
Engineering Device-Independent

Web Services

Ph.D. Thesis

Engin Kirda

Engineering Device-Independent Web Services

An XML/XSL-based approach to creating flexible and extensible multi-device

services

Ph.D. Thesis

at

Technical University of Vienna

submitted by

Dipl.-Ing. Engin Kirda

Distributed Systems Group, Information Systems Institute,

Technical University of Vienna

Argentinierstr. 8/184-1

A-1040 Vienna, Austria

19th August 2002

c� Copyright 2002 by Engin Kirda

Advisor: o. Univ.-Prof. Dr. Mehdi Jazayeri

Second Advisor: a.o. Univ.-Prof. Dr. Gabriele Kotsis

Abstract

The popularity of computing devices such as Personal Digital Assistants (PDAs) and

mobile phones have been increasingly and these devices have been getting more powerful

every day. Although the latest PDAs are even able to display frames, it is still important

to adapt the content for these devices in order to provide a satisfactory surfing experience

for users. Web services in the near future will not only have to support mobile access, but

will also have to deal with other forms of Web access such as voice interfaces. Hence, Web

services will often need to be device-independent and will have to support different XML

Web formats.

Although much work has been done on providing mobile access to Web content, the focus

has mainly been the adaptation of HTML content to make it viewable on mobile devices that

might have memory and screen-size limitations. Only a few attempts have been made to date

to integrate device-independence into the design, implementation and maintenance phases

of Web services.

This dissertation provides solutions to the problem of designing and implementing in-

teractive, maintainable, device-independent Web services. It introduces a novel XML/XSL-

based design and implementation technique and a development tool suite to support the Web

developer. The constructed services can be accessed by a wide range of Web devices such as

mobile phones, PDAs with micro HTML browsers, speech-based Web interfaces and tradi-

tional full-fledged HTML browsers.

My general thesis is that Web services can effectively be made device-independent if

device-independence support is integrated into the Web service design, implementation and

maintenance phases. I present an extended model of the traditional Web service life cycle

that takes device-independence support into account and describe the Device-Independent

Web Engineering (DIWE) framework for engineering device-independent Web services. I

introduce the novel concepts of page splitting, process partitioning and XSL stylesheet pre-

processing.

Kurzfassung

Elektronische Geräte wie Personal Digital Assistants (PDAs) und Mobiltelefone sind in

den letzten Jahren sehr populär und leistungsfähig geworden. Die neuesten PDAs können so-

gar Frames in Webseiten darstellen. Trotzdem ist es noch immer wichtig, den Webinhalt für

diese Geräte so anzupassen, dass die Benutzer zufrieden sind und eine positive Erfahrung mit

der Website haben. Bald werden viele Websites nicht nur mobilen Zugang, sondern andere

Formen des Webzugangs wie zum Beispiel Sprachschnittstellen unterstützen. Die Websites

der Zukunft müssen geräteunabhängig (device-independent) sein.

Der Fokus der Forschung bis jetzt ist die Anpassung und Abbildung des HTML Inhalts

von Websites gewesen damit sie auf mobilen Geräten mit wenig Hauptspeicher und klei-

nen Displays dargestellt werden können. Nur wenige Forschungsgruppen haben versucht,

Geräteunabhängigkeit in den Design-, Implementierungs-, und Wartungsphasen der Website

zu integrieren.

Diese Dissertation presentiert Lösungen zum Problem des Entwerfens und der Im-

plementierung von interaktiven, geräteunabhängigen Websites. Sie beschreibt eine neue

XML/XSL-basierte Methodologie und ein Webentwicklungswerkzeug.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Contribution of this Dissertation . 2

1.3 Structure of this Dissertation . 3

2 Web Engineering basics 5

2.1 Terminology . 5

2.2 Web engineering: An emerging field . 6

2.3 Web service characteristics and requirements 8

2.3.1 Information transfer characteristics 8

2.3.2 Stakeholders . 8

2.3.3 Basic Web service requirements 8

2.4 Web Service Life Cycle . 9

2.4.1 Requirements Analysis . 10

2.4.2 Design . 11

2.4.3 Implementation . 11

2.4.4 Maintenance . 11

2.5 Flexibility . 12

2.5.1 XML . 13

2.5.2 XSL . 14

2.6 The device-independent Web engineering problem 15

2.6.1 Historical overview . 15

2.6.2 Problem: Constructing maintainable, interactive device- indepen-

dent Web services . 18

2.7 Summary . 21

5

3 Related Work 22

3.1 Brief overview of research on device-independent Web access 22

3.2 Traditional Web engineering approaches 23

3.2.1 The Dexter hypertext reference model 23

3.2.2 The Relationship Management Methodology (RMM) 24

3.2.3 Object-Oriented Hypermedia Design Methodology (OOHDM) . . . 24

3.2.4 W3DT and eW3DT . 25

3.2.5 Webcomposition and W3Objects 26

3.2.6 Strudel . 26

3.2.7 Araneus . 27

3.3 Mobile Web access techniques . 27

3.3.1 Quality aware transcoding . 28

3.3.2 Digestor . 28

3.3.3 Annotation-based Web content transcoding 29

3.3.4 The Business Card Search Service (BCSS) 30

3.3.5 Web access with PDAs: PowerBrowser 30

3.3.6 Web content and form summarization 30

3.4 A taxonomy for device-independent Web engineering 31

3.5 Device-independent Web engineering approaches 34

3.5.1 OO-H Method . 34

3.5.2 WebML . 36

3.5.3 JML . 37

3.5.4 SISL . 37

3.5.5 UIML . 37

3.5.6 iStudio . 38

3.5.7 Cocoon . 39

3.5.8 Microsoft ASP.NET and the Mobile Developer Toolkit 40

3.5.9 Total e-mobile . 41

3.6 Summary . 42

4 DIWE: A conceptual framework for device-independent Web engineering 43

4.1 Rethinking the Web Service Life Cycle 43

4.2 Basis of solution: Separation of Layout, Content and Logic (LCL) 45

4.3 Main requirements for a device-independent Web engineering framework . 46

4.4 Overview of the DIWE framework . 47

4.4.1 Web service design, implementation, deployment and maintenance . 47

4.4.2 Processors . 49

4.5 Flexible Web service construction in three steps 50

4.6 Device-independent Web service construction in three steps 52

4.7 The MyXML language . 54

4.7.1 Overview . 54

4.7.2 MyXML Namespace . 55

4.7.3 A simple MyXML example: Searching for musicals 57

4.7.4 Another MyXML example: Shopping Cart 59

4.7.5 Post XSL stylesheet application 63

4.8 XSL stylesheet pre-processing for stylesheet reuse 64

4.9 Page splitting . 66

4.9.1 Page splitting descriptors and parameters 68

4.9.2 A simple page splitting example 69

4.10 Process partitioning . 71

4.10.1 Process partitioning parameters 72

4.10.2 A simple process partitioning example 72

4.11 Device-independent application logic interfacing 76

4.11.0.1 Calling the logic in three steps 76

4.11.0.2 A simple example . 78

4.12 Summary . 78

5 The MyXML tool suite: A prototype implementation 79

5.1 The MyXML tool suite . 79

5.2 The MyXML compiler . 82

5.2.1 Usage . 82

5.2.2 Implementation . 83

5.3 Configurable device-independence components 85

5.3.1 The Dispatcher component . 86

5.3.1.1 Configuration grammar 86

5.3.1.2 A configuration example 87

5.3.1.3 Implementation . 88

5.3.2 The Collector component . 89

5.3.2.1 Configuration grammer 89

5.3.2.2 A configuration example 90

5.3.2.3 Implementation . 91

5.3.3 The Output component . 91

5.3.3.1 Configuration grammer 91

5.3.3.2 A configuration example 92

5.3.3.3 Implementation . 93

5.4 MyXMLDesigner . 93

5.4.1 Overview of the IDE . 94

5.4.2 Support for design . 95

5.4.3 Support for implementation . 96

5.4.4 Support for configuration and deployment 96

5.4.5 Support for Web page creation and maintenance 97

5.4.6 Architecture and implementation 98

5.5 Summary . 99

6 Case Study: VIF e-Commerce Web service 100

6.1 The Vienna International Festival (VIF) Web site 100

6.1.1 Service overview . 101

6.1.2 Main VIF components . 101

6.2 VIF e-commerce Web service . 102

6.2.1 The programme . 102

6.2.2 Detailed event information . 102

6.2.3 Ticket availability, date and price information 103

6.2.4 The shopping cart . 103

6.2.5 Completing the order (checking out) 103

6.3 Implementation with the MyXML tool suite 104

6.3.1 Design . 104

6.3.1.1 Device identification . 104

6.3.1.2 Data organization planning 104

6.3.1.3 Content definition . 105

6.3.1.4 XSL stylesheet definition 106

6.3.2 Implementation . 106

6.3.2.1 Construction of the pages 106

6.3.2.2 Integration of PDA device family 107

6.3.3 Deployment . 108

6.3.4 Maintenance . 108

6.4 Usage scenarios . 109

6.4.1 Ordering a ticket using a traditional browser 109

6.4.2 Ordering a ticket using an iPAQ PDA 109

6.4.3 Ordering a ticket using a WAP phone 110

6.5 Summary . 110

7 Evaluation and Future Work 122

7.1 Empirical proof of concepts . 122

7.1.1 Setting up an experiment . 122

7.1.2 Example: Measuring readability 123

7.2 Analysis and discussion . 123

7.2.1 Stylesheet complexity and numbers 123

7.2.1.1 Discussion . 124

7.2.1.2 Conclusion . 124

7.2.2 Complexity . 125

7.2.2.1 Discussion . 125

7.2.2.2 Conclusion . 125

7.2.3 Layout adaptation . 125

7.2.3.1 Discussion . 126

7.2.3.2 Conclusion . 126

7.2.4 Graphical and navigational design 126

7.2.4.1 Discussion . 127

7.2.4.2 Conclusion . 127

7.2.5 Layout/Content/Logic (LCL) separation 127

7.2.5.1 Discussion . 127

7.2.5.2 Conclusion . 128

7.2.6 Comparison of the DIWE framework to other approaches 128

7.3 Laying out future work . 131

7.3.1 Higher level abstractions . 131

7.3.2 UML for visual modeling . 131

7.3.3 Re-engineering for device-independence 132

7.4 Summary . 132

8 Conclusion 133

A Sample case study code listings 135

Bibliography 147

List of Figures

2.1 Life Cycle of a Web Service [Sch98b, TL97] 10

2.2 The difficulty of supporting small displays: The DSG homepage as seen on

an iPAQ PDA . 16

2.3 Screenshots of the 1995 and 2001 VIF home pages 17

2.4 Part of the Perl script implementing the HTML grading service 19

2.5 Part of the Perl script implementing the WAP grading service 19

2.6 Part of the VIF 2000 servlet code implementing a shopping cart 20

3.1 Adaptation of HTML for mobile computing devices (Hori et. al [HKO�00]) 29

3.2 OO-H Design Process (Gomez et al. [GCP01]) 35

3.3 WebML graphic notation for data units, and a possible rendition in HTML

(Ceri et al. [CFB00]) . 36

3.4 A sample iStudio fragment that defines an XHTML form (Skarra et al.

[SHKE01]) . 38

3.5 Part of a logic sheet in Cocoon . 40

4.1 Life Cycle of a device-independent Web Service 44

4.2 Web service design, implementation, deployment and maintenance 48

4.3 Differences in description granularity . 49

4.4 Interactions between the user’s device, the Web server and the generated

static content . 50

4.5 Interactions between the user’s device, the Web server, the application logic

and the generated functionality that produces the dynamic content 51

4.6 Sequence diagram showing the interactions between the device-independence

components for static content . 52

4.7 Sequence diagram showing the interactions between the device-independence

components for dynamic content . 53

4.8 Example MyXML file to search in a database 58

4.9 XSL stylesheet for formatting the output 58

4.10 Part of the generated Java Source Code . 59

4.11 MyXML content definition for a shopping cart 60

4.12 XSL layout definition for the shopping cart 61

4.13 Part of the generated shopping cart Java code encapsulating the HTML code 62

10

4.14 Invoking the generated code . 63

4.15 XSL Stylesheet reuse with pre-processing 65

4.16 XSL Stylesheet for PDA access after pre-processing 66

4.17 XSL Stylesheet for full HTML access after pre-processing 66

4.18 Page splitting using groups and subgroups 67

4.19 MyXML document for the events page . 69

4.20 XSL layout definition for HTML event page 69

4.21 XSL layout definition for WML event page 70

4.22 An online WML-based order with process partitioning compared to a tradi-

tional HTML-based order . 71

4.23 XSL layout definition for HTML Web form 73

4.24 Screenshot of simple HTML Web form 73

4.25 XSL layout definition for the partitioned HTML Web form 74

4.26 Screenshot of the partitioned HTML Web form – First group 75

4.27 Screenshot of the partitioned HTML Web form – Second group 75

4.28 Invoking the Checkout layout/content class from the application logic . . . 77

4.29 The MyXML-generated Checkout layout/content class 77

5.1 Relations between the tools in the MyXML tool suite 79

5.2 The MyXML tool suite in Web service construction and operation based on

the DIWE framework . 81

5.3 Flowchart showing the main steps taken by the MyXML compiler 83

5.4 UML class diagram describing the architecture of the MyXML compiler . . 84

5.5 The Dispatcher component configuration DTD 87

5.6 A Dispatcher configuration for a service 88

5.7 UML class diagram showing the architecture of the Dispatcher component . 89

5.8 The Collector component configuration DTD 90

5.9 A typical XML Collector component configuration 90

5.10 UML class diagram describing the architecture of the Collector Component 91

5.11 The Output component configuration DTD 92

5.12 A typical XML Output component configuration 92

5.13 UML class diagram of the Output component 93

5.14 The MyXMLDesigner visual Integrated Development Environment (IDE) . 94

5.15 Configuring general device properties . 97

5.16 Simplified UML class diagram describing the architecture of MyXMLDesigner 98

6.1 Main VIF Components in 2000 . 101

6.2 Screenshot of the project pane for the VIF project 107

6.3 Adding the PDA layout to the Web service 107

6.4 Default HTML programme page . 111

6.5 Default HTML detailed event information 112

6.6 Default HTML ticket reservation page . 113

6.7 Default HTML shopping cart . 114

6.8 Completing the order (checking out) in the default HTML layout 115

6.9 Default HTML order confirmation . 116

6.10 Programme, detailed event information and ticket reservation for the PDA

device family (screenshots from an iPAQ running Windows CE) 117

6.11 Shopping cart and order form for the PDA device family (screenshots from

an iPAQ running Windows CE) . 118

6.12 Programme, detailed event information and ticket reservation for the WAP

device family (as seen on a WAP emulator) 119

6.13 Part of ticket reservation and shopping cart for the WAP device family (as

seen on a WAP emulator) . 120

6.14 Order form for the WAP device family (as seen on a WAP emulator) 121

7.1 The full HTML interface of the VIF programme as seen on an iPAQ PDA . 126

List of Tables

3.1 Comparison of device-independent Web engineering approaches 32

3.2 Comparison of device-independent Web engineering approaches 33

4.1 Page splitting-related CGI parameters that the page splitting processor inter-

prets . 68

4.2 Descriptors that the page splitting processor substitutes at run-time 68

4.3 Table showing process partitioning-related CGI parameters the Collector

component understands . 72

5.1 The Web service life cycle phases each tool in the MyXML tool suite supports 80

5.2 The functionality provided by the tools in the MyXML tool suite 80

5.3 Table showing the device-independence components and the functionality

they provide . 85

6.1 Identification of MyXML dynamic content functionality on each page . . . 105

6.2 Device configurations for the VIF case study 108

7.1 Comparison of the DIWE framework with other approaches 129

7.2 Comparison of the DIWE framework with other approaches 130

13

Chapter 1

Introduction

1.1 Overview

Millions of pages and terabytes of information exist on the World Wide Web (WWW) today.

