measured value), quantitative indices such as mean differences 

(or biases), SD and ±95%CI of the biases, lower and upper limits of agreement (mean difference 

±1.96*SD) and ±95%CI of the agreement limits should be reported. A significant direct 

comparison test and a positive bias indicates that the device underestimated the observed PSG 

sleep outcome, whereas a significant direct comparison test and a negative bias indicates that the 

device overestimated the PSG sleep measure. 

There is a general tendency to overemphasize the magnitude of the biases and underestimate the 

width of the agreement limits. However, it should be kept in mind that even if the biases are not 
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significant, the performance of a device cannot be considered good when the discrepancies are 

“quite wide”. A common practice is to report the number or percentage of participants falling 

outside the Bland-Altman agreement limits, which emphasizes potential large discrepancies 

between the PSG and the device. Still, this metric is dependent and needs to be interpreted by 

considering the distribution of the PSG-device discrepancies, which vary greatly across studies. 

Unfortunately, we are still relying on a case-by-case interpretation of the results based on our 

expertise and best judgement, more than on standardize performance quality metrics.  

As shown in Table 1, a common metric used to investigate performance of a device is  “a-priori 

set clinically satisfactory ranges” (see 15, 28, 33, 43, 48, 51, 52, 55, 59), i.e. fixed thresholds 

(usually, ≤ 30-min PSG-device difference for TST and WASO, and ≤ 5% difference for SE) to 

determine whether a bias is clinically significant or not. However, use of these fixed thresholds 

has limitations. We believe the rationale behind these proposed ranges, leading back to the 

frequently cited study of Werner et al. (68), remains unclear. Further clarification is required 

before advocating the use of the current “a-priori set clinically satisfactory ranges”, and careful 

interpretation of these measures is needed.   

Sometimes it is necessary to adjust the PSG-device bias if it is not constant across the range of 

measurement and shows significant heteroscedasticity. For example, logarithmic transformation 

of the values, calculating the ratio, or the percentage difference, instead of the absolute 

difference, can be done (see 69, 70). Finally, simple regression tests should be used to explore 

potential systematic dependency of PSG-device discrepancies in sleep outcomes on the amount 

of PSG sleep disruption and demographic factors possibly affecting motion patterns and/or other 

biological domains used by the proprietary scoring algorithms (see 28, 43). 

Although frequently used in the literature, Pearson‟s correlations between PSG and device 

outcomes are misleading and should be avoided in evaluating and interpreting PSG-device 
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agreements in measuring sleep outcomes. Indeed, simply correlating PSG and device sleep 

outcomes assesses the extent to which two measures covary, and not whether they are close 

together (see 71). For example, if the sleep tracker systematically reports a sleep onset latency 

two times longer than the PSG, the correlation coefficient would be 1 (perfect correlation), 

whereas in reality, the sleep tracker is not providing a valid measure of sleep onset. 

A more appropriate approach is the use of intraclass correlation (ICC) which allows 

quantification of the PSG-device agreement for sleep outcomes. Following Cicchetti‟s guidelines  

for interpreting ICC reliability coefficients (see 71), clinical significance is stated as “poor” for 

coefficients of less than 0.40, “fair” for coefficients lying between 0.40 and 0.59, “good” for 

coefficients lying between 0.60 and 0.74, and “excellent” for coefficients between 0.75 and 1.00. 

However, although some authors consider a device as “valid” based on ICC outcomes (51), there 

is still no consensus as to what are the minimum requirements for considering a device “valid” 

(72). 

 

Accuracy of a device 

Epoch-by-epoch (EBE) analysis is the preferred approach to assess the accuracy of a device. 

EBE should be performed in a 30-s resolution to evaluate sensitivity (proportion of PSG epochs 

correctly identified as “sleep” by a wearable device, see Figure 1) and specificity (proportion of 

PSG epochs correctly identified as “wake” by the device) of a device. When appropriate, the 

accuracy in detecting PSG sleep stages should be evaluated as the proportion of PSG epochs of a 

specific PSG sleep stage correctly identified by the device. A clarification on EBE terminology 

is needed. Currently, we believe that the terms “sensitivity” and “specificity” (widely used in the 

actigraphy literature) should be used when referring to the ability of a device to correctly classify 

PSG sleep and wake epochs. When evaluating the PSG-device concordance in the EBE sleep 
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stages classification (“light”, “deep” and REM sleep), we suggest wording the outcomes as: 

“agreement for” (e.g., the EBE agreement for REM sleep is 0.60, reflecting the fact that 60% of 

the PSG REM sleep epochs are correctly classified as REM sleep by the device). In our opinion, 

usage of standardized terminology will prevent confusion and misinterpretation of outcomes 

from validation studies. 

EBE overall accuracy (proportion of PSG epochs correctly identified as “sleep” and “wake” by a 

wearable device) is frequently reported when evaluating a device performance. However, this 

measure is misleading due to a strong bias toward the extremely high sensitivity of most devices 

and the consequent tendency of evaluating the performance of a device based on its “accuracy”. 

The relationship between sensitivity and specificity can also be visually assessed using the 

Receiver Operating Characteristic (ROC) curves, which provide a visual and quantitative 

measure of the accuracy of the device (see 73). 

EBE analysis should be performed for each individual and the outcomes should be provided as 

mean, SD and ±95%CI of the mean. The determination of PSG-equivalent epochs of specific 

sleep stages from a device is not always straightforward (e.g., PSG N1 and N2 sleep may be 

represented as “light sleep” (see 42, 43)), but this information can be available directly from 

device manufacturers. 

A common issue in performing EBE analysis is that wearables devices do not always provide 30-

s sleep scoring data, which should be the ideal recording time to match with standard PSG 

scoring (8). Thus, different strategies have been adopted to match PSG and device epochs. A 

common strategy is to convert 30-s PSG epochs into 1-min epochs as W-W = W, W-S or S-W = 

W, and S – S = S (33, 48, 55, 56). Others (47, 50, 51, 58), split the device 1-min epochs into two 

equal 30-s epochs to match the PSG 30-s epochs resolution. Results of these procedures can 

overinflate the amount of PSG wake. For example, as little as 16 s of PSG wake (e.g., alpha 

Copyright © 2019 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

A
C
C
E
P
T
E
D



rhythm more than 50% of the epoch over the occipital region according to AASM rule for wake) 

can result in 1 min of wake. 

Another measure that can be derived from EBE analysis is the Cohen‟s kappa coefficient, which 

is an index of interrater reliability that reflects the percentage of measurement agreement (in this 

case, the sleep/wake scoring) of two methods not due to chance. However, since during sleeping 

periods the proportion of sleep epochs is generally higher than the wake epochs, it is possible to 

fall into „„the first paradox of kappa statistic‟‟ (74), that occurs when two measures have a high 

agreement but a low kappa. A way to correct this bias is to calculate a prevalence- and bias-

adjusted kappa (PABAK), which weights the number of sleep and wake epochs (75). 

