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Abstract   Users of Web search engines are often forced
to sift through the long ordered list of document “snippets”
returned by the engines. The IR community has explored
document clustering as an alternative method of organizing
retrieval results, but clustering has yet to be deployed on the
major search engines.

The paper articulates the unique requirements of Web
document clustering and reports on the first evaluation of
clustering methods in this domain. A key requirement is that
the methods create their clusters based on the short snippets
returned by Web search engines. Surprisingly, we find that
clusters based on snippets are almost as good as clusters
created using the full text of Web documents.

To satisfy the stringent requirements of the Web domain,
we introduce an incremental, linear time (in the document
collection size) algorithm called Suffix Tree Clustering
(STC), which creates clusters based on phrases shared
between documents. We show that STC is faster than
standard clustering methods in this domain, and argue that
Web document clustering via STC is both feasible and
potentially beneficial. 

1    Introduction

Conventional document retrieval systems return long lists of
ranked documents that users are forced to sift through to find
relevant documents. The majority of today's Web search
engines (e.g., Excite, AltaVista) follow this paradigm. Web
search engines are also characterized by extremely low
precision.

The low precision of the Web search engines coupled with
the ranked list presentation make it hard for users to find the
information they are looking for. Instead of attempting to
increase precision (e.g., by filtering methods - Shakes et. al.,
97 - or by advanced pruning options - Selberg and Etzioni,
95) we attempt to make search engine results easy to browse.
This paper considers whether document clustering is a
feasible method of presenting the results of Web search
engines.

Many document clustering algorithms rely on off-line
clustering of the entire document collection (e.g., Cutting et.
al., 93; Silverstein and Pedersen, 97), but the Web search
engines’ collections are too large and fluid to allow off-line
clustering. Therefore clustering has to be applied to the
much smaller set of documents returned in response to a
query. Because the search engines service millions of queries
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per day, free of charge, the CPU cycles and memory
dedicated to each individual query are severely curtailed.
Thus, clustering has to be performed on a separate machine,
which receives search engine results as input, creates
clusters and presents them to the user.

Based on this model, we have identified several key
requirements for Web document clustering methods:
1. Relevance: The method ought to produce clusters that

group documents relevant to the user’s query separately
from irrelevant ones. 

2.  Browsable Summaries: The user needs to determine at a
glance whether a cluster's contents are of interest. We do
not want to replace sifting through ranked lists with
sifting through clusters. Therefore the method has to
provide concise and accurate descriptions of the clusters.

3.  Overlap: Since documents have multiple topics, it is
important to avoid confining each document to only one
cluster (Hearst, 98).

4. Snippet-tolerance: The method ought to produce high
quality clusters even when it only has access to the
snippets returned by the search engines, as most users
are unwilling to wait while the system downloads the
original documents off the Web.

5.  Speed: A very patient user might sift through 100
documents in a ranked list presentation. We want
clustering to allow the user to browse through at least an
order of magnitude more documents. Therefore the
clustering method ought to be able to cluster up to one
thousand snippets in a few seconds. For the impatient
user, each second counts.

6.  Incrementality: To save time, the method should start to
process each snippet as soon as it is received over the
Web.

Below, we introduce Suffix Tree Clustering (STC) - a
novel, incremental, O(n)1 time algorithm designed to meet
these requirements. STC does not treat a document as a set
of words but rather as a string, making use of proximity
information between words. STC relies on a suffix tree to
efficiently identify sets of documents that share common
phrases and uses this information to create clusters and to
succinctly summarize their contents for users.

To demonstrate the effectiveness and speed of STC, we
have created MetaCrawler-STC, a prototype clustering Web
search engine, which is accessible at the following
URL: http://www.cs.washington.edu/research/clustering.
MetaCrawler-STC takes the output of the MetaCrawler meta
search engine (Selberg and Etzioni, 95) and clusters it using
the STC algorithm. Figure 1 shows sample output for
MetaCrawler-STC. We provide preliminary experimental
evidence that STC satisfies the speed, snippet tolerance, and
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relevance requirements, and that it benefits from creating
overlapping clusters. We believe the shared phrases of a
cluster provide an informative way of summarizing its
contents, but a user study to validate this belief is an area for
future work.

    search results for the query: "salsa"
    documents: 246, clusters: 15

Cluster
num.