The Web is a dynamic, constantly changing medium and it is the largest growing area of the

Internet. With the advent of the WWW, the demand for Web sites (i.e., services) suddenly

grew and many organizations realized the huge potential of the Web. The Web quickly

became a powerful and important means to stay in contact with customers, provide online

services, express opinions and make profit with e-commerce applications.

The primary language used on the Web is still the Hypertext Markup Language (HTML)

supported by the Hypertext Transfer Protocol (HTTP). HTML was originally created be-

cause scientists at CERN were looking for ways to share information and documents over

the Internet [BCL�94]. It was never expected to gain popularity this fast and it was not de-

signed for the requirements we see in Web sites today: Web sites need to be manageable,

changeable, and need to provide dynamic functionality for interaction with users. The typ-

ical Web development environment usually needs a combination of different technologies,

tools and architectures.

Until the late 90s, the focus of Web service engineering research was the development

of tools, technologies and methodologies for the design, implementation and maintenance

of HTML-based Web sites. The common assumption was that a Web site would always be

accessed by a browser found on a personal computer or a laptop. Recent developments in

mobile computing software and hardware not only have changed this view, but have also

increased the importance of device-independent access to Web content: The ability to access

Web sites using a wide variety of Web devices. A Web device is any hardware or software

that can be used to access Web content [LS99] such as telephones equipped with speech

recognition software, digital televisions and Personal Digital Assistants (PDAs).

One of the next challenges faced by the research community and the World Wide Web

Consortium (W3C) is the definition of standards, tools, methodologies and technologies for

the “browser-less Web” and device-independent Web sites.

A major drawback of HTML has turned out to be its lack of support for device-specific

content specification. An HTML Web page, with its tables, fonts, forms, etc., usually only

adequately supports the display of a personal computer and may cause usability problems for

1

CHAPTER 1. INTRODUCTION 2

Web devices with smaller display and memory sizes (e.g., mobile phones). Further HTML

drawbacks are the inflexibility to easily incorporate layout (i.e., presentation, user interface)

design changes and the inability to reuse content embedded in HTML.

In order to eliminate HTML’s shortcomings and to define extensible standards that ad-

dress current Web requirements, the World Wide Web Consortium (W3C) defined the eXten-

sible Markup Language (XML) [W3C98a] and the eXtensible Stylesheet Language (XSL)

[W3C00]. XML is a syntactic meta-language for defining content and other languages and

XSL was proposed and designed because XML by itself does not contain any layout seman-

tics. XSL can be used to add presentation information to content defined in XML. XML and

XSL have gained popularity fast both in industry and in academia. These standards have

paved the way in creating the device-independent Web by providing a basic flexible infras-

tructure to independently define content and layout information. This separation of layout

and content allows the same content to be displayed on different devices by providing the

appropriate presentation information.

XML and XSL alone are not sufficient to design and build device-independent Web sites

that are easy to manage and that can be adapted to meet changing requirements. Users fre-

quently expect interaction, personalization and up-to-date information. Often, major updates

involving multiple documents and external information sources such as databases are neces-

sary.

To support the increasing variety of devices used by people to access Web content, Web

service providers and developers are increasingly concerned with the questions:

� How can a service be designed and implemented so that it is able to support different

Web devices?

� How can we make a service device-independent without increasing the maintenance

effort significantly?

This dissertation provides solutions to the questions and problems mentioned above. It

introduces a novel XML/XSL-based design and implementation technique and a develop-

ment tool suite to support the Web developer in engineering device-independent, interactive

Web services. These services can be accessed by a wide range of Web devices such as mo-

bile phones, PDAs with micro HTML browsers, speech-based Web interfaces and traditional

full-fledged HTML browsers.

1.2 Contribution of this Dissertation

The integration of device-independence support into the Web service design, implementation

and maintenance phases has not received much attention. Most solutions that have been

proposed only tackle a part of the problem (e.g., Web access through mobile computing

devices), but ignore the bigger problem of how to deal with device-independent Web access

in general. These approaches do not always work when many different devices with varying

display and memory sizes have to be supported.

The new generation of PDAs (e.g., the Compaq iPAQ) and mobile phones (e.g., the Nokia

Communicator) are getting more powerful every day so limitations such as memory and CPU

CHAPTER 1. INTRODUCTION 3

power will probably become less important in the near future. Although the latest PDAs are

even able to display frames, it is still important to adapt the content for these devices in order

to provide a satisfactory surfing experience for users.

This dissertation introduces the notion of a device-independent Web service and defines it

as a service that can be extended to support different Web devices of widely varying technical

capabilities. It treats the mobile Web access problem as a special case of device-independence

support.

My general thesis is that Web services can effectively be made device-independent if

device-independence support is integrated into the Web site design, implementation and

maintenance phases. Adaptation is not only the key to mobile information access [Sat96b],

but to multi-device access in general.

To this end, the dissertation makes the following contributions to knowledge:

� A taxonomy for the comparison of device-independent Web site engineering ap-

proaches.

� A novel XML/XSL-based conceptual framework for building device-independent Web

sites by using a reuse strategy. A constructed site can be easily extended by adding

device-specific user interfaces to it and existing functionality does not have to be mod-

ified.

� The concept of page-splitting and stepping by layout marking so that the information

on a Web page can be split into chunks to support devices with restricted memory or

display sizes.

� The concept of process-partitioning and stepping by layout marking so that Web form-

based interactions in a Web site can be divided into independent steps for interactions

with devices that have restricted memory or display sizes.

� The concept of device-specific XSL stylesheet pre-processing for reusing existing XSL

stylesheets to ease the overall maintenance effort.

All the concepts have been implemented and demonstrated in a prototype implementation

that is available on the Web for download 1. The prototype implementation, the MyXML tool

suite, includes a visual integrated Development Environment (IDE) for engineering device-

independent Web sites and supports device configuration, device maintenance and device-

independent content authoring.

1.3 Structure of this Dissertation

This dissertation is structured as follows:

The next chapter gives a brief introduction to the Web engineering discipline and intro-

duces basic terms and concepts such as XML, XSL and the World Wide Web service life

cycle. It describes the device-independent Web site engineering problem.

1http://www.infosys.tuwien.ac.at/myxml

CHAPTER 1. INTRODUCTION 4

Chapter 3 presents the related work and discusses the different existing strategies and ap-

proaches to creating and supporting device-independent Web sites. It introduces a taxonomy

for the comparison of device-independent Web site design and implementation approaches.

Chapter 4 presents an extended model of the traditional Web service life cycle that takes

device-independence support into account. It presents the Device-Independent Web Engi-

neering (DIWE) conceptual framework for engineering device-independent Web sites and

discusses the novel concepts of page splitting, process partitioning and XSL stylesheet pre-

processing.

Chapter 5 presents and discusses the MyXML tool suite for engineering device- indepen-

dent Web sites. The tool suite is a prototype implementation of the conceptual framework

presented in Chapter 4. The suite consists of the MyXML processor, three configurable

run-time device-independence components and the MyXMLDesigner visual Integrated De-

velopment Environment (IDE).

Chapter 6 discusses the usage of the MyXML tool suite in the device-independent imple-

mentation of the Vienna International Festival e-commerce Web service. It shows how the

tool suite was used to provide Web site access to full-fledged HTML browsers, PDAs and

WAP-enabled mobile phones without the need to modify the existing functionality.

Chapter 7 evaluates the presented concepts and the MyXML tool suite. It discusses

potential problems and lays out future work.

Chapter 8 summarizes and concludes this dissertation.

Chapter 2

Web Engineering basics

This chapter provides an introduction to the Web engineering discipline. It introduces basic

technologies such as XML and XSL and discusses concepts such as the Web service life

cycle. It describes the device-independent Web site engineering problem.

2.1 Terminology

I first define some basic terms that will be used with consistent meaning in the context of this

dissertation.

The term Web Service has been used since the mid 90s to describe the information offered

to users on a Web site (e.g., see [CFB00, ICL97, KJKS01, Sch97]), it is recently often being

used to denote browser-less (i.e., machine) access to content on a Web site (e.g., see [Alp,

dev, Sun]). Hence, to eliminate possible confusion and ambiguity, I make the following

definitions:

� Content: The information that is offered to the user (e.g., the price for a book).

� Static content: Content that does not change at run-time. It is mainly stored in files

on servers or in databases and is presented to the user without any processing (e.g., a

home page defined in HTML).

� Dynamic content: Content that is generated at run-time based on the interaction with

the user (e.g., an e-commerce application that presents a welcome text and lists the

current items in a user’s shopping cart).

� Layout (i.e., user interface): The formatting information with which the content is

formatted for presentation (e.g., fonts, graphics, buttons, tables, etc.).

� Application logic: The functionality that is necessary for providing the interaction and

services to the users (e.g., maintaining the dialog between the user and the service that

culminates in the purchase of a ticket.).

� Web page: Static or dynamic content on a Web site that is intended for browser-access

and that is accessible through a unique URL.

5

CHAPTER 2. WEB ENGINEERING BASICS 6

� Web service (or Web application): Functionality supported by one or more Web

pages that provide some sort of interaction or information to the user for achieving a

certain task (e.g., booking a ticket, retrieving price information, searching). The access

to a Web service can be browser-less, or via browser.

� Static Web service: A Web service that returns static content.

� Dynamic Web service: A Web service that returns dynamic content.

� Web site: Collection of Web pages and Web services in a single administrative domain

(e.g., the Web site of a company).

� Web tool: A software application that eases the construction of Web applications in

some way.

� Web technology: An industry standard or a collection of Web tools for constructing

Web applications.

� Web engineer: A Web developer who follows a systematic approach to construct Web

services.

2.2 Web engineering: An emerging field

With the advent of the WWW, the demand for home pages suddenly grew; many organi-

zational Web sites were initially created without a systematic approach by individuals who

were interested in this new technology and who quickly gained basic knowledge of HTML.

Although the ability of anybody to put any information on the Web has clearly contributed to

the popularization and success of the Web, it also resulted in several problems that are found

in many of today’s Web sites.

First, because of the lack of understanding for the Web and hypermedia concepts, a single

employee, often referred to as webmaster, was often designated to diverse tasks related to

the Web site such as designing the information, the graphical look of the pages and the

management and updating of information. The workload in many cases was too much for

a single person to handle. Large and complex Web sites usually require a team of content

providers and graphic, layout and interface designers. Indeed, management is a collaborative

task [Str95]. Hence, many webmasters designed the Web pages according to their taste

and picked the information that they found important. This sometimes conflicted with the

business objectives of the management level and the image they wished to convey.

Second, webmasters did not have previous hypermedia experience in many cases and the

lack of design guidelines showing what is good and bad on the Web resulted in excessive

use of Web technologies such as frames and JavaScript. Furthermore, dynamic functionality

(e.g., a Web-based database program for checking in and checking out books in a library)

is often developed in an ad-hoc manner and most of the time the programs are script-based

and not well documented or designed. This increases the management complexity of Web

sites and makes maintenance difficult. Maintenance becomes especially sophisticated once

the webmaster, not rarely the single person who has a complete understanding of the system,

CHAPTER 2. WEB ENGINEERING BASICS 7

leaves the organization. Some authors have referred to the current situation on the Web as

the Web crisis (e.g., [GM01]) and have likened it to the software crisis (e.g., [She95]) in the

1960s when much of the produced software was not reliable and failed to reach basic levels

of quality and user satisfaction.

Due to the nature of the Web, users expect a Web site to offer interactive and up-to-date

content. Managing and maintaining a Web service, hence, usually becomes a challenging

task once the number of services and the amount of offered information exceed a certain

limit. Web engineering (e.g., [GM01, KJKS01]) is a discipline that deals with the systematic

design, implementation, and deployment of large-scale, complex, Web-based information

systems. It attempts to define processes and provide development tools that cover all phases

in the life cycle of a Web service. The Web engineering discipline is young and there is

consensus on the need for more evaluation, but many challenges remain, including issues

such as scalability, multi-device access, increased performance, robustness, extensibility,

maintainability and flexibility.

Much of the initial research on Web site design and development was based on the re-

sults of more than thirty years of hypertext research (e.g., see [Eng95, Nel95]) and a majority

of Web engineering researchers came from a hypertext background. A Web site, after all,

consists of a collection of hyperlinks. Although the WWW is not actually hypertext accord-

ing to the Dexter Hypertext Model [HS94], hypertext researchers were quick to realize that

many concepts involved in the design of hypertext are also applicable to the design and im-

plementation of Web sites. As a result, several approaches emerged that integrated hypertext

navigational structure considerations into the design process (e.g., [DIMG95, ISB95, SR95]).

As the demand for Web sites steadily increased and the amount of information grew,

many sites started using relational databases to store and manage a large proportion of the

offered information (e.g., news sites such as Reuters, CNN, portals such as Yahoo and e-

commerce sites such as E-Bay). Hence, the database community also started working on

Web site design and maintenance issues, but their focus mainly being the engineering of data-

intensive, relational database-backed sites. Several approaches were proposed that adapted

database concepts for Web site management and design. (e.g., [Goe98, CFP99, FFKL98]).

Since the mid-90s, the Web engineering field has been gaining popularity fast and re-

searchers involved in this area possess all sorts of backgrounds such hypertext, data engineer-

ing, databases, library sciences, education, and lately even reverse engineering. The software

engineering community, however, has been slow to pick up on the trend and to make a sig-

nificant contribution with its knowledge. As a result, many of the well-known approaches

for Web service design and implementation mainly concentrate on static or database-based

content and fall short in supporting dynamic Web-based interactions such as those needed in

e-commerce applications.

Hence, many Web applications and services are developed in an ad-hoc manner today

and the main reason is the lack of practical methodologies, approaches and guidelines. Doc-

umentation, for example, is as important in Web engineering as it is in software engineering

and unfortunately often equally ignored. One reason for this is sometimes the general mis-

conception that the services being built are “simple” anyway, and are to be used only for “this

year”. A Web service, however, is often put together using a number of different technolo-

gies and dependencies. Due to the nature of the Web, the architectures of Web applications

are distributed and not always easy to comprehend.

CHAPTER 2. WEB ENGINEERING BASICS 8

As the Web engineering discipline is becoming more mature, it is becoming evident that

methodologies, tools, and technologies are needed that can effectively deal with the differing

requirements for building Web-based information systems.

2.3 Web service characteristics and requirements

2.3.1 Information transfer characteristics

The World Wide Web (WWW) consists of the classical client/server model where clients

(i.e., browsers) contact Web servers and request information. The information is returned to

the client in a reply message. Users have to locate and retrieve the information actively and

have to remember (or bookmark) the locations of services they are interested in.

One of the main reasons for the success of the Web is the possibility of integrating legacy

applications, data sources and external services under a uniform, platform-independent inter-

face (e.g., publicly available gateways provide access to libraries and flight booking systems

that are often legacy applications with a Web interface).

The HTTP protocol used in the Web is stateless and insecure. A transaction management

function often needs to be added to Web applications because of the lack of state and secu-

rity. Most Web servers support the Secure Socket Layer (SSL) protocol for protecting Web

communication against eavesdropping.

2.3.2 Stakeholders

Just like in software engineering (e.g., see [GJM91]), there are different stakeholders in Web

site engineering projects: The content managers are responsible for providing and maintain-

ing the content to be offered on the Web site. The graphic designers deal with the appearance

of the Web pages in the site. The Web engineers have to develop the application logic and

have to integrate it with the content and the layout information. Usually, one or more project

managers are responsible for the timeliness of the project and the overall coordination. Fi-

nally, the visitors (i.e., users) of the site are the target audience that consume the offered

information and use the services.

2.3.3 Basic Web service requirements

Each stakeholder in a Web site engineering project will have a different set of requirements

for the Web site.