A full representation of the EBE analysis is the error matrix (or confusion matrix). The error 

matrix allows assessment of the device performance in classifying PSG wake and sleep (as well 

as stages of sleep) epochs via a cross-tabular representation of the PSG-device epoch-by-epoch 

classifications. The advantage is to obtain a more complete picture providing not only the 

proportion of PSG epochs correctly classified by the device but also the source of the potential 

misclassification (see Figure 1, and (42)). For a better reading of the confusion matrix we 

previously calculated mean, SD and ±95%CI of the proportion of agreement between PSG 

epochs and predicted (device) epochs (42).   

Other strategies have been proposed to capture the PSG-device accuracy accounting for sleep 

timing, sleep stage distribution and cycles across the night (see also Table 2). For example, in 

one of the first validation studies for wearable sleep trackers, Montgomery-Downs et al. (47) 

calculated EBE sensitivity separately for wake before and after sleep onset (an approach that 

may be useful when performing EBE analysis outside the controlled laboratory settings in which 

lights-off and lights-on time cannot always be accurately obtained). Authors also calculated EBE 

sensitivity separately for PSG N1, N2, N3 and REM sleep, and in epochs containing arousals. 
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Our group, recently introduced a PSG-device comparison based on the ability of the device to 

correctly identify PSG NREM-REM cycles across the night (42). 

 

Reliability for sleep assessment 

Less emphasis has been placed on assessment of device reliability (see Section 5.2.5), which has 

been measured using within-subject analyses (e.g., paired t-tests) in the only two studies 

assessing intra-device reliability (a person wearing multiple devices simultaneously) (47, 48). 

Also, most validation studies have been based on single-night in-lab recordings due to several 

pragmatic and logistic reasons (e.g., easy to control and implement, cost-effective, validation 

study nested into other research protocols). 

 

Factors to consider when choosing a wearable sleep tracker 

A critical requirement for using a wearable in research is to have access to the data. Most 

wearable companies have some form of access to an Application Programming Interface (API) 

and software development kit (SDKs), which allows post-processed data access and integration, 

developing applications and services (e.g., https://dev.fitbit.com/; 

https://jawbone.com/up/developer; https://build.misfit.com/; 

https://developer.health.nokia.com/api). Some companies also have cloud services or web 

dashboards which allow to directly export summary data in easy-to-read files (e.g., *.csv, *.xls), 

ready for analysis. An initial bridge between research and industry is offered by third party 

research services, usually requiring a subscription, like Fitabase (Small Steps Labs LLC.; 

https://www.fitabase.com/; supporting Fitbit devices and, more recently, Garmin devices) which 

allows access to more technical information, assistance with setting up projects, and pre-

processed (but not raw) data at different time resolutions. 
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Other factors to consider if choosing a wearable in research or for clinical purposes are shown in 

Figure 2. Reliability should be a major point of consideration given that these devices may be 

particularly useful for long-term recording in non-laboratory settings, i.e. in epidemiological 

studies. In the following paragraphs we will highlight some important reliability issues (see 

Sections 6.1 and 6.2). 

It is also critical to consider the sample being studied. Demographics and other characteristics of 

the sample may impact device performance (see 28, 43, 55). If a specific device shows a certain 

performance in an adult sample, one cannot assume that it will have the same performance in 

children or adolescents. The same is also true for sleep disorders, meaning that one cannot 

assume that a device validated in a healthy population will show the same performance in 

individuals with sleep disorders (see Section 7). Some consumer wearables offer different 

sensitivity settings (e.g., “normal” or “sensitive” mode). The “normal” setting is usually 

indicated for most users, whereas indication for using the “sensitive” setting implies its use in the 

presence of sleep disturbances. However, no clear indication for using different sensitivity 

settings are provided by wearables manufactures. As summarized in Table 1, the few studies 

comparing different algorithm sensitivities in Fitbit devices (48, 50, 51) indicated overall a 

poorer performance of the devices used in “sensitive” mode. 

Device position may also affect the accuracy of a device, particularly for the new generation of 

multisensory sleep trackers. Other than the effects of position on the pattern of motion, other bio-

signals may be directly or indirectly affected by the position or incorrect position of a device 

(e.g., PPG signals depend on how accurately blood flow is detected, skin conductance is affected 

by sweating) (see 43). This is particularly important when considering using the device in free-

living condition, when technicians may be unavailable, and participants need to self-apply the 

device.  
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Inter-device reliability 

Inter-device reliability can be taken to mean that several devices used in the same conditions can 

provide the same outcome. An at-home study based on three participants wearing two Fitbit 

“original” devices overnight showed high reliability of these devices (percentage of EBE 

agreement of 96.5%, 99.1% and 97.6%) (47). Similar results were reported by Meltzer and 

colleagues (48), who examined intra-device reliability in 7 subjects wearing 2 Fitbit Ultra 

devices on the same wrist. Nevertheless, the authors prudently suggested that a device should not 

be switched with another device in the middle of a research protocol. Inter-device reliability is 

often overlooked and deserves further attention. 

 

Device malfunctioning and other issues 

A common issue with wearable trackers is data loss. In one study (48), 19% of the Fitbit Ultra 

data (12 participants) were not recorded due to technical issues. Of note, in the same study 14% 

of the data recorded with both the Actiwatch Spectrum and the AMI Motionlogger were 

unusable for technical issues (48). Other studies reported 4.3% of unusable sleep data (2 

recordings) for Fitbit Charge 2 (42), and 12.5% (7 devices) for Fitbit Alta HR (54). Sargent and 

colleagues (60) reported 10 missing recording (out of 60) from Fitbit Charge HR due to an error 

in transcription (unclear whether this was a human or a device error). Mantua and colleagues 

(49) testing several devices against PSG, reported that data from 25% of Fitbit Flex (10 devices), 

10% of Basis Health (2014 edition),  37.5% of Misfit Shine and 10% of Withings Pulse O2 

devices could not be used (either for user errors, gross mis-estimation or other miscellaneous 

reasons). Of note, in the same study authors reported that 12.5% of the data from Actiwatch 

Spectrum were unusable (1 device for gross mis-estimation and 4 for malfunctions). More 

recently, Kang and colleagues (55) reported only 2% of the data lost with the Fitbit Flex and 5% 
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with the Actiwatch 2. Toon et al. (55) reported unusable data from 4% of the Actiwatch 2 and 

13% of Jawbone UP devices. Missing data were due to participant behaviors (e.g., child taking 

off the UP during the night) or device malfunctions (e.g., actigraphy recording ceased due to 

battery malfunction). In another study (58), 17.5% of the data recorded with the Jawbone UP3 

were unusable due to unspecified malfunctions. 