Size Shared phrases and
sample document titles

1 8
Puerto Rico; Latin Music
1. Salsa Music in Austin
2. LatinGate Home Page

2 20
Follow Ups post; York Salsa
Dancers
1. Origin and Development of
Salsa?
2. Re: New York Salsa Dancers are
the best because...

3 40
music; entertainment; latin;
artists
1. Latin Midi Files Exchange
2. Salsa Music On The Web. con
Sabor!

4 79
hot; food; chiles; sauces;
condiments; companies
1. Religious Experience Salsa
2. Arizona Southwestern Cuisine
and Gifts

5 41
pepper; onion; tomatoes
1. Salsa Mixes
2. Salsa Q & A

… … …

Figure 1: The output of our MetaCrawler-STC
clustering engine for the query “salsa”. Only the first 5
clusters are shown here. The words in bold are the
shared phrases found in the clusters. Note the
descriptive power of phrases such as "Puerto Rico",
"Latin Music" and "York Salsa Dancers".

The paper is organized as follows: The next section is an
assessment of the extent to which previous work on
document clustering meets the requirements of the Web
domain. The following section describes STC in detail.
Subsequently, we report on the experimental evaluation of
STC and other clustering algorithms in the Web domain. We
conclude by summarizing our contributions and with
directions for future work.

2    Previous Work on Document Clustering

In this section we review previous work on document
clustering algorithms and discuss how these algorithms
measure up to the requirements of the Web domain.

Document clustering has been traditionally investigated
mainly as a means of improving the performance of search
engines by pre-clustering the entire corpus (the cluster
hypothesis - van Rijsbergen, 79). However, clustering has
also been investigated as a post-retrieval document browsing
technique (Croft, 78; Cutting et. al, 92; Allen et. al., 93;
Leouski and Croft, 96). Our work follows this alternative
paradigm.

Numerous documents clustering algorithms appear in the
literature (see Willet, 88 for review). Agglomerative
Hierarchical Clustering (AHC) algorithms are probably the

most commonly used. These algorithms are typically slow
when applied to large document collections. Single-link and
group-average methods typically take O(n2) time, while
complete-link methods typically take O(n3) time (Voorhees,
86). As our experiments demonstrate, these algorithms are
too slow to meet the speed requirement for one thousand
documents.

Several halting criteria for AHC algorithms have been
suggested (Milligan and Cooper, 85), but they are typically
based on predetermined constants (e.g., halt when 5 clusters
remain). These algorithms are very sensitive to the halting
criterion - when the algorithm mistakenly merges multiple
“good” clusters, the resulting cluster could be meaningless to
the user. In the Web domain, where the results of queries
could be extremely varied (in the number, length, type and
relevance of the documents), this sensitivity to the halting
criterion often causes poor results. Another characteristic of
the Web domain is that we often receive many outliers. This
sort of “noise” reduces even further the effectiveness of
commonly used halting criteria.

Linear time clustering algorithms are the best candidates
to comply with the speed requirement of on-line clustering.
These include the K-Means algorithm - O(nkT) time
complexity where k is the number of desired clusters and T
is the number of iterations (Rocchio, 66), and the Single-
Pass method - O(nK) were K is the number of clusters
created (Hill, 68). One advantage of the K-Means algorithm
is that, unlike AHC algorithms, it can produce overlapping
clusters. Its chief disadvantage is that it is known to be most
effective when the desired clusters are approximately
spherical with respect to the similarity measure used. There
is no reason to believe that documents (under the standard
representation as weighted word vectors and some form of
normalized dot-product similarity measure) should fall into
approximately spherical clusters. The Single-Pass method
also suffers from this disadvantage, as well as from being
order dependant and from having a tendency to produce
large clusters (Rasmussen, 92). It is, however, the most
popular incremental clustering algorithm (as can be seen
from its popularity in the event detection domain - see TDT,
97).