The content managers will mainly be interested in easy-to-use update mechanisms. They

will need content management applications that allow them to edit, delete and enter informa-

tion into the Web site and versioning mechanisms to enable them to keep track of changes in

content and work concurrently.

The graphical designers will be interested in providing an attractive, appealing graphical

look that will attract visitors and that will increase the acceptance of the Web site.

CHAPTER 2. WEB ENGINEERING BASICS 9

The visitors of the Web site will be mainly interested in up-to-date content and usabil-

ity. If there is no consistent navigational model and the site is difficult to use, the typical

visitor will leave and not come back again. This is because the attention spans of users in

hypermedia environments are very low, and users are impatient [RM98].

Visitors will also want to use different Web devices they have to access the content in the

site. A user, for example, will appreciate a Web service that provides a satisfactory surfing

experience with her PDA. On the other hand, she will be frustrated if the information is

difficult to find or access with the PDA.

The project managers will mainly be interested in decreasing the implementation and

maintenance costs and will look for ways to decrease the time-to-market.

All these factors and requirements create a great challenge for Web engineers. The

changes need to be integrated into the site swiftly, without the need for the Under Con-

struction sign that is now infamous, and highly unpopular among Web surfers.

The Web engineers will look for the ability to integrate off-the-shelf software components

to ease construction and for ways to utilize information in legacy data repositories to elim-

inate the need to redefine content. Further, they will aim to provide location independence

in case the service needs to be migrated. Their overall goal will be to design and construct

the service in such a way so that future requirements can be integrated with ease: They will

attempt to construct extensible, changeable services.

The key to successfully dealing with all these requirements is to systematically cover all

the phases in the Web Service Life Cycle.

2.4 Web Service Life Cycle

Some authors [NN95] have likened Web engineering to the software engineering process

[GJM91]. There are fundamental differences, however. Web engineering includes some

additional tasks: Data analysis, information architecting, navigation management and data

organization. Using the software engineering process in Web engineering may be both diffi-

cult and inadequate [Sch98b].

Every Web service has a life cycle [TL97] that consists of a sequence of four major steps:

Requirements Analysis, Design, Implementation and Maintenance. Most of the existing Web

authoring systems concentrate on the implementation phase and only few provide support

for the design stage. All stages, however, are important for Web services and have to be

supported. Figure 2.1 depicts the Web service life cycle.

From the very beginning of the Web, tools first concentrated on content authoring using

HTML. Later, more sophisticated tools were introduced that provided WYSIWYG support

for authoring content. The next generation of tools started providing help in navigating,

interface design and site management.

The vast majority of the available Web tools today are able to create pages and graphical

layouts using simple templates, but lack support for handling major updates involving mul-

tiple documents, dynamic data, and the integration of external information sources such as

databases.

A typical Internet development environment is still quite fragmented. A combination of

CHAPTER 2. WEB ENGINEERING BASICS 10

Requirements

Analysis

Design

Implementation

Maintenance

Waterfall Cascades

Iterative Feedback

Figure 2.1: Life Cycle of a Web Service [Sch98b, TL97]

many tools is necessary to implement a Web service. Several alternative approaches have

been introduced (e.g., [GWG97a, Mau96]) that attempt to support all phases of the Web

engineering process.

2.4.1 Requirements Analysis

The first step in Web engineering is to analyze what type of information needs to be pro-

vided and in what way. Standard software requirements analysis is often necessary when

interactive services need to be provided and Web applications need to be written.

All stakeholders are involved in this phase and each state what they expect the site to do.

The Web engineers usually do not have explicit requirements. Extensibility, for example, is

a valuable asset and a requirement for the Web engineer, but not really a requirement for the

other stakeholders.

The Web engineer’s job is to fulfill the requirements of the other stakeholders. If the

Web services that are designed and constructed can easily be modified and extended, it will

make the Web engineers’ lives easier once requirements start to change in the future. Clearly,

Web engineers have the main responsibility in building maintainable, extensible Web sites

because other stakeholders are mainly interested in having their requirements covered, but

not in how they are implemented.

CHAPTER 2. WEB ENGINEERING BASICS 11

2.4.2 Design

The information collection is organized in the design phase and an architecture of the service

is defined.

Different stakeholders are involved in the design phase. The graphical designers provide

layout mock-ups of the Web pages and use them to get feedback from prospective visitors

and other stakeholders. The usability of the mock-ups and the graphical appearance are

evaluated and improved in an incremental process.

Content managers identify the information that will be offered to visitors and plan and

coordinate how it will be inserted into the site.

The Web engineers design the architecture of the Web service application logic and plan

the integration of the content and the layout. Further, they design the content update mecha-

nisms that will be used to insert content into the site.

The project managers coordinate the activities between the stakeholders, organize regular

meetings and keep track of the progress.

2.4.3 Implementation

In the implementation phase, the information and functionality planned and organized in the

design phase is coded in an appropriate format.

Most Web sites use HTML files to deliver static content. These HTML documents can

be written using editors or generated from relational databases using widely available Web

tools.

The functionality and support for interactions is usually implemented using popular Web

technologies. Most of these technologies generate dynamic content by either writing HTML

to a stream that is sent back to the calling client or by mixing layout information with ap-

plication logic in files that are interpreted at run-time by an application server. An example

of the first form of interaction are the Perl script[Pag], Java servlet[Jaw98], and C#[Arc01]

technologies and an example of the second form are the PHP[RSS�99] and Coldfusion[col]

technologies.

Scripting languages can be server-side, or client-side. Perl, for example, is a server-side

scripting language that is interpreted on the Web server. Javascript, on the other hand, is

embedded into HTML and is interpreted locally on the user’s browser.

Usually, a combination of different technologies are used to implement the interactive

functionality. A server-side Perl script may be used in an e-commerce application, for ex-

ample, to check a relational database for shopping cart information. To save bandwidth, the

user’s input may be validated on the browser using a client-side Javascript before it is sent.

2.4.4 Maintenance

Service maintenance is one of the most important and costly issues in Web Engineering.

Similar to software management, the handling of a Web service becomes non-trivial once its

size increases [Sch97].

CHAPTER 2. WEB ENGINEERING BASICS 12

Most Web sites today change their appearance at least once a year to stay attractive.

Minor changes in the look-and-feel of a site several times a year are very common, and

major modifications are not rare.

Modifications are motivated by better understanding of user needs based on previously

gained feedback, new requirements, optimization strategies and new market directions.

Service maintenance involves information updates and content management, naviga-

tion management, version management and service migration.

Ad hoc navigational links are embedded almost anywhere in Web services. Unfortu-

nately, links may be broken due to the nature of the Web. Navigational management is

necessary for checking the validity of the links and resources for consistency and integrity.

Service migration is the movement of a part of, or the entire Web service, to another

host. Service migration is often necessary as hardware is updated, performance requirements

change, and new versions of software components become available.

Version management is an important issue in service maintenance because it allows Web

engineers to issue releases of scripts and source code and keep track of functionality changes.

Furthermore, a versioning system allows content managers to work concurrently. Versions

increase the manageability and maintainability of the service – especially when dynamic

content is involved.

Versioning also allows the analysis of the evolution of the site. By checking the logs,

site-specific information can be retrieved such as the pages that had to be updated regularly

and those that did not change much. This information can be utilized to maintain and adapt

the services according to the users’ needs.

Standard versioning systems, such as CVS, [cvs] may be deployed for version manage-

ment.

2.5 Flexibility

A flexible Web service is a service that is easy to extend and maintain. The modifications in

the graphical layout and the look-and-feel of the service is one important flexibility issue for

Web services. The most important aspect of flexibility, though, is the ability to integrate new

functional requirements without having to do major modifications to the system.

The first generation of HTML document standards lacked support for layout flexibility.

Attempts were later made to eliminate these shortcomings by extending the HTML stan-

dard with technologies such as the Cascading Style Sheets [W3C]. CSS defines common

formatting properties such as font size, font family, font weight, paragraph indentation and

paragraph alignment. One can specify, for example, that all H2 HTML elements should be

formatted in 24pt Times New Roman font. Multiple stylesheets can be applied to a single

element and the styles then cascade according to a particular set of rules.

In order to eliminate HTML’s shortcomings and to define extensible standards that meet

requirements such as layout flexibility, the World Wide Web Consortium (W3C) defined the

eXtensible Markup Language (XML) standard along with the XML Style Sheet Language

(XSL).

CHAPTER 2. WEB ENGINEERING BASICS 13

Both technologies are important for Web engineering because they are standards and

have gained popularity fast. Many software vendors are integrating XML and XSL support

into their products and a wide range of XML/XSL-based tools are available today such as

editors and configuration tools.

2.5.1 XML

XML is a set of rules for defining semantic tags that break a document into parts and identify

the different parts of a document. It is a meta-markup language that defines a syntax used to

define other domain-specific, structured markup languages [Har99].

XML is not just another markup language such as HTML. HTML defines a fixed set of

tags (e.g., H1 for Heading 1, H2 for Heading 2, etc.) that describe a fixed number of ele-

ments. The main difference of XML is that it is a markup language in which one can define

tags as one wishes. These tags must be organized according to certain general principles, but

their meaning is flexible.

Suppose we would like to describe students by noting their name, age and computer

science knowledge. We can create tags for each of these. The XML definition of this infor-

mation may look something like this:

<?xml version="1.0"?>

<student>

<name> Engin Kirda </name>

<age> 28 </age>

<knowledge> Expert :-)) </knowledge>

</student>

This listing uses meaningful tags such as age and name that we defined.

The tags we defined can be documented in a Document Type Definition (DTD). The DTD

[W3C98b] can be thought of as a vocabulary and a syntax for certain kinds of documents.

XML definitions do not necessarily need to have a corresponding DTD. A DTD merely

allows the validity (i.e., the conformance to the syntax defined in the DTD) of XML infor-

mation to be checked. All XML documents, however, have to follow a specific set of rules

such as having a header at the beginning and having a closing tag for every opening tag (e.g.,

if there is an �engin� tag, then there must be an �/engin� closing tag). XML documents

that conform to these specific set of rules are said to be well-formed. Well-formedness is the

minimum requirement for XML information.

While one might find it useful to write documents that use a single markup vocabulary,

it is sometimes even more useful to mix tags from different XML definitions. The problem,

however, is that when mixing tags from different XML definitions, one might find the same

tag used for two different things. In an e-commerce related XML definition, for example,

the tag name could refer to the name of an article rather than the name of a student as in

the previous example. Namespaces disambiguate these instances by associating a Universal

Resource Identifier (URI) with each tag set and attaching a prefix to each element to indicate

which tag set it belongs to. Thus, one could have a students:name tag and an articles:name

tag.

CHAPTER 2. WEB ENGINEERING BASICS 14

Unlike HTML, XML does not describe the layout (i.e., formatting/presentation) of the

elements on a page. It describes a document’s structure and meaning and only contains tags

that say what is in the document and not how the document should be presented.

A layout can be added to an XML document with a stylesheet. For this purpose, XSL is

used.

2.5.2 XSL

XSL is an advanced stylesheet language specifically designed for use with XML documents.

In fact, XSL documents themselves are XML documents.

XSL is divided into two parts: transformations (XSLT) and formatting objects (XSL:FO).

XSL:FO is a language for describing 2D layout of text in both digital and printed media.

XSLT, on the other hand, is a language for transforming one XML document into another

textual format.

XSL documents contain a number of rules (called templates) that apply to particular

patterns of XML elements. An XSL processor reads an XML document and compares it to

the rules in the stylesheet. Whenever a rule is recognized, transformation rules are invoked

and corresponding output text is generated. Unlike CSS, the output text is arbitrary and is not

limited to the input text plus formatting information. XSL is far more flexible and powerful

than CSS and it is better suited to XML documents. XML documents can also be easily

converted to HTML documents with CSS stylesheets.

The following simple XSL stylesheet prints the HTML fragment “�br�This is some

name�br�” for every student name tag defined in the previous XML definition. Every time

it recognizes a student tag, it recursively processes student names.

<?xml version="1.0" ?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/XSL/Transform/1.0">

<xsl:template match="student">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="name">

This is some name

</xsl:template>

Template rules defined by the xsl:template element are the most important part of an

XSL stylesheet. Each template rule is an xsl:template element. These associate particular

input with particular output. Each xsl:template element has a match attribute that specifies

which nodes of the input document the template is instantiated for.

To get beyond the root element (i.e., the first tag, student in our example), the XSL

processor needs to be told to process the children of the root. In general, all child elements

are recursively processed using the xsl:apply-templates directive.

CHAPTER 2. WEB ENGINEERING BASICS 15

XSL provides advanced functionality such as conditional loops, if/then/case directives

and a powerful mechanisms (i.e., XPath) for selecting elements.

One frequent use of the XML and XSL technologies is to create flexible static content

for multi-purpose publishing1 [LS99]. Using XSL, the content in XML is transformed into

an appropriate format for different target devices.

Although the XML and XSL standards have created a basic flexible infrastructure to

independently define content and layout information, they are not sufficient alone to design

and build device-independent Web sites that are flexible and maintainable.

2.6 The device-independent Web engineering problem

This section discusses the device-independent Web site engineering problem that this disser-

tation tackles. It presents simplified, as well as real-world examples to define and illustrate

the problem.

2.6.1 Historical overview

The problem of device-independence is not new in computer science. Since the very early

days of computing, computer displays and hardware have always had widely varying techni-

cal characteristics. Hence, differences such as display sizes and graphical capabilities had to

be supported by operating systems and programs. Modern operating systems provide device

abstractions to programs and support different devices using drivers.

The situation was similar for the Web in the mid 1990s: Many users existed that did not

have access to graphical browsers and were using browsers such as Lynx on dumb terminals

with text-only characteristics. As a result, it was considered good Web design practice to

offer the content in pure textual form (without graphics) as well as in a more appealing

graphical look. The reader familiar with the Web since its early days will remember pages

that had a “text only” link in the navigation bar. Another solution that was often used to

deal with limited text-based devices was to keep the design of the HTML-pages as simple as

possible so that all browsers and displays could satisfactorily cope with the rendering of the

content.

In fact, the original HTML definition did not contain elements such as �font� and the

font size attribute. Generic font type and size tags such as �h1� and �h2� were used that

were device-independent: The browser interpreted the size and fonts of headings according

to user settings or the device characteristics.

As concepts such as corporate image or identity [Qui94] started emerging and gaining

in importance, however, the demand for more functionality grew and companies such as

Netscape and later Microsoft started expanding the HTML element set to meet the demand.

As a result, HTML incompatibilities occurred because of the different HTML namespace

implementations. Unfortunately, this is still the case sometimes in Web development. It is

not uncommon, for example, for a table to look quite different on a browser such as Netscape

when compared to the Internet Explorer. These differences are the main reason why Web

1Sometimes also called syndication

CHAPTER 2. WEB ENGINEERING BASICS 16

companies and customers usually agree on a browser in projects that will be guaranteed to

work with the provided functionality.

With the increase in available functionality, the trend of supporting alternative, simpler

text interfaces largely disappeared. Instead, users visiting a site were often “encouraged” to

download a newer version of a browser (e.g., the infamous “This site is best viewed with

Netscape version...” type messages) and the common assumption that a user would at least

have 600-pixel width screen estate started to establish itself among Web designers. Many

Web sites today require at least a mid-size display (i.e., minimum 800x600 pixel size) for

a satisfactory surfing experience and HTML extensions such as frames cause problems on

smaller displays. Figure 2.2 illustrates the difficulty of supporting small displays. Note that

the user cannot see a large proportion of the information on the site. Much scrolling is

required, thus, increasing the cognitive overhead and decreasing usability [RM98].

