
WEB-BASED SIMULATION IN SIMJAVA USING REMOTE METHOD INVOCATION

Ernest H. Page
Robert L. Moose, Jr.

Sean P. Griffin

The MITRE Corporation
1820 Dolley Madison Boulevard

McLean, VA 22102, U.S.A.
ABSTRACT

An investigation is underway regarding technologies
to support the design, development and use of dis-
tributed, web-based simulations. As part of this in-
vestigation the Simjava simulation-support package
has been extended to utilize the Remote Method In-
vocation facilities of the Java Development Kit (JDK)
1.1. Current efforts with Simjava are described and
future research directions are outlined.

1 INTRODUCTION

The topic of web-based simulation spans a variety of
areas within the field. (See Page et al. (1997) for an
online a survey of web-based simulation.) Fishwick
(1996) discusses many potential impacts of web tech-
nologies on simulation, giving particular attention to
three areas: (1) education and training, (2) publica-
tions, and (3) simulation programs. With respect to
education and training, the web offers storage and
retrieval of supporting material far exceeding the ca-
pacity of CD-ROMs or diskettes that may be pack-
aged with a textbook. Such capacity permits more
extensive use of resource-intensive media such as au-
dio and video. The learning environment, as a result,
tends to be highly interactive. With respect to pub-
lications, the web offers new and convenient mech-
anisms for submitting, refereeing and disseminating
research results. The web will impact the traditional
revenue process for technical journals, and already
is causing changes in our copyright laws (Samuelson
1996). However, it is the last category in Fishwick’s
discussion that has received the most attention in the
web-based simulation area and, arguably, represents
the predominant use of the term.

Web-based simulation programs generally fall into
two categories. Simulation programs that can be
accessed remotely through web browsers and forms-
based CGI scripts comprise the first category. Typ-
ically, these simulations allow the user to tailor (via
the forms interface) model execution parameters such
as mean service times and arrival rates, number of
model replications, and so forth. A single copy of
the simulation runs on a server and passes the results
of model execution to the invoking client. The sec-
ond category of web-based simulation programs rep-
resents a variation on the first, but with the added
feature of code mobility afforded by such network
programming languages as JavaTM. Here, the sim-
ulation executes on the client rather than the server.
Java-based simulation-support libraries are emerg-
ing that permit the creation of simulation programs
as Java applications and applets. Among these are
Simkit (Buss 1996), JavaSim (Little 1996), JSIM
(Nair, Miller and Zhang 1996) and Simjava (McNab
and Howell 1996). One of the primary advantages
of these packages is that they permit network-based
simulation models to be developed using established
conceptual frameworks. This paper describes work
being undertaken to extend the Simjava package to
utilize the Remote Method Invocation (RMI) facil-
ities of JDK 1.1. This extension enables the con-
struction of distributed, web-based simulations using
Simjava.

2 DISTRIBUTED SIMULATION
INFRASTRUCTURES

An inherent characteristic of the WWW is its dis-
tributed nature. Therefore, the marriage of web-
based simulation and distributed simulation seems a
natural one. Distributed simulation dates to (Bryant
1977; Chandy and Misra 1979; Chandy and Misra
1981) and has evolved into an active research area
that includes an annual workshop on parallel and dis-
tributed simulation (PADS). The focus of PADS re-
search has historically been centered on parallel and
distributed implementations of sequential simulation
models that result in speedup of model execution at
runtime.

Additionally, distributed simulation has been the



Web-Based Simulation in Simjava Using Remote Method Invocation 469
focus of the U.S. Defense industry for well over a
decade. Here the motivation for distributed com-
putation is not speedup but interoperation. These
defense-related efforts originated with SIMNET (Al-
luisi 1991) and evolved into the Distributed Interac-
tive Simulation (DIS) protocol initiative (Voss 1993)
and the Aggregate Level Simulation Protocol (ALSP)
(Page, Canova and Tufarolo 1997; Weatherly, Wilson
and Griffin 1993; Weatherly et al. 1996). DIS pro-
vides the environment for networking human-in-the-
loop (HIL) simulators. ALSP extends the DIS phi-
losophy to permit the interoperation of higher-level,
so-called aggregate, simulations and exercise drivers.
The primary application of ALSP, the Joint Train-
ing Confederation (JTC) has been used to support
several large-scale command post exercises annually
since 1992.

