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Abstract 

Widespread availability of geospatial data on movement and context presents opportunities for 10 
applying new methods to investigate the interactions between humans and weather conditions. 
Understanding the influence of weather on human behaviour is of interest for diverse applications, 
such as urban planning and traffic engineering. The effect of weather on movement behaviour can be 
explored through Context-Aware Movement Analysis (CAMA), which integrates movement geometry 
with its context. More specifically, we use multi-channel sequence analysis (MCSA) to represent a 15 
person’s movement as a multi-dimensional sequence of states, describing either the type of 
movement or the state of the environment throughout time. Similar movement patterns can then be 
identified by comparing and aligning mobility sequences. In this paper we apply CAMA and MCSA to 
explore weather effects on human movement patterns. Data from a GPS tracking study in a Scottish 
town of Dunfermline are linked to weather data and converted into multi-channel sequences which are 20 
clustered into groups of similar behaviours under specific weather typologies. Our findings show that 
the CAMA + MCSA method can successfully identify the response of commuters to variations in 
environmental conditions.  We also discuss our findings on how travel modes and time spent at 
different places are affected by meteorological conditions, mainly wind, but also rainfall, daylight 
duration, temperature, comfort and relative humidity. 25 

Keywords: context-aware movement analysis, context-aware similarity, human mobility, human 
movement, multi-channel sequence analysis, context. 

1. Introduction 

The spread of geolocated smartphones and the decreasing price of GPS devices have contributed 

towards the production of large amounts of data on human movement of unprecedented spatio-30 

temporal quality (Meekan et al., 2017). New human mobility studies attempt to link such movement 

data with contextual information (such as points of interest) to gather insights into, for example, 

commuting behaviour (Beecham, Wood, & Bowerman, 2014; Gong, Chen, Bialostozky, & Lawson, 

2012), tourist behaviour (Meijles, de Bakker, Groote, & Barske, 2014; Versichele, Neutens, 

Delafontaine, & Van de Weghe, 2012), or retail choice decisions and human activities (Siła-Nowicka 35 

et al., 2016). However, integrating high resolution GPS trajectories and dynamic spatio-temporal 

contextual information remains an underexplored approach for studying the effects of weather on 

human movement, despite its relevance for urban planning (Givoni, 1974; Ng, 2012), traffic 

engineering (Dunne & Ghosh, 2013), retail planning (Thakuriah, Sila-Nowicka, & Paule, 2016), 
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tourism (de Freitas, 2003), health (Tucker & Gilliland, 2007), psychology (Nerlich & Jaspal, 2014) and 40 

epidemiology (Horowitz, 2002).  

Specific weather conditions often trigger changes in human behaviour, for example, higher 

temperatures increase aggressiveness (Anderson, 2001; Carlsmith & Anderson, 1979) and lower 

temperatures contribute to irritability and combativeness (Schneider, Lesko, & Garret, 1980; Worfolk, 

1997). Different components of weather have different magnitudes of importance, for example, air 45 

temperature, direct solar radiation and wind speed have a more significant influence on human 

behaviour than humidity (de Montigny, Ling, & Zacharias, 2012). However, it is challenging to 

understand how weather influences human behaviour because the responses are partially a result of 

individual preferences (de Freitas, 2015). Some individuals are more responsive to the thermal 

component of weather, i.e. the combined effects of air temperature, humidity and solar radiation, while 50 

some are more receptive to physical components like rain, and others are more greatly affected by 

the aesthetic components, such as cloud coverage and sunshine. Yet, most individuals do respond to 

the combination of  all three of these components (de Freitas, 1990). 

Traditionally, these interactions have been explored through questionnaires and multidimensional 

scaling methods within the field of human biometeorology (Cabanac, 1971; de Freitas, 1990; Manu, 55 

Shukla, Rawal, Thomas, & de Dear, 2016). With the increased availability of tracking and 

environmental data we however propose that the effect of weather on movement behaviour can be 

explored through Context-Aware Movement Analysis (CAMA), which integrates movement geometry 

with its context, i.e. with the surrounding biological and environmental conditions that might be 

affecting movement (Andrienko, Andrienko, & Heurich, 2011; Demsar et al., 2015; Dodge et al., 60 

2013). More specifically we use multi-channel sequence analysis (MCSA) to represent a person’s 

movement as a sequence of states, describing either the type of movement or the state of the 

environment throughout time. Similar movement patterns can then be identified (termed context 

aware similarity analysis) by comparing and aligning mobility sequences.   

Similarity analysis is one of the most common tasks in movement analytics and consists of using 65 

distance measures and grouping methods to split trajectories (Demšar et al. 2015) into groups of 

elements more similar amongst them than to other groups (Jain et al. 1999), which followed by 

clustering allows the identification of spatio-temporal movement patterns that might be linked to 

behaviour (Dodge, Weibel, Ahearn, Buchin, & Miller, 2016). Similarity is often established based on 
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geometry or physical attributes; geometrical similarity solely relies on measures of spatial and 70 

temporal distances, and physical similarity relies on movement attributes such as speed, turning 

angle, acceleration and direction (Demsar et al., 2015). Context-aware similarity is based on multiple 

attributes (Andrienko et al., 2011; Buchin, Dodge, & Speckmann, 2014; Demsar et al., 2015; Sharif & 

Alesheikh, 2017b) describing the conditions within which the movement took place. 

