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ABSTRACT

Real-time ground-clutter identification and subsequent filtering of clutter-contaminated data is addressed

in this two-part paper. Part I focuses on the identification, modeling, and simulation of S-band ground-clutter

echo. A new clutter identification parameter, clutter phase alignment (CPA), is presented. CPA is a measure

primarily of the phase variability of the in-phase and quadrature-phase time series samples for a given radar

resolution volume. CPA is also a function of amplitude variability of the time series. It is shown that CPA is

an excellent discriminator of ground clutter versus precipitation echoes. A typically used weather model,

time series simulator is shown to inadequately describe experimentally observed CPA. Thus, a new technique

for the simulation of ground-clutter echo is developed that better predicts the experimentally observed CPA.

Experimental data from the Denver Next GenerationWeather Radar (NEXRAD) at the Denver, Colorado,

Front Range Airport (KFTG), and NCAR’s S-band dual-polarization Doppler radar (S-Pol) are used to

illustrate CPA. In Part II, CPA is used in a fuzzy logic algorithm for improved clutter identification.

1. Introduction

Ground-clutter characteristics have been studied

extensively and excellent summaries and discussion of

clutter and clutter statistics are given by Long (2001)

and Billingsley (2002). Ground-clutter signal and sta-

tistics vary widely since ground-clutter targets are very

diverse: plants, trees, bare ground, rocks, buildings,

other man-made structures, and ground snow. One way

that has been used to classify and characterize ground

clutter is via the amplitude statistics of clutter that are

typically reported as fitting Rayleigh, Weibull, Ricean,

or lognormal distributions (Long 2001). The Weibull

and Ricean distributions include Rayleigh as a subclass.

Ground-clutter echo fluctuations can be characterized

either temporally or spatially. Temporal statistics result

from data gathered at a fixed azimuth, elevation, and

range (i.e., from a single resolution volume). Such

amplitude statistics are usually reported as Ricean,

which includes Rayleigh in one limit and more peaked

distributions in the other limit (Long 2001). Ricean

distributions result from the vector sum of one constant

dominant scatterer surrounded by other Rayleigh

fluctuating echoes (Norton et al. 1955). Limit here re-

fers to the two extremes of the Ricean distribution

parameter ‘‘m,’’ which controls the ratio of the constant

power to the average power of the surrounding fluctu-

ating (Rayleigh) component. Spatial amplitude statis-

tics, however, have typically been reported as being

Weibull distributed (Booth 1969; Sekine andMao 1990;

Billingsley and Larrabee 1991; Long 2001), which has

broader echo amplitude distributions than prescribed

by Rayleigh. For radar amplitude clutter statistics that

result from both temporal and spatial effects, compound

distribution models have been used. Two such distri-

butions are a Rayleigh distribution modulated by a

Weibull distribution (Simkins 1984) and the K distri-

bution (Jakeman and Pusey 1976; Jao 1984). For typical

S-band weather radar scanning strategies examined

here, temporal amplitude statistics are more narrowly

distributed, while spatial statistics are typically more

broadly distributed. However, for the practical identi-

fication of clutter, the spatial variability of the inte-

grated mean power (i.e., reflectivity) is much more

relevant than the form of the amplitude distribution.

Two of the parameters used in the fuzzy logic clutter

identification algorithm discussed in Hubbert et al.

(2009, hereafter Part II) are measures of the clutter echo

power spatial variability.
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Here in Part I, a new parameter for identifying clut-

ter, called the clutter phase alignment (CPA), is in-

troduced and studied. In contrast to previous clutter

identification parameters that were a measure of the

variability of just the amplitude of the return time series

for a radar resolution volume (Schaffner 1975; Geotis

and Silver 1976), CPA is a function of not only the

amplitudes of the time series but also, more impor-

tantly, the phase. In short, CPA is a measure of tem-

poral phase fluctuations of echoes over typical data

collection times for a single radar resolution volume.

Thus, closely related to CPA is the velocity and spec-

trum width of the signal (see Bringi and Chandrasekar

2001, for definitions of mean velocity and spectrum

width of weather signals). S-band signals with absolute

mean velocity greater than about 3 m s21 velocity have

very low CPA values. In general, as the spectrum width

of the signal increases, the CPA values decrease be-

cause signals with wide spectrum widths fluctuate more

over the measurement period as compared to nar-

row spectrum width signals. Additionally, the spectrum

width of ground-clutter echoes is usually quite narrow

(,0.3 m s21), while spectrum widths of weather echoes

are typically much wider (.1.0 m s21; Doviak and Zrni�c

1993; Fang et al. 2004). Spectrum width, however, has

not been a particularly effective identifier of clutter and

simulations are given here that demonstrate this.

Also in this paper a new technique for simulating

ground-clutter echo is given. The motivation for mod-

eling ground clutter is twofold: 1) to simulate time series

that result from ground clutter, specifically for typical

weather radar data collection strategies; and 2) to gain a

better understanding of experimentally observed CPA

values. For weather radar, we are interested in temporal

statistics that are slightly modulated by spatial statistics

because of a 18 antenna beamwidth (approximately)

radar scanning nominally over about 18 in azimuth. It is

shown that clutter echo time series simulated using a

weather model do not yield statistics that match the

experimentally observed clutter statistics. Thus, a new

technique for modeling and simulating ground-clutter

echo is given that can better match the experimental

data.

This paper is organized as follows: Section 2 discusses

the problem of identifying clutter based on signal

characteristics from one resolution volume. Spectrum

width estimation is discussed and CPA is introduced and

developed theoretically. Experimental data from the

Denver NextGenerationWeather Radar (NEXRAD) at

the Denver, Colorado, Front Range Airport (KFTG)

are used to illustrate the theory. In section 3, a new

model to simulate ground-clutter time series is given,

and in section 4 the signal statistics of the simulations

are compared to KFTG experimental data. Section 5

summarizes and concludes this paper.