Figure 2.2: The difficulty of supporting small displays: The DSG homepage as seen on an

iPAQ PDA

Even though most browsers conform to the W3C HTML standards that were later agreed

upon, browser-specific (and therefore device-specific) functionality already exists and ele-

ments that are not device-independent such as �font� have therefore been standardized.

Figure 2.3 depicts the differences in design between the 1995 version of a commercial

Web site (the Vienna International Festival home page) and the 2001 version. Note how much

simpler the 1995 version is compared to the newer version. Tables are used extensively by

the graphical designers in the 2001 design.

Recent developments mobile computing software and hardware (e.g., Wireless Access

Protocol (WAP) access provided by mobile phone providers) and speech technology (e.g.,

the definition of the VoiceXML XML language for defining speech-based Web applications)

have highlighted the need for device-independent Web access, once again [BFJT01]. The

CHAPTER 2. WEB ENGINEERING BASICS 17

Figure 2.3: Screenshots of the 1995 and 2001 VIF home pages

CHAPTER 2. WEB ENGINEERING BASICS 18

challenge, however, is greater this time. The Web site has to be accessible by users using

Web devices that have a wide range of display sizes and memory limitations, and that may

require a special XML-based Web format (e.g., the Wireless Markup Language (WML) is an

XML language that has been specially designed to describe small pages that can be accessed

by WAP-enabled mobile phones).

The next section describes and illustrates the device-independence problem from the Web

engineering point of view.

2.6.2 Problem: Constructing maintainable, interactive device- inde-

pendent Web services

One Web-based mobile computing service that has become quite popular in the last couple

of years is providing custom-tailored information for PDAs that users can download from a

Web site for offline-browsing.

Varnum in [Var00], for example, discusses how PDA-services were deployed at Ford

and presents an experience report. The problem was that managers and company leaders

that were higher up in the company hierarchy did not have any time to get information

from the company intranet. These people were always busy and only had time between

meetings. They preferred to get their emails in paper form and had time for correspondence

in cars, during flights, etc. Interestingly, though, it was observed that PDAs had found a high

acceptance by these people.

The IT department decided to utilize the wide usage of PDAs (i.e., Palms in this case)

and developed a system with which Web sites in the intranet can be downloaded to these

devices. The interactions are offline and any forms submitted are queued in the PDA. All

requests are sent once the PDA is synchronized and connected to the PC.

Only some services are offered for PDAs and the server-side scripts offering these ser-

vices had to be modified or duplicated. One observation was that it pays to make low use

of images on the Palm output. Users are primarily interested in acquiring information and

the images do not serve an important navigational purpose on low-resolution displays. Even

after eliminating graphics, though, there is still precious little screen space available. Fur-

thermore, although the PDA is able to render tables, simpler pages render faster. Thus,

performance considerations played a significant role in designing the pages.

The server-side scripts were in Perl and it was not too difficult to modify them in this

case.

The problems, however, were: 1) There was little logic reuse – hence making code main-

tenance more difficult as the site grows, and 2) The modification of the Perl scripts is an

ad-hoc solution and although it solves the problem, the solution is temporary and does not

guarantee that the services will be able to support other Web devices and formats in the fu-

ture as the requirements evolve. Supporting a speech interface using VoiceXML, or creating

a PDF version of the information in the intranet for the managers, for example, would need

a considerable implementation and maintenance effort.

In the Distributed Systems Group at the Technical University of Vienna, we experienced

a similar problem. We had a Web-based grading service that enabled the students to look up

the grades they had earned in courses. This service was a script-based solution using Perl.

CHAPTER 2. WEB ENGINEERING BASICS 19

package grading;

dbmopen (%files,"files",undef);

#-- gradingCodeLayout ---
$classes{"gradingCodeLayout"} = '

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<TITLE> Engin Kirda </TITLE>

<BODY BGCOLOR=#FFFFFF TEXT=#000000
 LINK=#0000FF ALINK=#000000 VLINK=#800080 >

<table border="0" width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td bgcolor="#000000" VALIGN="CENTER">

 </TD>

 </tr>
</table>
<table><tr><td>
Grades $forwhom:</td></tr>
<tr><td>
$content</td></tr></table>';

Figure 2.4: Part of the Perl script implementing the HTML grading service

package grading;

dbmopen (%files,"files",undef);

#-- gradingCodeLayout ---
$classes{"gradingCodeLayout"} = '<?xml version=\"1.0\"?>
<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML 1.1//EN\”

 \"http://www.wapforum.org/DTD/wml_1.1.xml\">
<wml>
<template>

<do type=\"prev\"> <prev/> </do>
</template>
<card id=\"result\" title=\"Query Results\">
<p>
Grades $forwhom:</p>
$content

</card>
</wml>
';
sub gradingCodeLayout # call as gradingCodeLayout

($content,$forwhom,$httproot,$now)
 {
 local ($content,$forwhom,$httproot,$now) = @_;
 $_ = $classes{"gradingCodeLayout"};
 eval qq/"$_"/;
 }

Figure 2.5: Part of the Perl script implementing the WAP grading service

CHAPTER 2. WEB ENGINEERING BASICS 20

After seeing that WAP services were being offered by Web sites such as banks and cinemas,

we decided to offer the grading service we had through an additional WAP interface.

Figures 2.4 and 2.5 depict parts of the Perl scripts that provide the functionality. The

layout information (e.g., tags such as �html�, �wml�, �table�) are directly hard-coded

into the source code. Note, also, that there is a considerable amount of overlap and duplica-

tion between the scripts. This approach is typical and the easiest solution to building Web

services that can support more than one device. It clearly does not scale and may cause main-

tenance nightmares. If, for example, there is a need to generate a PDF report for the student

grades, the source code has to be copied and modified in an ad-hoc manner to incorporate the

new requirement. This approach would solve the problem for a while, but whenever there

is a need to change the underlying application logic, the duplicated logic would have to be

modified as well.

The described problem is wide-spread when popular, traditional technologies such as

Java servlets, PHP and ASP are used. Figure 2.6 shows a fragment of the Java servlet code

from a commercial Web site that provides shopping cart functionality. The servlet displays

the contents of the user’s shopping cart in HTML. The entire HTML information is inter-

mixed with the content and the application logic and is hard-coded into the code.

One source-code level solution would be to integrate device-specific content and layout

information into the application logic for every new device. This integration, however, is not

necessarily easy because it involves the analysis and modification of the code. This can be

an error-prone and expensive task. It may become especially difficult when different display

sizes have to be supported and memory limitations exist.

 // Go through the Shopping List and print everything...
for (int i=0; i<=eventList.size()-1;i++) {
 ShoppingCartEvent event = (ShoppingCartEvent)

eventList.elementAt(i);
 database.getEventInfo(event.getEventId());
 out.println
 ("<tr><td colspan=\"3\" align=\"center\">"+
 database.getEventTitle()+"</td></tr>");

 if (!database.getSecondEventTitle().equals("Nothing")) {
 out.println("<tr><td colspan=\"3\" align=\"center\">"+
 "Shown together with:
"+
 database.getSecondEventTitle()+

"</td></tr>");
 }

Figure 2.6: Part of the VIF 2000 servlet code implementing a shopping cart

The presented examples show that the main device-independence Web site engineering

problem is the increase in maintenance complexity as the number of devices that need to

be supported grows. Because Web sites are usually not designed to support Web devices of

varying technical characteristics, it is sometimes difficult and costly to integrate support for

a new device.

A maintainable, higher-level solution is needed to support the design and implementation

of interactive, device-independent Web sites. The solution has to cover the following main

CHAPTER 2. WEB ENGINEERING BASICS 21

requirements:

1. It should provide support for the different phases in the Web service life cycle.

2. It should support both static and dynamic content.

3. Application logic reuse should be possible so that the logic does not have to be dupli-

cated. The same logic needs to work without modifications with any Web device no

matter what its display and memory size is.

4. It should be possible to provide the content in the site in any standard XML Web format

(e.g., VoiceXML, WML).

5. It should not increase the maintenance effort significantly.

I define the notion of a device-independent Web site in this dissertation as a site that is

flexible and can be extended to support different Web devices of widely varying technical ca-

pabilities and propose a solution that fulfills the requirements listed above. I present a novel

XML/XSL-based Web service design and implementation technique that allows the system-

atic construction of device-independent, flexible Web sites. New Web device support can be

added to the Web sites with ease and existing functionality does not have to be modified.

2.7 Summary

This chapter provided a brief introduction to the Web engineering discipline. It introduced

basic technologies such as XML and XSL and discussed the Web service life cycle and ser-

vice flexibility. It described the device-independent Web site engineering problem and de-

fined the goals for a solution that allows the engineering of maintainable, device-independent

Web sites.

Chapter 3

Related Work

Much research has been done since the early 1990s on Web service design techniques,

methodologies and development tools. Most of the existing work focuses on the construc-

tion of HTML-based Web services. Since the beginning of the year 2000, device-independent

Web engineering has been receiving growing interest.

This chapter presents related work. First, it describes and discusses traditional Web en-

gineering approaches and mobile Web access techniques that do not explicitly attack the

device-independent Web engineering problem, but that are relevant and important as back-

ground work. Second, it introduces a taxonomy for classifying and comparing the solutions

that explicitly tackle the device-independent Web engineering problem and third, it describes

and evaluates these approaches.

The next section gives a brief overview of research on device-independent Web access.

3.1 Brief overview of research on device-independent Web

access

The majority of the authors describe the mobile information and Web access problem (e.g.

[Sat96b, KAK�00]). Many conferences and workshops are being held that address problems

related to information access from mobile computing devices with restricted capabilities such

as mobile phones and PDAs.

The term mobile e-commerce [Sen00] has also recently gained popularity. There is a

general expectation that much commerce over the Internet and the Web will be performed

via mobile devices in the next decade (e.g. [Gla01]).

At the same time, there is another growing market: Web access via speech recogni-

tion and synthesis technologies. This application area is especially important for companies

involved in the speech technology market. Speech recognition systems are already being

deployed in many organizations such as airports and banks. They allow customers to call by

phone and retrieve information such as flight information and the current account balance.

Providing speech access to the Web, thus, is interesting for these companies.

Research in speech-based Web access has led to the specification and development of

VoiceXML [Luc00]. VoiceXML is an XML-based language that allows interactive speech

22

CHAPTER 3. RELATED WORK 23

applications to be written that provide access to Web content. It has been quickly adopted by

companies and the number of VoiceXML development environments and tools are increasing

every day.

Ralph in [RS01], for example, looks at WAP’s “failure”. Much hype was involved in

marketing WAP and users’ expectations were not met. Interactions with WAP devices are

usually so difficult that, according to Ralph, speech interfaces based on VoiceXML will

increase in importance.

Ralph also states that British Telecom (BT) has been experimenting with Portia, a cor-

porate voice portal that provides a voice interface to the systems that people use every day

in the course of their work. It was discovered that people that are using a portable laptop or

a PDA also use Portia. The experimental usage results were promising and users use Portia

because it seems to be quick. Portia has been running in a trial setting with 200 users (see

[RS01]).

Clearly, the problem is not only mobile or speech access to the Web, but device-

independent access in general. As a result, a device-independent Web working group was

established within the World Wide Web Consortium last year and this group aims to address

general device-independence issues that are related to Web access from a wide variety of

fixed and mobile devices such as watches, televisions, telephones, PDAs and mobile phones.

3.2 Traditional Web engineering approaches

Traditional HTML-based Web engineering approaches and tools have been classified in the

past (e.g., [Fra99, Sch98b]) as belonging to four groups: Page-based editors, site manage-

ment tools, Web service models and object-based approaches.

Among the phases in the life cycle of a Web service, the design phase is usually the

one that is either ignored or that receives less attention (e.g., [GM01, KJKS01]). Since the

mid 90’s, the special importance of the design phase in the Web service life cycle has been

identified by many authors (e.g., [BMY95, BN96, NN95, Qui94, Str95]). Several models

and methodologies have been proposed for the construction of Web services and hypermedia

systems.

3.2.1 The Dexter hypertext reference model

The Dexter Hypertext Reference Model [HS94] is the most influential hypermedia reference

model in literature. It was defined because many hypermedia systems existed and it was

difficult to classify and compare them. Because of the existing differences, it was important

to capture the significant abstractions both formally and informally.

The Dexter Hypertext Reference Model consists of three layers: The Within-component,

Storage and Run-time layers. The Within-component layer covers the content and structures

within hypertext nodes. The Storage layer describes the network of nodes and links that is

the essence of hypertext. The Run-time layer describes mechanisms supporting the user’s

interaction with the hypertext.

CHAPTER 3. RELATED WORK 24

The model focuses on the storage layer and the mechanisms of anchoring and presenta-

tion specification that form the interfaces between the three layers. The fundamental entity

in the storage layer is the component. A component is either an atom, a composite entity or

a link made from other components.

At the time the Dexter Hypertext Reference Model was defined, no hypertext systems

existed that had to support more than one type of layout. The model, however, is quite

flexible and there are no restrictions that only a single layout has to be built on top of the

Storage and Within-component layers.

Unfortunately, the Web is not hypertext according to the Dexter Model because a storage

layer that contains a database of nodes (i.e., content) and links does not exist. “Broken” links

can exist on the Web whereas this is not possible in a hypertext system.

Another shortcoming of the Dexter model is that it does not take application logic into

consideration.

3.2.2 The Relationship Management Methodology (RMM)

The Relationship Management Methodology (RMM) [DIMG95, ISB95] for building hyper-

text applications is well-known in the Web engineering community. It is one of the first

attempts to define guidelines for the systematic construction of Web applications (i.e., hy-

pertext).

RMM is based on a data modeling language, Relationship Management Data Model

(RMDM), that is developed by the authors and based on the Entity Relationship (ER) Model

(e.g., [TYF86]) used in database modeling.

The methodology is based on the traditional software engineering process and focuses

on the design, implementation and construction phases for hypermedia applications. It has

seven steps for hypermedia service management: 1.) ER Design, 2.) Slice Design, 3.) Nav-

igational Design, 4.) Conversion protocol design, 5.) User-Interface screen design, 6.)

Run-time behavior design and 7.) Construction. Steps four to seven are tasks beyond the

modeling of hypermedia information and must either be done manually, or by using tools

that provide automated support for these steps. (e.g., RMC [DIMG95]).

The RMM Methodology is well-suited for applications that have a regular structure, es-

pecially where there is a frequent need to update the information to keep the system current.

Traditional sites that rely heavily on a RDBMS can benefit from the usage of this methodol-

ogy.

The main restriction of the methodology is that it has no support for the design and

integration of application logic.

3.2.3 Object-Oriented Hypermedia Design Methodology (OOHDM)

The Object-Oriented Hypermedia Design Methodology [RSL99, SR95, SRB96, Sd98] (OOHDM)

consists of four steps. The methodology uses Object-Oriented (OO) concepts and techniques

for systematically building hypertext applications.

CHAPTER 3. RELATED WORK 25

The OOHDM steps are 1.) Domain Analysis, 2.) Navigational Design, 3.) Abstract

Interface Design, 4.) Implementation.

In the domain analysis step, a conceptual model of the application domain is built using

well-known OO modeling principles. The model is augmented with some primitives such as

users and tasks.

In the navigational design stage, the navigational structure of the hypermedia application

is described in terms of navigational contexts that are induced from navigation classes such

as nodes, links, indices and guided tours. Links are derived from conceptual relationships

defined in the first step.

In the abstract interface design phase, the abstract interface model is built by defining

perceptible objects (e.g., a picture, a city map, and for so forth) in terms of interface classes.

Interface objects map to navigational objects, providing a perceptible appearance.

Finally, in the implementation phase, interface objects are mapped to implementation

objects.

Just like RMM, OOHDM assumes that Web services are merely hypertext. The main

focus of the methodology is the design of the navigation, but no real support is provided for

the implementation and maintenance stages.

In theory, it could be possible to use OOHDM to model the user interfaces and navigation

for different devices that a Web service supports.

