
Open Research Online
The Open University’s repository of research publications
and other research outputs

Weaving together requirements and architecture
Journal Item
How to cite:

Nuseibeh, B. (2001). Weaving together requirements and architecture. Computer, 34(3) pp. 115–119.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/2.910904
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/computer2001.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1109/2.910904
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/computer2001.pdf
http://oro.open.ac.uk/policies.html

March 2001 115

S O F T W A R E M A N A G E M E N T

C ompelling economic arguments
justify why an early under-
standing of stakeholders’ re-
quirements leads to systems
that satisfy their expectations.

Equally compelling arguments justify an
early understanding and construction of
a software-system architecture to pro-
vide a basis for discovering further
requirements and constraints, evaluat-
ing a system’s technical feasibility, and
determining alternative design solutions.

Software-development organizations
often choose between alternative start-
ing points—requirements or architec-
tures. This invariably results in a water-
fall development process that produces
artificially frozen requirements docu-
ments for use in the next step in the
development life cycle. Alternatively, this
process creates systems with constrained
architectures that restrict users and hand-
icap developers by resisting inevitable
and desirable changes in requirements.

The spiral life-cycle model addresses
many drawbacks of a waterfall model by
providing an incremental development
process, in which developers repeatedly
evaluate changing project risks to manage
unstable requirements and funding. An
even finer-grain spiral life cycle reflects
both the realities and necessities of mod-
ern software development. Such a life
cycle acknowledges the need to develop
software architectures that are stable, yet
adaptable, in the presence of changing
requirements. The cornerstone of this
process is that developers craft a system’s
requirements and its architecture concur-

rently, and interleave their development
(W. Swartout and R. Balzer, “On the
Inevitable Intertwining of Specification
and Implementation,” Comm. ACM, vol.
25, no. 7, 1982, pp. 438-440).

THE TWIN PEAKS MODEL
Except for well-defined problem

domains and strict contractual proce-
dures, most software-development pro-
jects address requirements specification
and design issues simultaneously—and
justifiably so. Achieving a separation of
requirements and design steps is often
difficult because their artificial ordering
compels developers to focus on either
aspect at any given time. In reality, can-
didate architectures can constrain design-
ers from meeting particular require-
ments, and the choice of requirements
can influence the architecture that design-
ers select or develop.

Based on our experience in industrial
software-development projects, my col-
leagues and I use an adaptation of the spi-
ral life-cycle model. We informally call this
model Twin Peaks to emphasize the equal
status we give to requirements and archi-
tectures. Although this model develops

requirements and architectural specifica-
tions concurrently, it continues to sepa-
rate problem structure and specification
from solution structure and specification,
in an iterative process that produces pro-
gressively more detailed requirements and
design specifications, as Figure 1 suggests.

The Twin Peaks model addresses the
three management concerns identified by
Barry Boehm (“Requirements that
Handle IKIWISI, COTS, and Rapid
Change,” Computer, July 2000, pp. 99-
102):

• I’ll Know It When I See It (IKI-
WISI). Requirements often emerge
only after users have had an oppor-
tunity to view and provide feedback
on models or prototypes. Twin
Peaks explicitly allows the user to
explore the solution space early, per-
mitting incremental development

and consequent risk management.
• Commercial off-the-shelf software

(COTS). Increasingly, software de-
velopment is actually a process of
identifying and selecting desirable
requirements from existing com-
mercially available software pack-
ages. With Twin Peaks, developers
can identify requirements and match
architectures with commercially
available products, rapidly and
incrementally. The developer bene-
fits by quickly narrowing the selec-
tions or making key architectural
decisions to accommodate existing
COTS solutions.

• Rapid change. Managing change
continues to be a fundamental prob-
lem in software development and
project management. Focusing on
finer-grain development, Twin Peaks
is receptive to changes as they occur.
Analyzing and identifying a soft-

Weaving Together
Requirements and
Architectures
Bashar Nuseibeh, The Open University

Twin Peaks intertwines software
requirements and architectures
to achieve incremental develop-
ment and speedy delivery.

116 Computer

S o f t w a r e M a n a g e m e n t

ware system’s core requirements are
requisite to developing a stable soft-
ware architecture amid changing
requirements.

Developing software systems in these
contexts requires considering differ-
ent development processes. Addressing
IKIWISI means starting design and
implementation earlier than usual; using
COTS requires considering reuse at an
earlier stage of requirements specifica-

tion; remaining competitive while adapt-
ing to rapid change requires us to per-
form all development tasks more quickly.

BUILDING MODULAR
SOFTWARE INCREMENTALLY

Building systems with well-defined
component interfaces offers opportuni-
ties for effective reuse and maintenance.
It is unclear, however, how component-
based development approaches fit into
the development process. One approach

is to consider the use of requirements,
architecture, and design patterns. The
software design community has already
identified design patterns for expressing
a range of implementations. The soft-
ware architectures community has iden-
tified suitable architectural styles for
meeting various global requirements.
The requirements engineering commu-
nity has promoted the use of Michael
Jackson’s problem frames and Martin
Fowler’s analysis patterns to identify
problems for which solutions exist.

What relationships connect these dif-
ferent patterns? Figure 2 suggests that we
can treat patterns of requirements,
designs, and architectures as the starting
point for component-based develop-
ment. For example, a given fixed archi-
tecture can limit the kinds of problems
that we can address and the possible
designs that we can develop, while rigid
requirements can limit the candidate
architectures and design choices.