Context-awareness is a recent trend (Sharif & Alesheikh, 2017a), as a result there are few context-75 

aware methods for assessing similarity between trajectories. Sharif & Alesheikh (2017b)  generalized 

the dynamic time warping (DTW) to develop a context-based dynamic time warping (CDTW) method, 

which matches trajectories with contextual similarity even if they are not concurrent. This method is 

highly dependent on arbitrary weights for the contextual variables, restricted to numeric context and 

disregards changes of context between two points in time. i.e., same contexts are considered similar 80 

even when they are not concurrent. De Groeve et al. (2016) uses single channel sequence 

alignments and Hamming Distance to understand the temporal variation of habitat use by roe deer; 

the similarity is measured by the cost to transform a sequence of habitat use into another. This 

method is able to handle only one contextual variable at time, therefore it is not able to handle the 

interactive effect of multiple contextual variables on movement. Buchin et al. (2014) modified existing 85 

similarity measures to make them context-aware, more specifically they defined the distance between 

two points as the sum of their contextual and spatial distances. The transition costs between contexts 

are defined by the user and the method is restricted to contextual data in the form of polygonal 

divisions. 

In this paper we propose to use multi-channel sequence analysis (MCSA) to perform context-aware 90 

similarity analysis (CASA) and cluster trajectories into groups of similar behaviour. MCSA is a new 

analysis tool for movement data where contextual information can now be readily combined with 

detailed tracking datasets. The main advantage of this approach is that it also is possible to consider 

as many channels (contextual variables) as desired at once. It is common in movement research to 

simultaneously consider multiple environmental variables, which makes MCSA particularly relevant for 95 

studying human mobility, traffic, transportation and wildlife ecology; areas in which movement 

behaviour may be contextualised by other dynamic environmental variables such as air temperature, 

vegetation indices, humidity, wind speed, air pollution and snow coverage. Single channel analysis 

has been used before to explore spatio-temporal patterns on the activity of visitors in Akko’s Old city – 
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Israel (Shoval & Isaacson, 2007) and to analyse sequential habitat use by roe deer in North-East Italy 100 

(De Groeve et al., 2016). Shoval & Isaacson (2007) focused on sequences of locations, i.e. the 

movement itself, while De Groeve et al (2016)  emphasized sequences of habitat use classes, i.e.  the 

context surrounding movement. Horanont et al. (2013) looked at GPS traces from mobile phone users, 

coarse scale movement data, hourly temperature, rainfall and wind speed to explore the independent 

effects of each variable on people’s activity patterns. We innovate by applying MCSA, for the very first 105 

time, to perform CAMA of fine scale human movement data to simultaneously consider movement 

and context by looking at the combined and single effects of six meteorological variables.  

Despite the novelty of MCSA in movement research, sequence analysis has been consistently used 

in medical and social sciences, particularly within bioinformatics and life courses research (Idury & 

Waterman, 1995) Abbott 1995; Abbott & Tsay 2000). In bioinformatics, a sequence represents the 110 

DNA molecule as a string of characters (which stand for specific nucleotides), between a precise start 

and end point; the comparison of similarities and differences between those strings allows the 

identification of nucleotide sequences related to genetic diseases and traits. We propose that the 

same principle can be applied to movement trajectories for identifying groups of people with similar 

movement patterns, i.e.,  clusters of similar behaviour (Billari, 2001). Further, we propose to not only 115 

represent the trajectories with one sequence only, but to use Multi-channel sequence analysis 

(MCSA), which allows for comparison of sequences consisting of several dimensions (channels) 

(Gauthier et al., 2010). For this, we link data from a GPS tracking study to weather data and convert 

the information into multi-channel sequences in a first fully data-driven attempt to explore weather 

effects on human movement patterns. 120 

 The rest of the paper is structured as follows: first we describe the GPS tracking data and weather 

datasets used in our analysis. Next, we explain how the meteorological data sources were combined 

and integrated with the GPS tracking data and finally converted into sequences. Next, multi-channel 

sequence analysis is applied to identify changes in group movement patterns related to weather. We 

conclude with considerations on our findings, the potential of the methodology and ideas for future 125 

research. 

 

2. Methodology 
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Figure 1 – The overview of our framework for identification of groups of similar movement behaviour 140 
under specific weather conditions. The framework has two analyses running in parallel: analysis of 
places and analysis of travel modes. Blue shapes marks travel mode, green shapes marks places, 
white ellipses represent dataset’s sources, rectangles represent variables, beige arrows represent 
processing steps and hexagons derived results in each step. 