Gruwez et al. (57) reported missing data from 14% of the Withings Pulse 02,7% of the Jawbone 

UP MOVE, and 5% of the SenseWear Pro Armband recordings. In another study with 20 

participants wearing the SenseWear Pro3 Armband the authors were able to use data from all but 

one recordings (76). Interestingly, the same armband showed high reliability even when 

recording several nights of sleep (77). In contrast, Lillehei and colleagues (78) using Fitbit One 

over 5 consecutive nights reported about 86% of missing data. Baroni et al. (79) showed a 

similar picture, with only 14% of the Fitbit Flex devices used in their study able to collect six or 

seven nights of sleep, and 35% of them failed to record any nights of sleep.  

Overall, these studies show mixed results. Considering that the main advantages of wearables is 

to collect data for several days, future studies are warranted to provide further data on the long-

term reliability of wearables. A detailed report for reliability should include not only the number 

of recordings/device failure, but also information about the source of unusable data (e.g., due to 

mechanical failure, human factors, software issues). 

It is important to remember that wearable companies adopt different decision criteria as to 

whether to provide a data outcome. For example, Fitbit Inc states that “The Fitbit system does not 

return sleep stages under various conditions. These include cases where the heartbeat signal 

(and hence the heart rate variability) is not cleanly detected throughout the night, if the total 

sleep duration is less than three hours, or if the battery runs out of power during the sleeping 

period”. These criteria are based on different factors including a test of the integrity and amount 
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of data they collect, which is not accessible to us. Thus, even when a sleep outcome is provided, 

we do not know specifically how much “reliable” information is used to provide that value. 

 

The potential role of sleep wearables in clinical sleep disorders, intervention delivery and 

patient monitoring 

Although the gold standard to evaluate the presence of sleep disorders is PSG, actigraphy has 

been commonly used in clinical practice to provide additional characterization of individuals 

with sleep disorders and to assess their treatment response (see 80). Nevertheless, so far only a 

few motion-based (first generation) consumer wearables have been tested in patients with 

clinical sleep disorders.  

Two studies targeted children and adolescents with sleep disordered breathing (SDB). Meltzer et 

al. (48) showed that discrepancies between PSG and Fitbit Ultra changed as a function of SDB 

status and device sensitivity settings (“normal” or “sensitive”). Specifically, the study showed 

that despite Fitbit Ultra “normal” setting overestimated PSG TST and underestimated PSG 

WASO in both children with or without OSA, the PSG-device discrepancies were greater in mild 

OSA and further exacerbated in children with moderate/severe OSA. The authors also reported 

that most of the participants were outside the a priori-set “clinically satisfactory ranges” (i.e., 

TST <30 min and SE < 5%; see above for concerns about the use of these agreement limits).  A 

reverse pattern was observed for the “sensitive” setting, characterized by greater PSG-device 

discrepancies in the no OSA category (TST underestimation and WASO overestimation), which 

progressively lessened in mild OSA and moderate/severe OSA categories (see Table 1 for 

details). Toon et al. (55) tested the Jawbone UP and showed no differences in PSG-Jawbone UP 

discrepancies in estimating TST, WASO, or SE as a function of SDB severity (i.e., primary 

snoring, mild or moderate-severe OSA). Moreover, the authors observed from the Bland-Altman 
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plots that the Jawbone UP sleep outcomes were more consistent with PSG measures than were 

Actiwatch 2-PSG outcomes. Nevertheless, similar to Metzer et al. (48), the majority of the 

participants fell outside a priori-set “clinically satisfactory ranges”. The authors indicated that, on 

the one hand, the Jawbone UP should be used as a diagnostic tool with caution; on the other 

hand, they observed that the Jawbone UP performance was, overall, similar to the Actiwatch 2. 

Few studies have evaluated device performances in individuals with insomnia. Kang et at. (51) 

reported an overall good performance of the Fitbit Flex in the “normal” mode for good sleepers 

(no significant PSG-device differences for SOL, WASO, and SE, fair to excellent ICCs, and the 

majority of the participants fell inside the “satisfactory clinical agreement limits”). However, the 

Fitbit Flex showed more difficulties to assess sleep in the insomnia group. Specifically, the Fitbit 

Flex significantly overestimated PSG TST, SE and underestimate WASO in the insomnia group. 

Moreover, only 39.4% of the sample fell within the a priori-set “clinical agreement range”. 

Again, as in Meltzer et al. (48), the “sensitive” mode showed a different, and less reliable pattern 

than the “normal” mode. Despite claims that the “sensitive” setting should be used in the 

presence of sleep disturbances, probably due to an algorithm that maximizes specificity (i.e., 

wake detection) at the detriment of sensitivity (i.e., sleep detection), these validation studies 

suggest that the “sensitive” setting is less reliable than the “normal” setting even in the presence 

of sleep disorders. Differently from Kang et at. (51), our group failed to find any difference in 

PSG-Jawbone UP discrepancies between women with and without insomnia disorder (56). The 

different wearables and sample used prevent any study comparison. 

Two recent studies by Cook and colleagues tested the performance of the Jawbone UP3 (58) and 

the Fitbit Alta HR (54) against PSG and standard actigraphy (AW-2, only tested against the 

Jawbone UP3) in patients with different type of central disorders of hypersomnolence (including 

narcolepsy) and other sleep disorders tested at night and during multiple sleep latency tests 
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(MSLT). The Jawbone UP3 overestimated TST and SE, and underestimated WASO and SOL 

compared to PSG, but showed a similar performance to the AW-2. It also showed a good 

sensitivity (0.97) and a low specificity (0.39) and low agreement for single stage scoring, in 

particular for REM sleep (0.30). The Fitbit Alta HR provided similar results, with overestimation 

of TST and SE, compared to PSG. However, while sensitivity was similar to the Jawbone UP3 

(0.96), specificity was slightly better (0.58), and in general showed a higher agreement for the 

discrimination of light, deep, and REM sleep (see Table 1). Of note, both devices failed to detect 

any SOREMPs during the MSLT. Authors concluded that the Jawbone UP3 and the Fitbit Alta 

HR cannot substitute the standard PSG to assess sleep in central disorders of hypersomnolence. 