Buckshot and Fractionation are fast, linear time clustering
algorithms introduced in (Cutting et. al., 92). Fractionation
is an approximation to AHC, where the search for the two
closest clusters is not performed globally, but in rather
locally and in a bound region. This algorithm will obviously
suffer from the same disadvantages of AHC - namely the
arbitrary halting criteria and the poor performance in
domains with many outliers. Buckshot is a K-Means
algorithm where the initial cluster centroids are created by
applying AHC clustering to a sample of the documents of
the collection. This sampling is risky when one is possibly
interested in small clusters, as they may not be represented
in the sample. Finally, we note that neither of these
algorithms is incremental.

In contrast to STC, all the mentioned algorithms treat a
document as a set of words and not as an ordered sequence
of words, thus losing valuable information. Phrases have
long been used to supplement word-based indexing in IR
systems (e.g., Buckley et. al. 95). The use of lexical atoms
and of syntactic phrases has been shown to improve
precision without hurting recall (Zhai et. al., 95). Phrases
generated by simple statistical approaches (e.g., contiguous
non-stopped words) have also been successfully used (Salton
et. al, 75; Fagan, 87; Hull et. al., 97). Yet these methods
have not been widely applied to document clustering. The
only example known to the authors is the use of the co-



appearance of pairs of words as the attributes of the
documents’ vector representations (Maarek and Wecker, 94).

On the Web, there are some attempts to handle the large
number of documents returned by search engines. Many
search engines provide query refinement features. AltaVista,
for example, suggests words to be added or to be excluded
from the query. These words are organized into groups, but
these groups do not represent clusters of documents. The
Northern Light search engine (www.nlsearch.com), provides
“Custom Search Folders”, in which the retrieved documents
are organized. Each folder is labeled by a single word or a
two-word phrase, and is comprised of all the documents
containing the label. Northern Light does not reveal the
method used to create these folders nor its cost.

3    Suffix Tree Clustering

Suffix Tree Clustering (STC) is a linear time clustering
algorithm that is based on identifying the phrases that are
common to groups of documents. A phrase in our context is
an ordered sequence of one or more words. We define a base
cluster to be a set of documents that share a common phrase.

STC has three logical steps: (1) document “cleaning”, (2)
identifying base clusters using a suffix tree, and (3)
combining these base clusters into clusters.

3.1    Step 1 - Document "Cleaning"

In this step, the string of text representing each document is
transformed using a light stemming algorithm (deleting word
prefixes and suffixes and reducing plural to singular).
Sentence boundaries (identified via punctuation and HTML
tags) are marked and non-word tokens (such as numbers,
HTML tags and most punctuation) are stripped. The original
document strings are kept, as well as pointers from the
beginning of each word in the transformed string to its
position in the original string. This enables us, once we
identify key phrases in the transformed string, to display the
original text for enhanced user readability.

3.2    Step 2 - Identifying Base Clusters

The identification of base clusters can be viewed as the
creation of an inverted index of phrases for our document
collection. This is done efficiently using a data structure
called a suffix tree (Weiner, 73; Gusfield, 97). This structure
can be constructed in time linear with the size of the
collection, and can be constructed incrementally as the
documents are being read (Ukkonen, 95). The idea of using a
suffix tree for document clustering was first introduced in
(Zamir et. al., 97). Here we present an improved clustering
algorithm, which introduces the merger of base clusters (step
three of the STC algorithm), and compare it using standard
IR methodology to classical clustering methods in the Web
domain.

A suffix tree of a string S is a compact trie containing all
the suffixes of S. We treat documents as strings of words,
not characters, thus suffixes contain one or more whole
words. In more precise terms:
1.  A suffix tree is a rooted, directed tree.
2.  Each internal node has at least 2 children.
3.  Each edge is labeled with a non-empty sub-string of S

(hence it is a trie). The label of a node in defined to be
the concatenation of the edge-labels on the path from the
root to that node.

