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Abstract Excess nitrogen (N) impairs inland water

quality and creates hypoxia in coastal ecosystems.

Agriculture is the primary source of N; agricultural

management and hydrology together control aquatic

ecosystem N loading. Future N loading will be

determined by how agriculture and hydrology inter-

sect with climate change, yet the interactions between

changing climate and water quality remain poorly

understood. Here, we show that changing precipitation

patterns, resulting from climate change, interact with

agricultural land use to deteriorate water quality. We

focus on the 2012–2013 Midwestern U.S. drought as a

‘‘natural experiment’’. The transition from drought

conditions in 2012 to a wet spring in 2013 was abrupt;

the media dubbed this ‘‘weather whiplash’’. We use

recent (2010–2015) and historical data (1950–2015) to

connect weather whiplash (drought-to-flood transi-

tions) to increases in riverine N loads and concentra-

tions. The drought likely created highly N-enriched

soils; this excess N mobilized during heavy spring

rains (2013), resulting in a 34% increase (10.5 vs.

7.8 mg N L-1) in the flow-weighted mean annual
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nitrate concentration compared to recent years. Fur-

thermore, we show that climate change will likely

intensify weather whiplash. Increased weather whi-

plash will, in part, increase the frequency of riverine N

exceeding E.P.A. drinking water standards. Thus, our

observations suggest increased climatic variation will

amplify negative trends in water quality in a region

already grappling with severe impairments.

Keywords Agriculture � Nitrate � Climate

variability � Water quality

Introduction

Modern agriculture is inextricably linked to declining

surface water quality (Verhoeven et al. 2006; Brous-

sard and Turner 2009), creating ecological and

economic problems spanning local (Bernot and Dodds

2005) to continental (Diaz and Rosenberg 2008)

scales. Agriculture is a major source of reactive

nitrogen (N) (Sobota et al. 2013) and interacts with

hydrology to control N loading to aquatic ecosystems

(McIsaac et al. 2001; Donner and Scavia 2007). How

future hydrological changes associated with climate

will alter N loading to freshwater ecosystems is an

emerging concern that remains largely unexplored.

Given the implications for water quality, it is critical to

understand how agricultural management and a

changing climate will interact in contemporary and

future agroecosystems.

Understanding interactions between climate

change and agriculture is critical to the continued

compatibility of agricultural activity and local munic-

ipalities that use adjacent rivers as drinking water

sources. The U.S.E.P.A. regulates nitrate in drinking

water through standards established in the Safe

Drinking Water Act (U.S.C. 1986); nitrate is costly

to remove, which creates tension between downstream

drinking water users and upstream agricultural activity

(Des Moines Water Works 2016a). In the Midwestern

U.S., tensions heightened recently when the City of

Des Moines (Iowa) Water Works filed a lawsuit

against county drainage districts in their supply

watershed for contaminating water with nitrate (Des

Moines Water Works 2015). In addition to local

drinking water concerns, known interactions between

climate and agriculture will significantly improve the

ability of regional models to predict impacts to more

distant downstream ecosystems, such as the Gulf of

Mexico, where N loading from the Mississippi River

creates extensive coastal hypoxia (Donner and Scavia

2007; Broussard and Turner 2009).

Herein, we describe how climate change may drive

further deterioration of water quality in the agricul-

tural belt of the North American Midwest. Climate

change is predicted to increase the frequency and

severity of growing-season drought (Dai 2012; Hat-

field et al. 2013) and produce more extreme precip-

itation in the spring (Kunkel et al. 1999; Hatfield et al.

2013) (defined as[ 30 mm in 24 h). Drought reduces

agricultural crop yield (e.g., a 24% reduction of the

U.S. maize harvest in 2012, Al-Kaisi et al. 2013) and

enriches soil nitrate concentrations (Balkcom et al.

2003). We focus on the 2012–2013 Midwestern U.S.

drought as a ‘‘natural experiment’’ to understand how

changing climate may alter N loading to streams and

rivers. We hypothesized that normal spring 2012

fertilization followed by drought-induced decreased

crop yields would create a large, readily leached N pool

in agricultural soils, setting the stage for excessive N

losses the following spring (2013). We quantify

drought-to-flood transitions, referred to as ‘‘weather

whiplash,’’ and show that weather whiplash is likely to

increase under projected future climate. Finally, we

connect changes in weather whiplash, driven by chang-

ing climate, to increases in riverine nitrate concentration

and the probability of surface water exceeding U.S.