To our knowledge no studies have validated any consumer wearable trackers for circadian 

rhythm disorders. Indeed, these conditions are less common that insomnia or OSA. However, 

considering that actigraphy is a recommended tool for the diagnosis of circadian disorders (see 

80), the lack of study with this clinical condition is somewhat surprising and future studies with 

wearables need to fill this gap. At-home PSG could be a viable approach for addressing 

validation within this patient population. However, due to the challenges in the longitudinal use 

of ambulatory PSG systems, a more reasonable approach would involve the assessment of cross-

sectional PSG-device biases in individuals with altered sleep-wake times. Advancements should 

also be made to not only consider PSG-device validation of classical outcomes (time spent 

asleep/awake and in different sleep stages) but also consider major indices such as sleep onset 

and wake-up times used to assess circadian alterations (e.g., delayed/advanced/irregular sleep-

wake phases, jet lag). Reliable determination of sleep onset is challenging with current wearables 

and advancements in algorithms or, possibly, the addition of other sensors to enhance the 

detection of sleep onset would be valuable (see section 5.1 “Detecting sleep onset and offset with 

wearable devices”).  
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Currently, there is insufficient evidence to consider consumer wearables as a potential stand-

alone diagnostic tool for sleep disorders. 

An important concern of the general enthusiasm around the concept of “quantify self” is evident 

in the growing tendency for people to self-diagnose and even change their sleep habits based on 

the interpretation of unregulated information of their consumer sleep trackers. For example, 

people may try to stay longer in bed if their wearable device does not show a „magic number‟ of 

8 hours slept. Sleep feedback could be particularly problematic in those suffering from insomnia, 

who may exacerbate their anxiety and worry about sleep if their trackers display “poor sleep” 

performance. On the other hand, inaccurate feedback of “good sleep” may prevent or delay 

individuals from looking for professional help. We are also facing the situation in which patients 

are asking their physicians to evaluate their wearable sleep graphics. This use of potentially 

inaccurate information about sleep may not only alter the individuals‟ perception of sleep, but 

challenge the clinician‟s evaluation of their sleep pattern and potential treatments (see 81, 82). 

However, some guidelines are now available for clinicians on how to deal with CST data in 

clinical settings, as provided by the AASM (83). 

Nevertheless, if regulated, consumer wearable sleep-trackers may still be useful in clinical 

settings to provide additional information about patients‟ sleep-wake patterns (e.g., assess 

regularities and abnormalities in individuals‟ sleep schedules), and monitor treatment responses 

and recovery. In this framework, a few studies have combined consumer sleep-trackers and 

smartphone Apps to provide different type of interventions (e.g., internet-based cognitive-

behavioral therapy) (84-87) or to assess the effect of interventions on the sleep pattern (88, 89) 

with mixed results. Sleep trackers may be useful to monitor patient‟s compliance to a particular 

sleep intervention such as sleep restriction. In general, clinicians should be aware of the risk that 

patients start to trust their tracker outcomes more than their physician‟s clinical judgment. 
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Sleep trackers, if sufficiently validated, may potentially be useful to screen for sleep disorders in 

the future. So far, to our knowledge, only smartphone applications using phone and additional 

external sensors to extract and combine multiple features (position, audio, oxygen saturation) 

have been used to screen for sleep apnea (90, 91), with some promising results. Similarly, sleep 

trackers, in particular the second generation of multisensory sleep trackers, may help to screen 

for potential sleep disorders in order to increase the number of individuals who can ask for a 

clinical evaluation. However, although wearable technology has been used to assess sleep quality 

in OSA patients, no currently available consumer wearable devices are suitable for diagnosing 

OSA. Guidance from the Centers for Medicare and Medicaid Services indicates four types of 

equipment for diagnosis of OSA: 1) in-laboratory PSG (Type I); 2) in-home PSG (Type II); 3) 

in-home measures of respiratory effort, airflow, cardiac data and blood oxygen saturation (Type 

III); 4) in-home measures of blood oxygen saturation and airflow (Type IV) (92). It is also the 

position of the AASM that care should be taken in the interpretation of the results of at-home 

sleep apnea testing, with raw data that should be reviewed and interpreted by a board-certified 

sleep medicine physician (93). In a recent position statement (83) the AASM in reference to CST 

(which includes sleep wearables devices) clearly stated that “CSTs cannot be utilized for the 

diagnosis and/or treatment of sleep disorders at this time”. 

 

Limitations, barriers and future direction for the use of wearable sleep trackers 

There is a lack of incentives from both the scientific community and industry (which frequently 

relies on their own internal non-peer-reviewed tests) to perform dedicated scientific validation of 

sleep-tracking wearables. Thus, the existing validation studies are frequently initiated by the 

curiosity of isolated researchers or research groups, moved by the need to find affordable, 

accurate, and reliable alternatives to the expensive medical grade devices for measuring sleep in 
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natural contexts. Further studies are needed to validate wearable devices in different populations 

and conditions, particularly in individuals with sleep disorders, in whom studies are few. 

Recently, the National Institute of Health (NIH) recognized the potential of wearables for 

biosensing applications and the need to fill the gap between validation and use of wearables 

within the scientific field. NIH promoted several initiatives within the Small Business Innovation 

Research (SBIR) and Small Business Technology Transfer (STTR) programs, and other funding 

opportunities to promote the development (e.g., wearable devices to monitor blood alcohol levels 

and identify biomarkers of drug addiction relapse in real time, identifying physiologic changes 

with old age) and validation of wearable devices for health measurement and intervention 

delivery (e.g., wearables to improve diagnosis and early treatment in minority and health 

disparity populations). 

The consumer wearable market is extremely crowded, and the wearable industry is struggling 

with market differentiation. For the scientific sleep community, the necessity of opening the 

“black-box” wearable devices is important for raw data access and standardization, but raw data 

access and cloud services do not come free. Within this scenario, it is unclear if a line of 

consumer products and platforms more focused on the needs of researchers and clinicians would 

fit the consumer wearable companies‟ business model. On the other hand, it is still unclear if the 

consumer wearables devices will maintain the advantage over standard actigraphy in the 

recording of multiple bio-signals and related assessment of sleep staging. In fact, within the 

medical space, new actions by actigraphy companies may be taken (e.g., moving to a 

multisensory approach and still offering validated algorithms based on multiple channels of 

information) (27). In addition, it is still unclear what the limit of the level of performance is for 

these early-stage non-EEG consumer wearable devices, and whether further advancement and 

integration of peripheral information will be able to more accurately approximate EEG-defined 
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sleep staging. Also, the role of EEG consumer wearable devices within the sleep and circadian 

fields is still unclear. The Zeo headband (Zeo, Inc.), which was the first product of its kind, 

showed promising results in sleep measurement when compared to gold-standard lab-grade PSG 

(94-96). After its failure (the company went out of business in 2013), other EEG-based wearable 

headbands (e.g., Muse, Dreem, Neuroon) populated the market, and have shown promise in 

detecting sleep stages in clinical and non-clinical populations (97, 98). However, they are taking 

a different path from Zeo, more toward sleep-hacking (e.g., neuromodulation, brain entrainment 

for sleep enhancement) than sleep-tracking per se. The use of in-ear EEG (EEG recorded within 

the ear canal) is also of interest, but it is still in its infancy (99). It is unlikely that, in the 

immediate future, these EEG-like devices will make the same impact as multisensory non-EEG 

wearables in the field of sleep and circadian science due to their greater invasiveness and 

relatively higher costs, limited use (they cannot be easily worn 24/7), and the challenges in 

recording good quality EEG signals in uncontrolled, non-laboratory conditions.  

