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Abstract

Background: Accurate predictions of species distributions are essential for climate change impact assessments. However
the standard practice of using long-term climate averages to train species distribution models might mute important
temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not
been assessed. We hypothesized that short-term weather associated with the time a species was recorded should be
superior to long-term climate measures for predicting distributions of mobile species.

Methodology: We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical
savannas (ATS) using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with
variable movement patterns and a high incidence of nomadism. We developed ‘‘weather’’ models by relating climatic
variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality) from the three month, six month and
one year period preceding each bird record over a 58 year period (1950–2008). These weather models were compared
against models built using long-term (30 year) averages of the same climatic variables.

Conclusions: Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging,
nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified
fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-
estimate availability of suitable habitat and species’ climatic tolerances, masking species potential vulnerability to climate
change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-
appropriate temporal scales, improves understanding of species distributions.
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Introduction

Impacts of climate change on species are frequently predicted

by projecting species distribution models (SDM) onto future

climate change scenarios. Meaningful predictions of species’

distributions require SDM to closely reflect a species’ environ-

mental limits and requirements; that they reflect the species’

ecological niche [1]. Traditionally, SDM predict the geographic

distribution of suitable climatic space for a species by relating

species occurrence records to long-term average climate variables.

Such models are generally a good representation of a species’

broad range [2], as species are closely connected to climatic

conditions through exchanges of energy and mass [3,4]. The

standard approach to SDM incorporates climate variables such as

mean annual temperature and annual precipitation averaged over

periods of c. 30 years [5]. SDM generated for climate change

predictions commonly use a baseline period of 1961–1991 [6,7,8].

The use of long-term climate averages in SDM has an ecological

basis when modelling sessile or sedentary organisms such as plants

[9,10]. However, the application of SDM to more mobile species

requires investigation of the appropriateness of long-term climate

averages as a one-size-fits-all approach. A small number of studies

have accounted for the dynamic nature of species distributions by

including climatic variables corresponding to migratory species’

arrival and breeding times [11], and other relevant breeding times

[12], based on a priori knowledge of species movements. However,

for mobile species with less predictable movement patterns, a new

approach is needed. The temporal scales important to a mobile

individual’s location are likely to be much shorter than a 30 year

average [13,14]; therefore short-term weather may be more

appropriate.

Models tailored to incorporate organism-specific temporal

scales are important when modelling species which respond to

fluctuations in resource availability following short-term weather

events. Weather (defined as the conditions over a short period, for

this study it represents a period of 12 months or less) and climate

(long-term average, .20 years) both play a large role in the

movement of mobile species in search of food and breeding

opportunities [15,16,17]. However, weather might play a

proportionally greater role in movement patterns in regions

characterized by high variability in conditions, particularly where

rainfall is both variable and limiting [13]. Variable rainfall
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prevents species from relying on regular seasonal migrations to

find suitable conditions, instead favouring flexible resource-

tracking behaviours [18]. Resource tracking is a common trait

among birds found within the tropical savannas of northern

Australia [19,20], a region characterised by highly seasonal

rainfall, and variable inter-annual weather patterns [21,22]. The

life history of many species is linked with the pulses of nectar, fruit

and insect abundance following rainfall events [14,17,19,20].

In addition to climatic variability, Australian land birds are not

subject to severe winter conditions like those experienced by their

northern hemisphere counterparts [18]. The relatively benign

winters and stochastic weather patterns within Australia shift the

balance in a hypothetical cost-benefit trade off between staying

versus relocating from year to year [13], resulting in complex local

and continental scale migratory patterns [23]. The flexible nature

of movement patterns of Australian birds is reflected in the array

of different movement classifications found in the literature

[23,24,25,26,27]. Up to 19 distinct movement patterns have been

identified, and many species show variation within populations

and across years [23]. Four main categories are consistently used,

despite the blurred boundaries between the groupings [18]:

migration is the predictable seasonal movement from a breeding

ground to a wintering ground and return within the year; nomadism

is wandering to wherever conditions are suitable, with yearly

variations in routes and distances taken; sedentary species remain in

the same locality throughout the year; and partial migration occurs

when some individuals within a species migrate and others are

sedentary.