Environmental Protection Agency (U.S.E.P.A.) drink-

ing water standard maximum (10 mg L-1).

Data and methods

Data sets

The data used in this manuscript are all publically

available. The precipitation data were obtained from

the Applied Climate Information System (ACIS

2016). These data are retrieved as an interpolated grid

(Northeast Regional Climate Center Interpolated grid)

of daily precipitation summed across the time period

(1 Jan 1950–31 Dec 2015) at a 30 arc sec spatial

resolution. Full documentation of these data is avail-

able online (ACIS 2016).
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The projected future monthly precipitation data are

from the NASA Earth Exchange Downscaled Climate

Projections (NEX-DCP30; CMDS 2016). The down-

scaled products are at a 30 arc second spatial

resolution and derived from the from the General

Circulation Model runs conducted under the Coupled

Model Intercomparison Project Phase 5 (CMIP5)

(Taylor et al. 2012). We used the emission scenario

8.5 of Representative Concentration Pathways devel-

oped for the Fifth Assessment Report of the Intergov-

ernmental Panel on Climate Change (IPCC AR5). We

accessed these data through the NCCS THREDDS

data service (NCCS THREDDS 2016).

Stream nitrate and discharge data are available

from the United State Geologic Survey’s National

Water Information System (NWIS 2016b). The high

frequency stream nitrate data are recorded as

nitrate ? nitrite as N (mg N L-1) using a Hach

Nitratax plus sc Sensor (2 mm path length; Loveland,

CO, USA), which has a measurement range of

0.1–50 mg NO�

3 -N L-1 and a 0.1 mg NO�

3 -N L-1

resolution (measuring error: ± 3% of the mean

MW ± 0.5). Stream nitrate concentration, discharge

(Q), and nitrate flux data from the USGS station

(USGS 05465500) on the Iowa River near Wapello,

IA, USA (41.180�N, 91.182�W; Fig. 1) were cumu-

lative starting on the earliest DOY were data were

available (DOY 105) for all years (2010–2015). This

watershed is 32,375 km2 of which 91% is classified as

agricultural use, mostly maize and soy production

(Broxton et al. 2014). We used the zoo R package to

linearly interpolate across missing Q data (Moatar and

Meybeck 2005). Cumulative Q for both the historical

data (1970–2009) and the high frequency (2010–2015)

data were calculated by summing the product of Q and

time interval (daily for historical and 900 s for high

frequency data) for each measurement. Similarly,

cumulative nitrate flux for the high frequency

(2010–2015) data were calculated by summing the

product of Q, nitrate concentration, and time interval

(900 s) for each measurement. Flow-weighted mean

concentration was estimated as the total flux divided

by the total stream Q during each year (DOY

105–300).

The Upper Mississippi River Basin (UMRB) wide

grab sample nitrate data were collected by the USGS

and are available online (NWIS 2016a). Only surface

water samples were used in this analysis (n = 71,547)

i.e. all groundwater sample data were removed.

Monitoring site details are presented in SM table S1.

Samples below the detection limit (*0.2% of surface

water samples) were assigned a value between the

method detection limit and zero using an exponential

model (Helsel 2006). From this data set we calculated

spring surface water nitrate concentration (MJNOx) as

the average nitrate concentration of grab samples

during May and June of each monitoring site-year.
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Fig. 1 Cumulative discharge (a) and nitrate flux (b) for the six
years with continuous nitrate monitoring data in the Iowa River
(at Wapello, Iowa, 25 km upstream of the confluence with the
Mississippi River). Grey background in panel a indicates 95%
interval of historical cumulative discharge; similar historical
data are not available for nitrate, which has only been monitored
from 2010 to 2015
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May and June are the months with highest average

nitrate concentrations and fluxes in the UMRB (Don-

ner et al. 2002). Sites with less than three years of

spring nitrate concentration data were removed from

further analysis to avoid over-fitting of parameters.

Following these filters, 165 monitoring sites contain-

ing 2645 site-years were included in subsequent

analyses.

Statistical analysis

Weather whiplash index

The weather whiplash index was calculated as the total

precipitation from January to June of each year

(1951–2099) minus the total precipitation from July

to December of the previous year (1950–2098),

divided by the total precipitation over that entire

period. Watershed area specific WWI were extracted

from the WWI annual grids (above) for the 163

watersheds upstream of the monitoring sites using the

USGS Watershed Boundary Dataset (http://nhd.usgs.

gov/wbd.html) and the sp R package (Bivand et al.