 145 

Trajectory annotation and sequencing were performed using PostgreSQL 9.4  database manager, 

VANJU library and its dependencies under Python 2.7, for more details  refer to Brum-Bastos, Long, 

& Demšar (2016). The MCSA, including optimal matching distances, Ward’s clustering and statistical 

tests, was performed using TraMineR 1.8-9 and cluster 1.14.4 libraries under R 3.4.1, for more details 

on the equations used by these libraries please refer to Gabadinho, Ritschard, Studer, & Müller (2009) 150 

and Maechler, Rousseeuw, Struyf, Hubert, & Hornik, (2018) respectively. 

 

2.1. Movement data 

We analysed a human movement dataset where GPS devices were carried by volunteers from the 

Kingdom of Fife – UK (Figure 2a) (Siła-Nowicka et al., 2016). The data were collected between the 155 

28
th
 of September 2013 and the 10

th
 of January 2014 as part of the GEOCROWD project (Siła-

Nowicka et al., 2016), in which 6000 individuals were randomly selected by postcode address from 

the voting registry (focusing on the three major towns in this region) and invited via letter to participate 

in the study. In total, 206 individuals accepted the invitation and provided useable data whereby they 

were tracked for two consecutive weeks within the study time spam. GPS devices recorded 160 

participant positions every five seconds, representing a very high-resolution trajectory of participant 

locations. The GPS trackers were coupled with accelerometers, which turned off the GPS when the 

individual was not moving  Oshan  et al. 2014). The aim of the GEOCROWD project was to develop 

new movement analytics methods that would allow researchers to find out as much as possible from 

the actual GPS data while participants were asked to do as little as possible (i.e. the only task was to 165 

carry a GPS device and mail it back after two weeks). Therefore, very little auxiliary data were 

collected and beyond gender and age of the participants, which were sourced from the electoral 

register together with the address of each participant, no other demographic or ground truth data were 

collected. For more details on data collection refer to Oshan et al. (2014).  

In this paper we re-analyse the GEOCROWD data from the town (called Dunfermline; Figure 2a) 170 

with highest number of participants (n=91), of which  23 were female, 41 were male, and 27 did not 

declare their gender. Looking at the ages of our participants: 10 were between 21 and 34 years old, 
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change between contextual layers, producing more realistic values for interpolated meteorological 

data, and it also deals with the difference between temporal resolutions of the datasets (Brum-Bastos 

et al. 2017). We collated multiple sources of contextual data on weather (Table 1). 200 

 

Table 1– Contextual datasets with respective sources and specifications. 

Source Variables 
Data 

type
Geometry 

Temporal 
resolution 

Spatial 
resolution

Weather Cam 
(UK Weather, 2013) 

Daylight Categoric Point 24 h --- 

NIMROD 
(MetOffice, 2003) 

Rainfall Numeric Raster 5 min 1-5 km 

MIDAS 
 (Met Office, 2012) 

Temperature 
Relative 

humidity 
Wind speed 

Wind 
direction 

Numeric Point 1 h --- 

We associated MIDAS data with trajectory points using Thiessen Polygons around each 

meteorological station (n = 109, Fig 2b). From the MIDAS meteorological variables we also derived 

the apparent temperature ( , which considers the combined effects of temperature, humidity and 205 

wind (Steadman, 1994). 0.33 ∗ 0.70 ∗ 4.00    (1) 

Here  is the air temperature in °C;  is the water vapour pressure in hPa calculated from the 

relative humidity and temperature; and  is the wind speed in m/s.  

The Weather Cam data was used to calculate dusk, sunset, sunrise and dawn times (for a central 210 

location in the study area) as at this latitude daylight length varies by approximately 4.5 hours from 

September to January. Daylight categories were annotated to trajectories according to the following 

rules: Morning Twilight (MT) for fixes recorded in the period between dawn and sunrise, Day Light (DL) 

for fixes recorded between sunrise and sunset, Evening Twilight (ET) for fixes recorded between 

sunset and dusk, Night (NI) for fixes recorded between dusk and dawn. 215 

 

2.3. Trajectory sequencing 

Sequence analysis requires a finite alphabet, in which each letter originally represents genomic 

nucleotides (Idury & Waterman, 1995). In single channel sequence analysis, a sequence is a one 

dimensional ordered list of characters from one alphabet, representing successive states (Abbott & 220 
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Tsay, 2000).  However, most phenomena are multidimensional and require multiple alphabets. This 

means that each dimension gets its own bespoke alphabet and instead of having the data object 

represented as one sequence, the object now has as many different sequences as there are 

dimensions, which are called channels (therefore the name Multi-Channel Sequence Analysis). The 

alignment, i.e. similarity, then needs to be calculated across all channels along the time axis (Gauthier 225 

et al., 2010). This multi-channel approach is therefore a shift from looking at individual units towards 

analysing context, connections and events (Abbott, 1995). 