We hypothesise that SDM built using short-term weather

variables (weather models) will outperform models built using

long-term climate averages (climate models), and this improve-

ment will be strongest for species responding to stochastic weather

events. Species more responsive to stochastic weather events are

generally nomadic, and in particular those with large distributions

covering many biogeographic regions, moving in search of suitable

conditions. In particular, the arid zone faces substantial boom-bust

cycles [28], so species associated with arid zones are likely to be

particularly responsive to weather patterns. Distributions of 157

bird species were modelled using means and seasonality of

temperature and precipitation representing either weather (three,

six and twelve month values immediately preceding date of a bird

sighting) or climate (30 year average representing 1961–1990). We

tested whether a species’ range size, biogeographic affiliation or

movement strategy influenced the relative importance of weather

vs. climate variables in defining a species distribution. Range sizes

were defined as small (see methods for details), medium or large,

and biogeographic affiliations were temperate, tropical and arid

[29]. A further affiliation, ‘‘ubiquitous’’, was included to account

for species encompassing two or more zones. Species were

classified into a movement category: sedentary, nomadic and

partially migratory; and a category combining species which are

both sedentary and nomadic. Very few species could be classified

as true migrants within our study area (see methods) so were not

included in this study. Model performance (defined as the models’

discriminancy and consistency [30]) was evaluated by the area

under the receiver operator curve (AUC): an AUC score of 1 is a

perfect fit of the data, 0.5 is no better than random [5,31].

Results

Our results show that short-term weather provides a significant

improvement in modelling bird distributions. Overall, weather

models outperformed climate models, with a mean improvement

in the model test statistic AUC of 0.026 (Wilcoxon signed rank test

p,0.00001). Model fit differed between climate and weather

models depending on range size, biogeographic region and

movement (Figure 1). AUC increased more for wide ranging

species than for either small or medium-ranging species (Kruskal-

Wallis ANOVA p,0.0001). When comparing AUC values for

species across their biogeographic zones, weather models outper-

formed climate models to a greater extent for arid species, followed

by ubiquitous and tropical species (Kruskal-Wallis ANOVA,

p,0.0001). Weather models outperformed climate for species in

three of the four biogeographic zones (Figure 1). Temperate

species showed a mean negative AUC difference; therefore climate

models on average slightly outperformed the weather models for

these species. The change in AUC across movement categories

identified that nomadic species improved the most, followed by

sedentary and then partially migratory species (Kruskal-Wallis

ANOVA, p = 0.0001). Predictably, the group of species which are

Figure 1. The pairwise differences in AUC values for all species between weather and climate models. Boxplots (mean 625th and 75th

percentiles) show species are grouped by range size biogeographic region and movement patterns (see methods for description of classes). In most
cases the change is positive – showing an improvement of AUC for weather models when compared with the climate models.
doi:10.1371/journal.pone.0013569.g001

Weather Distribution Models
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both sedentary and nomadic sat in between the purely nomadic

and purely sedentary species.

Weather models give a more refined understanding of the

extent and location of suitable conditions both seasonally and

inter-annually, when compared with the distributions generated

using long-term climate averages. An example of monthly

fluctuations is shown in Figure 2 for two birds, the brown songlark

(Cincloramphus cruralis) and the red-chested button-quail (Turnix

pyrrhothorax). The weather models demonstrate substantial fluctu-

ations in the distribution of suitable habitat available across

months, compared to predictions based on long-term climate

averages. The difference in area of suitable habitat for each species

as predicted by weather and climate models changes significantly

when comparing range sizes (Kruskal-Wallis ANOVA,

p = 0.0001), biogeographic affiliations (p = 0.0001) and movement

categories (p = 0.0002) (Figure 3A).

The extent of fluctuation (standard deviation) of suitable

conditions when projected onto each month from 1950 – 2008

also varies significantly across these groups (Figure 3B). Species

with small ranges show little difference between climate and

weather area predictions and little fluctuation in area across

months. Species with medium ranges show the largest fluctuations,

and geographically widespread species show the biggest difference

in predicted area yet the least fluctuations across months (Kruskal-

Wallis ANOVA, p,0.0001). When species were grouped by

biogeographic zones, climate and weather models differed the

most for arid and ubiquitous species, but the least fluctuations

month to month for weather model predictions (p = 0.0076). There

was no difference in range fluctuations for species in different

movement categories (p = 0.4612) It is therefore the wide-ranging,

ubiquitous and arid species that have the most marked difference

between climate and weather area predictions, the weather models

predicting less area, and the least fluctuation across months. By

contrast, suitable habitat area predicted for narrow-ranging,

temperate and tropical species is quite similar for both weather

and climate models.