2013). Trends and cyclic patterns in projected and

observed Iowa River Basin WWI were evaluated by

least squares linear regression after checking for

autocorrelation in R.

WWI relationship to spring nitrate historically

and in the future

To understand the relationship between observed

WWI and May–June nitrate (MJNOx), we constructed

mixed effects models using the R package lme4 (Bates

et al. 2015). MJNOx for each station-year was the

response variable and the corresponding watershed

WWI for each year was the fixed effect. Random slope

and intercept of MJNOx vs. WWI for each sites were

also included. We provide a conditional R2 (Naka-

gawa and Schielzeth 2013) as an indicator of the total

variance in MJNOx explained with the hierarchical

model. However, because our model contains multiple

variance components (i.e. hierarchical) its usage

differs from a traditional R2 as the conditional R2

has a lower maximum (\1) and thus its interpretation

is conservative relative to transitional R2. (Nakagawa

and Schielzeth 2013). To fully propagate the errors

this hierarchical model was fit using the Markov chain

Monte Carlo sampler No-U-Turn in the R package

rstan (Hoffman and Gelman 2014) with four chains

each with 10,000 iterations. The first 1000 iterations of

each chain were discarded as warmup. Convergence

was accepted when Rhat\ 1.01. For the hierarchical

Bayesian model uninformed priors were used for all

parameters. Posterior probability distributions were

obtained for the slope and intercept parameters of all

163 monitoring sites. Bayesian credible intervals of

2.5 and 97.5% were calculated for the Iowa River

Basin posterior distributions.

Projecting effect of future WWI on spring nitrate

concentration for the Iowa River Basin

To project MJNOx and its uncertainty in the future, a

random subset (n = 1000) of the Iowa River Basin

posterior distribution of slope and intercept parame-

ters were multiplied by the Iowa River Basin water-

shed WWI realizations from each of the climate

models (n = 30) for each year (1950–2099), resulting

4470,000 possible combinations. Linear trends in the

mean and upper and lower credible intervals of the

projected MJNOx were determined by regression and

compared using analysis of variance. Significance was

accepted at an alpha of 0.05. The projected probability

of MJNOx exceeding the E.P.A. drinking water

standard in the Iowa River Basin was calculated as

the proportion of realizations that exceed 10 mg

NO�

3 -N L-1.

Results and discussion

Near-record dissolved N fluxes combined with high

cumulative discharge (i.e. the volume of water moving

through the river; Fig. 1) provide overwhelming

support for our hypothesis (droughts store reactive N

in soil and floods flush reactive N into streams) and

provide a unique insight into how climate variability

creates extremes in N loading. The source of high

2013 N loads can be discerned by comparing the

cumulative discharge (Fig. 1a) and cumulative nitrate

load (Fig. 1b). Beginning at day of year (doy) 105 in

2013 (Fig. 1a), cumulative discharge climbed steeply,

driven by precipitation including two storms that

raised mean daily discharge above the 99th percentile

(Fig. S1). Despite periods of intense precipitation, the

2013 cumulative discharge remained largely within

the 95th percentile of the 40 year record (1970–2009,

10 Biogeochemistry (2017) 133:7–15
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grey shading, Fig. 1a). However, discharge alone does

not explain the extreme N loading in 2013. Rather, the

interannual contrast among cumulative nitrate flux

(Fig. 1b) suggests that antecedent drought conditions

(2012) stored reactive N in the soil and then this excess

N was mobilized during spring runoff. Departures

between cumulative nitrate flux and cumulative dis-

charge in 2013 support our hypothesis (Fig. 1b). The

intense precipitation that occurred in the early spring

of 2013 (*doy 110–150; April and May) corresponds

to the fastest increase in nitrate flux in the available

record (2010–2015; Fig. 1b). The combined effects of

elevated discharge and high nitrate concentrations

resulted in a cumulative nitrate flux that was 118%

greater than the average of the other five years

resulting in a 34% increase (10.5 vs. 7.8 mg N L-1)

in the flow-weighted mean annual nitrate concentra-

tion in 2013 compared to the average over that same

period.

The transition from drought conditions in 2012 to

spring 2013 was abrupt; many UMRB areas flipped

from precipitation deficits[250 mm to surpluses in

excess of 250 mm in less than three months (i.e. over

500 mm gain). The popular media dubbed this

‘‘weather whiplash’’ (O’Hanlon). We quantify a

weather whiplash index (WWI) as the total precipita-

tion from January to June (2013) minus the total

precipitation from July to December (2012), divided

by the total precipitation over that entire period.