4.  No two edges out of the same node can have edge-labels
that begin with the same word (hence it is compact).

5.  For each suffix s of S, there exists a suffix-node whose
label equals s.

The suffix tree of a collection of strings is a compact trie
containing all the suffixes of all the strings in the collection.
Each suffix-node is marked to designate from which string
(or strings) it originated from (i.e., the label of that suffix-
node is a suffix of that string). In our application, we
construct the suffix tree of all the sentences of all the
documents in our collection.

Figure 2 is an example of the suffix tree of a set of strings
- "cat ate cheese", "mouse ate cheese too" and "cat ate mouse
too". The nodes of the suffix tree are drawn as circles. Each
suffix-node has one or more boxes attached to it designating
the string(s) it originated from. The first number in each box
designates the string of origin (1-3 in our example, by the
order the strings appear above); the second number
designates which suffix of that string labels that suffix-node.
Several of the nodes in the Figure are labeled a through f for
further reference.

mouse
  too

cat
ate

cheese

ate

cheese

cheese

3,23,1

2,2

2,3 2,1
too

mouse
    too too

too

too

mouse

ate
 cheese
   too

b c

f

a ed

1,1 1,2

3,42,41,3

3,3

Figure 2: The suffix tree of the strings "cat ate cheese",
"mouse ate cheese too" and "cat ate mouse too".

Each node of the suffix tree represents a group of
documents and a phrase that is common to all of them. The
label of the node represents the common phrase; the set of
documents tagging the suffix-nodes that are descendants of
the node make up the document group. Therefore, each node
represents a base cluster. Furthermore, all possible base
clusters (containing 2 or more documents) appear as nodes in
our suffix tree. Table 3 lists the six marked nodes from the
example shown in Figure 2 and their corresponding base
clusters.

Node Phrase Documents
a cat ate 1,3
b ate 1,2,3
c cheese 1,2
d mouse 2,3
e too 2,3
f ate cheese 1,2

Table 3: Six nodes from the example shown in Figure 2
and their corresponding base clusters.

Each base cluster is assigned a score that is a function of
the number of documents it contains, and the words that
make up its phrase. The score s(B) of base cluster B with
phrase P is given by:
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where |B| is the number of documents in base cluster B, and
|P| is the number of words in P that have a non-zero score
(i.e., the effective length of the phrase). We maintain a
stoplist that is supplemented with Internet specific words
(e.g., “previous”, “java”, “frames” and “mail”). Words
appearing in the stoplist, or that appear in too few (3 or less)
or too many (more than 40% of the collection) documents
receive a score of zero. The function f penalizes single word
phrases, is linear for phrase that are two to six words long,
and becomes constant for longer phrases.

3.3    Step 3 - Combining Base Clusters

Documents may share more than one phrase. As a result, the
document sets of distinct base clusters may overlap and may
even be identical. To avoid the proliferation of nearly
identical clusters, the third step of the algorithm merges base
clusters with a high overlap in their document sets (phrases
are not considered in this step). In Figure 1, for example, the
top cluster resulted from merging the two base clusters
labeled "Puerto Rico" and "Latin Music" based on their
document sets overlap.

We define a binary similarity measure between base
clusters based on the overlap of their document sets. Given
two base clusters B

m
 and B

n
, with sizes |B

m
| and |B

n
|

respectively, and |B
m
∩B

n
| representing the number of

documents common to both base clusters, we define the
similarity of B

m
 and B

n
 to be 1 iff:

• |B
m
∩B

n
|/|B

m
| > 0.5  and

• |B
m
∩B

n
|/|B

n
| > 0.5

Otherwise, their similarity is defined to be 0.
Next, we look at the base cluster graph, where nodes are

base clusters, and two nodes are connected iff the two base
clusters have a similarity of 1. A cluster is defined as being a
connected component in the base cluster graph. Each cluster
contains the union of the documents of all its base clusters.
Figure 4 illustrates the base cluster graph of the six base
clusters in Table 3. There is a single cluster in this example.