Altering the temporal scale of the model variables from 30 year

to six month and one year periods changes the relative

contributions of the variables. Precipitation contributed signifi-

cantly more to climate models (Wilcoxon matched pairs test,

p = 0.003), and precipitation seasonality contributed significantly

more to weather models (p,0.001) (Figure 4). Temperature was

on average the most influential variable across for both climate

and weather models, followed by temperature seasonality,

precipitation and then precipitation seasonality. We examined

the differences in variable contribution to models depending on a

species’ life history, and how this changed with temporal scale. All

variables contributed differently for species across biogeographic

affiliations to the p#0.01 level (Kruskal-Wallis ANOVA; Figure

S1). For the other life history characteristics, results were varied.

The contribution of temperature differed significantly according to

range size (climate models: p = 0.061; weather models: p = 0.019),

and the contribution of precipitation differed according to

movement (climate models: p = 0.01; weather models: p = 0.024).

Examination of variable contribution to models reveals

substantial differences for species within each biogeographic zone

(Table 1). Mean temperature contributed most to climate models

for temperate, arid, and ubiquitous species, whereas temperature

seasonality was the most influential for the weather models for

species within these zones. The reverse was true for tropical

species, as climate models were most influenced by temperature

seasonality, and mean temperature was the highest contributor for

weather models. The difference in variable contribution for

models of species across biogeographic zone was significant for 12

out of 16 cases. As ‘‘seasonality’’ refers to the coefficient of

variation for the time period, it is evident that variability in

temperature and rainfall are more influential upon bird distribu-

tions over short time periods.

Figure 2. The predicted range for two species determined by the climate model and the weather model. The ranges are shown for
brown songlark (Cincloramphus cruralis) and the red-chested button-quail (Turnix pyrrhothorax). For illustration purposes, the weather model was
projected onto 3 consecutive months to illustrate the changes in the distribution of suitable area depending on the weather conditions for a
particular month. The probability distribution is shown for each particular month, with grey unsuitable, and increasing suitability shown from yellow
to orange (most suitable).
doi:10.1371/journal.pone.0013569.g002

Weather Distribution Models
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Discussion

Successful species distribution models (SDM) require appro-

priate temporal correspondence between species records and

environmental variables [31,32]. This correspondence is muted

by using long-term climate averages for vagile species, reducing

the ability to produce accurate models [9,33,34]. Here we

demonstrate a technique that uses an organism-relevant

temporal scale to model species. The approach more precisely

reflects the scope and variability of species’ environmental

requirements and habitat suitability. We find that weather

models largely outperform climate models, and this improvement

is most apparent for wide-ranging, nomadic and desert species,

and species that traverse multiple biogeographic zones. These

species are likely to be the most responsive to weather events and

corresponding resource fluctuations [35]. Interestingly, weather

models also outperformed climate models for sedentary species.

Sedentary species may undertake local movements in response to

weather events [14], and their distribution might be limited by

climatic extremes [10], two factors that are better accounted for

with weather models than climate. Extreme conditions, for

example a period of extreme high temperatures coupled with

rainfall deficits, may limit species directly due to their own

biological threshold [10,36] or indirectly by limiting food or

other habitat resources [37].

Weather models did not outperform climate models or result in

larger predicted areas for species with smaller ranges or for

temperate species. This suggests that these species’ ranges fluctuate

less in the short-term; in other words, these species are not tracking

resources on this temporal scale and are therefore better explained

by long-term averages. Temperate and more restricted species are

likely to be adapted to local conditions [16], possibly by diet

switching rather than relocating when resource availability

changes [14,38]. Evidence for diet flexibility has been shown for

small-range species in both tropical [39] and temperate Australia

[40].