2. Ground-clutter identification

Ground-clutter echoes from stationary targets have

zero-mean velocity and narrow spectrum widths and

thus these attributes can be used to identify clutter. For

an overview of clutter identification and mitigation in

the literature, see Part II. Some clutter targets can move

(e.g., wind-blown trees) and, furthermore, the radar is

typically scanning rotationally, so that the actual mea-

sured velocity can vary somewhat from zero and the

spectrum widths can be widened. Still, considering both

wind and an antenna rotation of 108–188 s21, Doviak

and Zrni�c (1993) estimate that typical spectrum widths

of ground clutter are about 0.26 m s21. Since typical

spectrum widths of weather echoes are greater than

1 m s21 (Fang et al. 2004), spectrum width should be a

good indicator of clutter.

However, the accurate estimation of such narrow

spectrum widths is problematic. For typical weather

radar scanning parameters at S band, the spectrum

width measurement error can be very high, especially at

narrow spectrum widths (Bringi and Chandrasekar

2001; Doviak and Zrni�c 1993). For example, consider

the histogram of spectrum width estimates shown in

Fig. 1. Radar data are simulated at S band with a

spectrum width of 0.5 m s21, mean velocity of 0 m s21,

pulse repetition time (PRT) of 0.001 s, and a length of 64

samples (Chandrasekar et al. 1986); 50 000 time series

are generated. To calculate spectrum width, the unbi-

ased autocorrelation estimate is used (Doviak and Zrni�c

1993):

R(i)5
1

N � i
�
N�i

k51
x(k)x*(k1 i), (1)

where i is the autocorrelation lag (e.g., i 5 0 yields

power), x(k) is a radar time series, N is the length of the

time series, and ‘‘*’’ denotes complex conjugation. The

so-called R(0)/R(1) spectrum width estimator is

s
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where l is the wavelength and Ts is the sampling period.

As can be seen, when jR(1)j . jR(0)j the logarithm be-

comes negative and the square root becomes a complex

number; that is, a nonphysical width estimate is ob-

tained. One strategy is to set the spectrum width to zero

under such circumstances. Of the 50 000 simulations
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performed, 21 157 (about 42%) have jR(1)j . jR(0)j.
The mean and standard deviation of the other 28 843

width estimates are 1.1 m s21 and 0.5 m s21, respec-

tively. Hence, the distribution of estimated spectrum

widths is bimodal. These results demonstrate that spec-

trum width is estimated rather poorly with this estima-

tor, and this is the reason why, in general, spectrum

width estimator is not a particularly robust indicator of

clutter. The fact that jR(1)j . jR(0)j occurs at all can be

attributed to the unbiased autocorrelation estimate

used: R(0) is normalized by the number of samples, that

is, 64 here, whereas R(1) is normalized by the number

of products that contribute to the sum in Eq. (1), that is,

63 in the present case. The biased autocorrelation esti-

mator (Bringi and Chandrasekar 2001), which normal-

izes both R(0) and R(1) by the length of the time series,

that is, 64 here, could instead be used.

Using the biased autocorrelation estimate and the

same simulation parameters as used for Fig. 1, the his-

togram shown in Fig. 2 is obtained. For these width

estimates, jR(0)j is always greater than jR(1)j, which is

intuitively satisfying. However, the mean is 1.53 m s21,

which is a 1.03 m s21 bias, and the standard deviation

is 0.45 m s21. It is also interesting that there are no

spectrum width estimates below about 0.4 m s21 and

only a few estimates at or below the simulated spec-

trum width of 0.5 m s21.

Summarizing, even though ground-clutter echoes

have narrow spectrum widths, the practical estimation

of the widths is problematic with the commonly used

estimators. The spectrum width estimates could be im-

proved by employing other estimators that utilize more

lags of the autocorrelation function (Passarelli and

Siggia 1983; Meymaris and Williams 2007). The prob-

lem is that these estimators have poor performance for

signals with wide spectrum widths. The higher auto-

correlation lag products will be ‘‘noisy’’ because of the

shortened decorrelation time due to the wide spectrum

width. An additional concern is that operational radars

such as the Weather Surveillance Radar-1988 Doppler

(WSR-88D) typically use fewer than 64 samples to es-

timate mean velocity and spectrum width. Fewer times

series samples typically means that the resulting esti-

mates will have higher standard deviations which will

exacerbate the above-described problem of jR(1)j .

jR(0)j. The reader is reminded, however, that it is the

number of equivalent independent samples and not just

the total number of samples used that is critical for re-

duced variance of the autocorrelation estimates (Doviak

and Zrni�c 1993).

Simulations for spectrums widths of 0.26 m s21 were

also performed and the results also show that more than

40% of the simulated time series have jR(1)j . jR(0)j.
We next present another clutter identification parame-

ter, clutter phase alignment, that is more robust than

spectrum width and also is a function of mean velocity.

a. Clutter phase alignment

The backscatter amplitudes from fixed, nonmoving

targets (i.e., many ground-clutter objects) are constant.

Thus, if the radar is stationary, the received base-band

complex signal [referred toas the in-phaseandquadrature-

phase (I and Q) components] is constant. This is predi-

cated on a coherent transmitter [e.g., a Klystron or

traveling wave tube (TWT)] or on a magnetron trans-

mitter where the transmit phase is measured for each

FIG. 1. Histogram of spectrum width estimates for the unbiased

estimator. The simulated width is sy 5 0.5 m s21. The number of

simulations is 50 000. Of these, 28 843 had jR(1)j larger than jR(0)j,
which is a nonphysical spectrum width estimate (i.e., a square root

of a negative number). If these estimates are set to zero m s21,

which is sometimes done, then a bimodal distribution results.