Positive WWI indicates switching from dry to wet

conditions during the twelve-month period; the mag-

nitude of WWI indicates the intensity of that change

during the same period. The 2012–2013 whiplash

cycle was historically extreme (Fig. 2a) and spatially

extensive (Fig. 2b). The 2012 U.S. drought was

among the most severe, extensive and costly for the

UMRB (Peterson et al. 2013), which includes four of

the top states for maize and soy production (Illinois,

Iowa, Indiana and Missouri), the U.S.’s two most

valuable agricultural commodities (Hatfield et al.

2013). These four UMRB states contribute 48% of N

loading to the Mississippi River (Alexander et al.

2008).

Examining the WWI of climate models indicates

that weather whiplash in the UMRB will increase in

frequency and intensity as climate changes (Fig. 3).

Moreover, average trends in weather whiplash pre-

dicted by 30 future climate models (Fig. 3 black line)

are conservative compared to the observed changes

(Fig. 3 green dashed line) in weather whiplash in the

Iowa River basin (1978–2015). We compared 30

downscaled precipitation projections (each denoted by

a line) from the 30 models used in the CMIP5 (see

details in Methods) to project future whiplash
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Fig. 2 Weather whiplash in the Upper Mississippi River Basin
was historically (a) and spatially (b) extreme, as indicated by the
Weather Whiplash Index (WWI). A positive WWI indicates
shifts from dry to wet conditions; a negative WWI, a shift from
wet to dry. a A histogram of the 113 year record of Weather
Whiplash Index for Iowa River Basin, Iowa. 2010–2015 are

highlighted as the period for which continuous stream nitrate
concentration data are available. b A map of the UMRB
indicating the spatial extent of the 2012–2013 weather whiplash.
The black star on b references the location of Wapello, Iowa,
where the continuousmonitoring data were collected in the Iowa
River (Fig. 1)
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scenarios. Of these 30 models, 19 predict an increase

in weather whiplash over time (orange lines, Fig. 3)

and 11 predict no trend in weather whiplash over time

(grey lines, Fig. 3a). Variance in modeled whiplash

(Fig. S2) approximates the variance in observed

weather whiplash from the Iowa River basin

(Fig. S2, green box). Matching the modeled and

observed variance in weather whiplash is a critical

component to understanding the probability of extreme

events, including high riverine nitrate concentrations

that may cause exceedance of the EPA’s drinking water

standards. Cyclic patterns in the observed or climate

model predicted WWI were not evident; therefore, the

deviation between modeled and observed weather

whiplash (Fig. 3) is due to either short-term variability

(37 years of data are available) or an under estimation

of the precipitation changes by the climate models. If

the observed pattern of rapid changes in weather

whiplash persist, this would further exacerbate related

issues including flood prediction, crop productivity and

environmental quality.

Weather whiplash strongly influences spring nitrate

concentrations in long-term monitoring data from

agricultural watersheds in the UMRB (US EPA)

(Fig. 4a, S3). Across the UMRB, dry springs follow-

ing wet autumns result in the lowest spring nitrate

concentrations; wet springs following dry autumns

result in the highest spring nitrate concentrations

(Fig. 4a). Our hierarchical regression model used to

describe this relationship explains 81% (conditional

R2) of the variation in spring nitrate concentrations

with approximately half of this variation explained by

weather whiplash (i.e., random slopes effects) and the

other half by site effects (i.e. random intercepts caused

by e.g. land use intensity, topography, etc.). By

combining the projected weather whiplash from all 30

climate models (Fig. 3) and the relationship between

spring nitrate and weather whiplash (Fig. 4a), we

project spring riverine nitrate concentrations will

continue to climb through 2100 (Fig. 4b). Extreme

events (indicated by the 97.5% credible interval, upper

dashed green line for the Iowa River basin) rise even

faster than the mean nitrate concentration (solid green

line; Fig. 4b). The faster increase in extreme events

results in an increasing frequency of spring nitrate

concentrations exceeding the E.P.A. drinking water

standard (Fig. 4c). Again, our projected exceedance

estimates are low relative to the observed exceedance

(Fig. 4c), which we attribute to the conservative nature

and uncertainty of our weather whiplash model projec-

tions being derived from the entire hindcast model

period (1951–2015) as opposed to the period of spring

nitrate data for the Iowa River (1978–2015) (Fig. 3).