Climate models predicted a greater amount of suitable space

than weather models for most species. The larger distributions

predicted by climate models result in an over-estimate of the

availability of suitable habitat. In contrast, the weather models

refine the suitability criteria of an area by incorporating the

temporal component to produce smaller predicted areas. Weather

models identify the shifting environmental suitability within the

species’ broader climatic range, and that suitability shifts across

time. Climate models have the assumption that a location is always

suitable for a species if the species was recorded there. However

this assumption is invalid for species that undertake large

movements to find suitable conditions because of vast temporal

fluctuation in conditions [41]. Climate models mask the highly

fragmented distributions of key refugial habitats during a resource

Figure 3. Area predictions for climate and weather models across range sizes biogeographic zones, and movement categories. (A)
The difference in predicted area (mean 625th and 75th percentiles). (B) The standard deviation of area for weather models projected onto each
month for the period 1950 – 2008, compared across range size biogeographic zone, and movement categories.
doi:10.1371/journal.pone.0013569.g003

Weather Distribution Models
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nadir, leading to an inflated understanding of a species’ resistance

to extinction. This over-estimation of species’ ranges leads to

inaccurate assessments of species conservation status, vulnerability

to climate change and the degree of protection existing con-

servation reserves provide.

Robust predictions of the impacts of climate change on species

require SDM that account for temporal fluctuations in habitat

suitability. Climate change predictions for northern Australia

include increasing climatic variability with greater frequency and

severity of extreme events [42,43], and increase in drought

conditions due to increase in temperature, decrease in rainfall and

increased evapotranspiration [44]. Tropical savanna bird species

have adapted to highly variable conditions through plastic

migratory and nomadic movement behaviour [18]. However,

flexible movement behaviour relies on patches of suitable

conditions being within reasonable proximity, because movement

has inherent risks and food supplies must be found before energy

stores drop critically low [45,46]. Increased climatic variability in

combination with increased drought conditions could result in

areas of suitable conditions becoming further apart in space, or

staying unsuitable for longer periods of time. Vagile species may

therefore need to move more frequently to find new suitable

conditions. While predictions have been dire for species with

narrow niche requirements, such as those relying on montane

microclimates [47,48], wide-ranging species have attracted much

less concern. However, species undertaking large-scale movements

for specific niche requirements may be vulnerable to increased

weather variability. This may result in suitable conditions

becoming more energetically expensive to find [45]. Highly

dispersive land birds, such as specialist nectarivores the regent

honeyeater (Xanthomyza phrygia) and the swift parrot (Lathamus

discolour) have shown declines due to anthropogenic changes in the

landscape [14,41,49]. Increased variability may lead to other

vagile species, such as those in tropical savannas, showing similar

declines. Changing patterns of climatic variation are likely to be

the crucial element of species persistence, especially in highly

variable areas. Therefore, modelling techniques that do not

incorporate the short-term weather fluctuations are likely to

underestimate climate change implications.

Examining the relative contributions of the different variables to

the model can help tease out what is most influential to species

distributions. Temperature is known to have a great influence on

where a species can occur due to thermal constraints on energetics

[3]. It is interesting to note that temperature seasonality, the

coefficient of variation of temperature across a given time period,

was also highly influential to species’ ranges. This highlights that it

is both the mean temperature and the variations in temperature

that are highly influential to species’ ranges. As expected, the

contribution of each variable differs across biogeographic

affiliations, as the regions themselves differ climatically.

Including temporal variations in habitat suitability of mobile

species is essential for understanding a species’ actual conservation

status, and how well the species is protected by conservation reserves.

Mobile species present both monitoring and conservation challenges

[50], as suitable habitat may need to be retained in geographically

disjointed locations [33,50,51,52]. Maintenance of suitable habitat

for mobile species will require an extensive reserve network in

Figure 4. The contribution of different variables to the weather
and climate models. mean temperature, temperature seasonality,
precipitation and precipitation seasonality(mean 625th and 75th

percentiles). Bars representing weather are shown in grey, while bars
representing climate are white.
doi:10.1371/journal.pone.0013569.g004

Weather Distribution Models
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conjunction with conservation-compatible non-reserve land man-

agement to accommodate species that track suitable conditions

[50,53]. Conservation planning needs to incorporate dynamic

processes, particularly shifting species distributions [54,55]. This is

evident for northern Australia [50], however it is also true for the

conservation of vagile species in other parts of the world including

the northern hemisphere [56]. Our weather modelling technique is a

tool for greater understanding of species range dynamics and

therefore vital to conservation planning for mobile species.