FIG. 2. Histogram of spectrum width estimates for the biased

estimator for the same simulation parameters as used in Fig. 1.

Here jR(0)j is always larger than jR(1)j.
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pulse and subsequently the received signal is corrected

with this phase. Under these circumstances, the phase of

the received signal u is constant and this phase is mea-

sured by the radar as

u 5 arg x
i

� �

, (3)

where xi 5 Ii 1 jQi is the radar received time series with

j 5
ffiffiffiffiffiffiffi

�1
p

.

This characteristic can be used to identify clutter-

contaminated radar data. For moving targets, such as

weather, the phase of the individual members of the

time series will vary according to the mean velocity and

spectrum width of the received signal. This then sug-

gests that the sum
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should be high for clutter targets while being low for

weather targets, other moving targets (e.g., flying birds),

noise, etc., and thus, Eq. (4) should be a good discrimi-

nator of ground-clutter targets versus weather targets and

other echoes including biological scatterers, noise, etc.

To account for power variation, CPA is defined as the

magnitude of the vector sum of the individual time se-

ries members, xi, divided by the sum of the magnitudes

of the xi:
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(5)

Thus, CPA ranges from 0 to 1, with 1 indicating a very

high probability of clutter. Intuitively, CPA is a good

indicator of clutter since by definition it is a metric of

the primary characteristic of a stationary ground-clutter

target, that is, low variability of backscatter phase. Note

that, if the phase of the xi is constant, CPA will be

1 regardless of the behavior of the magnitude of the xi. If

the target is not completely stationary over the mea-

surement period, the mean velocity may differ from

0 m s21 and/or the width of the spectrum of the radar

return signal may increase, both of which will decrease

CPA to below 1. For the very large majority of radar

clutter returns examined here, CPA is greater than 0.90,

whereas CPA is less than 0.5 for most nonzero-velocity

weather echoes. CPA is close to zero for noise. This

includes both KFTG and S-band dual-polarization

Doppler radar (S-Pol) data gathered over a 18 azimuth

resolution (or 18 subtended central angle) with antenna

rotation rates less than about 188 s21. Weather echoes

with velocity magnitude,0.5 m s21 (approximately) and

spectrum widths less than about 0.5 m s21 (e.g., strati-

form rain in the zero-velocity isodop) can have CPA

values in the 0.9 range (for S band and a PRT ’ 0.001 s)

and thus be misidentified as clutter. As a consequence of

this, clutter identification parameters based on the spatial

variability of clutter echo such as the reflectivity texture,

the SPINchange of reflectivity variable as defined by

Steiner and Smith (2002), differential reflectivity, or co-

polar differential phase are needed to distinguish this

type of weather echo from clutter (see Part II for more

information). To recapitulate, CPA is nearly always sig-

nificantly less than 0.90 for weather time series that are

collected over time periods that are significantly longer

than the decorrelation time of the precipitation particles

in the radar resolution volume.

The next set of plots illustrates the relationship be-

tween mean velocity and spectrum width and CPA via

weather model simulations (Chandrasekar et al. 1986).

Briefly, this weather time series simulator is a spectral

domain technique that is based on the assumed statis-

tical properties of weather echo (e.g., the spectrum is

Gaussian shaped) and weather signal correlation prop-

erties. The mean velocity and spectrum width are

specified input parameters and spectra are generated.

Time series are obtained by using an inverse discrete

Fourier transform (DFT). The following results have

also been cross-checked with the simulation technique

described by Frehlich and Yadlowsky (1994).

Time series simulations are made for velocities from

20.5 m s21 to 0.5 m s21 at 0.083 m s21 steps, 100 sim-

ulations per step. The simulation parameters are:

PRT5 0.001 s, sy 5 0.03 m s21, 64 points, and signal-to-

noise ratio (SNR5 60 dB). The spectrum width is made

very narrow (0.03 m s21) to minimize the effect spec-

trum width has on the CPA estimates so that the effects

of velocity are more clear. For each simulated time se-

ries the velocity is estimated (via the phase of the first

lag of the autocorrelation function). The resulting

scatterplot of CPA versus estimated velocity is shown in

Fig. 3 (note that the simulated velocity and the esti-

mated velocity are, in general, not the same). As can be

seen, as velocity magnitude increases, the value of CPA

decreases rather quickly. When the velocity magnitude

is greater than 0.2 m s21, the average CPA values are

below 0.9.

To see the effect of broadening the spectrum width

on CPA, a scatterplot of CPA versus estimated mean

velocity when the spectrum width is 0.26 m s21 (an ex-

pected typical spectrum width for clutter Doviak and

Zrni�c 1993) is shown in Fig. 4. The simulated velocity

is always zero to isolate the effects of spectrum width

broadening on CPA. Otherwise, the simulated pa-

rameters are as in Fig. 3. As can be seen, there is
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considerable scatter with a significant number of points

having CPA values less than 0.90 and the estimated

velocities range from 20.4 m s21 to 10.4 m s21. Shown

in Fig. 5 is a cumulative histogram of the data shown in

Fig. 4 which is normalized by the total number of points.

More than 25% of the points have CPA values of less

than 0.8. Experimental ground-clutter data using S-Pol

or KFTG do not agree with this plot, which is shown

below.

Figure 6 illustrates the relationship between CPA and

mean velocity and spectrum width for widths more

typical of weather. Shown are six scatterplots of CPA

versus mean velocity for spectrum widths of 1, 2, 3, 4, 5,

and 6 m s21 in Figs. 6a–f, respectively. There are 5100

data points per graph and the simulated velocities are

distributed equally between plus and minus the Nyquist

velocity of 26.7 m s21. As the spectrum width increases,

the distribution of elevated CPA values becomes broader

and the average CPA for the points with velocity close to

0 m s21 decreases. Importantly for discrimination be-

tween clutter and precipitation echo, the large majority

of CPA values are below 0.6 for all plots.