The sleep community still should clearly state what are their specific minimal requirements (e.g., 

raw data access, algorithm standardization, validation steps) for accepting and potentially 

introducing a consumer wearable sleep tracker in research and clinical sleep settings. This should 

be the first step to opening a discussion with industry (Table 3). 

Time is critical because consumer sleep wearables are increasingly used in observational and 

interventional studies (see 2), and are already implemented in corporate wellness programs (84, 

100, 101). Also, consumer sleep trackers are a core part of the growing area of the Internet of 

Things (102) and Big Data for eHealth and mHealth (103) applications, an unstoppable digital 

health revolution. Press releases and reports from wearable companies, based on analysis of 

billions of wearable data of unproven accuracy, are also growing in popularity. The ability to 

map sleep in entire countries, breaking down sleep data by regions, in association with major 
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historical events, investigate sex- and age-differences in sleep patterns in large populations (see 

104, for example), is of value. But, without knowing the performance of these devices, and 

without a scientific approach to the Big Data, any interpretation of these results could be 

misleading. Having large amounts of data from these devices does not necessary reduce the 

within- and between-subject variability. On the contrary, it may amplify the inaccuracy of the 

results they provide, particularly when the discrepancy between PSG and device (bias) for the 

measure of interest differs from zero or when the discrepancy varies as a function of the PSG 

measure (i.e. the bias is not constant). In the new generation of multisensory wearables, the 

consistency of the algorithm used in measuring sleep is further challenged by the fact that the 

relationship between cardiac features and sleep stages may vary as a function of different factors 

such as age, sex and even by geographical area where participants live (105). Of concern is the 

growing perception from the public that population-based sleep data as provided by wearables 

companies (obtained by a specific sub-sample of the general population - the wearables users) 

are the new normative sleep data. In addition, people may be making changes to their sleep 

behaviors based on their wearable outcomes and frequently non-scientific validated “tips” for 

sleeping better (direct or indirect claims made by most wearable companies). Similarly, there 

could be situations in which people do not take actions when they should, due to potentially false 

feedbacks from their wearable device (e.g., they may truly have severe sleep disruption or altered 

sleep patterns, but their device is telling them that their sleep is good). 

Another factor to consider in using consumer wearables, particularly concerning a potential role 

in precision medicine, is their accuracy at the level of the individual. The translation of group-

average results of validation studies to the individual is challenging due to several factors such as 

variability in demographics, sleep and daytime habits which may affect the performance of a 

device. An open-access data repository of de-identified PSG and wearable data, including 
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demographics and other information collected from validation studies, may ultimately allow 

correction for key factors affecting device performance. For example, the characterization of the 

relation (function) between demographics (e.g., age and sex ) and PSG-device biases on a group 

level (see 28), could be used to adjust device outcomes at the individual level.  

 

Conclusion  

Sleep is fundamental for health (106). About one-third of the population is struggling with their 

sleep, a number that is estimated to increase. In our 24/7 sleepless society, sleep wearables may 

have a key role to better characterize and understand sleep and, within the framework of 

precision medicine, to ultimately improve health, safety and well-being for individuals and 

society. Collection of continuous data, day and night, could also lead to better understanding of 

links between sleep and daytime behaviors such as exercise.  

Wearable sleep trackers are being increasingly adopted by both the general public and sleep 

researchers and clinicians. The second generation of multisensory sleep trackers opens a path for 

greater accuracy in measuring sleep, as compared to the motion-based approach to sleep/wake 

assessment. However, the proven theoretical advantage of the multisensory approach to sleep 

staging needs further empirical validation. Currently, these devices should be used cautiously, 

and interpretation of their outcomes should be carefully considered to avoid generating large 

inaccurate datasets leading to potential misleading scientific conclusions, assessment of sleep 

disturbances, and therapeutic decisions.  

Further work is needed to investigate the potential use and performance, pros and cons, and 

limitations of these novel sleep trackers, particularly in sleep disorder populations. Keeping in  
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mind the differential and overlapping motivations of various end-users‟ groups (e.g., research 

and clinical sleep community, wearable industry, consumers), partnership with industry is 

beneficial to combine excellence and speed in technological advancement from industry and 

advanced psychophysiological knowledge and scientific rigor from sleep science. 
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Figure Captions 

 

Figure 1 Recommendations for the analysis and evaluation of the performance of a consumer 

wearable sleep tracker against polysomnography (PSG). EBE, epoch-by-epoch; WASO, wake 

after sleep onset 

 

Figure 2 Critical factors to consider when evaluating the potential use of a consumer wearable 

sleep trackers in research and clinical sleep settings 
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Figure 2 
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Table 1 Peer-reviewed journal articles evaluating the performance of wearable sleep trackers 

against standard polysomnography (PSG). Results about comparisons between overnight 

summary sleep outcomes from wearables (or actigraphy, when available) and PSG (PSG-device 

biases) are reported. When available, results from epoch-by-epoch (EBE) analysis are reported. 

Sample characteristic, type of devices, and amount of PSG sleep disruption are also provided for 

each study to allow better interpretation of the study results. When not specified, wearables data 

were collected using the default (normal) setting, and PSG records were scored in 30-s epochs.   

       PSG- device biases EBE analysis 

Study Author

s 

Sample 

characteristics 

Age 

Range  

(or 

mean 

and 

SD) 

Standard 

Actigraph

y type 

Wearable 

Device 

type 

PSG 

SE 

(group 

mean) 

Standard 

Actigraphy 

(mean, and 

SD of the 

biases when 

available) 

Wearable Device 

(mean, and SD of the 

biases when available) 

Standard 

Actigraphy 

(group 

mean) 

Wearable 

Device 

(group mean) 

2012 

In-lab 

Montgo

mery-

Downs 

et al. 

(47) 

24 healthy adults 

(10 female) 

19 – 41 

y 

Actiwatch-

64 

(Minimitter

, Inc.) 

Fitbit 

“original” 

(Fitbit, 

Inc.) 