The need to incorporate specific climatic conditions relevant to

species in order to accurately model distributions is increasingly

being recognised [11]. Both spatial [57,58] and temporal

heterogeneity [11,12] are being incorporated into models, but

accounting for interannual climatic variability is still largely

lacking. Accounting for this variability is likely to be important

to a range of taxa. Studies have shown that species across

taxonomic groups: from plants, insects, fish, amphibians, reptiles,

mammals and birds; have all shown shifts in distributions in the

direction expected as a response to climate change, albeit at

different temporal scales [59]. This suggests that species’ ranges

are responding to fluctuations in climate; therefore accounting for

this in SDM is important. Birds are an extreme example of

mobility compared to other terrestrial species due to their lower

costs of transport [3], however many marine species (particularly

pelagic species, and including marine mammals) are highly

dispersive [60] and correlating their occurrences to their physical

environment at short-term intervals is likely to greatly increase

model performance and understanding of their distributions.

Mobile mammals such as ungulates undertake movements in

response to rainfall fluctuations [61], and other volant and

dispersive species, such as bats and some invertebrates, are likely

to be responsive to weather variation [50,62]. While the benefits of

incorporating short-term weather in SDM may be intuitive for

highly dispersive species, we have shown that the weather models

also outperformed the climate models for sedentary bird species,

suggesting that our weather modelling technique could be

beneficial for species more affected by short-term weather

fluctuations and variability than long-term averages. This may

be particularly true of species with short generation times.

Our results show that understanding how species respond to

weather conditions over short- and medium-term temporal scales

is essential for quantifying species climatic limits. It is also

important for understanding species’ responses to rapid climate

change and understanding their conservation status. Modellers

should consider temporal scales appropriate to their organism

when generating SDM and making climate change predictions.

Materials and Methods

Over four million occurrence records of 157 Australian tropical

savanna bird species were collated across the period 1950 to 2008

from the Birds Australia Atlas [63,64], the Queensland Govern-

mental atlas WildNet [65] and CSIRO (protocol as in [66]). The

data were spread across the time period (Figure S2). Species’ range

sizes were defined as either small (less than two million square

kilometres; n = 62), medium (between two and four million square

kilometres; n = 53), and large (greater than four million square

kilometres; n = 42). Species range sizes were those reported in the

New Atlas of Australian birds [64] and these categories appeared

to adequately represent the spread of species’ ranges. Species were

categorised by movement life history (nomadic (n = 25), sedentary

(n = 54), partially migratory (n = 59), and species that were both

nomadic and sedentary (n = 19)) according to the literature

[15,67,68,69,70,71,72]. The study focused on bird species using

Table 1. The differences in the variable contributions (mean temperature, temperature seasonality, mean precipitation,
precipitation seasonality) to climate and weather models for species across biogeographic zones.

Zone Variable Climate Mean Weather Mean t-value df p

Tropical Mean Temp 28.12 52.25 26.73 106 0.000

Temp Season 48.01 24.14 6.14 106 0.000

Precipitation 20.46 14.58 1.83 106 0.070

Precip Season 3.42 9.03 24.80 106 0.000

Temperate Mean Temp 52.23 35.00 3.81 66 0.000

Temp Season 11.42 30.35 26.30 66 0.000

Precipitation 29.24 20.81 2.22 66 0.030

Precip Season 7.11 13.84 24.06 66 0.000

Arid Mean Temp 40.02 23.47 2.86 30 0.008

Temp Season 39.08 43.76 20.70 30 0.487

Precipitation 15.57 25.81 22.15 30 0.040

Precip Season 5.33 6.97 21.18 30 0.248

Ubiquitous Mean Temp 47.81 36.58 2.38 104 0.019

Temp Season 23.00 37.85 24.17 104 0.000

Precipitation 21.36 15.53 2.09 104 0.039

Precip Season 7.84 10.05 21.38 104 0.169

The bold values in the climate and weather mean columns are the higher value; bold values in the p column indicate a significant difference at the 0.05 level.
doi:10.1371/journal.pone.0013569.t001

Weather Distribution Models
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the savannas, therefore excluded waterbirds and rainforest species.

Species with inadequate data coverage were excluded from the

analyses. Due to the blurred boundaries between movement

categories [25,38,73], we only used species that could be reliably

characterized as nomadic, sedentary, both nomadic and sedentary,

or partially migratory in the movement comparisons; very few

species within this assemblage could be classified as true migrants

and therefore were not the focus of this study. All species in the

study occur within Australian tropical savannas, however most

species also occur over large areas outside this region. Species were

therefore also categorized by which biogeographic affiliation best

described their overall range, based on those defined by [29]

(original names in parentheses): tropical (Torresian), for distribu-

tions across northern Australia (n = 54); temperate (Bassian), for

those down the eastern and southern coastal woodlands and

forested areas (n = 34); arid (Eyrean), for those predominantly in

arid inland Australia (n = 16); and ubiquitous for species that

encompassed two or more of the above categories (n = 53).