3.2.4 W3DT and eW3DT

The WWW Design Technique [BN96] (W3DT) has been proposed by Bichler and Nussler.

The authors present observations that have a high practical value. In [BN96], the authors

identify the problems on the Web well and also note the insufficiency of traditional hypertext

modeling methodologies such as OOHDM and RMM.

The difference of their technique, they state, is that it has been designed for large Web

sites (in contrast to hypertext). Analogous to our previous discussion, the authors note that

although the Web is based on hypertext, it is not really hypertext according to the Dexter

model. Their paper identifies the importance of communication between the different par-

ties involved in a Web project (users, designers, application developers, etc.). Furthermore,

it draws attention to distributed services and states that Web services might be distributed

across organizations and corporations. It notes that design mechanisms and methodologies

are missing in this area.

According to Bichler and Nussler, models are needed for communication between man-

agement, end-users and programmers. These models help to avoid structural inconsistencies

and the reusing of global structures of applications becomes possible.

W3DT is a simple-to-use graphical methodology. They have also implemented a sim-

ple tool that provides support during the graphical modeling. The tool generates HTML

templates and CGI code from the model.

Scharl and Bauer [BS00b, Sch98a] have extended W3DT and called it the Extended

W3DT (eW3DT). The ideas they present attack the problem of meta-modeling Web-based

Information Systems (WISs) for communication between users, managers, designers and

CHAPTER 3. RELATED WORK 26

implementors. It presents a graphical representation of Web interactions1.

The graphical models the authors present are HTML-based (e.g., they are graphical no-

tations for HTML pages), the content is embedded in HTML pages and there are no consid-

erations for device-independent access.

3.2.5 Webcomposition and W3Objects

Webcomposition [GWG97b, GGS�99] concentrates on the manageability and maintainabil-

ity of hypertext services and extends OOHDM. A Web application is decomposed hierarchi-

cally into so called components. At the higher level, a component may model a page or even

a site. Further down, a component relates to parts of HTML pages such as tables and nav-

igation bars. The Webcomposition model allows the sharing of components and prototype

documents.

A component in Webcomposition can be associated with any complete resource such as

an HTML page or a Perl script generating an HTML page.

Some of the ideas presented in Webcomposition are quite similar to W3Objects [DMCS95,

ICL96, ICL97]. In W3Objects, components are simply called objects. Different views can be

built on services and ‘components’. So called W3OScripts are able to access the functional

interface of a service. This mechanism can be used to include other views as components.

Both W3Objects and Webcomposition provide support for covering all the phases in the

Web service life cycle.

3.2.6 Strudel

In [FFKL98], the authors present a Web site management tool, Strudel, that adapts database

concepts for Web site management. The key idea of the tool is the separation of the structure,

content and visual presentation of Web sites.

The designer first creates a uniform model of all the information in the site. Then, the

builder builds the site using a query language – StruQL.

Strudel is based on a semi-structured data model of labeled, directed graphs. This model

was introduced to manage semistructured data, which is characterized as having few type

constraints, irregular structure, and rapidly evolving or missing schema.

One disadvantage of the tool is that existing data needs to be integrated using wrappers

and scripts written by hand. Furthermore, the authors state that Strudel does not have any

dynamic content generation support.

The layout, in Strudel, is integrated using HTML templates. The authors state that the

usage of HTML templates in their system have many advantages. The usage of HTML tem-

plates, however, is not new and many industry tools such as PHP [RSS�99] and Coldfusion

[col] provide similar functionality. One disadvantage of using HTML templates is that they

do not support complex navigational structures.

1Note that the same problem was picked up by Conallen later and he extended UML to model Web interac-

tions – see [Con99]

CHAPTER 3. RELATED WORK 27

3.2.7 Araneus

Araneus [AMM�98a, AMM98b] aims to define an environment for managing unstructured

and structured Web content in an integrated system called Web-Based Management Sys-

tem (WBMS). A relational database is used to store data and meta-data about the structural

information.

The Araneus system has a conceptual model and a design process. First, the database

is modeled using the traditional EER [TYF86]. Then, the hypertext conceptual modeling

formalizes navigation by converting the EER schema into an Navigation Conceptual Model

(NCM) schema. The implementation is done using page-schemas in the Penelope language

that specifies how the physical pages are constructed from the content in the database and

the logical page schemes.

One disadvantage of Araneus is that it requires a proprietary HTML-dependent template

language for specifying the layout. Furthermore, it does not have any support for application

logic integration.

3.3 Mobile Web access techniques

Initially, much of mobile computing research concentrated on operating system, file, resource

and data management support for mobile users mainly carrying laptops (e.g., [LB96, MES95,

Sat96b, Sat96a, Sat89]). As the importance of the Web increased, more people have started

working on mobile Web access problems and some have even predicted that one of the next

big challenges of the Internet is mobile access to Web content (e.g., [AF99, Fra97]).

Several transcoding techniques have been proposed that attempt to convert and adapt

content available in HTML to be viewable on mobile devices. The quality of images, for

example, may be decreased at run-time for devices that have limited memory sizes. Another

example is displaying images of varying quality to the user based on the available bandwidth.

Some approaches try to automatically convert content available in an unsuitable form (e.g.,

HTML with frames) to a suitable form (e.g., WML, HTML without tables, etc.). The aim

of these approaches is to provide “intelligent” algorithms that can convert the content with

minimal information loss and provide a satisfactory surfing experience for users.

Some researchers are focusing on summarization techniques that attempt to automati-

cally summarize Web content by extracting important information and making it viewable

on devices with small displays or memory limitations. Rules have to be often set up with

which summarization and extraction can be ’guided’.

Existing summarization approaches belong to two classes [HM00]: Knowledge-poor and

Knowledge-rich approaches.

Knowledge-poor approaches rely on not having to add new rules for each new application

domain or language. Knowledge-rich approaches assume that if you grasp the meaning of

the text, you can reduce it more effectively, thus yielding a better summary.

Summaries may be extracts or abstracts. Knowledge-poor approaches, at least for the

short term, are likely to dominate applications, particularly when augmented with extraction

learning mechanisms.

CHAPTER 3. RELATED WORK 28

Summarization research is still young and there is consensus on the need for more evalua-

tion [HM00]. Many challenges remain, including the need to scale techniques for generating

abstracts.

The transcoding and summarization techniques that have been proposed to date solely

concentrate on providing Web access to PDAs and mobile phones.

3.3.1 Quality aware transcoding

Chandra et al. have proposed transcoding techniques to provide differentiated service to

Web devices and to dynamically allocate available bandwidth among different device classes,

while delivering good quality of information content for all clients [CEV99, CE99, CEV00].

The idea presented is to deliver the information on a Web server according to network

connectivity and client device characteristics. The technique proposed concentrates on adapt-

ing JPEG images based on bandwidth information. If the connection is weak (i.e., slow), for

example, the quality of the JPEG images on the server are reduced to increase the speed of

access.

The authors state that in theory, they can use their technique to transcode other multi-

media binary objects as well. They say that while they restrict their efforts to the “single

metric” (i.e., JPEG images), the techniques are equally valid for any transcoding with well-

understood tradeoff characteristics. The solution proposed, however, cannot be used for

transcoding text content.

Chandra et al. give some interesting statistics about the percentage of images in Web

sites. 77% of the bytes accessed through the Web, they state, belong to multimedia objects.

Of these, 67% are transfered for images.

The authors also state that image transformations are important for mobile devices. They

provide solutions for a part of the device-independence Web engineering problem: A way to

deal with images on mobile devices.

3.3.2 Digestor

Bickmore and Schilit’s Digestor [BS97] is a software system that automatically re-authors

arbitrary documents from the Web to display appropriately on small screen devices such as

PDAs and mobile phones. Bickmore and Schilit’s paper on Digestor is one of the first papers

in literature that explicitly mentions device-independence.

Digestor is implemented as an HTTP proxy that dynamically re-authors requested Web

pages using a heuristic planning algorithm and a set of structural page transformations to

achieve “the best looking document” for a display size. HTML pages are analyzed and split

into a number of smaller pages that are more easily displayed on PDAs.

WAP and many other Web formats such as XSL:FOP for PDF generation did not exist at

the time the system was designed so the tool only concentrates on HTML to simple HTML

(e.g., no cascading tables) conversions.

Digestor deals with images by providing a set of techniques that transform all images in

the pages by pre-defined scaling factors (25%, 50% and 75%) and making reduced images

CHAPTER 3. RELATED WORK 29

hypertext links back to the originals.

The authors state that Digestor does a good job of automatically re-authoring Web pages

for display on devices with small screens. They do note, however, that the pages are not

always aesthetically pleasing.

3.3.3 Annotation-based Web content transcoding

Hori et al. present an annotation-based Web content transcoding technique in [HKO�00].

They introduce a framework of external annotation, in which existing Web documents are

associated with content adaptation hints as separate annotation files. The authors also present

a WYSIWYG annotation tool and a transcoding module that they have implemented.

Figure 3.1: Adaptation of HTML for mobile computing devices (Hori et. al [HKO�00])

Figure 3.1 illustrates Hori et al.’s annotation framework for transcoding HTML docu-

ments for mobile devices. As the syntax of the annotation files, RDF is used. In addition,

W3C XPath and XPointer technologies are used for associating annotated portions of a do-

cument with annotating descriptions.

The idea the authors present is quite simple and effective. By using their visual tool,

portions of a Web page can be marked (i.e., annotated). For example, a navigation bar can

be marked to be displayed on a separate page on a PDA and the page header can be left out

for PDA access. This “extraction” information is stored in external files.

Whenever a PDA device accesses the pages, a proxy server converts the pages based on

the annotation information. Hence, large amounts of information on an HTML page that do

not fit on a mobile device can be split and spread over a number of smaller pages.

The approach does have a major disadvantage, though. Every time the annotated HTML

pages change, the annotation definitions need to be updated.

Furthermore, the presented approach only supports PDAs and similar devices with

HTML browsers.

CHAPTER 3. RELATED WORK 30

3.3.4 The Business Card Search Service (BCSS)

In [KAK�00], Kaasinen et al. describe their experiences in adapting and summarizing exist-

ing HTML pages for WAP access.

The authors have implemented a case study service, Business Card Search Service

(BCSS), that users can use to search contact information by making queries to a business

card database. They have used this application to test how users interact with WML pages

that have been converted from HTML.

The HTML/WML conversion proxy server they have developed converts HTML-based

Web content automatically and on-line to WML. This approach gives the mobile users trans-

parent access to their familiar Web pages from their mobile phones and other mobile devices.

The study the authors present indicates that if HTML-based Web services follow certain

guidelines, they can be converted automatically to WML and adapted to the client device.

They state that Web services need to be mobile-aware in order to produce acceptable results

for users.

The authors report that conversion is not always easy and does not always deliver usable

results.

3.3.5 Web access with PDAs: PowerBrowser

In [BGP00], Buyukkokten et al. address the problems of interacting with the Web through

wirelessly connected PDAs. As a way to address bandwidth and battery life limitations, they

provide local site search facilities for all sites.

They incrementally index Web sites in real time as the PDA user visits them. These

indexes have narrow scope at first, and improve as the user dwells on the site, or as more

users visit the site over time. The authors address the keyword input problem by providing

site specific keyword completion, and indications of keyword selectivity within sites.

The PowerBrowser system the authors have built provide two alternative techniques for

interacting with the Web through PDAs. These techniques are of two categories: The first

supports browsing. The second helps users search more effectively.

The user browses the Web through an HTTP Proxy server. The proxy server fetches

Web pages on the PDA’s behalf, dynamically generates summary views of Web pages, and

manages the site search facility. The connection between the PDA and the Power Browser

Proxy Server is established through a wireless modem in the implementation.

The PowerBrowser mainly focuses on easing searching on PDA devices and dealing with

input limitations.

3.3.6 Web content and form summarization

In [BGP01] and [KBGP01], the authors present algorithms they have adapted and used for

summarizing Web pages and forms so that they can be displayed on handheld devices. They

take HTML pages using a proxy, partition (i.e., split) the pages and the user is able to ’mine’

into the partitions.

CHAPTER 3. RELATED WORK 31

In [BGP01], Buyukkokten et al. discuss five alternative methods for displaying Semantic

Textual Units (STUs) to find out how effective each of them are in helping users solve infor-

mation tasks on PDAs quickly. STUs are page fragments such as paragraphs, lists, or ALT

tags that describe images.

The first method, Incremental displaying, is the same as the method used in the Power-

Browser discussed in the previous section.

The All display method shows the text of an entire STU in a single state. No progressive

disclosure is enabled.

The third method, Keywords, displays in its first state the “important” keywords that

occur in the STU by using a special algorithm.

The Summary method consists of only two states. In the first state the STU’s ’most sig-

nificant’ sentence is displayed. The second state shows the entire STU. The authors present

an algorithm for determining significant sentences.

The Keyword/Summary method combines the previous two methods. The first state

shows the keywords. The second state shows the STU’s most significant sentence. Finally,

the third state shows the entire STU.

The authors have conducted experiments with users to find out which technique is most

efficient. Keyword summary (i.e., displaying some keywords instead of the whole text)

seems to be the most efficient technique.

[KBGP01] is similar to [BGP01], but this time the authors describe algorithms for effec-

tively displaying Web Forms on PDAs.

The approaches mainly concentrate on HTML to simple HTML summarization.

3.4 A taxonomy for device-independent Web engineering

No one to date has attempted to analyze and classify existing approaches that tackle the

device-independent Web engineering problem. One reason is probably because different,

disjunct research communities (e.g., database, mobile computing and Web engineering peo-

ple) are working on the problem in parallel.

This section introduces a taxonomy of device-independent Web engineering approaches.

Tables 3.1 and 3.2 present the comparison of solutions that tackle the device-independence

problem.

The taxonomy is structured as follows: A general section lists the main objective of

the approach and the technical features it provides such as static and dynamic content and

external database integration support.

The life cycle support section lists the support provided by the approaches for the design,

implementation and maintenance phases in the Web service life cycle.

The usability section focuses on the usability aspects of the approach such as its ease of

learning and the required developer skills.

The standards section indicates if the standard content and layout definition technologies

are used in the approach (e.g., XML or relational databases for content and XSL for layout).

Some approaches use proprietary formats for defining the content and layout.