< 85 % Overestimat

ed PSG SE 

(9.3 ± 9.7%) 

and TST 

(43.0 ± 

46.6min) 

Overestimated PSG SE 

(14.5 ± 10.7%) and TST 

(67.1 ± 51.3 min) 

Sensitivity: 

0.96 

Specificity: 

0.39 

Sensitivity: 0.98 

Specificity: 0.20 

2015 

In-lab 

Meltzer 

et al. 

(48) 

63 children (32 

female). 23% of the 

sample had 1.5 ≥ 

AHI ≤ 5 (mild 

OSA), and 16% of 

the sample had 

AHI > 5 (moderate 

OSA). 

The analyses were 

conducted on 49 

children due to 

several device 

failures 

 

3 – 17 

y 

AMI 

Motionlog

ger 

(Ambulator

y 

Monitoring

, Inc.) or 

Actiwatch 

Spectrum 

(Phillips 

Respironic

s) (analyses 

were 

conducted 

on sub-

groups of 

12 children 

for 

devices) 

Fitbit Ultra 

(Fitbit, 

Inc.) using 

both 

“normal” 

and 

“sensitive” 

settings 

< 85 % No 

significant 

PSG-

actigraphy 

biases 

Overestimated PSG TST 

by 41 min and SE by 

8%, and underestimated 

WASO by 32 min, using 

the “normal” setting. 

Discrepancies > 100 min 

for TST and WASO and 

> 20% using the 

“sensitive” setting. With 

increasing AHI (as well 

as with increasing in 

developmental age), the 

mean PSG-device 

discrepancies increased 

using the “normal” and 

decreased using the 

“sensitive” settings 

No direct 

comparison 

with PSG 

was 

performed 

Sensitivity of 

0.87 for the 

“normal”, and of 

0.70 for the 

“sensitive‟ 

setting. 

Specificity of 

0.52 for the 

“normal”, and of 

0.70 for the 

“sensitive” 

setting 
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2015 

In-lab 

Toon et 

al. (55) 

78 children (27 

female). 41% of the 

sample had 1 > 

RDI ≤ 5 (mild 

OSA), 28% of the 

sample had RDI > 

5 (moderate OSA), 

6% had PLMI > 5, 

31% had a 

diagnosis of 

primary snoring. In 

addition, 51% of 

the sample had 

other comorbidities 

(e.g., chronic 

inflammation, 

behavioral 

disorders) and 29% 

were under 

medication (e.g., 

methylphenidate) 

3 – 18 

y 

Actiwatch 

2 (Phillips 

Respironic

s) 

Jawbone 

UP 

< 85 % Underestima

ted PSG 

SOL by an 

average of 

21 min 

No significant PSG-

device biases. However, 

Jawbone UP 

underestimated PSG 

SOL in those 

participants with 

primary snoring (mean 

difference of 9.7 min). 

Also, biases for TST and 

SE changes from 

underestimating to 

overestimating, across 

developmental age. 

Differently, the bias for 

WASO changed from 

overestimating to 

underestimating, across 

developmental age 

Sensitivity: 

0.93 

Specificity: 

0.63 

Sensitivity: 0.92 

Specificity: 0.66 

2015 

In-lab 

de 

Zambott

i et al. 

(28) 

65 healthy 

adolescents (28 

female) 

12 – 22 

y 

- Jawbone 

UP 

(Jawbone 

Inc.) 

> 90 % - Overestimated PSG TST 

(10.0 ± 20.5 min) and 

SE (1.9 ± 4.2 %), and 

underestimated WASO 

(10.6 ± 14.7 min) 

- - 

 

2015 

In-lab 

de 

Zambott

i et al. 

(56) 

28 midlife women 

(12 of them 

meeting the DSM-

IV criteria for 

insomnia) 

44 – 60 

y 

- Jawbone 

UP 

(Jawbone 

Inc.) 

< 85 % - Overestimated PSG TST 

(26.6 ± 35.3 min) and 

SOL (5.2 ± 9.6 min), 

and underestimated 

WASO (31.2 ± 32.3 

min). No differences in 

device performance 

according to disease 

status 

- Sensitivity: 0.96 

Specificity: 0.37 

No differences 

in device 

performance 

according to 

disease status 

2016 

At-

home 

Mantua 

et al. 

(49) 

40 healthy adults 

(19 female) 

18 – 30 

y 

Actiwatch 

Spectrum 

(Phillips 

Respironic

s) 

Basis 

Health 

(Intel, 

Corp.), 

Fitbit Flex 

(Fitbit, 

Inc.) 

Misfit 

Shine 

(Misfit, 

Inc.), 

< 85 % No 

significant 

PSG-

actigraphy 

biases for 

TST and SE 

Overestimation of PSG 

TST for both Misfit 

Shine (~ 75 min for the 

bias) and Withings Pulse 

O2 (~ 12 min for the 

bias), which also 

overestimated PSG SE 

with a bias > 5 %; Basis 

Health underestimated 

SE with a bias > 10 %. 

We decided not to report 

- - 
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Withings 

Pulse 02 

(Withings, 

Inc.) 

results for sleep staging 

due to the unusual 

aggregation of PSG N3 

+ REM, considered as 

“deep” sleep 

2016 

In-lab 

de 

Zambott

i et al. 

(33) 

32 healthy 

adolescents (15 

female) 

12 – 21 

y 

- Fitbit 

Charge HR 

(Fitbit, 

Inc.) 

> 90 % - Overestimated PSG TST 

(8.0 ± 21.0 min) and SE 

(1.8 ± 4.5 %), and 

underestimated PSG 

WASO (5.6 ± 14.3 min) 

- Sensitivity: 0.97 

Specificity: 0.42 

2017 

In-lab 

Cook et 

al. (50) 

21 unmedicated 

adults (17 female) 

with DSM-IV 

major depressive 

disorder 

26.5 ± 

4.6 y 

Actiwatch 

2 (Phillips 

Respironic

s) 

Fitbit Flex 

(Fitbit, 

Inc.) 

using both 

“normal” 

and 

“sensitive” 

settings 

< 85 % Overestimat

ed PSG TST 

(by 40.6 

min) and SE 

(by 7.0 %), 

and 

underestima

ted SOL (by 

13.5 min) 

and WASO 

(by 27.1 

min) 

Overestimated PSG TST 

(by an average of 46.0 

min) and SE (by an 

average of 8.1 %), and 

underestimated WASO 

(by an average of 44.0 

min) in the “normal” 

setting. Wide PSG-

device biases (> 60 min 

for TST and WASO, 

and > 15 % for SE) for 

the “sensitive” setting 

Sensitivity: 

0.97 

Specificity: 

0.31 

Sensitivity of 

0.98 for the 

“normal”, and of 

0.78 for the 

“sensitive” 

setting. 