We created several bespoke alphabets, one for movement mode (e.g., walking and driving) and one 

for each weather variable in our data.  For this, we had to translate the GPS track of each participant 

into a multi-channel sequence consisting of time units, to which the characters were assigned (figure 230 

3).  Weather conditions were categorized to create weather-based alphabets (Table 2). Rainfall was 

classified based on the UK Met Office scale for rainfall intensity, Wind Speed according to an 

adaptation of the Beaufort scale (Royal Meteorological Society, 2017), wind direction according to the 

cardinal and collateral points, apparent temperature according to the VDI (2008) thermal perception 

scale, humidity and temperature according to the 1991-2000 seasonal climate normals for 235 

Dunfermline  from Jenkins et al. (2009). Climate normals are a three-decade average of weather 

variable commonly used to characterize local climates (Ayoade, 1986).  

The multi-channel sequences were then generated for each volunteer and day (illustrated in Figure 

3) by taking the modal weather condition (for each variable described in Table 2) and movement 

mode for each 1-minute interval for each participant. To each time unit we assigned descriptors for 240 

the weather variables and the respective movement mode, which are linked to the descriptor for the 

following time unit building multiple chronologically arranged strips. These sequences can be 

analysed alongside strips of contextual variables to understand not only the responses to specific 

variables, but also to different combinations of those variables and the identification of patterns 

relative for specific age groups, gender or other profiling information. The number of channels in a 245 

MCSA is defined by the number of variables under consideration, in our case eight variables therefore, 

eight channels by definition. The use of modal attributes for each 60 second segment (as the data 

were collected at a 5 second frequency) filtered out possible noise from the raw data and represents 

an appropriate scale of analysis for studying human movement. 
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Table 2 – Alphabets for meteorological variables used as contextual data with respective ranges and description. Letters in each alphabet are defined based 265 
on standard meteorological classifications (see text for more details). 

 
Thermal perception (°C) Rainfall (mm/h) Wind coming from direction (°)

Letter Description Range Letter Description Range Letter Description Range

VC Very Cold <= -39 DR Dry 0 N North > 337.5 - 22.5 
CD Cold >-39 - -26 VS Very Slight >0 - 0.5 NE North East >22.5 -67.5 
CL Cool >-26 - -13 SL Slight >0.5 – 1 E East > 67.5 -112.5 
SC Slightly Cool  >-13 - 0 LM Low Moderate >1 – 2 SE South East >112.5 - 157.5 
CF Comfortable >0 - 20 MO Moderate >2 – 4 S South >157.5 – 202.5 
SW Slightly Warm  >20 - 26 HV Heavy >4– 10 SW South West >202.5 – 247.5 

W Warm  >26 – 32 VH Very Heavy >10 - 50 W West 
> 247.5 – 

292.5 
H Hot  >32 – 38 VI Violent > 50 NW North West >292.5 – 337.5 
VH Very Hot >38       

Humidity (%) Temperature (°C) Wind Speed (m/s)

Letter Description Range Letter Description Range Letter Description Range

EH Extremely High >90 EL Extremely Low <=5 CM Calm <= 3
AA Above Average >85 -90 AN Average minimum > 5-7 BR Breeze >3 - 14
AV Average >80 -85 AV Average Average >7 -10 GA Gale >14 - 24 
BA Below Average >75 -80 AX Average Maximum >10 - 13 ST Storm >24

LW Low >70 -75 EH Extremely High >13    
EL Extremely Low <70       
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2.4. Context-Aware Similarity Analysis (CASA)  

2.4.1.  Multi-channel Sequence Analysis (MCSA) 270 

We divided our analysis into two streams, by separately analysing travel modes (walk, public 

transport and vehicle) and places (home, social places and shopping), since the choice of travel mode 

and of staying in a place are not necessarily affected in the same way by weather (Derrick Sewell, 

Kates, & Philips, 1968). When the destination is obligatory, such as work, people are more likely to 

change their travel mode, for example, driving to work instead of walking under heavy rain; however, 275 

if the destination is linked to leisure, such as shopping, people might simply postpone the task instead 

of changing the travel mode to get there (Connolly, 2008; Zivin, 2014). We further split the analysis 

into weekdays and weekends to reflect different movement motivations (for example, travel to work 

during workdays is usually obligatory regardless of weather conditions while people have more 

voluntary choices about their mobility during weekends). 280 

Sequence analysis requires cost matrices, which were computed separately for travel modes and 

places and for weekends and weekdays. We used the optimal matching (OM) distance to compute 

similarity between sequences as this method has shown potential for identifying groups with matching 

movement behaviour (De Groeve et al., 2016). The distance between two sequences is assessed by 

quantifying their differences based on a matrix with the costs for substituting, deleting or inserting 285 

letters to transform one sequence into the other. The substitution costs are given by symmetrical 

matrices that represent the costs of transitioning between each pair of states in the alphabet 

(Gabadinho et al., 2009). In our case, the costs for transitions between the states of travel modes, 

places, wind speed and wind direction were computed using transition rates calculated from the 

sequences for computing the cost matrices, as shown in Equation 2.  290 

, 1 , ,                                                            (2) 

Here	 ,  is the substitution cost, ,  is the transition rate from state  to . 