Phrase: too
Documents : 2,3

Phras e: ate
Documents : 1 ,2,3

Phrase: mous e
Documents : 2,3

Phras e: ate chees e
Documents : 1,2

Phras e: chees e
Documents : 1 ,2

Phras e: cat ate
Documents : 1 ,3

c

e f

a

d

b

Figure 4: The base cluster graph of the example given
in Figure 2 and in Table 3. In this example there is one
connected component, therefore one cluster. Notice that
if the word ate had been in our stoplist, the base cluster
b would have been discarded as it would have had a
score of 0, and then we would have had three connected
components in the graph, representing three clusters.

In essence, we are clustering the base clusters using the
equivalent of a single-link clustering algorithm where a

predetermined minimal similarity between base clusters
serves as the halting criterion. This clustering algorithm is
incremental and order independent. We do not encounter the
undesired chaining effect of single-link clustering because
we use it in the domain of base clusters where we typically
find only small connected components.

The STC algorithm is incremental. As each document
arrives from the Web, we “clean” it and add it to the suffix
tree. Each node that is updated (or created) as a result of this
is tagged. We then update the relevant base clusters and
recalculate the similarity of these base clusters to the rest of
the base clusters. Finally, we check if the changes in the base
cluster graph result in any changes to the final clusters.

To keep the cost of this last step constant, we don't check
the similarity of the modified base clusters with all other
base clusters, but only with the k highest scoring base
clusters (we take k to be 500 in our experiments). The cost of
"cleaning" the documents is obviously linear with the
collection size. The cost of inserting documents into the
suffix tree is also linear with the collection size, as is the
number of nodes that can be affected by these insertions.
Thus the overall time complexity of STC is linear with
regard to the collection size.

The final clusters are scored and sorted based on the
scores of their base clusters and their overlap. As the final
number of clusters can vary, we report only the top few
clusters. Typically, only the top 10 clusters are of interest.
For each cluster we report the number of documents it
contains, and the phrases of its base clusters.

The goal of a clustering algorithm in our domain is to
group each document with others sharing a common topic,
but not necessarily to partition the collection. It has been
claimed that it is artificial to force each document into only
one cluster, as documents often have several topics (Hearst,
98). Such a constraint could decrease the usefulness of the
clusters produced. Allowing a document to appear in more
than one cluster acknowledges that documents are complex
objects which may be grouped into multiple potentially
overlapping, but internally coherent, groups. This is actually
the reason many IR system use some form of dot-product
document similarity measure (as opposed to Euclidean
distance, for example): it allows a document to be similar to
multiple distinct documents or centroids that could in turn be
very dissimilar from each other.

In STC, as documents may share more than one phrase
with other documents, each document might appear in a
number of base clusters. Therefore a document can appear in
more than one cluster. Note that the overlap between clusters
cannot be too high, otherwise they would have been merged
into a single cluster. In the example shown in Figure 1
(results of STC on the query "salsa"), a cluster relating to
salsa recipes was produces as well as a cluster relating to
companies selling salsa products. Several documents were
correctly placed in both clusters as they included both
recipes and information about the companies marketing
them.

The STC algorithm does not require the user to specify
the required number of clusters. It does, on the other hand,
require the specification of the threshold used to determine
the similarity between base clusters (0.5 in our example and
experiment). However, we found that the performance of
STC is not very sensitive to this threshold, unlike AHC
algorithms that showed extreme sensitivity to the number of
clusters required.



4    Experiments

In order to evaluate STC we compared it both to the original
ranked list of the search engine and to other clustering
algorithms. The algorithms used in the comparison were
group-average agglomerative hierarchical clustering (which
will be referred to as GAHC), K-Means, Buckshot,
Fractionation and Single-Pass. The GAHC algorithm was
chosen as it is commonly used; the rest were chosen as they
are fast enough to be contenders for on-line clustering.