Specificity of 

0.35 for the 

“normal”, and of 

0.80 for the 

“sensitive” 

setting 

2017 

At-

home 

Kang et 

a. (51) 

33 drug-free 

individuals with 

(19 female) and 17 

without (11 female) 

DSM-5 insomnia 

disorder 

18 – 60 

y 

Actiwatch 

2 (Phillips 

Respironic

s) 

Fitbit Flex 

(Fitbit, 

Inc.) using 

both 

“normal” 

and 

“sensitive” 

settings 

< 85 % 

in 

insomn

iac 

> 90 % 

in 

control

s 

Underestima

ted PSG 

TST (by an 

average of 

17.8 min) 

and SE (by 

an average 

of 4.8 %) in 

controls. 

Underestima

ted PSG 

WASO (by 

an average 

of 21.6 min) 

in 

individuals 

with 

insomnia 

Overestimated PSG TST 

(by an average of 6.5 

min), using the “normal” 

setting in controls. 

Overestimated PSG TST 

(by an average of 32.9 

min) and SE (by an 

average of 7.9% by 30.5 

min), and 

underestimated WASO 

(by an average of), using 

the “normal” setting in 

individuals with 

insomnia. No data were 

provided for the 

“sensitive” setting 

Sensitivity: 

0.95 in 

controls and 

0.96 in 

insomniacs 

Specificity: 

0.61 in 

controls and 

0.45 in 

insomniacs 

Sensitivity of 

0.97 (0.97 in 

insomniacs) for 

the “normal” 

and of 0.65 

(0.64 in 

insomniacs) for 

the “sensitive” 

setting, in 

controls. 

Specificity of 

0.36 (0.36 in 

insomniacs) for 

the “normal” 

and of 0.82 

(0.89 in 

insomniacs) for 

the “sensitive” 

setting, in 

controls 

2017 

In-lab 

Maskevi

ch et al. 

(52) 

7 participants (6 

female) carrying 

Huntington‟s gene, 

with disease 

54.1 ± 

6.4 y 

Actiwatch 

Spectrum 

Pro 

(Phillips 

Jawbone 

UP2 

(Jawbone 

Inc.), and 

Not 

provide

d. 

Sleep 

Overestimat

ed PST TST 

(by 74.0 ± 

54.4 min) 

Both Jawbone UP2 and 

Fitbit One overestimated 

PSG TST (by > 60 min) 

and SE (by > 15 %), and 

Sensitivity: 

0.97 

Specificity: 

0.31 

Sensitivity of 

0.99 for both 

Jawbone UP2 

and Fitbit One. 
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severity ranging 

from 

presymptomatic (N 

= 4) to early 

symptomatic (N = 

3) 

Respironic

s) 

Fitbit One 

(Fitbit, 

Inc.) 

was 

scored 

in 1 

min 

epochs 

and SE (by 

14.8 ± 11.0 

%) 

underestimated WASO 

(by > 30 min) 

Specificity of 

0.34 for 

Jawbone UP2 

and of 0.27 for 

Fitbit One 

2017 

At-

home 

Gruwez 

et al. 

(57)a 

15 healthy adults 

Demographics 

unclear for the final 

sample analyzed 

18 – 40 

y 

SenseWear 

Pro 

(BodyMedi

a, Inc.) 

Jawbone 

UP MOVE 

(Jawbone 

Inc.), and 

Withings 

Pulse 02 

(Withings 

Inc.) 

> 90 % No 

significant 

PSG-

actigraphy 

biases 

Withings Pulse 02 

overestimated PSG TST 

(by an average of 33 

min), TIB (by an 

average of 16 min), and 

SE (by an average of 5 

%). No significant 

biases were found for 

Jawbone UP MOVE. 

We decided to do not 

report results for sleep 

staging due to the 

unclear classification of 

“light” and “deep” sleep 

from the device 

manufacturers. 

- - 

2017 

In-lab 

de 

Zambott

i et al. 

(43) 

42 healthy 

adolescents (13 

female) 

14 – 22 

y 

- ŌURA ring 

(Ouraring, 

Inc.) 

> 90 % - Underestimated PSG N3 

(19.6 ± 41.2 min) and 

overestimated REM (-

17.2 ± 50.2 min) 

- Sensitivity of 

0.96, and 

specificity of 

0.48. 

Agreements for 

N1+N2 of 0.65, 

for N3 of 0.51, 

and for REM of 

0.61 

2018 

In-lab 

 

 

de 

Zambott

i et al. 

(42) 

44 healthy adults 

(26 female). 

Separate analyses 

on 9 with PSG 

evidences of PLMS 

> 15/h 

19 – 61 

y 

- Fitbit 

Charge 2 

(Fitbit Inc.) 

> 85 % 

in both 

groups 

- Overestimated PSG TST 

(9 ± 24 min) and N1 + 

N2 (34 ± 34 min), and 

underestimated SOL (4 

± 9 min) and N3 (24 ± 

28 min), in the main 

group. Underestimated 

PSG N3 (28 ± 35 min) 

in the PLMS group 

- Sensitivity of 

0.96 for the 

main, and 0.95 

for the PLMS 

group. 

Specificity of 

0.61 for the 

main, and 0.62 

for the PLMS 

group. 

Agreement for 

N1+N2 of 0.81 

for the main, 

and 0.78 for the 

PLMS group. 
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Agreement for 

N3 of 0.49 for 

the main, and 

0.36 for the 

PLMS group. 

Agreement for 

REM of 0.74 for 

the main, and 

0.62 for the 

PLMS group 

2018 

In-lab 

Sargent 

et at. 

(60)b 

12 healthy elite 

athletes (sex not 

specified) 

18.3 ± 

1.0 y 

- Fitbit 

Charge HR 

(Fitbit, 

Inc.) 

Not 

provide

d 

- No significant PSG-

device biases for TST 

for Fitbit TST obtained 

in “automatic mode” for 

night-time sleep, as well 

as when bed timing was 

manually adjusted to 

match the bedtime 

opportunities for both 

night-time and day-time 

sleep (see notes below 

about the protocol). 

However, PSG-device 

discrepancies in TST in 

“automatic mode” was > 

240 min in 4 

participants. Lack of 

details on how data were 

obtained and analysis 

performed (please refer 

to the original study 

(60)) 

- - 

2018 

At-

home 

 

Pesonen 

and 

Kuula 

(59)c 

17 healthy children 

(9 female) and 17 

healthy adolescents 

(8 female) 

9 – 13 

y 

childre

n, 14 – 

20 y 

adolesc

ents 

Actiwatch 

2 (Phillips 

Respironic

s) 

Polar 

A370™ 

(Polar 

Electro, 

Inc.) 