Both DIS and ALSP are nearing their respec-
tive ends of service. The Defense Modeling and
Simulation Office (DMSO) has sponsored the defi-
nition and development of the High Level Architec-
ture (HLA) for modeling and simulation (M&S). The
HLA has been defined to “facilitate the interoperabil-
ity among simulations and promote reuse of simula-
tions and their components” (DMSO 1996, p. 1). In
a 1996 memorandum signed by the U.S. Undersecre-
tary of Defense for Acquisition and Technology Dr.
Paul Kaminski, the HLA is endorsed as the standard
for all U.S. Department of Defense (DoD) M&S (DoD
1996). The HLA standard supersedes both ALSP and
DIS and all DoD M&S efforts must comply with the
HLA, receive a waiver, or be retired by 2001.

A primary component of the HLA is its Runtime
Infrastructure (RTI). The HLA RTI implements a set
of services – defined by the HLA Interface Specifica-
tion (DMSO 1997) – which are invoked by applica-
tions (so-called federates) to coordinate the manage-
ment of both data and time within a distributed sim-
ulation environment. (The RTI also invokes services
that HLA compliant federates must provide.) One of
the strengths of the HLA (and the RTI) is its gener-
ality. The services it defines (and implements) enable
the construction of a well-defined distributed simula-
tion environment from a collection of highly disparate
applications, from real-time human-in-the-loop simu-
lators, to faster-than-real-time discrete event simula-
tions, to instrumented live vehicles, to simple Monte
Carlo models.

One of the prices paid for this generality, however,
is a lack of conceptual framework (CF) support. The
CF imposed by the HLA, somewhat akin to that pro-
vided by an operating system, is typically unlike the
CFs available to many candidate HLA applications
in their standalone form. One of the activities of
the MITRE web-based simulation research program
is a collaboration on the design and development of a
Java-based RTI. The realization of an RTI in Java will
provide the code mobility necessary to provide a plat-
form for distributed, web-based simulation. However,
the addition of CF support requires a thorough un-
derstanding of the relationship between the OS-level
services provided by the RTI and the CF-level op-
erations available to simulations in their standalone
form. The remainder of this paper describes the early
stages of an investigation regarding the feasibility of
providing CF support within a distributed, web-based
simulation environment.

3 SIMJAVA

Simjava is a discrete event simulation package, au-
thored by Ross McNab and Fred Howell, that is
written in Java and conceptually based on the
Sim++ library for C++ (McNab and Howell 1996). A
companion package, Simanim, allows the construc-
tion of animated Simjava applets. Naturally support-
ive of the process interaction conceptual framework,
a Simjava simulation typically consists of a collection
of objects (from the Sim entity class) each of which
runs in its own thread within a Java Virtual Machine.
Objects are connected via ports (from the Sim port

class) and interact by sending and receiving events
(from the Sim event class) along these ports. A static
class, Sim system, controls the object threads, coor-
dinates the advance of simulation time, and maintains
the event queues. Construction of a Simjava program
typically involves four steps (McNab 1996):

1. Describing the behavior of the simulation ob-
jects by extending the standard Sim entity

class and overriding the body() method.

2. Instantiating objects via Sim system.add(obj),
and defining local ports using add port().

3. Establishing inter-object communication paths
with Sim system.link ports().

4. Invoking Sim system.run().

Time flow is regulated using four methods on
Sim entity: (1) sim schedule() schedules an event
for an object linked to a designated port, (2)
sim hold() causes an object to be suspended for a
specified duration of simulation time, (3) sim wait()

causes an object to wait for the next (future) event
posted to its input port(s) by a sim schedule() call,
and (4) sim select() allows an object to process
events from its deferred queue – events that arrive
while the object is executing a sim hold() call.