The costs for transitions between the states of thermal comfort, temperature, humidity, daylight and 

rainfall were defined by ordering the classes of each variable (alphabets) by their intensity and 

calculating the cost to replace one class by another with Equation 3. 295 

, | |
                                                           (3) 
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Here	 ,   is the cost between the classes  and  with intensity order 	and 1, and  is the 

number of classes for that variable (size of the alphabet). The cost for replacing null values by any 

other class (insertion) was zero and likewise to substitute any other class by null (deletion), because 

for our study they are related to periods for which we had no information on the participant’s 300 

movement.  This procedure resulted in ten cost matrices, one for each weather variable, two for travel 

modes and two for places (weekdays and weekend). 

The cost matrices are then used to calculate the optimal match (OM) score, for example, given an 

alphabet  with size , pick sequences  and  based on alphabet . The sequences are aligned in 

time and the OM cost is calculated by summing up the costs of substitutions , deletions and 305 

insertions d  needed to modify the sub sequences of , so that it turns into . The OM  is the less 

costly and is computed using Equation 4, in which each line defines a possible OM score for two sub 

sequences, depending on which of the procedures, insertion, deletion or substitution, is cheaper 

(Gauthier et al., 2010).   

, 	 1, 1 		1, d		, 1 d                                                       (4) 310 

Here 1, 1  represents the OM score of a subsequence containing the 1 to	 1 characters 

of sequence  against a subsequence containing 1 to	 1 in sequence  (Gabadinho et al., 2009; 

Gauthier et al., 2010). The OM cost is computed for each channel between all multi-channel 

sequences and the cost between two multi-channel sequences is the summed costs between their 

channels. We calculated the OM distances simultaneously considering three channels for wind: 315 

movement mode, wind speed and wind direction; and two channels for the remaining weather 

conditions, where the places or the travel modes were always the first channel and the variables were 

considered in turns as the second channel. A  by  dissimilarity matrix, where  is the number of 

sequences, represents the level of alignment between each two multi-channel sequences, i.e., a 

similarity measure between two moving people. 320 

2.4.2. Cluster analysis & typology 

The dissimilarity matrix can be used to find whether people were showing similar movement 

behaviour under certain weather conditions.  For this we apply a clustering algorithm to the 
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dissimilarity matrix for each weather variable for both travel modes and places. We used Ward’s 

clustering, a hierarchical bottom-up algorithm that computes dissimilarities between two groups as the 325 

increase in the error sum of squares after merging those groups. The algorithm starts with each 

sequence as their own group and successively merges them into clusters based on the minimum 

increase in the error sum of squares, until it becomes a single cluster (Murtagh & Legendre, 2011). 

For selecting the optimal number of clusters, we used the Calinski-Harabaz Index (CHI) (Calinski & 

Harabasz, 1974) that considers the within and between groups dispersion as shown in Equation 5. 330 

		                                (5) 

Here  and  are the within and between group dispersion matrices, the trace of  is the sum of 

the within cluster variance and the trace of  is the sum of the between cluster variances; a higher 

CHI indicates a better data partition (Ahmed, 2012), because it shows that the within group distances 

are lower and the between groups distances are higher. We varied the number of clusters from the 335 

number of sequences (i.e. the maximum possible number of clusters, if every sequence is allocated to 

its own cluster) to one and used the configuration with highest CHI, except where the maximum CHI 

resulted in individuals’ clusters, to assign the multi-channel sequences into their final clusters. The 

combination of values of weather and movement modes in each cluster then defined a type of the 

group. Note that the types are not consistent between variables, i.e., we found different clusters for 340 

each weather variable, thus the typology is specific for each variable. 

We then looked at the distribution of the proportion of time spent in different travel modes and 

places for the weather conditions associated with each cluster. We expected this would give insights 

into the different behavioural patterns in individuals related to weather (i.e., an overall picture of the 

effects of the weather conditions within each cluster on movement modes). We tested the significance 345 

of the differences using Kruskal-Wallis and Levene’s tests and we assumed that a statistically 

significant difference between medians or variances of each cluster was enough evidence to support 

the existence of different behavioural groups.  