CHAPTER 3. RELATED WORK 32

M
a

in
 O

b
je

c
tiv

e
T

o
 s

u
p

p
o

rt a
ll

W
e

b
 d

e
v

ic
e

s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt

s
p
e

e
c
h

in
te

rfa
c
e

s

T
o

 s
u

p
p

o
rt a

ll
U

s
e

r

In
te

rfa
c
e

s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt

fle
x
ib

le

s
e

rv
ic

e
s

T
o

 s
u

p
p

o
rt

m
o

b
ile

d
e

v
ic

e
s

T
o

 s
u

p
p

o
rt

m
o

b
ile

d
e

v
ic

e
s

Im
p

le
m

e
n

ta
tio

n

S
u

p
p

o
rt

D
e

s
ig

n
 S

u
p

p
o

rt

M
a

in
te

n
a

n
c
e

S
u

p
p

o
rt

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

N
o

Y
e

s

N
o

C
o

n
c
e

p
tu

a
lly

P
la

tfo
rm

In
d

e
p

e
n

d
e

n
t

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
N

o
Y

e
s

A
p

p
ro

a
c
h

 N
a

m
e

O
O

H
W

e
b

M
L

J
M

L
S

IS
L

U
IM

L
iS

tu
d

io
C

o
c
o

o
n

M
S

 M
D

T
T

o
ta

l e
-

M
o

b
ile

S
ta

tic
 C

o
n

te
n

t

S
u

p
p

o
rt

E
x

te
rn

a
l D

a
ta

b
a

s
e

In
te

g
ra

tio
n

D
y
n

a
m

ic
 C

o
n

te
n

t

S
u

p
p

o
rt

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

E
a

s
e

 o
f L

e
a

rn
in

g

R
e

q
u

ire
d

D
e

v
e

lo
p

e
r S

k
ills

S
e

rv
ic

e
 C

o
m

p
le

x
ity

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

H
ig

h

M
e

d
iu

m

M
e
d

iu
m

L
o

w

L
o

w

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

H
ig

h

L
o

w

L
o

w

(h
id

d
e

n
)

M
e

d
iu

m

M
e

d
iu

m

U
n

k
n

o
w

n

V
is

u
a

l In
te

rfa
c
e

Y
e

s
Y

e
s

N
o

N
o

N
o

Y
e

s
N

o
Y

e
s

N
o

General Technical

FeaturesLife Cycle SupportUsability

Table 3.1: Comparison of device-independent Web engineering approaches

CHAPTER 3. RELATED WORK 33

Standards
Flexibility and

Maintainability

Device-

Independence

Support

X
M

L
 W

e
b

 F
o

rm
a

ts

O
O

H

Y
e

s

W
e

b
M

L

Y
e

s

J
M

L

Y
e

s

S
IS

L

N
o

U
IM

L

Y
e

s

iS
tu

d
io

Y
e

s

C
o

c
o

o
n

Y
e

s

M
S

 M
D

T

Y
e

s

T
o

ta
l e

-

M
o

b
ile

Y
e

s

D
e

v
ic

e
 D

e
te

c
tio

n
N

o
N

o
N

o
N

o
N

o
N

o
Y

e
s

Y
e

s
Y

e
s

S
ta

n
d

a
rd

 C
o

n
te

n
t

D
e

fin
itio

n
 (e

,g
,,

X
M

L
)

S
ta

n
d

a
rd

 L
a

y
o

u
t

D
e

fin
itio

n
 (e

.g
.,

X
S

L
)

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

L
C

 S
e

p
a

ra
tio

n

L
L

 S
e

p
a

ra
tio

n

L
C

L
 S

e
p

a
ra

tio
n

L
o

g
ic

 R
e

u
s
e

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

Y
e

s

N
o

U
n

k
n

o
w

n

O
v
e

ra
ll S

e
rv

ic
e

F
le

x
ib

ility
M

e
d

iu
m

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

M
e

d
iu

m
H

ig
h

L
o

w
M

e
d

iu
m

O
v
e

ra
ll S

e
rv

ic
e

M
a

in
ta

in
a

b
ility

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

A
p

p
ro

a
c
h

 N
a

m
e

Table 3.2: Comparison of device-independent Web engineering approaches

CHAPTER 3. RELATED WORK 34

The flexibility and maintainability section assesses the flexibility and maintainability of

the solution and identifies if there is application logic reuse, Layout/Content (LC), Lay-

out/Logic (LL), or Layout/Content/Logic separation in the solution.

The device-independence support section indicates if the solution is able to support dif-

ferent XML Web formats and if there is device detection support.

3.5 Device-independent Web engineering approaches

Some technologies and tools have been proposed to support the implementation of device-

independent Web services, but only few have drawn attention to the lack of support for the

design and maintenance phases (e.g., [FKST00]).

Several Web engineering proposals have appeared lately that explicitly tackle the device-

independent Web engineering problem.

3.5.1 OO-H Method

The Object-Oriented Hypermedia (OO-H) method is proposed by Gomez et al. in [GCP01].

The authors state that their approach allows Web developers to conceptually model and gen-

erate device-independent Web services.

OO-H attempts to provide a standard-based framework to capture all the relevant prop-

erties involved in the modeling and implementation of Web application interfaces. The

methodology contains two views: the navigation view extends a class diagram with hyper-

media navigation features and the presentation view uses the different elements regarding the

interface appearance and behavior to model a number of interconnected template structures

expressed in XML.

The navigational views are defined in so called Navigational Access Diagrams (NADs)

and presentation views are defined in so called Abstract Presentation Diagrams (APDs).

Both NADs and APDs capture the interface-related design information with the aid of a set

of patterns, defined in an interface pattern catalog integrated in the OO-H method proposal.

A model compiler in the framework generates the Internet application front-end for the

desired client platform and/or language (e.g., HTML, XML, WML). The authors state that

they have developed a CASE tool that automates the development of Web applications mod-

eled with the OO-H method.

Each NAD instance reflects the information, services and required navigation paths for

the associated user’s navigation requirements fulfillment. Figure 3.2 illustrates the OO-H

design process.

The authors have adapted a template approach for the specification of the visual appear-

ance and page structure (i.e., APDs) on the Web. The framework contains five types of

templates: tStruct, tStyle, tForm, tFunction and tWindow.

tStruct instances define the information that has to appear on the abstract page. tStyle in-

stances define features such as physical placement of elements, typography or color palette.

tForm instances define the data items required from the user to interact with the system.

CHAPTER 3. RELATED WORK 35

Figure 3.2: OO-H Design Process (Gomez et al. [GCP01])

tFunction instances capture client functionality and tWindow instances define a set of simul-

taneous views available to the user.

The framework allows the Web developer to choose patterns and to instantiate and use

them in the application being constructed. These patterns can be instantiated by using com-

mands such as:

Dlist->addAPDPage(h); h.name’head’

The command above, for example, inserts a header template into a page.

In their paper, the authors present a case study HTML Web site that can be used to

manage discussion lists. The user first sees a list of discussion topics and by clicking on

the link, she sees the list of messages in that discussion group and is able post replies and

messages to it. The authors state that they have developed the sample application using

JavaServer pages and Java Bean components as the server-side and HTML as the client-side

technology.

The authors say that by invoking the model compiler, they are able to generate user

interfaces for different devices and present the screenshot of a page as seen on a WAP device

to illustrate the device-independence of the approach. The paper does not give any details

about the model compiler.

A single page in the example site they provide contains a list of discussion topics and the

message overview pages list all the messages in a discussion group. To support WAP devices,

the model compiler they describe takes the page specifications and generates a WML version

of the functionality.

One problem is that a single page that contains too much information such as a high

number of messages in a discussion group may cause errors on devices with memory limita-

tions. The approach of mapping a single HTML page to another device does not always give

satisfactory results.

The OO-H method is a promising new approach that specifically tackles the device-

independence problem.

CHAPTER 3. RELATED WORK 36

3.5.2 WebML

The Web Modeling Language (WebML) [CFP99, CFB00] is a high level modeling and spec-

ification language for Web sites. The language was developed in an EU project and it is

completely XML-based. WebML is an evolution of AutoWeb [FP00] developed by the same

research group.

WebML enables designers to express the core features of a site at a high level without

committing to architectural details. A CASE tool is provided that can be used to create XML

specifications that are then used to automatically generate server-side scripts.

The system has a structure and hypertext model. The hypertext model consists of Com-

position, Navigation, Presentation and Personalization models.

The fundamental elements of WebML structure model are entities that are containers of

data elements (i.e., data units), and relationships, which enable the semantic connection of

entities. Figure 3.3, for example, depicts the graphical notation for data units and a possible

rendition in HTML. The data unit displays the contents of the Artist entity.

Figure 3.3: WebML graphic notation for data units, and a possible rendition in HTML (Ceri

et al. [CFB00])

WebML uses the notion of pages that can be used to compose the content in data units.

The layout information is defined using a special, tool-supported XML syntax.

In their paper (i.e., [CFB00]), the authors state that they are able to generate layout code

of their choice such as WML for WAP devices and HTML for traditional browsers: They

say that WebML can be used to support “multi-access” Web sites.

The examples they provide in the paper show a traditional, HTML-based service being

constructed. As future work, they state that they are working on WML extensions to the

language.

Because large database query results cannot always be displayed on some devices in

practice because of memory limitations, in their project Web site [web01], the authors de-

scribe the problem and indicate that they have done some extensions to the tool that allows

the database query results to be automatically split for WAP devices.

WebML does not provide any support for dynamic content and only deals with static

content that is stored in relational databases.

CHAPTER 3. RELATED WORK 37

3.5.3 JML

In [BS00a], Barta and Schranz describe the Jessica Markup Language (JML). JML attacks

the multi-purpose publishing problem so that Web content can be generated for various target

platforms such as XML, WML and HTML.

JML provides object-oriented support to abstractly describe information for the Web. The

authors state that the approach includes typical OO benefits such as encapsulation, reusabil-

ity, and inheritance. The most basic components of JML are pages and layouts. JML is an

XML-based language. It is quite similar to the Jessica system (e.g., see [BS98]), but has

some extensions that allows it to support formats other than HTML.

JML solely aims to separate the layout and the content for static content and does not

deal with dynamic content.

3.5.4 SISL

Several Interfaces Single Logic (SISL) [BCD�00, GJJL00] is a system that has been de-

signed and developed by Lucent technologies.

The idea in SISL is to use reactive constraint graphs to model the service logic. The

authors have developed an XML language for writing special SISL programs. They claim

that programs written in SISL are device-independent. They have constructed a service

that reuses the application logic and supports voice interfaces in VoiceXML and an HTML

interface.

A special service monitor takes care of the interaction between the user interfaces and

service logic. User interfaces can be developed in the language of choice and the service

monitor runs it.

SISL separates the logic from the layout but does not attempt to separate the content from

the application logic. A static text such as “Welcome to this site”, for example, is embedded

into the source code.

The authors state that they provide mechanisms to customize the user interface. The main

HTML interface forms depicted in [BCD�00] are generated automatically.

The developers of SISL say that they plan to use SISL for PDAs and mobile devices.

The papers on SISL give a detailed analysis of the problems related to speech/ voice

interfaces. The tool does not attempt to cover the design and maintenance phases in the Web

service life cycle.

3.5.5 UIML

The User Interface Markup Language (UIML) [APBW99, AP99, Abr00, Lin01] seeks to

create one canonical syntax that can be used to specify user interfaces. Using this syntax, the

user interface definition becomes platform and language independent. By using specialized

model compilers, a common user interface description can be converted to WML, HTML,

VoiceXML, Java Swing, etc.

CHAPTER 3. RELATED WORK 38

In UIML, a user interface is a set of user interface elements with which the user interacts.

Each interface element has data (e.g., text, sound) used to communicate information to the

user. Runtime interaction is done using events. Events can be local (i.e., between user

interface elements) or global (i.e., between interface elements and objects that represent an

application’s internal program logic).

UIML is truly device-independent and has model compilers for WML, VoiceXML,

HTML and Java and it has been shown to work in example sites.

UIML treats the Web as just another user interface for the application logic. Web applica-

tions, however, are more than user interfaces because they also have hypertext characteristics

such as embedded links and a significant content maintenance overhead. UIML is a language

that can be effectively used to describe user interfaces and components.

One disadvantage of the approach is that although it separates the layout from the logic,

the content is often embedded into the UIML specifications. Although UIML has a template

mechanism to group common user interface elements, supporting a common Web look-and-

feel and multi-lingual Web sites is still not easy because the content is intermixed with the

user interface definition.

The authors state that they attempt to separate the content from the user interface but the

content they refer to is content describing user interface elements (e.g., text on buttons).

Similar to SISL, UIML does not attempt to cover the design and maintenance stages in

the Web service life cycle.

3.5.6 iStudio

iStudio [SHKE01] is an application development environment based on the Java, XML and

XSL technologies. The developers of iStudio state that the tool can be used to build device-

independent Web services. The application logic can be reused to support different devices

such as VoiceXML browsers, PC browsers and WAP devices.

<is:fragment name=“body”>
<form method=“post” action=“validateUser”>
 <is:attr name=“action”>
 <is:link objAlias=“TransferTable” clearParams=“true”>
 <is:param name=“action”><is:content/></is:param>
 </is:link>
 </is:attr>
 <table>
 <tr><td> Cellular # (10 Digits): </td>
 <td><input type=“text” name=“userID” size=“10” value=“”>
 <is:attr name=“value”><is:temp name=“userID”/></is:attr>
 </input></td></tr>
 </table>
 <p><input type=“submit” name=“submit” value=“SUBMIT”/></p>
</form>
</is:fragment>

Figure 3.4: A sample iStudio fragment that defines an XHTML form (Skarra et al.

[SHKE01])

CHAPTER 3. RELATED WORK 39

The main objective of iStudio is to support the service creation and the reduce develop-

ment time through the definition of reusable and extensible application components. The

developer uses XML in the approach to specify a service (i.e., its business logic, data pre-

sentation, authentication and permissions, configuration). A suite of iStudio tools transform

the specifications into a collection of Web-capable objects that implement the service.

A run-time engine in the system interprets service code and responds to client requests.

iStudio is conceptually similar to the W3Objects and Webcomposition approaches dis-

cussed in Section 3.2.5. Instead of intermixing the layout and logic as Webcomposition and

W3Objects do, though, iStudio uses a concept the authors denote fragments to separate the

layout and to map elements in the layout to the application logic. The fragments are compa-

rable to components and objects in the Webcomposition and W3Objects systems.

To support different devices, fragments have to be written that produce the appropriate

code (e.g., WML for WAP, HTML for PCs). One problem with these fragments is that

fragments containing content may need to be duplicated for different devices. Figure 3.4

depicts a typical fragment that defines an XHTML form. Much of the embedded content in

the fragment, for example, would have to be duplicated for WML and other devices. This

would have a negative effect on maintainability.

3.5.7 Cocoon

Cocoon is a Java servlet-based application server that is based on freely available XML

parses (e.g., Xerces [Apa01b]) and XSL processors (e.g., Xalan [Apa01a]). Cocoon can be

used for the real-time translation of XML files on a web server to HTML and any XML-based

Web format such as WML.

Cocoon is designed to allow Developers, Business Analysts, Designers, and Administra-

tors to work with each other in parallel without breaking the other person’s contribution.

The Cocoon community believes that the problem with using technologies such as ASPs

[RAS00] or ColdFusion [col] templates is that “ all of the the look, feel, and logic are inter-

mixed.” Maintenance, hence, is often much more difficult, costs more and takes longer. If the

site layout design is introduced late in the design phase, for example, the cost of integrating

the graphical look may become significantly higher. Cocoon aims to separate concerns and

to enable the involved parties to work in parallel as much as possible.

The Cocoon project proposes two technologies for providing flexible and layout inde-

pendent dynamic content in web pages; XSP (eXtensible Server Pages) and DCP (Dynamic

Content Processor). XSP is completely based on XML/XSL technology and uses XSL tag

libraries and associated code generation style sheets (logic sheets) to generate compilable

source code. DCP uses a simpler approach than XSP but is an interpreted language and thus,

has a performance drawback. DCP is only intended to support dynamic content.

Cocoon supplies a number of different components for the Web developer. The types of

components are Generators, Transformers, Serializers, Readers, and Actions.

A Generator will create SAX2 events for a SAX stream. A FileGenerator, for example,

2SAX is the Simple API for XML, originally a Java-only API. SAX was the first widely adopted API for

XML in Java, and is a de facto standard. The current version is SAX 2.0.1, and there are versions for several

programming language environments other than Java.

CHAPTER 3. RELATED WORK 40

reads an XML file from an input source, and converts it into a SAX stream.

Transformers read a SAX stream, manipulate the XML stream, and send the results to

the next component in the chain. The provided LDAPGenerator, for example, is a class that

can be plugged into a pipeline to transform the SAX events that passes through it into queries

and responses to and from an LDAP interface.

Actions are the main form of logic processing in Cocoon. There are a number of ap-

proaches that can be taken when developing Actions. One possibility is to create a specific

action for each piece of application logic. This approach is heavy handed and requires much

development time to create actions.

The preferred method for creating actions in Cocoon is to provide a generic action that

can handle a wide range of specific actions. The Database Actions and Validator Actions are

examples of this approach. They will read a configuration file specified by a parameter, and

they will modify the specific results based on the configuration file.