470 Page, Moose Jr., and Griffin
Client Server

Stubs Skeletons

Remote Reference Layer

Transport

Application

RMI
System

Figure 1: Java RMI Architecture

As a simple illustration, consider Example 1 from
the Simjava release documentation (McNab 1996) re-
produced here in Appendix A. In this example, a sin-
gle source schedules arrivals for a single sink. The
sink acknowledges each arrival from the source.

4 JAVA REMOTE METHOD
INVOCATION

A Remote Method Invocation (RMI) capability has
been included with the Java Development Kit (JDK)
release 1.1 (Sun 1997). Remote Method Invocation
is the object-oriented analogue of the traditional Re-
mote Procedure Call (RPC) for distributed compu-
tation. In the Java distributed object model, a re-
mote object is one whose methods can be invoked
from another Java Virtual Machine, potentially on
a different host. An object of this type is de-
scribed by one or more remote interfaces, which are
Java interfaces that declare the methods of the re-
mote object. All remote interfaces extend, either di-
rectly or indirectly, the interface java.rmi.Remote.
A method in a remote interface must: (1) declare
java.rmi.remoteException in its throws clause (in
addition to any application-specific exceptions), and
(2) declare remote objects passed as an argument or
return value as the remote interface instance, not the
class of the actual remote object, which is known as
the implementation class. Architecturally, the RMI
system consists of three layers:

1. The stub/skeleton layer – client-side stubs
(proxies) and server-side skeletons.

2. The remote reference layer – remote reference
behavior (such as object invocation).

3. The transport layer – connection set up and
management, and remote object tracking.

The relationship between these layers is noted in Fig-
ure 1, an illustration from (Sun 1997).

In this context, a server is any object whose meth-
ods are invoked remotely; a client is an object that
invokes a remote method. Thus, it is easy to envi-
sion applications of RMI (including distributed simu-
lation) in which many clients and servers exist. Fur-
thermore, a given object may – and commonly will
– function as both a server and a client. Such an
object will both invoke remote methods and have its
methods invoked remotely. (The example in Section 6
relies on dual-function objects of this nature.)

A client invoking a method on a remote server ob-
ject actually makes use of a stub (or proxy) for the
remote object. The stub, an implementation of the
remote interfaces of the remote object, forwards invo-
cation requests to the server via the remote reference
layer. The skeleton for a remote object makes an
up-call to the remote object implementation which
carries out the actual method call. The return call
is sent back through the skeleton, remote reference
layer, and transport on the server side, and then up
through the transport, remote reference layer, and
stub on the client side. Stubs and skeletons handle
all marshaling for arguments and return values.

Also notable in the Java RMI: The remote inter-
face must be public; the implementation class must
create and install a security manager (even for Java
applications); nonremote arguments to, and results
from, a remote method invocation are passed by copy
rather than reference.

5 ADDING REMOTE METHOD
INVOCATION TO SIMJAVA

The task of adding RMI capabilities to Simjava can
be described in a straightforward manner. The pri-
mary changes made to Simjava to incorporate RMI
functionality are highlighted here. A comprehensive
presentation of these details is given in (Griffin, Page
and Moose 1997). The first step is to establish a
conceptual architecture for distributed Simjava ap-
plications (and applets). A simple master-slave ar-
chitecture provides the baseline for our Simjava mod-
ifications. In this architecture, a master server that
encapsulates the Sim system, coordinates the activi-
ties of objects (Sim entities) that are distributed
across the network. Given this architecture, it is
evident that remote interfaces must be constructed
for the Sim system and Sim entity classes. Enti-
ties create ports and the Sim system links them to-
gether. Therefore Sim port, as well, must have a re-
mote interface. Likewise, entities create events which
are manipulated by the Sim system. Therefore, four
remote interfaces must be defined: Sim systemIF,
Sim entityIF, Sim portIF, and Sim eventIF. Note
that these four interfaces are sufficient to enable the
implementation of the example given in Section 6 and
a variety of Simjava applications. Use of Simjava
applets requires interfaces for several objects in the
Simanim package. Refer to (Griffin, Page and Moose
1997) for details. For purposes of illustration, the