Figure 7 shows a KFTG 0.58 plan position indicator

(PPI) clear-air surveillance scan of reflectivity [the

NEXRAD scan strategy volume control pattern (VCP)

32]. The data were gathered at 2123 UTC 13 October

2006. The large reflectivities on the left are caused by

the Rocky Mountains. The antenna was scanning at

6.58 s21 with about 64 time series samples per degree

azimuth. Shown in Fig. 8 is a two-dimensional color

histogram scatterplot of the experimentally measured

CPA values. There are about 19 000 data points and,

as can be seen in the color histogram, the majority of

the points are confined to the region 20.1 m s21
, ve-

locity , 0.1 m s21 and CPA . 0.95. The data of Fig. 8

are more concentrated at CPA values .0.9 and the

spread in the velocities is lower than for the data shown

in Fig. 4. Figure 9 shows three normalized, cumulative

FIG. 4. Scatterplot of CPA vs estimated velocity for simulated

data. The simulated width is sy 5 0.26 m s21 and the velocity is

y 5 0.0 m s21. The number of simulations is 2500.

FIG. 5. Cumulative histogram of data shown in Fig. 4. The

number of occurrence is normalized by the total number of oc-

currences so that a cumulative fraction results.
FIG. 3. Scatterplot of CPA vs estimated velocity for simulated

data. The simulated width is sy 5 0.03 m s21 and the mean velocity

ranges from20.5 to 10.5 m s21, with 0.083 m s21 increments. The

number of simulations is 1300, with 100 simulations per velocity

increment.
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histograms for the data in Fig. 8 (and three curves from

modeled data to be discussed later). CPA is calculated

from time series lengths of 64, 32, and 16, which corre-

spond to antenna subtended scan angles of 1.08, 0.58, and

0.258, respectively. As can be seen, the narrower the

subtended scan angle, the higher the CPA. This set of

curves illustrates the effect of the size of the scanning

angle on CPA. The curve from Fig. 5 is included for ease

of comparison (labeled weather model). The histogram

shows that, for CPA , 0.8, the cumulative fraction of

CPA values for the 64-point experimental curve and

weather model curve are 0.09 and 0.28, respectively.

There are two possible explanations for this discrep-

ancy. One is that most of the clutter echo spectrum

widths are much narrower than 0.26 m s21. The other is

that clutter is not well modeled using the same simula-

tion algorithm as is used for weather signals. The sim-

ulated spectrum width for the weather model can be

reduced to 0.14 m s21 so that the resulting CPA cumu-

lative histogram matches quite well with the 18 experi-

mental cumulative histogram of Fig. 9. However, it is

shown later that the resulting scatterplot of CPA versus

FIG. 6. CPA vs estimated velocity scatterplots for simulated data. The spectrum widths (sy)

vary from 1 to 6 m s21 as shown. There are 5100 data points per graph and the requested

velocities are evenly distributed between plus and minus the Nyquist velocity of 26.7 m s21.

1170 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 26



velocity for data from the weather model does not then

agree with the similar experimental scatterplots. In sec-

tion 3, a new method for modeling ground clutter is

presented that better predicts the characteristics of the

experimentally observed CPA. Data from the new clut-

ter model are given in Fig. 9 for reference, but these

results are discussed later after the new clutter model is

presented.

In summary, both velocity and spectrum width affect

CPA: 1) as the velocity departs from zero, CPA de-

creases rapidly; 2) as the spectrum width increases, the

value of CPA, in general, decreases. There are well-

known variances associated with the pulse pair velocity

estimator and especially the width estimator as shown

earlier in this paper. Furthermore, no particular spec-

trum shape is assumed for the CPA calculation as is

assumed with the pulse pair estimators. An additional

advantage is that CPA can be directly calculated from

staggered PRT time series, which makes it viable for

such data. For these reasons, CPA is a more robust and

versatile indicator of clutter than a combination of ra-

dial velocity and spectrum width.

Finally, the spectrum width of clutter echoes depends

upon the radar location (i.e., the characteristics of the

surrounding clutter targets), the rotational scan rate,

and any movement of the clutter (e.g., due to winds).

Thus, the experimental data reported here are specific

to the Colorado Front Range clutter environment. The

clutter targets are predominantly in the foothills of the

Rocky Mountains, but there are also prairie and sig-

nificant deciduous tree and shrub vegetation targets,

especially in the more populated regions. Nevertheless,

CPA from radar data from other geographical regions

should be examined. We have used clutter mitigation

decision (CMD) with S-band data from the Centre

for Australian Weather and Climate Research CP-2

radar (Keenan et al. 2006) and with S-Pol data from the

recent National Center for Atmospheric Research

(NCAR) field campaign, Terrain-influenced Monsoon

Rainfall Experiment (TiMREX) in Taiwan. The clutter

from both radar sites, especially the Taiwan site, is

dominated by deciduous, tree-covered hills and moun-

tains. Preliminary results indicate that CPA performed

FIG. 8. A histogram scatterplot of CPA vs radial velocity for data

shown in Fig. 7. The colors denote the number of occurrences.

There are 18 958 points.

FIG. 9. Cumulative histograms of experimental CPA values from

data shown in Fig. 7 for subtended scanning angles of 0.258, 0.58,

and 1.08. Cumulative histograms of modeled data are also overlaid.

The curve due to the RiM lies nearly on top of the experimental

18 curve.

FIG. 7. A KFTG clear-air PPI surveillance reflectivity scan

showing ground clutter. The data were gathered at 2123 UTC

13 Oct 2006. The large reflectivities seen on the left are from the

Rocky Mountains.
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well in these environments. Also, the KFTG data of

Fig. 8 was gathered at a 6.58 s21 rotation rate, which

indirectly affects the spectrum width of clutter echoes.