Scientists are beginning to investigate how climate

change will interact with land management to affect

surface water quality (Howarth et al. 2012; Baron et al.

2012; Kaushal et al. 2014). Connections between

weather variation and water quality have been noted

for single drought-flood events (Kaushal et al. 2008),

long-term data in a limited number (B3, all within the

same state) of watersheds (David et al. 1997; Royer

et al. 2006) or hypothesized from modeling exercises

(Donner et al. 2002). However, to our knowledge, this

study is the first to empirically demonstrate the

connection between increased long-term weather

variation due to changing climate and the subsequent

effects on water quality across multiple decades in an

extensive agricultural region. Our data expands on

previous work (David et al. 1997; Royer et al. 2006;

Kaushal et al. 2008; David et al. 2010) to suggest that

the spring 2013 pulse of riverine nitrate export is not a

unique episode, but rather a normal, widespread, and

recurring event sensitive to changes in seasonal
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precipitation. We show that antecedent climate can

poise soil conditions for greater in riverine nitrate fluxes

(Figs. 1, 2). Furthermore, climate change will likely

result in a stronger weather whiplash with frequent

summer droughts coupled to increasingly wet springs

(Fig. 3) (Hatfield et al. 2013). Increased weather

whiplash will bring about increased spring stream

nitrate concentrations and associated challenges in

managing surface waters for drinking water quality

(Fig. 4). While our analysis clearly indicates weather

whiplash is connected to the magnitude of N loss, we do

not evaluate how shifting patterns in weather whiplash

will affect the timing of loading, which is an important

consideration for understanding coastal hypoxia devel-

opment. Demonstrating the connection between cli-

mate variability and water quality leads us to posit that

climate change will amplify water quality problems in

the agricultural Midwest unless substantial changes are

made in management.

The UMRB is beginning to show improvements in

water quality (Murphy et al. 2013) after decades of

decline (Sprague et al. 2011). Unfortunately,

increasingly variable weather may counteract these

improvements by enhancing N loading to streams and

rivers. Currently, farmers are advised to add supple-

mental N fertilizer during wet springs to account for

early season losses (Fernandez 2009). As weather

whiplash increases in this region (Fig. 3), it is likely

that land managers will respond to wetter springs by

applying more N fertilizer (Hatfield et al. 2013).

Without future changes in land management, the

nascent water quality improvements in the region

(Murphy et al. 2013) may quickly dissipate due to

unforeseen interactions between climate and agricul-

ture. This may further increase the economic damage

associated with a changing climate as more munici-

palities construct and operate nitrate removal systems

to meet drinking water standards. Currently, the Des

Moines Water Works (Iowa, USA) operates a large

nitrate removal facility in order to comply with the

E.P.A. drinking water standard. The facility cost $4.1

million to build and $7000 USD/day to operate. In

2015, the city operated the facility for a record

177 days at a cost of *$1.5 M USD and requires
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in spring nitrate will continue to increase due to climate change
(different lower case letters indicate significantly different
slopes) and c the probability of exceeding the E.P.A. drinking
water limit of 10 mg NO�

3 -N L-1will also increase in the future
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$80 M in upgrades in the near future (Des Moines

Water Works 2016b). As weather whiplash (Fig. 3)

and the associated increase in spring nitrate concen-

trations (Fig. 4a, b) combine to increase the likelihood

of exceeding the EPA safe drinking water standard

(Fig. 4c), more local municipalities in agricultural

regions will be forced to invest in nitrate removal

systems to meet their drinking water needs.

Current economics are driving agricultural intensifi-

cation in the U.S. and across the globe (Donner and

Kucharik 2008; Secchi et al. 2008). In the Midwestern

US, this intensification is interacting with climate change

to affect water quality. Unchecked, it is possible that

weather whiplash and agricultural activities will com-

bine to form a positive feedback loop that motivates

farmers to apply more fertilizer to offset excess losses

resulting from wetter springs, a practice that is currently

being suggested by local managers (Fernandez 2009).

Unfortunately, this potential for amplification of water

quality problems occurs at a time when the need to reign

in the environmental impacts of excessive fertilizer use is

becoming widely recognized (Force 2013). Combined,

our observations illustrate a harbinger of a future in

which increased climatic variation amplifies negative

trends in water quality in a region already grappling with

impairments (Paulsen et al. 2006).
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