;

Web-Based Simulation in Simjava Using Remote Method Invocation 471
Sim2

SourceSlave

Sim_port
[Sim_entity

Sim_event]
Sim_port
[Sim_entity

Sim_event]

Sim3

SinkSlave

Sim1

[Sim_system]

Master

Sim_port.get_port()

Sim_system.readyToRun()

Sim_entity.start()

Sim_system.send()

Figure 2: Simple Master-Slave Architecure

code for Sim portIF is given below.

package eduni.simjava;

import eduni.simjava.*;

public interface Sim portIF extends java.rmi.Remote {
void connect(Sim entityIF dest)

throws java.rmi.RemoteException;

void set src(int s) throws java.rmi.RemoteException;

int get dest() throws java.rmi.RemoteException;

}

Since only objects, and not classes, can be in-
voked remotely, Sim system must be modified to
make its interface methods instance methods. The
master program creates an instance of Sim system

and places it in the RMI registry. In the origi-
nal Simjava package Sim entity extends Thread.

To be remotely accessible, Sim entity must extend
rmi.remoteObject (or one of its realizations, in our
case rmi.server.unicastRemoteObject) in addition
to implementing Sim entityIF. Since Java does not
permit multiple inheritance, Sim entity can be mod-
ified to implement Runnable by providing a start()

method as follows:

public void start()

throws java.rmi.remoteException

{
new Thread(this).start();

}

This code creates a thread and runs an in-
stance of the creating object in the thread. The
thread.start() method invokes the run() method
of the creating Sim entity.

6 EXAMPLE

Using the architectural concept described in the pre-
vious section a distributed version of the example in
Appendix A may be defined as depicted in Figure 2
(annotated with representative remote method calls).

The master program, running on a SUN Sparc-
Station Sim1, contains the single method, main(),
which accepts a commandline argument representing
the number of distributed clients (in this case two),
creates an instance of Sim system and binds it in
the RMI registry. Following the RMI conventions,
a single object is used to bootstrap the system. Re-
mote references for the remaining objects are acquired
through passed parameters and return values.

class Master {
public static void main(String args[]) {

if (args.length < 1) {
System.out.println("Usage: Example1 <numClients> ");

System.exit(1);

}

System.setSecurityManager(new RMISecurityManager());

try {
eduni.simjava.Sim system simSystem = new

eduni.simjava.Sim system(Integer.parseInt(args[0]))

Naming.rebind("//sim1:1099/SimSystem", simSystem);

} catch (Exception e) {
System.out.println("M: " + e.getMessage());

e.printStackTrace();

}
}

}

The Source and Sink programs, running on Sun
SparcStations Sim2 and Sim3 respectively, each con-
tain their constructor as in Appendix A which is
extended to accept an instance of the Sim system

(through the interface type). Port creation and
addition is wrapped in a try-catch block for the
java.rmi.RemoteException. The body() methods
are unchanged. Each has a main() method that in-
stalls a security manager, retrieves the simSystem

instance from the RMI registry, and instantiates it-
self. Finally, the add() and readyToRun() meth-
ods are invoked on simSystem. Once the number
of calls to readyToRun() equals the number of ex-
pected clients, a user-supplied method that links
the entity ports is invoked by simSystem. The
main() method for SourceSlave is given below. The
complete source for this example is available from
http://ms.ie.org/websim.

class SourceSlave extends Sim entity {
.
.
.

public static void main(String args[]) {

Sim systemIF simSystem;