Serializers read a SAX stream and convert it into the servlet’s output stream. Readers

read an input stream and copy the results to the servlet’s output stream.

Cocoon also provides functionality for querying, updating and embedding content stored

in relational SQL databases.

<p>
Name: <text name=“name“ size=“30“ required=“true“/>

<xsp:logic>
if (<xsl-formval:is-toosmall name=“name“/>)

<xsp:text>“Name“ must be at least 5 characters</xsp:text>
} else if (<xsp-formval:is-toolarge name=“name“/> {

<xsp:text>“Name“ was too long</xsp:text>
}
</xsp:logic>

</p>

Figure 3.5: Part of a logic sheet in Cocoon

Figure 3.5 shows part of a logic sheet in the Cocoon system. Although Cocoon aims to

separate the layout, logic and content, these are still intermixed to a certain degree.

An interesting feature of Cocoon is its ability to automatically detect devices based on

the HTTP request header information. The system can be configured to detect devices and

to invoke the corresponding stylesheets.

Cocoon is only an implementation technology and does not provide any direct support

for the design and the maintenance phases of Web services.

3.5.8 Microsoft ASP.NET and the Mobile Developer Toolkit

Microsoft’s new ASP.NET framework [dev] has extensive support for the creation of Web

pages and Web services. The Visual Studio graphical development environment enables

Web developers to rapidly create Web pages, Web sites and Web services. For example,

Microsoft’s C# has been designed to make it easy to export C# methods as Web services.

CHAPTER 3. RELATED WORK 41

The way ASP.NET deals with Web services is quite low-level: The framework lacks

a higher-level, language-independent model for dealing with device-independent Web ser-

vices.

Recently, Microsoft has started shipping the Mobile Developer Toolkit that is an exten-

sion to the Visual Studio Development Environment. This toolkit provides a visual environ-

ment for creating and deploying Web services for mobile devices.

The developer creates an application by placing components such as buttons and text

fields into forms. Content is also inserted into these forms in terms of label components.

Based on the characteristics of a device (e.g., PDA, WAP phone, etc.), the platform automa-

tically adapts and renders the forms to be viewable on the device.

The main advantage of this development platform is that applications can be rapidly

developed without a high technical knowledge. The disadvantage is that the created appli-

cations are not flexible and rather difficult to maintain because of the use of forms (e.g.,

changing a logo on each page could mean that the developer has to manually delete each

logo component on every form).

Similar to Cocoon, the Mobile Developer Toolkit provides an implementation platform

and technology, but does not aim to support the design or maintenance stages of Web ser-

vices.

3.5.9 Total e-mobile

There are several commercial systems that claim to enable the construction of device-

independent Web services. Bluestone’s Total-e-Mobile business solution [blu02], for ex-

ample, is one such system and is a good representative.

Unfortunately, it is not always possible to find out technical details about these commer-

cial products and to test how good they work.

Bluestone says that its solution is device-independent and that “regardless of the device

being used, Total-e-mobile can serve up correctly formatted, fully functional content from a

single URL. It does this by automatically sensing the client device and using HP Bluestone’s

Dynamic-Stylesheet-Engine (DSE) to format content appropriately for any known device

whether it is a browser, a cell phone or a vending machine” [tot01].

The product uses XSL to define layout information for new services and can support

various mobile devices. It uses conversion techniques for existing HTML pages. Devices

are defined and identified by cookies that the clients store.

Technologies such as Bluestone, though, usually do not provide any support for the de-

sign phase of Web applications. In their white papers, for example, Bluestone state that

XSL stylesheets can be simply used to define layouts for different devices. They do not

explain, however, how the developer can design the stylesheets and the service to minimize

redundancy and maximize reuse.

CHAPTER 3. RELATED WORK 42

3.6 Summary

This chapter presented related work. It described and discussed traditional Web engineer-

ing approaches and mobile Web access techniques that do not explicitly attack the device-

independent Web engineering problem, but that are relevant and important as background

work. It then introduced a taxonomy for classifying and comparing the solutions that explic-

itly tackle the device-independent Web engineering problem and described and evaluated

these approaches.

Chapter 4

DIWE: A conceptual framework for

device-independent Web engineering

This chapter introduces a novel conceptual framework for device-independent Web engi-

neering. The Device-Independent Web Engineering (DIWE) framework is composed of an

XML-based Web language that is used to separate the layout, content and application logic

to construct flexible Web services and four default run-time processors that provide device-

independence support during service execution.

The framework introduces and uses two novel techniques, page splitting and process

partitioning by layout marking, that allow the Web developer to tune the selected information

and the sizes of generated pages according to the characteristics of a device that is being

targeted. These techniques attack the problem of displaying Web pages on devices with small

displays and memory sizes. The adaptation of content for a Web device is performed during

the design and implementation stages of Web site engineering. During the implementation,

the Web engineer has full control over the partitioning and selection of information.

The framework also introduces a novel technique called XSL stylesheet pre-processing

that allows the reuse of existing XSL stylesheets when adding new devices to a Web service.

The approach, advocated by the W3C, of having a new XSL stylesheet for every supported

device does not work effectively and there is often quite a lot of duplication in the stylesheets.

As a consequence, the maintenance overhead increases. Stylesheet pre-processing signifi-

cantly reduces the maintenance overhead because a lesser number of XSL stylesheets are

needed.

The chapter is structured as follows: First, the Web service life cycle discussed in Chapter

2 is revisited and device-independence considerations are integrated. Second, an overview of

the conceptual framework is given. Third, the concepts of page splitting, process partitioning

and XSL stylesheet pre-processing are presented and discussed.

4.1 Rethinking the Web Service Life Cycle

Adaptability is an important issue when building software of any sort [GJM91]. Require-

ments change between the time when the customers say what they want and the time when

the software is actually delivered. Fayad states in [FC96] that software that is being built

43

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 44

must be adaptable with respect to the ability to change the system’s capabilities in amount

and in kind, and the ability to fix the system without “breaking” other parts.

Requirements

Collection

Design for

Device Family

Implementation

for Device

Family

Maintenance

for Device

FamilyWaterfall Cascades

Iterative Feedback

Device Family

Identification

Deployment

Requirements Analysis

Figure 4.1: Life Cycle of a device-independent Web Service

As motivated in the previous chapters, one more adaptability requirement must be in-

cluded for Web sites: device-independence.

Figure 4.1 depicts the WWW Service Life Cycle model with the integrated device-related

processes. The requirements analysis includes traditional steps such as identifying the target

audience, the functionality goals of the service and quality parameters. Devices families

need to be identified that the service will support. A device family is made up of a collection

of Web devices that have similar characteristics. PDAs with high memory capacity and a

display size larger than 200x300 pixel size, for example, could make up a device family for

a particular service. Another example of a device family is the collection of WAP-enabled

phones and PDAs.

Each Web service will at least support one device family during its life time: the default

device family. For example, a typical decision in a cultural event Web site could be to

support a full HTML browser interface for the entire site as the default device family and a

WAP-based mobile phone interface for the ticketing service only.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 45

The main difference in the design, implementation and maintenance stages in compar-

ison to the traditional Web service life cycle model is that these phases differ individually

according to the device families that are to be supported. The WAP design, for example, will

show differences to the HTML design: The navigation will be different and due to the mem-

ory limitations of mobile phones, the amount of information per page that can be displayed

will also differ. The maintenance overhead is clearly higher than in traditional, HTML-only

Web services because of the higher number of formats and devices that need to be supported.

At the same time, changes may occur that only affect one device family and have no effect

on the others. For example, changing the HTML layout to give the site a more appealing

look-and-feel will not affect the WAP pages.

One important difference in the model is the introduction of a deployment phase. The

deployment phase is ignored by well-known Web service life cycle models (e.g. [Sch98b,

TL97]). Deployment is especially important when more than one Web device has to be

supported and requires a significant planning, coordination and configuration effort.

As requirements change and new devices have to be supported, the Web engineer will

often go back to the device family identification stage in the requirements analysis phase and

iteratively design and implement support for a new device family.

The XML/XSL-based solution proposed in this dissertation is a flexible approach that

eases the implementation stage and attempts to reduce the overall design, maintenance and

deployment effort in engineering device-independent Web sites by reusing stylesheets and

application logic.

4.2 Basis of solution: Separation of Layout, Content and

Logic (LCL)

The basis of a solution to the device-independence Web site engineering problem is to find a

way to effectively separate the layout (i.e., user interface) from the application logic.

The idea of separating the user interface from the application logic for achieving flexibil-

ity is not new and well-known (e.g., [Coc96]). User interfaces in software systems change

frequently. Keeping the user interface “outside” the system and making the system program-

driven has been a discussion issue in software engineering for many years. This separation is

not always easy to achieve in traditional, large and complex software systems. The question

which modules belong to the user interface and which do not cannot always be answered

with ease. For example, should keyboard inputs be handled by the user interface component,

or are they part of the application logic?

Because Web services are event-driven, it is easier to separate the layout from the appli-

cation logic. A Web service reacts to user input by returning HTML that is then displayed on

the user’s browser so the interaction of the user with the service is session oriented. Every

time the user gives some sort of input to the system, a connection to the service is built from

the user’s browser.

This layout and logic separation by itself, however, is not enough to enable the engineer-

ing of truly device-independent Web sites. An interfacing mechanism is needed for interac-

tions that allows layouts of varying sizes to be supported with the same application logic.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 46

Furthermore, the content needs to be separated from the layout and the logic as well to in-

crease maintainability and flexibility. Clearly, a full Layout/Content/Logic (LCL) separation

is needed for achieving flexible, maintainable device-independent Web sites.

Although the XML and XSL technologies solve the layout and content separation prob-

lem, they do not address application logic separation in Web sites. The concepts presented

in this chapter fill this gap.

The next section discusses and summarizes the main requirements for a conceptual

framework that supports device-independent Web site engineering.

4.3 Main requirements for a device-independent Web en-

gineering framework

There are four important requirements that a device-independent Web engineering frame-

work should meet: It should use industrial standards to enable the use of existing tools, it

should be platform and implementation language-independent, it should support the defini-

tion and generation of content and layout in XML for non-HTML Web devices and most

importantly, it should not increase the maintenance effort significantly.

The design of the DIWE framework presented in this chapter was guided by the following

goals:

� Support should be provided for the design, implementation, deployment and mainte-

nance phases of a device-independent Web site.

� The XML and XSL standards should be used as core underlying technologies. Many

Web developers are already familiar with XML and XSL and there is wide third party

tool support.

� Both static and dynamic content should be supported. The framework should enable

the construction of interactive Web sites as well as Web pages that are static in nature.

� The integration of content in Relational Database Management Systems (RDBMSs)

should be supported. RDBMSs are widely used in Web sites to store and manage

content. Providing RDBMS support is essential.

� Adaptation of the application logic in the Web site for a new device should not be

necessary. The same logic needs to work for any device (independent of its display

and memory size) so that application logic maintenance is eased.

� Layout adaptation should be possible. A page that can be displayed without problems

on a device with a large display may be too large for other devices and needs to be

split. Support should be provided for splitting pages.

� The use of stylesheets and separation of Layout, Content and Logic (LCL) should not

increase the maintenance effort significantly. A typical consequence of LCL separa-

tion may be that the number of project files and resources increase.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 47

4.4 Overview of the DIWE framework

The DIWE framework consists of the MyXML language, a compiler that can interpret the

language, and four basic run-time processors that are configured and deployed on the Web

server at run-time to provide device-independence support. These processors are Web ser-

vices themselves.

A device-independent Web service in the DIWE framework is a Web service that can

be extended to support different Web devices of widely varying technical capabilities. The

first step in constructing a device-independent Web service, hence, is to construct a flexible

Web service with the MyXML language. The language provides support for LCL separation

and is used by the Web developers to design and define the content and the interfaces to the

application logic. A MyXML language compiler integrates the layout and generates static

content embedded in HTML or XML, or source code that provides interactive functionality.

A Web device that accesses the Web server interacts with the instance of the run-time

processors that filter and adapt the output produced by the MyXML-generated Web services.

If no layout adaptation is required, the device may also be configured to directly access a

Web service.

4.4.1 Web service design, implementation, deployment and mainte-

nance

Figure 4.2 illustrates the usage of the framework in the design, implementation, deployment

and maintenance stages of Web services.

During the design stage of a Web service, the content, layout and the application logic

are designed and defined. The application logic is written using a technology of choice such

as Java servlets. The MyXML language is used to define the content and the interfaces to the

application logic and the layout is defined using XSL stylesheets.

To benefit from the advantages of XSL, the developer needs to follow traditional XSL-

based Web engineering guidelines such as analyzing the commonalities of the pages and not

encoding any content into the stylesheets to enable reuse (e.g.,[KKJK01]).

Content definition covers the structuring of information to be displayed in the Web ser-

vice so that it can be adapted according to the characteristics of different device families.

The content needs to be designed carefully to make it accessible from heterogeneous devices.

Having the content in XML does not necessarily guarantee that it will be automatically ac-

cessible by all devices. The description granularity, the degree the content is described in

XML, has to have the correct depth. If the description granularity is not deep enough, it will

not be possible for some devices to select it using XSL. More descriptive tags will have to

be inserted into the XML content later and the maintenance overhead will increase.

Figure 4.3 illustrates the description granularity problem. The content definition on the

left has a lower description granularity than the definition on the right. Suppose only one

sentence per page can be displayed because the Web device is a watch with a mini browser

(e.g., a device such as IBM’s Linux watch [NKR�02]). The content definition on the left

would cause problems because the entire content is wrapped up in a single �text� tag. The

definition on the left, in comparison, marks each sentence using extra �sentence� tags and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 48

MyXML Language

Content

XSL+ =
Static or

dynamic

content
(Files or

Source Code)

2)

Implementation

3)

Deployment

Processor+ =
Device-

specific

content

Static or

dynamic

content

1)

Design

Content

definition
(XML/MyXML)

Layout

definition
(XSL)

Application

logic

definition

4)

Maintenance

Layout

definition

for new

device

Content

management

Figure 4.2: Web service design, implementation, deployment and maintenance

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 49

 <text>
This is a long example text:

To be or not to be. To be or
not to be. To be or not to be.
To be or not to be.
be or not to be. To be or not
to be. To be or not to be.

To be or not to be. To be or
not to be.
</text>

<text>

<sentence>
This is a long example text:
</sentence>

<sentence>
To be or not to be. To be or not
to be. To be or not to be. To be
or not to be.
</sentence>

<sentence>
be or not to be. To be or not to
be. To be or not to be.
</sentence>

<sentence>
To be or not to be. To be or not
to be.
</sentence>

</text>

Figure 4.3: Differences in description granularity

thus, allows the selection of sentences one by one. The more descriptive the content is, the

better it is for device-independent access.

During the implementation stage, a compiler that interprets the MyXML language is used

to process the content and add an XSL layout to it. The resulting dynamic or static content

is processed by the run-time processors during the deployment phase and device-specific

content is generated.

During the maintenance phase, the XSL layout is extended for new devices (e.g., using

new XSL stylesheets or XSL stylesheet pre-processing) and the XML content is maintained.

4.4.2 Processors

The four default run-time processors in the DIWE framework are: The device detection,

logic interfacing, page splitting and process partitioning processors. These processors are

instantiated and used at run-time in combination with the static and dynamic Web services

defined by the MyXML language and generated with a MyXML language compiler. The

Web developer can optionally construct and deploy application-specific processors that can

process the content produced by the MyXML-generated Web services (e.g., to generate PDF

receipts for an e-commerce order).

The device detection processor is responsible for device detection and identification. It

can be configured to detect the device a user is using based on the HTTP request header and

respond accordingly.

The logic interfacing processor provides device-independent application logic interfac-

ing support to the services specified by the MyXML language. It allows the application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 50

to be written once and used for multiple device-specific MyXML-generated Web services

without any modifications.