However, as demonstrated in Fig. 9, it is the scanning

angle subtended by the radar during the time series

collection period that causes CPA to decrease (equiv-

alently, an increase the spectrum width) rather than the

radar scanning rate per se. Data shown in both Part I

(this paper) and Part II are for radar resolution volumes

of 18 in azimuth, unless stated otherwise. Thus, the

statistics of CPA, spectrum width mean velocity esti-

mates (for clutter) will be about the same for rotation

rates from 6.58 s21 to 188 s21. Faster scan rates for

18 azimuth resolution volumes dictates a shortened

measurement time period. This will increase measure-

ment standard deviation of velocity and spectrum width

for weather signals because fewer independent samples

are gathered.

b. CPA and a spectrum power ratio

There is a relationship between CPA and the spectrum

of the signal. Consider the DFT of the time series xi,

X
m
5 �

N�1

i50
x
i
exp�j2pmi/N , (6)

where j is
ffiffiffiffiffiffiffi

�1
p

, N is the length of the time series, and

m is the frequency (velocity) index. Evaluating Eq. (6)

for m 5 0 (the zero-velocity component) yields

X
0
5 �

N�1

i50
x
i
exp�j2p0i/N

5 �
N�1

i50
x
i
. (7)

Thus, the numerator of CPA is just the magnitude of the

zero-velocity component of the DFT, namely, jX0j. It is
natural, then, to compare CPA to the ratio of the power

of the 0 velocity component of the DFT normalized by

the total power of the signal. This is referred to as the

power ratio (PR). Closer examination of the CPA for

consistency and PR0.5 shows that the denominator of

CPA is the L-1 norm while the denominator of PR0.5 is

the L-2 norm of the time series. While this is a rather

simple difference between the two clutter metrics, it

does make CPA a more effective clutter identification

metric. It can be shown (see the appendix) that

CPA $
ffiffiffiffiffiffiffiffiffiffiffi

(PR)
p

. (8)

This result suggests that CPA should be a better dis-

criminator of clutter than PR0.5 since both CPA and

PR0.5 are quite low for weather signals. If CPA is larger

than PR0.5 for clutter echoes, then CPAmay distinguish

better between clutter and weather echoes. To illustrate

this, examine Fig. 10, which shows a scatterplot of CPA

versus PR0.5 for a low-level PPI scan that contains both

clutter and weather echoes collected by KFTG at 1202

UTC 26October 2006. A rectangular window is used for

the time series. Ovals mark regions where the majority

of the scatter is either from clutter or precipitation. As

can be seen, there exist many resolution volumes where

the PR0.5 is in the 0.5–0.8 range while CPA is close to

one. Note also that, for the resolution volumes that

likely contain weather (CPA, 0.6), CPA and PR0.5 are

in closer in value. Next the time series of one of these

data points is examined. Figure 11 shows the times se-

ries of I2 1 Q2 dB and tan21(Q/I ) degrees for a reso-

lution volume with clutter where CPA 5 0.99 but

PR0.5
5 0.76 (time series length 64). The power in-

creases more than 40 dB across the plot while the phase

is contained between 08 and 2208 after the twentieth

sample. The plot suggests that the clutter target is en-

tering the main lobe of the radar antenna as the radar

scans. The difference between CPA and PR0.5 can be

explained as follows. Since the ground-clutter target is

only visible through about half of the I and Q samples,

the power time series varies dramatically from 285 to

255 dBm during which the phase remains fairly con-

stant. This sharp gradient in the power time series

spreads power away from the zero-velocity component

in the spectrum of the signal, thereby reducing PR0.5. In

contrast, the low variability of the phase weighted by the

high power causes CPA to be high. This characteristic

makes CPA a better discriminator of clutter for such

scanned ground-clutter targets. Later, we use receiver

operating characteristic (ROC) curves to further dem-

onstrate this.

3. Modeling ground clutter for simulations

Even though the physics of backscatter from ground

clutter is dissimilar from precipitation, it has been sug-

gested that clutter echo from a scanning radar can be

practically modeled as zero-velocity, narrow spectrum

width weather (Nguyen et al. 2008; May and Strauch

1998). An alternate approach is presented here. The

simulation technique is not based on a theory of elec-

tromagnetic scattering per se as is done in Ruck et al.

(1970). Rather, we give a heuristic model based on ob-

served clutter data and use a Monte Carlo technique.

As a point of reference, for echo from precipitation

particles, the I and Q signal components are indepen-

dent, zero-mean Gaussian random variables (Bringi and

Chandrasekar 2001). Their magnitude is Rayleigh dis-

tributed while the corresponding power is exponentially

distributed and is sometimes referred to as a Rayleigh
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power density function (Long 2001). Ground-clutter

echo amplitude statistics are somewhat similar to this

in that they have been observed to sometimes have

a Rayleigh distribution. Physically, however, ground-

clutter scattering from a myriad of diverse, nonmoving

or at least zero-mean average velocity (trees may sway

but do not ‘‘move’’) objects bears little resemblance to a

collection of reshuffling precipitation particles.

a. A Rayleigh clutter model

We begin by assuming that the clutter seen by a

scanning radar for a particular resolution volume can be

modeled by a series of independent scattering centers

that are equally spaced in azimuth angle and possess

constant amplitude and phase over the measurement

period (i.e., they are completely stationary). Thus, if the

radar stares (i.e., is motionless during the measurement

period) at a collection of such scatterers, the return

measured echo would be a constant. Each scattering

center is assumed to be composed of scatter from many

independent scattering objects, and it is assumed that

the clutter center scattering amplitudes are independent

and identically distributed random variables.