For our experiments, we constructed document collections
by saving the results of different queries to the MetaCrawler
search engine. We chose not to use standard IR collections,
as we were interested in the performance of document
clustering on the Web. As the MetaCrawler is a meta search
engine, (i.e. it routes queries to several other search engines
and then collates their results), we assume its search results
and the snippets it returns are representative of Web search
engines.

4.1    Effectiveness for Information Retrieval

As we did not use a standard IR corpus, we were forced to
generate our own queries and relevance judgments, though
we are aware that this could lead to a bias in our results. To
counteract any potential bias, we plan to publish our data set
on the Web to allow independent validation and replication
of our experiments.

The process was as follows: We first defined 10 queries
by specifying their topics (e.g., “black bear attacks”) and
their descriptions (e.g., “we are interested in accounts of
black bear attacks on humans or information about how to
prevent such attacks”). The words appearing in each query's
topic field were used as keywords for a Web search using the
MetaCrawler search engine. We generated 10 collections of
200 snippets from the results of these queries. For each
snippet returned by the search engine, we also downloaded
its original document from the Web, thus generating 10
collections of 200 Web documents. We manually assigned a
relevance judgment (relevant or not) to each document in
these collections based on the queries' descriptions. On
average there were about 40 relevant documents for each
query.

In our first experiment we applied the various clustering
algorithms to the document collections and compared their
effectiveness for information retrieval. Specifically, we used
the results of the clustering algorithms to reorder the list of
documents returned by the search engine, according to a
variation of the method laid out in (Hearst and Pedersen, 96;
Schütze and Silverstein, 97), which assumes that the user is
able to select the cluster with the highest relevant document
density.2

As different clustering algorithms tend to produce clusters
of different sizes and we did not want this to artificially
influence the comparison between them, we considered only
a constant number of documents (chosen by starting with the
top cluster and working our way down through subsequent
clusters until we reach 10% of the document collection); the
remaining 90% of the documents were considered irrelevant.
Thus, while (Hearst and Pedersen, 96) always pick a single
cluster, we may pick more than one, or only a fraction of one

                                                
2 This assumption is strong, but it has become standard in evaluating
clustering algorithms (even though empirical tests have shown that
the users fail to choose the best cluster about 20% of the time -
Hearst and Pedersen, 96). We are currently working on a more
realistic model in which the user has a probability of making errors.

in the case where the top cluster contains more than 10% of
the documents in the collection. When this reordering
method is applied to overlapping clusters, one might
consider the same document more than once. Therefore, if a
document is seen an additional time it is deemed irrelevant,
as re-viewing it does not help the user.

While actual user behavior is quite complex and
idiosyncratic, we believe that our methodology provides a
better model of user behavior. A user picking a large cluster
to investigate first might not scan all the documents in it,
while a user picking a small cluster first might proceed to a
second cluster once she's done with the first.

All algorithms (including STC) were run to produce the
same number of clusters (10 in our experiments). This is
necessary to allow a fair comparison of the different
algorithms. The algorithms use the same parameter settings
wherever relevant (e.g., the minimal cluster size), and were
optimized on a separate data set. Figure 5 compares the
average precision of the various clustering algorithms with
that of the original ranked list, averaged over the 10 Web
document collections.
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Figure 5: The average precision of the clustering
algorithms and of the original ranked list returned by
the search engine, averaged over the 10 original
document collections.

As seen in Figure 5, the STC algorithm scored highest in
this experiment. We believe that these positive results are
due in part to STC’s use of phrases to identify clusters and
due to the fact that it naturally allows overlapping clusters.
In our experiment each document was placed in 2.1 clusters
on average and 72% of the documents were placed in more
than one cluster. Regarding the use of phrases, 55% of the
base clusters were based on phrases containing more than
one word.

To measure the impact of these features on STC's
performance, we ran an ablation study in which we created
two hobbled variants of the STC algorithm. In the first
variant - STC-no-overlap - we ran a post-processing phase
that eliminated any overlap between the clusters by
removing each document that was placed in several clusters
from all but one cluster, the one whose centroid was the
closest to the document. In the second variant - STC-no-
phrases - we allowed STC to use only single word phrases.
The performance of these variations appears in Figure 6.