> 95 % Overestimat

ed PSG 

WASO in 

children (by 

20.9 min) 

and 

adolescents 

(by 14.3 

min). 

Underestima

ted PSG 

TST in 

children (by 

43.6 min) 

Overestimated PSG 

WASO in children (by 

24.4 min) and 

adolescents (by 12.5 

min). 

Underestimated PSG 

TST in children (by 28.9 

min) and adolescents (by 

20.6 min) 

Sensitivity: 

0.93 in 

children and 

0.93 in 

adolescents 

Specificity: 

0.68 in 

children and 

0.58 in 

adolescents 

Sensitivity: 0.93 

in children and 

0.91 in 

adolescents 

Specificity: 0.77 

in children and 

0.83 in 

adolescents 
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and 

adolescents 

(by 26.8 

min). 

2018 

At-

home 

Liang 

and 

Martell 

(53)d 

25 healthy young 

adults (10 women) 

24.8 ± 

4.4 y 

- Fitbit 

Charge 2 

(Fitbit, 

Inc.) 

> 85 % - Underestimated PSG 

TST (by 12.3 min), SOL 

(by 11.1 min), N1 + N2 

sleep (by 42.4 min), 

REM sleep (by 11.6 

min), and % N3 sleep 

(by 10.2 %). 

Overestimated PSG 

WASO (by 24.5 min) 

and % of WASO (by 6,5 

%), % of N1 + N2 sleep 

(by 13.8 %), % of REM 

sleep (by 4.6 %), N3 

sleep (by 39.8 min) 

- - 

2018 

In-lab 

Cook et 

al. (58)  

43 clinical adult 

patients (29 

females): 3 with a 

diagnosis of 

narcolepsy, 13 with 

idiopathic 

hypersomnia, 17 

with idiopathic 

hypersomnia not 

otherwise 

specified, 6 with 

mild obstructive 

sleep apnea, and 4 

with 

hypersomnolence 

related to another 

condition  

33.3 ± 

1.0 y 

Actiwatch 

2 (Phillips 

Respironic

s) 

Jawbone 

UP3 

(Jawbone 

Inc.) 

> 85 % Overestimat

ed PSG TST 

(by 43.9 

min) and SE 

(by 7.5%). 

Underestima

ted PSG 

SOL (by 

12.9 min) 

and WASO 

(by 33.9 

min). 

Overestimated PSG TST 

(by 39.6 min) and SE 

(by 6.8%). 

Underestimated PSG 

SOL (by 5.1 min) and 

WASO (by 34.3 min) 

Sensitivity: 

0.97 

Specificity: 

0.31 

Sensitivity: 0.97 

Specificity: 0.39 

Agreements for 

N1+N2 of 0.60, 

for N3 of 0.49, 

and for REM of 

0.30 

2018 

In-lab 

Cook et 

al. (54)  

49 adult patients 

(46 females) with 

suspected central 

disorders of 

hypersomnolence: 

14 with idiopathic 

hypersomnia, 19 

with idiopathic 

hypersomnia not 

otherwise 

specified/unspecifi

30.3 ± 

9.8 y 

- Fitbit Alta 

HR (Fitbit, 

Inc.) 

> 85 % - Overestimation of PSG 

TST (by 11.6 min), SE 

(by 2%) and N3 sleep 

(by 18.2 min) 

- Sensitivity: 0.96 

Specificity: 0.58 

Agreements for 

N1+N2 of 0.73, 

for N3 of 0.67, 

and for REM of 

0.74 

No significant 

differences in 

sensitivity, 

specificity and 
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ed, 6 with 

narcolepsy and 10 

with mixed 

diagnoses  

agreements for 

sleep stages 

among sub-

groups 

a, unclear is how the time in bed (TIB) for the at-home PSG assessment was determined; b, the experimental design of the study included 3 fixed 

night-time (10pm-7am; 11pm-7am; 12am-7am) and 2 fixed day-time (2pm-4pm; 3pm-4pm) “sleep opportunities” over three days. Analyses were 

based on averaged periods for night-time and day-time; c, authors reported using a pre-product Polar fitness tracker corresponding to the 

commercially available Polar A370; authors calculated SE as TST/time between sleep onset and offset*100. Thus, the percentage does not 

account for the wake time between lights-off and sleep onset; d, the comparison between Fitbit Charge 2 and PSG is based on a PSG portable 

clinical 1-channel EEG device (sleep stages were automatically analyzed in 30-s epochs and visually checked);  AHI, apnea-hypopnea index 

(average number of apnea and hypopnea episodes per hour of sleep); PLMI, periodic limb movement index; RDI, respiratory disturbance index 

(average number of apnea and hypopnea episodes, and respiratory event-related arousals per hour of sleep); REM, rapid-eye-movement; SOL, 

sleep onset latency; SE, sleep efficiency; TST, total sleep time; WASO, wake after sleep onset 
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Table 2 An example of a qualitative approach to evaluate device performance.   

An alternative way to evaluate the performance of a device is whether it adequately (compared to PSG) captures 

a significant literature effect (e.g., a group difference in sleep architecture between healthy individuals and those 

with a sleep disorder, sleep recovery after cognitive-behavioral treatments in insomnia sufferers, sleep alterations 

following acute stress-inducing experimental manipulation). For example, similarly to PSG, we previously 

showed that a multisensory sleep tracker (the ŌURA ring) was able to significantly detect the age-related decline 

in N3 sleep in an adolescence sample. This finding is encouraging given that the device showed its greatest 

limitation in PSG N3 classification (51% agreement in detecting PSG N3 sleep) (43).  
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Table 3 Assuming that the proprietary algorithms used by consumer wearables will remain 

proprietary, what else can the wearable industry do to facilitate the use of consumer wearable 

sleep-trackers in clinical and sleep research settings? 

Open access to raw data Allows application of publicly available algorithms to wearable 

raw accelerometer data (and/or plethysmography derived IBIs) 

obtaining a standardized sleep stage classification 

Allow the choice of a specific version of 

the proprietary algorithm used for sleep 

classification when exporting/extracting 

sleep data 

Allows consistency for data collection within a study period, by 

avoiding uncontrollable algorithm updates that may affect sleep 

parameter calculations 

Also allows researchers to choose a specific wearable device model 

using a specific algorithm with proven validation 

Have a separate line of products more 

aligned with research and clinical needs 

Would remove many concerns of using an uncontrolled consumer 

product for research and clinical sleep assessment 

Increase partnership with sleep 

research and clinical centers 

Allows access to domain expertise in basic sleep science and 

clinical sleep disorders, which can lead to consistent use of 

accepted terminology, and insight into the meaning and value of 

Big Data 
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