Based on these assumptions and experimental ob-

servations, the clutter centers are modeled as having

their magnitudes Rayleigh distributed and phases uni-

form random (6p) distributed and independent of the

magnitudes. Thus, series of Rayleigh-distributed, com-

plex scattering amplitudes ai are generated to model

clutter spatially. Next, the radar beam shape is mod-

eled as a one-dimensional Gaussian curve with a 3-dB

beamwidth of 18. Using a Gaussian shape curve to model

the main lobe of pencil-beam-type antenna patterns is

common (Bogush 1989). The radar beam is truncated at

61.58 from its center and is considered to have a con-

stant phase pattern. The antenna beam pattern is then

convolved with the scattering centers to create a time

series representation of the clutter signal as seen by the

radar for that resolution volume. Mathematically, the

Rayleigh clutter model (RaM) is defined as

a
k
5�

N

i51
a
i1k

b
i
W

i
, (9)

where ak is the time series, ai are the clutter scatter

centers with Rayleigh-distributed amplitudes, bi are the

antenna beam pattern weight, Wi accounts for the

window used to process the time series (e.g., rectangu-

lar, Von Hann, Blackman, etc.), and N is the number of

integration points (determined by the number of digi-

tized antenna beam points). For the results presented

here, a rectangular window function is used and

64 points per degree azimuth are used. Figure 12 depicts

this model. There are 256 scattering centers and the

antenna beam is discretized to 192 points or 38. For each

new time series point, the antenna pattern is advanced

one scatter center point and the antenna pattern is

multiplied with the scattering centers and summed; that

is, the antenna pattern is simply convolved with the

scattering centers. As is shown later, this model does not

yield CPA values that match well with the experimen-

tally observed CPA values and thus we seek to refine

the RaM.

FIG. 10. Scatterplot of CPA vs PR0.5 for the Denver NEXRAD

KFTG experimental data. The data were collected by KFTG

at 1202 UTC 26 Oct 2006. A rectangular time series window is

used.

FIG. 11. Time series of power, I21Q2 (solid line, unitless in dB),

and tan21(Q/I ) (phase of I and Q, dashed line) for a resolution

volume with a clutter target. CPA is 0.99 while PR0.5 is 0.76. Time

series length is 64.
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b. A Ricean clutter model

Temporal ground-clutter amplitude statistics have

been reported to followRicean distributions (Kerr 1951;

Long 2001). Ricean distributions occur when a constant

vector is added to Rayleigh fluctuations. Physically, this

can be interpreted as having a relatively large dominant

clutter target surrounded by smaller Rayleigh-distributed

scattering centers. To incorporate this effect into the

RaM model, one of the scattering centers can be re-

placed by a larger constant, C. The magnitude of C is

adjusted until the resulting CPA cumulative histogram

matches the experimental cumulative histogram. The

dominant scattering center is placed uniform randomly

in one of the central 108 locations out of the 256 scatter

center locations. The C is modeled as a Gaussian ran-

dom variable (RV) with a mean of 28 and a standard

deviation of 10. These are unitless numbers and are

relative to the amplitudes of the Rayleigh-distributed

scattering centers.1 These values are arrived at heuris-

tically by adjusting C until the cumulative distribution

of CPA for experimental data is matched.

c. A modulated Ricean clutter model

Much ground clutter can and does move to some

extent during the radar measurement period, which is

approximately 64 ms in this study. This would be man-

ifest as a small variation in the phase and magnitude of

the clutter centers ai during the measurement period.

One way to model this movement is to allow the mag-

nitude and phase of the scattering centers to vary in a

random fashion as a function of k, the discrete time

index. Let a
i
5 m

i
ejfi , wheremi is the magnitude and fi

is the phase of the complex scattering center ai. The

magnitude and phase of the ai are modulated for each

increment in k as

m̂
i
(k) 5 m

i
1N(0, s

i
), (10)

f̂
i
(k) 5 f

i
1N(0,d

i
), (11)

where N(0, si) are independent and identically distrib-

uted (i.i.d.) Gaussian random variables with zero mean

and a standard deviation that is proportional to the mi;

that is, si5 fmiwhere f is the fraction ofmi for specifying

one standard deviation. HereN(0, di) are i.i.d. Gaussian

random variables with zero mean and standard devia-

tion of d degrees. The primary purpose of this model is

to investigate the effect of movement of the targets in

the radar resolution volume on CPA (e.g., trees swaying

in the wind).

d. Simulation algorithm

The ground-clutter time series simulation scheme is

as follows:

1) Create a sequence of i.i.d. Rayleigh-distributed

scattering centers long enough to accommodate the

number of discrete radar beam points plus the de-

sired length of the resultant time series ak. As used

here, this is 257. Replace one scattering center with a

large constant number if Ricean statistics are de-

sired. The replacement center location is chosen as a

FIG. 12. An illustration of the technique used for ground-clutter time series simulations. The

ai are scattering centers. The antenna beam is modeled as a 1D Gaussian curve. The antenna

beam is convolved with the scattering centers to generate the time series.

1 The scattering centers are created by generating two normal

i.i.d. RVs, N1(0, 1) and N2(0, 1). The RV (N2
1 1N2

2)
1/2 is Rayleigh

distributed, while the phase RV argfN
2
/N

1
g is uniform random

between 0 and 2p.
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uniform random variable. The magnitude of the re-

placement center is a Gaussian random variable, in

the present case N(28, 10).

2) Convolve the antenna beam with the sequence of

scattering centers [i.e., k5 1 in Eq. (9)] to create the

first time series member a1.

3) Increment k and, if modulated statistics are desired

(i.e., modeling some clutter movement), the magni-

tude and phase of all scattering centers are varied

according to Eqs. (10) and (11).