We further used discrepancy analysis to verify if and how behavioural groups were related to age 

and gender. This method evaluates the strength of the association between the groups of sequences 350 

and a categorical covariate  (Studer, Ritschard, Gabadinho, & Müller, 2011) by calculating the share 

of discrepancy according to Equation 6 and looking at its p-value.  
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                             (6) 

Here  is the share of discrepancy, 	 is the sum of square distances within the age or gender 

groups, and  is the total sum of square distances between all sequences (Batagelj, 1988).  355 

3. Results 

3.1. Trajectory sequencing 

The different movement modes for each participant for each day of the week are shown in Figure 4, 

most sequences start between six and eight in the morning and have a minimum of 58% and a 

maximum of 98% of missing data, i.e., minutes for which the GPS tracker was off and movement 360 

modes are unknown (white gaps in Figure 4).  The entropy index (EI) (Figure 5) provides some insight 

into participants daily movement behaviour. The EI increases between 4:00 am and 7:00 am on 

weekdays, but only rises between 8:00 am and 10:00 am on weekends, indicating higher diversity of 

movement modes earlier on weekdays.  Sunday has the highest EI and similarly to Saturday, it drops 

and rise between 3:00 pm and 6:00 pm. 365 

 The average time spent (AVTS) walking did not change substantially across weekdays and 

between genders (Figure 6). The AVTS at home varied throughout the week, being the highest on 

Sunday and lowest on Wednesday for both genders (dashed orange lines on Figure 6). The low 

values on Wednesday might be related to the higher average time spend socializing in comparison to 

other days of the week (dashed red lines on Figure 6).  Moreover, women seem to spend more time 370 

socializing and to concentrate social activities on Tuesdays, Wednesdays and Saturdays; while men 

socialise very little on Tuesdays and keep a steady, but lower than women, average from Wednesday 

to Monday.  
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Next, we present some of the more interesting findings while the remaining set of results can be 

found in the appendix. The typologies are specific for each variable, i.e., Type 1 for wind is not the 

same as type 1 for rainfall.  The analysis of shared discrepancy did not show significant correlation 

between the behavioural clusters and gender or age groups, all SD were lower than 0.01 with non-410 

significant p-values (α = 0.1). Significant values for Levene’s (L) and Kruskal-Wallis’ tests (K) are 

reported on the heading of each graph on the pictures by the following symbology: *** for α = 0.001, ** 

for α = 0.01, * for α = 0.5, . for α = 0.1. 

3.2.2. Wind 

Figure 8 shows the clusters for MCSA on wind on weekdays (Figure 8A) and weekends (Figure 8B). 415 

The top boxplot shows the distribution of the GPS active time spent under wind blowing from each 

direction and the middle one shows the distribution of the GPS active time spent under different wind 

intensities. Both boxplot panels are divided into Type 1 and Type 2, which refer to the two clusters 

found by the MCSA analysis and for which the distribution of the GPS active time in different travel 

modes is shown on the boxplot panel at the bottom. This boxplot shows the difference between 420 

groups with different distribution of time spent on travel modes, while the remaining panels describe 

the wind conditions encountered within those groups. There were no significant differences on the 

average time spent on different travel modes on weekdays under different wind conditions (Figure 8A), 

on the weekend however we found significant differences on the average time expenditure in public 

transport and vehicle (Figure 8B). CASA clustering showed a significantly lower use of public 425 

transportation with concurrent increase on the use of vehicles under more windy conditions coming 

from North-East, North-West and South-West (Type 2). 
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Despite not being statistically significant, less daylight time resulted in less time walking (Type 3) 550 

compared to more time walking under more daylight hours (Type 1 and Type 2). A similar decrease is 

observed on the time expenditure in public transport, with a concurrent increase on time expenditure 

in vehicles. This trend reverses on weekends, in which walking and public transport are more 

prominent than the use of vehicle in a group exposed to more night hours (Type 2), while the use of 

vehicles prevails in a group with more daylight hours (Type 1). 555 

Figure 13 shows the clusters for MCSA daylight on weekdays (Figure 13A) and weekends (Figure 

13B). The top boxplot shows the distribution of the GPS active time spent under different light 

conditions. The boxplot panel is divided into three types on weekdays and two types on weekends, 

which refer to the clusters found by the MCSA analysis and for which the distribution of the GPS 

active time in different activities is shown on the boxplot panel at the bottom. This boxplot shows the 560 

difference between groups with different distribution of time spent on activities, while the remaining 

panels describe the daylight conditions encountered within those groups. The analysis for daylight 

and places, was significant for all places both on weekend and weekdays. There are 3 daylight types 

on weekdays, Type 1 has more daylight, Type 2 is the one with more night time and Type 3 is an 

almost even mix of day and night (Figure 13). Type 1 has less time spent at home than Type 2, 565 

however we are unsure why the time expenditure at home is the lowest for Type 3. There is less 

shopping and socialising in the group with more night hours (Type 2). On weekends (Figure 13 B).  

more time is spent at home under brighter conditions (Type 2), while under lower light conditions 

(Type 1) more time is spent shopping and socialising.  
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socialising). Differences were observed between the time expenditure on different travel modes and 600 

places across the day, week and between genders.  The analysis of the entropy index (EI) showed a 

high diversity of movement modes in the early morning on weekdays and weekends, with a positive 

shift of three hours on weekends.  Horanont et al. (2013) found the same entropy pattern, despite 

analysing weekdays and weekends together, when using GPS traces from mobile phone to explore 

the effects of weather on daily routine. We found that during weekdays there is a drop with 605 

subsequent rise on the EI, which does not exist on weekends because the EI is higher from 10 am 

throughout the afternoon.  Horanont et al. (2013) found a very similar variation for specific extreme 

weather conditions, according to meteorological information provided by the authors, which the 

authors attributed to the weather conditions. However, we believe it is related to similar differences to 

the ones we found between weekdays and weekend, and that it is more likely that the extreme 610 

weather events reported by Horanont et al. (2013) took place on a weekend. Similarly to Ryan et al. 