 We see that both cluster overlap and multi-word phrases
are critical to STC's success. Phrases are key because they
are the basis for identifying cohesive clusters; overlap is key
because we have no means of deciding which phrase in a
document ought to determine its assignment to a cluster.
Overlap enables the document to potentially participate in all



clusters that are based on shared phrases from that
document.
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Figure 6: The average precision on the 10 document
collections of the variants of STC: STC-no-overlap
which forces the results into a true partition and STC-
no-phrases which uses only single word phrases.

Next we considered whether the use of phrases or overlap
could be used to improve the average precision of standard
clustering algorithms in a straightforward manner. For
instance, one might argue that the suffix tree is merely
performing a term extraction of sorts on the documents.
Nevertheless, we measured the impact of introducing multi-
word phrases as additional attributes on the performance of
vector-based clustering algorithms. We examined two
vector-based clustering algorithms - GAHC and K-Means -
and compared the standard algorithm which uses only single
words as document vector attributes, to a modified version
which uses phrases (single- and multi-word) identified by a
suffix tree as attributes of the document vectors. This
experiment was run on the original Web documents
collections. The results in Figure 7 show that the
modification can have either a positive or a negative impact
on the performance of the vector-based algorithms, but this
effect is not as dramatic as the impact of multi-word phrases
on the STC algorithm. More experimentation is needed to
understand this issue further.
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Figure 7: The average precision of clustering
algorithms with and without the use of phrases
identified by a suffix tree. Whereas STC’s performance
degraded substantially when multi-word phrases were
disallowed, the modification did not have a substantial
or consistent effect on the vector-based algorithms.

Next, we examined the effect of allowing overlapping
clusters on the different algorithms. We modified Buckshot
and K-Means to allow overlapping clusters by allowing each
document to be placed in more than one cluster in the last

iteration of the algorithm. Again the impact on performance,
as seen in Figure 8, is quite small.
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Figure 8: The average precision of overlap-producing
clustering algorithms compared to their non-
overlapping versions. The Buckshot and K-Means
algorithms were chosen as they can easily be adapted to
produce overlapping clusters.

 It is interesting to note that the degree of cluster overlap
produced by the algorithms is quite different. Table 9
presents the average number of clusters that a document is
placed in by the three overlap-producing algorithms. We
calculated this statistic separately for relevant and for
irrelevant documents. As can be seen in Table 9, the degree
of overlap that STC produces is much greater than that of the
two other algorithms. Given an average precision metric,
allowing a document to appear in multiple clusters is only
advantageous if that document is relevant, because it tends to
increase the density of relevant documents that the user sees
(on average). On the other hand, placing an irrelevant
document in multiple clusters can hurt cluster quality.
Therefore, the ratio of the two statistics in rows one and two
of Table 9 could be viewed as an indication of the benefit of
overlapping clusters. Indeed, the average precision results in
Figure 8 correlate with this ratio - the algorithm most
effected by allowing overlapping clusters in Figure 8 (STC)
has the highest ratio, etc.

K-Means Buckshot STC
Avg. num of clusters:
Relevant document.

1.40 1.40 2.60

Avg. num of clusters:
Irrelevant document

1.55 1.35 1.90

Ratio of the above 0.90 1.04 1.37

Table 9: The average number of clusters each
document is placed in by the three overlap-producing
algorithms. We calculated this statistic separately for
relevant and for irrelevant documents. The ratio of
these two statistics could be viewed as an indication of
the benefits of overlapping clusters.

It’s clear that while multi-word phrases and overlap are
critical to the success of STC (Figure 6), these elements of
STC cannot be plugged in willy-nilly into clustering
algorithms (Figures 7 and 8); they are an inextricable part of
the novel STC algorithm.