From a requirements engineering per-
spective, achieving a satisfactory problem
structuring using problem frames as early
as possible is essential. Given that existing
architectures can influence how develop-
ers structure problems, some problem
frames may need to be reverse engineered
from existing architectural designs.

WEAVING THE
DEVELOPMENT PROCESS

Twin Peaks shares much in common
with Kent Beck’s Extreme Programming,
such as the goal of exploring implemen-
tation possibilities early and iteratively.
Twin Peaks is complementary to XP in
that it focuses on software-development
front-end activities—requirements and
architectures. This potentially addresses
some of the issues of scale that are often
claimed to be XP’s weaknesses.

Early understanding of requirements
and choice of architecture are key to man-
aging large-scale systems and projects. XP
focuses on producing code—sometimes at
the expense of the wider picture of
requirements and architectures.

Of course, focusing on requirements
and architectures in itself is not sufficient
to achieve scalability. Modularity and iter-
ation are also crucial. Twin Peaks is inher-
ently iterative, and combining it with tried

Figure 2. Part of the software-development terrain, with requirements, architecture, and design
receiving similar attention. Patterns of each affect the kind of system (components) developed,
and the relationship between them is a key determinant of the kind of process developers
adopt.

Figure 1. The Twin Peaks model develops progressively more detailed requirements and archi-
tectural specifications concurrently. This is an adaptation of the model first published in Paul
Ward and Stephen Mellor’s Structured Development for Real-Time Systems: Introduction and
Tools, vol. 1, Prentice Hall, Upper Saddle River, N.J., 1985, and subsequently adapted by
Andrew Vickers in his student lecture notes at the University of York, UK.

Requirements Architecture

Specification

Detailed
Independent Dependent

General

Implementation
dependence

Level
of

detail

Architectural
styles

Design
patterns

ArchitectureDesign

Requirements

Problem
frames

Components

March 2001 117

and how do we manage require-
ments and architectures (and their
development processes) in order to
minimize the impact of these
changes?

The answers to these questions will
influence key emerging software-devel-
opment contexts including

• product lines and product families,
which need stable architectures that
tolerate changing requirements;

• COTS systems, which require iden-
tifying and matching existing archi-
tectures to requirements (as opposed
to developing system requirements
from scratch); and

• legacy systems, which can incorpo-
rate existing system constraints into
requirements specifications.

Processes that embody Twin Peaks
characteristics are the first steps in tack-
ling the need for architectural stability in
the face of inevitable requirements
volatility.

D evelopment processes that facilitate
fast, incremental delivery are essen-
tial for software systems that need

to be developed quickly, with progres-
sively shorter times-to-market as a key
requirement. The Twin Peaks model rep-
resents much of the existing, but implicit,
state of the practice in software develop-
ment. While it is based on accepted
research in its evolutionary development,
the software-development community
has not yet recognized that such a model
represents acceptable practice. ✸

Bashar Nuseibeh is a professor of com-
puting at The Open University, United
Kingdom, and director of the Centre for
Systems Requirements Engineering at the
Department of Computing, Imperial Col-
lege, London. Contact him at B.A.
Nuseibeh@open.ac.uk or visit http://mcs.
open.ac.uk/ban25.

and tested components derived from well-
understood patterns can facilitate incre-
mental development of large-scale sys-
tems. The resultant overall software-
development process inevitably takes a
more complex path from problem to solu-
tion.

Although the conceptual differences
between requirements and design are now
much better understood and articulated,
the process of moving between the prob-
lem world and the solution world is not
as well recognized (Michael Goedicke and

Bashar Nuseibeh, “The Process Road
between Requirements and Design,”
Proc. 2nd World Conf. Integrated Design
and Process Technology, SDPS, Austin,
Texas, 1996, pp. 176-177). Researchers
and practitioners are struggling to develop
processes that allow rapid development in
a competitive market, combined with the
improved analysis and planning that is
necessary to produce high-quality systems
within tight time and budget constraints.

A more robust and realistic develop-
ment process allows both requirements
engineers and system architects to work
concurrently and iteratively to describe
the artifacts they wish to produce. This
process allows developers to better
understand problems through consider-
ation of architectural constraints, and
they can develop and adapt architectures
based on requirements.

Many difficult questions remain unan-
swered:

• What software architectures (or
architectural styles) are stable in the
presence of changing requirements,
and how do we select them?

• What classes of requirements are
more stable than others, and how
do we identify them?

• What kinds of changes are systems
likely to experience in their lifetime,

The Twin Peaks model
represents much of the
existing, but implicit,

state of the practice in
software development.

Editor: Barry Boehm, Computer Science
Department, University of Southern Califor-
nia, Los Angeles, CA 90089; boehm@sunset.
usc.edu

Sponsored by:
IEEE Computer Society

For more information, to download
advance program, and to register by

March 31st, visit www.ipdps.org.

High Performance Computing in Java:
Compiler, Language, and Application
Solutions

#1
ALL
DAY

Introduction to Effective Parallel Com-
puting

#2
AM

Parallel and Distributed Data Mining#3
PM

Grid Computing, Globus, and Java
Interface to the Grid

#4
ALL
DAY

SGI Pro64 Open Source Compiler
Infrastructure

#5
AM

Distributed Object Computing with
Java/ORB

#6
PM

MONDAY, April 23rd

FRIDAY, April 27th

Presenting Six
Tutorials Tailored To

IPDPS 2001 Attendees

www.ipdps.org