(2010), we found that people have more varied activities on weekends, which was shown by the 

highest EI on Sunday and Saturday. This happens because people have more scope for freedom of 

action on weekends, in contrast to the external controls imposed on weekdays by work and school 

(Ryan et al., 2010). 615 

 The average time spent (AVTS) walking did not change substantially across weekdays and 

between genders (Figure 6). The AVTS at home varied throughout the week, being the highest on 

Sunday and lowest on Wednesday for both genders (dashed orange lines on Figure 6). The low 

values on Wednesday might be related to the higher average time spend socializing in comparison to 

other days of the week (dashed red lines on Figure 6).  Moreover, women seem to spend more time 620 

socializing and to concentrate social activities on Tuesdays, Wednesdays and Saturdays; while men 

socialise very little on Tuesdays and keep a steady, but lower than women, average from Wednesday 

to Monday. 

Similarly to Stover et al. 2012, we found that the wind strength and direction exerted considerable 

influence on weekends on the use of public transport and vehicles, which is possibly related to traffic 625 

restrictions at the Tay and Forth bridges (See dashed ellipses in Figure 1) under high winds, which 

are more likely to come from NW, SW and NE in the Central Belt of Scotland. There were at least ten 

occasions during our data collection during which the bridges were either closed or had restrictions on 
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the type of vehicle and speed limits because of high winds (Traffic Scotland '@trafficscotland' 2017). It 

is possible that these restrictions are reflected in our findings during these windy periods, since the 630 

participants in our study were mostly commuters from Fife to Edinburgh or Dundee (Sila-Nowicka et al. 

2016) and therefore typically have to cross one of these two bridges daily.   

As opposed to what Guo et al. (2007) found in Chicago, we found that rain during the weekend has 

no key role on travel modes, but heavy rain decreases the use of public transport during the week. 

This could be explained by the fact that discretionary passengers are more affected by rain than 635 

commuters (Changnon, 1996), i.e., people are obliged to go out for their daily duties on weekdays 

and therefore might adapt their travel modes, while on weekends they can opt to stay at home under 

heavy rain. In addition, similarly to  what Chen et al. (2017) found when studying the impact of rainfall 

on taxi use, we also found a trend of more vehicular use under rainy weather, and less walking in 

heavier rain.  640 

We found that daylight length seems to factor into mobility decisions differently on weekends in 

comparison to weekdays. During the week, less daylight hours were linked to less walking and less 

public transport use, but more vehicular use; on weekends the same daylight conditions resulted in 

the opposite pattern It is not clear why this may be. In addition, daylight seems to play a major role on 

time expenditure at certain places; weekdays with more dark hours are more likely to be spent at 645 

home, while more time is spent at home on weekends under more daylight hours. Temperature 

increase seems to have a positive effect on walking (Cools, Moons, Creemers, & Wets, 2010; Tucker 

& Gilliland, 2007), which makes sense in Scotland because the temperate and oceanic climate  gives 

people more opportunities for outdoor activities  during summer. It is likely that in places with more 

tropical climates the temperature effect would be different, in the USA for example,  areas with a more 650 

tropical weather showed a decline in physical activity on hotter months, while areas with cold weather 

showed an increase on warmer months (Tucker & Gilliland, 2007). 

The application of multi-channel sequence analysis on semantic trajectories was efficient for 

identification of movement patterns. Even though our method does not use the exact coordinates, the 

multi-channel sequences keep the spatial component through places and travel modes, which allows 655 

us to link movement patterns to environmental conditions and identify responses. Our methodology 

works both with categorical and numerical contextual data, considers the change of context between 

two timestamps, is able to handle multiple contextual variables and their interactions at once, and can 
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deal with contextual data in any the form. These capabilities make it more able to deal with complex 

contextual situations than previous methodologies, such as those established by Sharif & Alesheikh 660 

(2017b), De Groeve et al. (2016) and Buchin et al (2014).  

MCSA clusters are useful for simplifying the increasingly large and complex tracking datasets, the 

creation of typologies allows the generalization and reduction of thousands of trajectories to a few 

representative trajectories. In addition, MCSA can help with the recent increasing demand for 

Context-Aware methods, as it is able to perform similarity analysis taking context into account and 665 

also allows for visualization of movement patterns and contextual variables simultaneously along the 

time axis. Another advantage here is that the time units are flexible, i.e., the sequences can be 

arranged at daily, weekly, monthly or hourly scale, which allows for multi-scale detection of movement 

patterns.  