System.setSecurityManager(new RMISecurityManager());

try {
simSystem = (Sim systemIF)

Naming.lookup("//sim1:1099/SimSystem");

SourceSlave sourceSlave = new SourceSlave("Sender",

1, SourceSlave.SRC OK, simSystem);

simSystem.add((Sim entityIF)sourceSlave);



472 Page, Moose Jr., and Griffin
simSystem.readyToRun();

} catch (Exception e) {
System.out.println("S: " + e.getMessage());

e.printStackTrace();

}
}

}

7 CONCLUSIONS

Distributed simulation has been a focus of U.S. DoD
simulation research and development for well over a
decade. Unlike the parallel and distributed simula-
tion (PADS) community, however, the objective of
distributed computation within the DoD is typically
not speedup, but interoperability. Web-based simula-
tion is a topic that encompasses a wide range of areas
in simulation, including education and training, pub-
lication, as well as simulation programs. The mar-
riage of distributed simulation and web-based simu-
lation seems a natural one, and initiatives are under-
way to incorporate web-based code delivery into the
next-generation DoD standard, the High Level Archi-
tecture. However, the services defined for the High
Level Architecture resemble Operating System-level
calls. The conceptual framework support available
in modern simulation programming languages (SPLs)
and simulation support environments (SSEs) is ab-
sent in in the HLA Runtime Infrastructure (RTI).
An implementation of the RTI in Java will provide
code mobility, and web-based invocation, but the in-
tegration of conceptual framework support requires
additional steps be taken.

Fully extending Simjava to utilize the Remote
Method Invocation capabilities of JDK 1.1 would rep-
resent one “proof of concept” for transparent dis-
tributed, web-based simulation. The efforts described
in this paper represent the first steps in that direction.
Ongoing and future work in this area include: (1)
the further extension of RMI to Simjava applets; and
(2) the distribution of Sim system to use conservative
and optimistic synchronization protocols. While the
primary goal of distribution is interoperability rather
than speedup, the addition of these PADS synchro-
nization mechanisms will permit the accommodation
of a wider range of applications and objectives, and
will be necessary, in many cases, in order to meet
minimum performance requirements.

APPENDIX A: SIMJAVA SOURCE FOR
EXAMPLE 1

import eduni.simjava.*;

class Source extends Sim entity {
private Sim port out;

private int index, state;

public static final int SRC OK = 0;
public static final int SRC BLOCKED = 1;

public Source(String name, int index, int state) {
super(name);

this.index = index; this.state = state;

out = new Sim port("out");

add port(out);

}
public void body() {
Sim event ev = null;

int i;

for (i=0; i<100; i++) {
sim schedule(out,0.0,0);

sim wait(ev);

sim hold(10.0);

sim trace(1,"C Src loop index is "+i);

}
}
}

class Sink extends Sim entity {
private Sim port in;

private int index, state;

public static final int SINK BLOCKED = 0;

public static final int SINK OK = 1;

public Sink(String name, int index, int state) {
super(name);

this.index = index; this.state = state;

in = new Sim port("in");

add port(in);

}
public void body() {
Sim event ev = null;

int i = 0;

while(true) {
i++; if(i>50) break;

sim wait(ev);

sim hold(1.234);

sim schedule(in,0.0,1);

}
}
}

class Example1 {
public static void main(String args[]) {
Sim system.initialise();

Sim system.add(new Source("Sender", 1, Source.SRC OK));

Sim system.add(new Sink("Receiver", 2, Sink.SINK OK));

Sim system.link ports("Sender", "out", "Receiver", "in");

Sim system.run();

}
}

REFERENCES

Alluisi, E.A. 1991. The Development of Technology
for Collective Training: SIMNET, a Case History.
In A Revolution in Simulation: Distributed Inter-
action in the ’90s and Beyond, L.D. Voss, 168-187.
Arlington: Pasha Publications.

Bryant, R.E. 1977. Simulation of Packet Commu-
nications Architecture Computer Systems. MIT-
LCS-TR-188, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts.