We also conjecture that the multi-word phrases of the
base clusters are very useful in conveying the clusters’
contents to the user. For each cluster we display the phrases
of the base clusters it contains (in our experiments, each
cluster contained an average of five base clusters), as well as
additional words that appear most frequently in the cluster



(these words are identified only after the cluster has been
formed). Again, user studies will have to be carried out to
corroborate this conjecture.

4.2    Snippets versus Whole Document

A major issue in the feasability of clustering Web search
engine results is whether similar performance could be
produced when clustering only the snippets returned by the
search engines. Figure 10 shows how clustering snippets
affects the performance of the different clustering
algorithms. We continue to rely on the relevance judgements
from the previous experiments.

As shown in Figure 10, the decrease in the quality of the
clusters is apparent but relatively small. This is surprising as,
in our experiments, a Web document contained 760 words
on average (220 words after eliminating stoplist words or
words appearing in too few or too many documents), while a
snippet contained 50 words on average (20 words after word
elimination). One explanation is that the snippets represent
attempts by the search engines to extract meaningful phrases
from the original documents. Therefore the snippets contain
phrases that help in the correct clustering of the document,
and do not contain some of the “noise” present in the
original documents that might cause misclassification of the
documents. These results intimate earlier findings by
Schütze and Silverstein, which showed that cluster quality is
not adversely affected by truncating the vector representation
of documents in standard IR collections (Schütze and
Silverstein, 97).
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Figure 10: The average precision of clustering
algorithms on the snippet collections compared with the
average precision on the original Web documents
collections.

4.3    Execution Time

We measured the execution time of the various clustering
algorithms while clustering snippet collections of various
sizes (100 to 1000 snippets). The results are shown in Figure
11. Each reported time is averaged over 10 collections of the
same size. The times were measured using a Linux machine
running on a Pentium 200 processor.
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Figure 11: Execution time (in seconds) of the different
clustering algorithms on snippet collections as a
function of the collection size. In practice, STC is even
faster than this graph suggests due to its incremental
nature. STC can carry out the clustering process as
documents are arriving from the Web. In our
experiments, MetaCrawler-STC returns its results to the
user a mere 0.01 seconds after the last document is
received by MetaCrawler!

It is plain that only near linear time algorithms can
produce clusters for collections of hundreds of documents
fast enough for true on-line interaction. STC is shown to be
just as fast, if not faster, than other linear time algorithms.
However, this comparison is conservative as is does not take
into account the incremental nature of STC. As argued in the
introduction, we believe document clustering should be done
on a machine separate from the search engine server, which
will receive search engine results over the Web and output
clusters to the user. Because STC is incremental, it can use
the "free" CPU time in which the system is waiting for the
search engine results to arrive over the Web. Therefore, if
the Web delay is on the order of 10 seconds, STC would
produce results instantaneously after the last document
arrives, while the non-incremetal algorithms will only start
their computations. Being incremental also enables the
system to instantaneously display results when an impatient
user interrupts the clustering algorithm, and allows it to be
used for event detection and tracking tasks.

5    Conclusion

The main contributions of this paper are (1) the
identification of the unique requirements of document
clustering of Web search engine results, (2) the definition of
STC - an incremental, O(n) time clustering algorithm that
satisfies these requirements, and (3) the first experimental
evaluation of clustering algorithms on Web search engine
results, forming a baseline for future work.

Overall, our preliminary experiments are encouraging and
suggest that fast document clustering algorithms (such as
STC) can indeed be useful in clustering search engine
results. Moreover, it appears that clustering the snippets
returned by search engines is a reasonable and speedy
alternative to downloading the original documents. Needless
to say, a user study is needed to demonstrate the direct



usefulness of clustering search engine results to support
information access tasks on the Web. Further experiments
are also necessary to confirm STC’s apparent advantage over
existing clustering algorithms.

To gather data from “live users”, we have fielded the
MetaCrawler-STC system on the Web. We have
instrumented the system to log the queries made, the clusters
found, and the links followed by users. In future work we
intend to report statistics on the behavior of the system in
practice, and to perform a controlled user study to further
contrast STC with the ranked-list presentation and with other
clustering methods.
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