To summarise, multi-channel sequence analysis represents a new analysis tool for movement data 670 

where contextual information can now be readily combined with detailed tracking datasets. The main 

advantage of this approach is that it also is possible to consider as many channels (variables) as 

desired at once. It is common in movement research to simultaneously consider multiple 

environmental variables, which makes MCSA particularly relevant for studying human mobility, traffic, 

transportation and wildlife ecology; areas in which movement behaviour may be contextualised by 675 

other dynamic environmental variables such as air temperature, vegetation indices, humidity, wind 

speed, air pollution and snow coverage. We believe that MCSA can help performing Context-Aware 

Similarity Analysis (CASA), which improves our understanding of how movement is affected by the 

combination of multiple contextual variables. In addition, MCSA is a good approach to summarise 

large movement dataset into clusters expressing specific typologies, i.e., a group of similar movement 680 

patterns.  
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APPENDIX 

 

Comfort, humidity and temperature 

Figure 14 shows the clusters for MCSA on comfort on weekdays (Figure 14A) and weekends 890 

(Figure 14B). The top boxplot shows the distribution of the GPS active time spent under different 

comfort conditions. The boxplot panel is divided into two types, which refer to the clusters found by 

the MCSA analysis and for which the distribution of the GPS active time in different travel modes is 

shown on the boxplot panel at the bottom. This boxplot shows the difference between groups with 

different distribution of time spent on travel modes, while the remaining panels describe the thermal 895 

comfort conditions encountered within those groups. The only significant difference for comfort and 

travel modes happened on weekdays for the average time spent in vehicles under different comfort 

conditions (Figure 14 Appendix). Slightly uncomfortable conditions (Type 2) were associated with 

significant higher use of vehicles, less walking and less use of public transport. For the weekend 

participants were split into one large group and an individual, therefore limiting interpretation. There 900 

were no significant differences or meaningful visual patterns from the average time expenditure on 

different places both on weekdays and weekends under different comfort levels (Figure 15 appendix). 

Figure 16 shows the clusters for MCSA on relative humidity on weekdays (Figure 16A) and 

weekends (Figure 16B). The top boxplot shows the distribution of the GPS active time spent under 

different relative humidity conditions. The boxplot panel is divided into types, which refer to the 905 

clusters found by the MCSA analysis and for which the distribution of the GPS active time in different 

travel modes is shown on the boxplot panel at the bottom. This boxplot shows the difference between 

groups with different distribution of time spent on travel modes, while the remaining panels describe 

the meteorological conditions encountered within those groups. The only significant difference for 

relative humidity and travel modes happened on weekdays on the average time spent walking under 910 

different relative humidity (Figure 16 Appendix). It seems that more humid conditions (Type 1) were 

associated with a significantly higher time expenditure walking. On weekends the time spent in public 

transport is visually higher when humidity is lower (Type 2).  

Figure 17 shows the clusters for MCSA relative humidity on weekdays (Figure 17A) and weekends 

(Figure 17B). The top boxplot shows the distribution of the GPS active time spent under different 915 
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relative humidity conditions. The boxplot panel is divided into two types, which refer to the two 

clusters found by the MCSA analysis and for which the distribution of the GPS active time in different 

activities is shown on the boxplot panel at the bottom. This boxplot shows the difference between 

groups with different distribution of time spent on activities, while the remaining panels describe the 

meteorological conditions encountered within those groups. For the analysis on places (Figure 17 920 

Appendix), there were significant differences on time spent at home and socialising on the weekend.  

Also, when relative humidity is lower (Type 2), more time is spent at home and less time is spent 

socialising, while it goes the other way around for Type 1, for which the relative humidity is higher. We 

believe that these patterns are more related to rain than to relative humidity, as higher humidity is 

closely related to probability of rain. 925 

Figure 18 shows the clusters for MCSA on temperature on weekdays (Figure 18A) and weekends 

(Figure 18B). The top boxplot shows the distribution of the GPS active time spent under different 

temperature conditions. The boxplot panel is divided into two types, which refer to the clusters found 

by the MCSA analysis and for which the distribution of the GPS active time in different travel modes is 

shown on the boxplot panel at the bottom. This boxplot shows the difference between groups with 930 

different distribution of time spent on travel modes, while the remaining panels describe the 

meteorological conditions encountered within those groups. For temperature and travel modes the 

only significant differences happened on weekdays for the average time spent walking and on 

weekends on public transport (Figure 18 Appendix). Higher temperatures on weekdays (Type 1) led 

to a significant higher time expenditure walking, and slightly less time spent on public transport under 935 

temperatures close to the average historical maximum (Type 2). On the other hand, extremely 

elevated temperatures (Type 1) show more time spent on public transport. Types 3, 4 and 5 had a low 

number of trajectories (n<9) assigned to them and were considered outliers on which we cannot not 

draw conclusions. 
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