Buss, A.H. and K.A. Stork. 1996. Discrete Event



Web-Based Simulation in Simjava Using Remote Method Invocation 473
Simulation on the World Wide Web Using Java.
In Proceedings of the 1996 Winter Simulation
Conference, ed. J.M. Charnes, D.J. Morrice,
D.T. Brunner, and J.J. Swain, 780-785, Coro-
nado, CA, 8-11 December. (Simkit homepage:
http://131.120.142.115/~stork/simkit home.html)

Chandy, K.M., and J. Misra. 1979. Distributed Sim-
ulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on
Software Engineering SE-5(5):440-452.

Chandy, K.M., and J. Misra. 1981. Asynchronous
Distributed Simulation Via a Sequence of Paral-
lel Computations. Communications of the ACM
24(11):198-206.

Defense Modeling and Simulation Office (DMSO).
1996. High Level Architecture for Modeling and
Simulation Management Plan, Version 1.7, April.

Defense Modeling and Simulation Office (DMSO).
1997. High Level Architecture Interface Specifi-
cation, Version 1.1, February.

Fishwick, P.A. 1996. Web-Based Simulation: Some
Personal Observations. In Proceedings of the 1996
Winter Simulation Conference, ed. J.M. Charnes,
D.J. Morrice, D.T. Brunner, and J.J. Swain, 772-
779, Coronado, CA, 8-11 December.
(http://www0.cise.ufl.edu/~fishwick/tr/
tr96-027.html)

Griffin, S.P., E.H. Page and R.L. Moose. 1997. Im-
plementation Notes for a Distributed Simjava.
MITRE Technical Report, The MITRE Corpo-
ration, McLean, Virginia. (Report number pend-
ing.)

Little, M.C. 1996. JavaSim Homepage.
(http://marlish.ncl.ac.uk:8080/JavaSim/)

McNab, R. 1996. A Guide to the Simjava Package,
Department of Computer Science, University of
Edinburgh, UK. (http://www.dcs.ed.ac.uk/home/
hase/simjava/simjava-1.0/)

McNab, R., F.W. Howell. 1996. Using Java
for Discrete Event Simulation, In Proceedings of
the Twelfth UK Computer and Telecommunica-
tions Performance Engineering Workshop, 219-
228, University of Edinburgh, UK.
(http://www.dcs.ed.ac.uk/home/hase/simjava/
UKPEWpaper.ps)

Nair, R.S, J.A. Miller, and Z. Zhang. 1996. Java-
Based Query Driven Simulation Environment, In
Proceedings of the 1996 Winter Simulation Con-
ference, ed. J.M. Charnes, D.J. Morrice, D.T.
Brunner, and J.J. Swain, 786-793, Coronado, CA,
8-11 December. (http://www.cs.uga.edu:80/~rajesh/
postscript/nair.ps)

Page, E.H., B.S. Canova, J.A. and Tufarolo. 1997.
A Case Study of Verification, Validation and Ac-
creditation for Advanced Distributed Simulation.
ACM Transactions on Modeling and Computer
Simulation 7(3), to appear.

Page, E.H., T.M. Crews, S.L. Rother, and S.P. Grif-
fin. 1997. Survey of Web-Based Simulation.
(http://ms.ie.org/websim/survey/survey.html)

Samuelson, P. 1996. Regulation of Technologies to
Protect Copyrighted Works. Communications of
the ACM 39(7):17-22.

Sun Microsystems, Inc. 1997. Java Remote Method
Invocation Specification, Mountain View, CA,
February.

U.S. Department of Defense (DoD). 1996. DoD High
Level Architecture (HLA) for Simulations, Mem-
orandum signed by USD(A&T), September.

Voss, L.D. 1993. A Revolution in Simulation: Dis-
tributed Interaction in the ’90s and Beyond. Ar-
lington: Pasha Publications.