Daily precipitation and temperature minima and maxima from

1950 until 2008 at a 0.05u grid scale were accessed from the

Australian Water Availability Project (AWAP) [74,75]. From this,

we calculated annual mean temperature, temperature seasonality,

annual precipitation and precipitation seasonality over the

baseline period of 1961 – 1990 as our climate data. Temperature

and precipitation seasonalities were the coefficient of variation

over the given time period. Our weather data were created by

calculating the above variables for three, six, nine, twelve months;

and three, six, nine years previous to each month that a bird was

recorded within the period 1950 to 2008. We reduced the number

of variables to minimize the chance of over-fitting the model. We

removed variables three, six and nine years as they were all highly

correlated with one year (see Table S1 A). We also removed nine

months for all variables and three months for mean temperature

and precipitation due to the correlations between the months (see

Table S1 B). Although the remaining variables (six months and

one year for all variables, and three months for temperature and

rainfall seasonalities) still had some high correlations, the SDM

algorithm can handle such correlation [76].

Species distribution models were run using the presence-only

modelling program Maxent [31]. Maxent uses species presence

records to statistically relate species occurrence to environmental

variables on the principle of maximum entropy. The climate data

contained unique combinations of latitude and longitude for each

species and the corresponding values for the four climate variables.

The weather data files consisted of each unique combination of

month, year, latitude and longitude of each bird sighting, and the

corresponding weather or climate variables for each relevant time

period (three, six and twelve months, depending on the variable). All

default settings were used except for background point allocation.

Background points (pseudo-absences) can be selected in a number of

ways; here we used a target group background [77]. By using the

locations and dates of all bird records (‘target group’) as our

background points, it is assumed that any sampling bias (spatially or

temporally) in our occurrence records for a single species can also be

observed in our background points; in effect cancelling out the effect of

any spatial or temporal sampling bias in the modelling exercise. The

models were projected onto spatial surfaces consisting of the model

variables across Australia for each calendar month between 1950 and

2008. AUC is potentially influenced by the number of model

variables, as increasing the number of variables can lead to an over-

fitted model. We investigated whether the higher AUC of our weather

models was due to the greater number of variables than in our climate

models by running our weather models for each species with only four

weather variables. The proportional increase in AUC of the four-

variable weather model to the climate model, compared with the

AUC increase of the weather model to the climate model, was 0.83

(60.11 SE). Therefore on average, 83% of the AUC improvement

was due to the weather models having a better fit of the data, and 17%

of the increase in AUC was due to the increased number of variables.

Threshold values based on balancing training omission rate,

predicted area and logistic threshold value were incorporated to

convert the Maxent default probability distribution to a binary

presence/absence [78]. This provided realistic predictions of

species distributions [79,80]. The threshold was read in from the

Maxent Results output file, so that every pixel in the ascii output

above the threshold was counted as ‘‘presence’’, and every pixel

below the threshold was scored as ‘‘absence’’. The mean and

standard deviation of suitable area (measured as the number of 5u
cells, which is roughly equivalent to 58,000 km2) were then

calculated for each species. We used Wilcoxon signed rank tests to

compare model performance of weather vs. climate models, as this

method is widely used for comparing AUCs in similar studies

[6,10,12]. Wilcoxon signed rank tests were also used for

comparing the difference in variable contribution between

weather and climate models. When comparing AUCs, area, or

variable contributions of weather and climate models against a

grouping variable, we used the Kruskal-Wallis ANOVA. We used

0.05 as our alpha-level significance value. Analyses were

conducted using R version 2.9.0 (www.r-project.org) and Statistica

version 8.

Supporting Information

Figure S1 The contribution of the different variables to the

weather and climate models. The contribution of the variables

depending on range size, biogeographic affiliation and movement

classification (mean 625th and 75th percentiles). Bars representing

weather are shown in grey, while bars representing climate are

white.

Found at: doi:10.1371/journal.pone.0013569.s001 (2.68 MB

TIF)

Figure S2 Histogram of bird records across the time period of

1950 to recent.

Found at: doi:10.1371/journal.pone.0013569.s002 (0.69 MB

TIF)
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Found at: doi:10.1371/journal.pone.0013569.s003 (0.01 MB

DOCX)
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