4) Perform the convolution of the beam pattern and

scattering centers to obtain the next member of the

time series ai.

5) Repeat steps 3 and 4 to create the time series ai.

6) Compute CPA and other parameters from the con-

structed time series.

7) Repeat process beginning with step 1 for additional

time series.

4. Using clutter models to investigate CPA

In this section results are shown for 1) the RaM,

2) the Ricean model (RiM), and 3) the modulated

Ricean model (MRM) clutter simulators. Time series

of length 64 are generated, the radar beamwidth is 18,

the scan angle subtended is 18, and 5000 time series are

simulated. Shown in Fig. 9 is the cumulative histogram

of the CPA values for the RaM and RiM. As can be

seen, the cumulative fraction of CPA from the RaM

simulations is lower than the shown weather model

simulation results (spectrum width is 0.26 m s21).

However, the RaM cumulative fraction is still signifi-

cantly higher than that of the experimental 18 data

shown. The implication is that clutter observed by

KFTG (and S-Pol) are not modeled well by a simple

collection of Rayleigh-distributed scattering centers.

The resulting CPA values are too low. Now consider

the cumulative histogram from the RiM simulations

in Fig. 9. As can be seen, when a large dominant scat-

tering center is added to the Rayleigh model (thus

creating the RiM model), the CPA values can be made

to match the experimental CPA cumulative histogram

well. This suggests that the majority of clutter seen by

KFTG is typically dominated by a single ‘‘target’’ that

has nearly constant backscatter phase over the mea-

surement period.

Results from the MRM simulator are discussed next.

Figure 13 shows the cumulative histogram for the MRM

simulations and for modulation parameters f 5 0.20 for

the magnitude and d 5 208 for the phase along with the

RiM simulation curve from Fig. 9 for comparison. As

can be seen, the fraction of smaller CPA values does

increase relative to the RiM curve. For CPA 5 0.6, the

cumulative fraction increases from about 0.055 for the

RiM to about 0.095 to the MRM. While this is a sig-

nificant increase, MRM demonstrates that the phases

and magnitudes of the scattering centers can vary sig-

nificantly while CPA remains high and continues to be

an effective clutter identification parameter. The 208 of

phase shift at S band only represents about 0.6 cm of

target displacement; however, if this displacement oc-

curs over one PRT interval of 0.001 s, it represents ve-

locities of 6 m s21. Additionally, since the clutter center

phases are modulated by a Gaussian random variable

with 208 standard deviation, the phase difference of a

scattering center from one time step to the next can

easily be muchmore than 208 (the variance of the sum of

two independent random variables is the sum of the

variances). The experimentally measured CPA values

presented here indicate that the time series phases

are distributed such that the estimated mean velocity

over the measurement period is close to zero (see Fig. 8).

This is important to maintain high CPA values as the

simulations in Figs. 3 and 4 indicate. This is examined

further next.

The simulation models can be further compared by

examining scatterplots of CPA versus velocity. Shown

in Figs. 14–16 are such plots for experimental data,

the weather model, and the RiM, respectively. The

parameters used for the weather model are as before

except that the spectrum width is chosen to be 0.14

m s21 so that the resulting cumulative histogram of

CPA values matches the 18 experimental curve of Fig. 9

FIG. 13. Cumulative histogram of CPA for the RiM and the MRM.
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well. Comparing the experimental plot of Fig. 14 to

the weather model plot of Fig. 15 shows that even

though the cumulative CPA histogram of the weather

model data can be well matched to the experimen-

tal data, the distribution of the estimated velocities is

different. This indicates that the simulated time series

of clutter echo using a weather model with narrow

spectrum width does not capture all of the character-

istics of typical ground-clutter echo. By contrast, the

CPA versus velocity scatterplot due to the RiM simula-

tion (Fig. 16) matches the experimental velocity scatter-

plot (Fig. 14) better.

5. An evaluation of discrimination capability

The utility of a clutter identification metric is its

ability to discriminate between clutter and weather

echoes. One way to do this is to create histograms of

clutter-only and weather-only data and then overlay the

histograms. The degree of overlap of the two histograms

indicates how well the metric can distinguish between

the two classes of data. Here, experimental KFTG data

gathered at 0954 UTC 10 October 2006 are used to

create the histograms. There are about 38 600 weather

data points and 13 200 clutter data points. Both strati-

form and convective weather are included. Weather

spectrum widths vary from very small to 6 m s21 with

the majority being between 0.5 and 3 m s21. Thus, the

data used should be reasonably representative of

weather and clutter typically observed by KFTG.

The clutter metrics evaluated are CPA, PR0.5, and the

mean value of the absolute pulse-to-pulse amplitude

differences of the time series in log space (MVAR)

(Geotis and Silver 1976). Thus, all three metrics are

based on the sample-to-sample variability of the time

series and it is of interest to compare their clutter-versus-

weather discrimination capabilities. Histograms of the

clutter and weather data for CPA, PR0.5, and MVAR
FIG. 15. Scatterplot of CPA vs radial velocity from simulated data

using the weather model. The spectrum width is 0.14 m s21.

FIG. 16. Scatterplot of CPA vs radial velocity from simulated data

using the clutter RiM.