Weatherly, R.M., A.L. Wilson, and S.P. Griffin. 1993.
ALSP – Theory, Experience, and Future Direc-
tions. In Proccedings of the 1993 Winter Sim-
ulation Conference, ed. G.W. Evans, M. Mol-
laghasemi, E.C. Russell, W.E. Biles, 1068-1072,
Los Angeles, CA, December 12-15.

Weatherly, R.M., A.L. Wilson, B.S. Canova, E.H.
Page, A.A. Zabek, and M.C. Fischer. 1996. Ad-
vanced Distributed Simulation Through the Ag-
gregate Level Simulation Protocol. In Proceed-
ings of the 29th Hawaii International Conference
on Systems Sciences, 1:407-415, Wailea, HI, 3-6
January.

AUTHOR BIOGRAPHIES

ERNEST H. PAGE is a Lead Scientist in model-
ing and simulation at The MITRE Corporation where
he is currently working on the Aggregate Level Sim-
ulation Protocol (ALSP) program and is the Prin-
cipal Investigator for a MITRE Sponsored Research
project on web-based simulation. He received the
Ph.D., M.S. and B.S. degrees in Computer Science
from the Virginia Polytechnic Institute and State
University in 1994, 1990 and 1988 respectively. He
is active within the U.S. DoD modeling and simu-
lation community, serving on the Defense Modeling
and Simulation Office (DMSO) Verification, Valida-
tion and Accreditation Technology Working Group
(1996 -) and on the Testing (1995, 1996), Interface
Specification (1995) and Time Management (1996)
Working Groups within the DMSO High Level Ar-
chitecture (HLA) initiative. He has also served on
the Planning and Review Panel for the Simulation
Interoperability Workshops (1997). Dr. Page has
served as the Secretary/Treasurer (1995-1997) for the
Association for Computing Machinery (ACM) Spe-
cial Interest Group on Simulation (SIGSIM) and cur-



474 Page, Moose Jr., and Griffin
rently holds the position of Vice Chair. He is on the
Program Committees for the 1998 SCS International
Conference on Web-Based Modeling and Simulation
and the 1998 SPIE AeroSense Symposium Technical
Conference on Web-Based Simulation. His research
interests include discrete event simulation, parallel
and distributed systems, and software engineering.
He is a member of ACM, SIGSIM, IEEE CS and Up-
silon Pi Epsilon.
ROBERT L. MOOSE, JR. is a Principal Engineer
in communications and networking at The MITRE
Corporation, where his primary focus is internet-
work protocol engineering with recent emphasis on
nomadic networking and quality of service. His other
research interests include network performance anal-
ysis and discrete event simulation. He has held posi-
tions on the faculty of Clemson University and West
Virginia University, and has worked for Bell-Northern
Research. He received his M.S. and Ph.D. degrees
in Computer Science from the Virginia Polytechnic
Institute and State Universiry in 1983 and 1988, re-
spectively.

SEAN P. GRIFFIN is a Senior Staff member in
modeling and simulation at The MITRE Corporation
where he is currently supporting the Aggregate Level
Simulation Protocol (ALSP) project and the MITRE
Sponsored Research project on web-based simulation.
He received the B.S. degree in Applied Mathematics
from the University of Rochester in 1991 and the M.S.
degree in Software Systems Engineering from George
Mason University in 1997.


	WEB-BASED SIMULATION IN SIMJAVA USING REMOTE METHOD INVOCATION
	ABSTRACT
	1 INTRODUCTION
	2 DISTRIBUTED SIMULATION INFRASTRUCTURES
	3 SIMJAVA
	4 JAVA REMOTE METHOD INVOCATION
	5 ADDING REMOTE METHOD INVOCATION TO SIMJAVA
	6 EXAMPLE
	7 CONCLUSIONS
	APPENDIX A: SIMJAVA SOURCE FOR EXAMPLE 1
	REFERENCES
	AUTHOR BIOGRAPHIES