FIG. 14. Scatterplot of CPA vs velocity from experimental

KFTG data. This plot uses a subset of the data from Fig. 8 but

is shown again as a simple scatterplot with only 5000 points so

that it can easily be compared to the simulation plots in Figs. 15

and 16.
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are shown in Figs. 17, 18, and 19, respectively. Com-

paring the degree of overlap of the clutter and weather

histograms in each figure, it is fairly evident that CPA

out performs MVAR and PR0.5. To illustrate this more

clearly, relative operating characteristic (ROC) curves

(also known as receiver operating characteristic curves)

are constructed from the given histogram plots and

these are shown in Fig. 20. ROC analysis has its origin

in statistical decision theory developed during World

War II for the analysis of radar images (Green and

Swets 1966). The ROC curves show the fraction of

true identified clutter versus the fraction of weather

incorrectly identified as clutter as a function of the

metric. Specifically, a point on the CPA or PR0.5 ROC

curves is defined here as

(x, y)5 [P(a . thresjWeather),P(a . thresjClutter)]
(12)

based on given sample populations where a is either

CPA or PR0.5, ‘‘thres’’ is a value of the metric, and P is

probability. The vertical bar indicates conditional

probability. The inequalities reverse for MVAR since

MVAR is low for clutter and high for weather in con-

trast to CPA and PR0.5. We would like to positively

identify as much of the clutter population as possibly

(‘‘true positives’’) while not identifying weather as

clutter (‘‘false positives’’). This means that the closer a

ROC curve is to the (0, 1) point on the ROC graph

(upper left-hand point), the better the discrimination

between clutter and weather data. At the (0, 1) point all

clutter data are positively identified while no weather

data are falsely identified as clutter. For reference, the

dashed horizontal lines of Fig. 20 mark the location

of the lower and upper break-point values for the CPA

fuzzy logic membership function (see Part II of this

paper for the CPA membership function). Normally

both axes on a ROC curve go from 0 to 1, but we have

zoomed into the area of interest for ease of comparison.

Since the CPA ROC curve lies above the MVAR and

PR0.5 ROC curves, this then shows that CPA is a better

discriminator of clutter and weather as compared to

MVAR or PR0.5 for the datasets used.

6. Summary and conclusions

The identification of ground-clutter echoes from the

radar received time series (in-phase and quadrature-

phase samples) was discussed. The spectrum width of

ground-clutter echoes is typically much narrower than

the spectrum width of weather echoes but spectrum

width has not been a robust discriminator of weather

and clutter echoes because of the large variance asso-

ciated with spectrum width estimators. A new clutter

identification parameter, clutter phase alignment (CPA),

was introduced and examined theoretically. It was

shown that CPA is affected by both spectrum width and

mean velocity but is a more robust indicator of clutter

than a combination of both. CPA is a good identifier of

clutter echoes since it is a metric of the primary char-

acteristic of ground-clutter echo from stationary targets:

low variance of backscatter phase over typical weather

radar measurement times and resolutions (18 subtended

scan angle for a 18 antenna beamwidth and about 64 ms

dwell time). It was observed that, for shorter subtended

scan angles, the CPA values increased. This indicates

that the convolution of the radar antenna pattern with

the ground-clutter targets over the resolution volume is

chiefly responsible for the decorrelation of the time

series and the broadening of the spectrum. In contrast,

the spectrum width of weather echoes is more a function

of the relative velocities of the precipitation particles.

Based on this observation, a Monte Carlo clutter echo

simulator was introduced that models ground clutter

with discrete scattering centers uniformly distributed

over the scanned resolution volume in one dimension.

Simulations using a new clutter model/simulator,

Ricean clutter model (RiM), better predicted the ob-

served experimental clutter echo statistics when com-

pared with data from a weather simulation model. CPA

statistics from the RiM time series simulator matched

the CPA statistics from experimental observed data

well.

Movement of clutter targets (e.g., swaying trees) was

incorporated into a modulated Ricean clutter model

FIG. 17. Relative frequency histograms of KFTG experimental

data for CPA. The data were gathered by KFTG at 0954 UTC 10

Oct 2006.
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(MRM) by allowing the magnitude and phase of the

scattering centers to vary. The resulting CPA values

remained high enough so that CPA continued to be an

effective discriminator of clutter and weather. This in-

dicates why we have found CPA to be a particularly

effective and robust ground-clutter identification pa-

rameter.

The general observations of this paper are

1) CPA is a function of both mean velocity and spec-

trum width but is a more robust clutter identification

parameter.

2) Since CPA is a vector sum of the time series, it can

be calculated directly from non equispaced time se-

ries samples.

3) The Gaussian-statistics weather model does not

predict the statistics of observed clutter as well as the

Ricean-based clutter model (termed the RiM).

4) The observed clutter echoes are not modeled well by

summing over an ensemble of Rayleigh-distributed

(in amplitude) scattering centers (i.e., the RaM).

5) The KFTG and S-Pol experimentally observed

clutter echoes are modeled well using the Ricean

model, which indicates that ground-clutter echo is

usually characterized by a dominant scatterer. Ground-

clutter characteristics from other geographical areas

could differ.

6) The MRM simulations indicate that ground-clutter

targets can move considerably (with a velocity

standard deviation of about 12 m s21 on a sample-to-

sample measurement basis) and CPA remains high.

Thus, CPA continues to be an effective discriminator

of ground clutter versus precipitation.

In Part II the CPA parameter is used as a feature field

in a fuzzy logic algorithm, termed CMD, for real-time

ground-clutter echo identification.
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APPENDIX

A Comparison of CPA and a Spectrum

Power Ratio

The inequality we hypothesize is

CPA $
ffiffiffiffiffiffiffiffiffiffiffi

(PR)
p

. (A1)

First, let xi be a time series sequence and letXm be the

DFT of xi. Parseval’s relationship for the DFT states

�
i
jx

i
j2 5

1

N
�
m

jX
m
j2. (A2)

Equation (A1) can be expressed as
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i51xi
j

�
N

i51jxij
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The right-hand side is rewritten in terms of xi as (using

Parseval)
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The numerators are equal and the inequality can be

rewritten as
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Dividing both sides by N gives

�
N

i51jxij
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. (A6)

This simply states that the root-mean-square average is

greater than the arithmetic mean, a well-known result.

Thus we have proven the inequality of Eq. (8).
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