The page splitting and process partitioning processors provide layout adaptation support.

Layout adaptation in Web site construction deals with the problem of displaying pages on

device families with small display and memory sizes. It also deals with the problem of

providing Web form-based interaction support to users on devices with limited capabilities.

An e-commerce application, for example, may collect information from the user such as her

name, address and credit card number in a single HTML page. This information may be too

large for a weak device such as a WAP phone.

The page splitting technique deals with the page size problem by using a combination

of special tags that are encoded into the XSL stylesheets that are interpreted by the page

splitting processor at run-time. Based on this “splitting” information, the content of a single

page can be incrementally displayed on the target device family over a number of steps.

The process partitioning processor applies the process partitioning technique to deal with

Web form-based input and interactions on devices with small displays and limited memory.

It collects the required input from the user partially over many smaller pages. The applica-

tion logic is invoked once all the information has been submitted. The process partitioning

technique uses the page splitting technique to adapt the layout to the device.

4.5 Flexible Web service construction in three steps

Device

HTTP Request

Web server
MyXML Generated HTML/

XML file

Read

Reply (HTML/XML)

Figure 4.4: Interactions between the user’s device, the Web server and the generated static

content

The first step in creating a flexible Web service that is extensible and supports LCL

separation is to define the content in a so called MyXML document. These documents are

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 51

Device

HTTP Request

Web server Application logic class
MyXML Generated Layout/

Content class

Instantiate and invoke

Instantiate and invoke

Reply (HTML/XML)

Figure 4.5: Interactions between the user’s device, the Web server, the application logic and

the generated functionality that produces the dynamic content

well-formed XML documents that contain the structured content and can also be based on a

document type definition (DTD) that defines the content’s overall structure. MyXML docu-

ments consist of XML content enriched with XML tags from the MyXML namespace. The

MyXML namespace defines the elements in the MyXML language. The language enables

the developer to add database integration functionality and dynamic content to a Web service.

In the second step, all the necessary layout information is added to the content defined

in MyXML documents as separate XSL documents. Context information can be used in

the layout definition rules and enables the processing of elements only if they appear in a

predefined context (e.g., if they have a certain parent element, if they have an attribute with

a given value etc.). XSL stylesheets can also be used to add static content, such as common

headers and footers to the documents.

If the service being constructed produces static content, a MyXML language compiler is

used to process the MyXML document and the XSL layout definition and generate an HTML

or XML file. The generated files are then deployed on the Web server. Figure 4.4 shows a

sequence diagram describing the interactions between the user’s device, the Web server and

the generated static content.

If the service is dynamic, source code that encapsulates the content and layout informa-

tion is generated. The reference implementation produces Java sources and this source code

provides hooks that the application logic can use to instantiate and invoke it. The Web de-

veloper then provides the application logic in the third step and uses the generated sources

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 52

to produce the dynamic content at run-time. Figure 4.5 shows a sequence diagram describ-

ing the interactions between the user’s device, the Web server, the application logic and the

generated functionality that produces the dynamic content.

4.6 Device-independent Web service construction in three

steps

HTTP Request

Device detection Page splitting/Process

partitioning

Device

MyXML Generated HTML/

XML file

Read

Result stream

Reply (HTML/XML)

Web server

Instantiate and invoke

Figure 4.6: Sequence diagram showing the interactions between the device-independence

components for static content

The first step in creating a device-independent Web service is to create a flexible Web

service as described in the previous section. The Web service can later be extended to support

multiple layouts with the same content by either using different XSL stylesheets or XSL

stylesheet pre-processing. Page splitting and process partitioning information is embedded

into the stylesheets during service definition.

In the second step, the device detection processor is configured and deployed on the Web

server. At run-time, based on the request and the device the user is using, the device detection

processor responds by dispatching the HTTP request to the corresponding device-specific

pages that have been prepared by using the MyXML language.

If the service the user is accessing is static, the device detection processor reads the

MyXML-generated HTML/XML file and passes the result stream to the page splitting and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 53

Device

HTTP Request

Page splitting/Process

partitioning
Device detection MyXML Generated Layout/

Content class
Application Logic

Dispatch request and device name

Send parameters and device name

Send parameters

Logic interfacing

Result stream

Result stream

Reply (HTML/XML)

Web server

Instantiate and invoke

Figure 4.7: Sequence diagram showing the interactions between the device-independence

components for dynamic content

process partitioning processors. These processors process the result stream and split the

pages and interactions accordingly. They return HTML/XML to the requesting client device.

Figure 4.6 shows the sequence diagram that illustrates the interactions between the default

processors in the framework for processing static content.

The third step is only needed if the service being constructed is dynamic. In this step, the

logic interfacing processor is configured and deployed on the Web server. The logic inter-

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 54

facing processor transparently and automatically invokes the corresponding layout/content

classes based on the name of a device family.

Figure 4.7 shows a sequence diagram that illustrates the interactions between the de-

fault processors in the framework at run-time for processing dynamic content. The device

detection processor receives the HTTP request and invokes the application logic. The appli-

cation logic instantiates and invokes the logic interfacing processor with the device name it

has received from the device detection processor and parameters it would like to pass to the

layout/content class. The logic interfacing processor then instantiates the corresponding lay-

out/content class and invokes it. It passes the result stream returned from the layout/content

class to the page splitting and process partitioning processors. These processors process the

page splitting and process partitioning information in the stream and return HTML/XML to

the calling client device.

4.7 The MyXML language

The MyXML language used in MyXML documents is a simple XML-based language that

uses loops, variables and database access functions.

One of main advantages of an XML-based Web language is that it allows the definition

of functionality that is platform and technology independent. Although the reference imple-

mentation is based on the generation of Java sources, any popular programming or scripting

language can be generated from the MyXML documents and XSL specifications with an

appropriate MyXML language compiler.

4.7.1 Overview

Each element in the MyXML language has a special meaning and is processed accordingly

by the MyXML language compiler. Variable definitions are the most important elements in

the MyXML namespace because they define the interface between the application logic and

the generated sources containing the layout and the content.

There are two types of variables in the language: Singles and Multiples. Single variables

map to String objects in Java (i.e., character arrays in C) and Multiple variables map to arrays

of String objects (i.e., n dimensional character arrays in C).

A Loop in the MyXML language defines a block of content and MyXML elements that

are iterated according to the number of elements in the Multiple variable in the Loop. Each

Loop has to have at least one Multiple variable in it and Multiples cannot exist without an

encapsulating Loop block as its parent. A Loop block, for example, that contains a Multiple

variable names will be processed by the MyXML language compiler to produce Java source

code (i.e., in a Java implementation) that looks like the following (pseudo code):

for(i=0;i<=names.length;i++) {

... DO SOMETHING ...;

<print out> names[i] ...;

... DO SOMETHING ...;

}

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 55

The Loop, Single and Multiple statements are all a Web developer needs to successfully

separate the application logic from the content and the layout. The MyXML language, how-

ever, also provides CGI and database functionality that eases the construction of interactive,

database-backed Web services.

4.7.2 MyXML Namespace

The MyXML namespace describes 18 elements that belong to the MyXML language. The

language has 8 core elements that are needed for constructing flexible Web services. Fur-

thermore, it provides 10 general utility elements for tasks such as accessing and embedding

the current date and time into the content and formatting functionality for eliminating car-

riage returns and spaces. The XML syntax of the language allows the easy definition and

extension of the general utility functionality.

The 8 core elements in the MyXML namespace are the�myxml:single�,�myxml:multiple�,

�myxml:loop�, �myxml:cgi�, �myxml:sql�, �myxml:dbcommand�, �myxml:dbitem�

and �myxml:attribute� elements.

The�myxml:single� element describes a Single variable that can be used arbitrary times

in a MyXML document. The value of a �myxml:single� element is determined at run-time

(i.e., provided by the application logic) and the same value is used whenever the element

appears. A possible use of the �myxml:single� element is to print a customized welcome

text depending on who is currently logged in. For example, the MyXML document:

<?xml version="1.0"?>

<welcome_text> Welcome to this site </welcome_text>

<myxml:single> name </myxml:single>

defines a welcome text and a Single variable name that is instantiated by the application

logic at run-time (e.g., name=”Engin”, producing “Welcome to this site Engin”).

The �myxml:loop� and �myxml:multiple� elements provide the Loop and Multiple

variable functionality. For all values provided as input for the �myxml:multiple� element,

the part of the document enclosed in the�myxml:loop� element is processed. For example,

the MyXML document:

<?xml version="1.0"?>

<myxml:loop>

<welcome_text> Welcome to this site </welcome_text>

<myxml:multiple> names </myxml:multiple>

</myxml:loop>

defines a welcome text for every name in the Multiple variable names that is instantiated by

the application logic at run-time (e.g., names=�“Engin”,”John”�, producing “Welcome to

this site Engin”, “Welcome to this site John”). �myxml:loop� elements can be cascaded.

Loops within other loops can be used, for example, to print a table containing all the books

in a bookstore along with a list of authors for each book. The dimension of the Multiple

variable is determined based on its position within the loop (i.e., dimension of 1 within the

first loop, dimension of 2 within the second loop and so on).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 56

The �myxml:cgi� element supports direct access to HTTP CGI parameters within a

MyXML document. The definition of the �myxml:cgi� element has to correspond to the

name of the CGI parameter it refers to (e.g., the name of the input field in an HTML form).

For example, the MyXML document:

<?xml version="1.0"?>

<welcome_text> Welcome to this site </welcome_text>

<myxml:cgi> name </myxml:cgi>

defines a welcome text for a user who’s name is received by a CGI parameter posted by a

Web form.

The �myxml:attribute� element is used to define an attribute of a parent element that

is not in the MyXML namespace. The usage and functionality of this element is simi-

lar to the �xsl:attribute� element from the XSL namespace. The main difference is that

�myxml:attribute� can be used for dynamic content whereas �xsl:attribute� is only for

static content. For example, the �myxml:attribute� element in the MyXML document:

<?xml version="1.0"?>

<a> Click here

<myxml:attribute name="href">

<myxml:single> url </myxml:single>

</myxml:attribute>

defines a hypertext link and sets the href attribute of the HTML a element to the value of the

Single variable url at run-time.

The�myxml:sql� element represents a database query. It is similar to the�myxml:loop�

element. The document fragment enclosed by the �myxml:sql� element is processed

for every record in the query’s result set. Access to database fields is provided by the

�myxml:dbitem� element. The query to be executed is defined by the�myxml:dbcommand�

element and can contain other MyXML elements from the MyXML namespace such as Sin-

gle variables. A possible use of the �myxml:sql� element is to generate XML from the

content stored in a relational DBMS. For example, the MyXML document:

<?xml version="1.0"?>

<myxml:sql>

<myxml:dbcommand>

select * from names

</myxml:dbcommand>

<theName>

<myxml:dbitem> name </myxml:dbitem>

</theName>

</myxml:sql>

defines an SQL query in the database that selects all records in the table names and wraps

the contents of the field name in XML theName tags. The resulting static content produced

by the MyXML language compiler could look like this:

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 57

<?xml version="1.0"?>

<theName>

Engin

</theName>

<theName>

John

</theName>

...

The�myxml:currentdate� element is a good representative of the functionality provided

by the general utility elements in the MyXML namespace. For example, the MyXML docu-

ment:

<?xml version="1.0"?>

<date> Today’s date is:

<myxml:currentdate/>

</date>

defines the content “Today’s date is:” enriched with the system date functionality. The

MyXML language compiler inserts the necessary date for static content or produces the

system date source code for dynamic content.

Other general utility functions allow the Web developer to control the parsing and for-

matting of the content and insert output produced by external system scripts and commands

into it (e.g., inserting the output of the UNIX ls command into the content).

4.7.3 A simple MyXML example: Searching for musicals

Suppose a search form needs to be implemented. The form lets the user search for musicals

in the Web site of a cultural organization that specializes in selling musical tickets. All

musicals containing a certain keyword need to be retrieved from the database and have to be

displayed in a Web page in a given layout. The content is dynamic because it is generated

according to user input. The user enters a keyword that is then transmitted to the Web page.

Figure 4.8 shows the MyXML document that defines this functionality. There is a strict

separation of content and layout as only the content and its structure are defined in the

MyXML document. The example illustrates the use of CGI parameters and the handling

of SQL queries with the MyXML language. The CGI parameter is used to construct the

query string (see lines 6 and 7) and after the query is executed, the title field is extracted

from the result set (see lines 9-11).

After the content has been defined, an XSL stylesheet is used to add a simple layout to

the content. The search result is displayed in a table. Figure 4.9 depicts the XSL stylesheet

used to format the output.

The XSL stylesheet generates HTML output and adds a heading to the document. For

every record in the query’s result set, a new row is added to the table. Of course, real world

stylesheets would contain more complex rules and a more sophisticated layout would be

defined.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 58

1. <?xml version="1.0"?>
2. <!DOCTYPE VIF>
3. <VIF xmlns:myxml=".../ns/myxml">
4. <query>
5. <myxml:sql>
6. <myxml:dbcommand>SELECT * FROM VIF_EVENTS WHERE title LIKE
7. <myxml:cgi>musical_title</myxml:cgi>
8. </myxml:dbcommand>
9. <db_title>
10. <myxml:dbitem>title</myxml:dbitem>
11. </db_title>
12. </myxml:sql>
13. </query>
14. </VIF>

Figure 4.8: Example MyXML file to search in a database

1. <?xml version="1.0"?>
2. <xsl:style sheet version="1.0"
3. xmlns:xsl=".../Transform"
4. xmlns:myxml=".../ns/myxml">
5. <xsl:import href="myxml.xsl"/>
6. <xsl:output method="html" indent="yes"/>
7.
8. <xsl:template match="query">
9. <html><h2>The result of your search is:</h2>
10. <table><xsl:apply-templates/></table>
11. </html>
12. </xsl:template>
13.
14. <xsl:template match="db_title">
15. <tr><td><xsl:apply-templates/></td></tr>
16. </xsl:template>
17. </xsl:style sheet>

Figure 4.9: XSL stylesheet for formatting the output

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 59

1. public class VIF {
2. protected HttpServletRequest request = null;
3. protected ResultSet SQL0 = null;
4. public VIF(HttpServletRequest request) {
5. this.request = request;
6. }
7. protected String getCGIParameter(String paramName) {
8. return request.getParameter(paramName);
9. }
10. protected ResultSet processSQLStatement(
11 String select, String user,
12. String pwd, String url, String driver) {
13. // do sql query using JDBC here!
14. }
15. public void printContents(PrintWriter pw) {
16. pw.println("<html>");
17. pw.println(" <h2>");
18. pw.println(" The result of your search is:");
19. pw.println(" </h2>");
20. pw.println(" <table>");
21. printHTMLSQL0(pw);
22. pw.println(" </table>");
23. pw.println("</html>");
24. }
25. public void printContentsSQL0(PrintWriter pw) {
26. try {
27. SQL0 = processSQLStatement(
28. "SELECT title, isbn_nr FROM VIF_EVENTS WHERE title LIKE“
29. +getCGIParameter("musical_title")
30. +";", "user", "pwd", "connect", "dbdriver");
31. while (SQL0.next()) {
32. pw.println(" <tr>");
33. pw.println(" <td>");
34. pw.println(SQL0.getString("title"));
35. pw.println(" </td>");
36. pw.println(" </tr>");
37. }
…

Figure 4.10: Part of the generated Java Source Code

The Java source code that is generated from the MyXML document and the XSL

stylesheet is shown in Figure 4.10. This generated Java class encapsulates the layout and

the content information that was separately defined in the MyXML document and the XSL

stylesheet file. Whenever a new layout is needed, only the XSL stylesheet has to be adapted.

The application logic can now create a new instance of this layout/content class and call

its printContents() method (see line 15). The output produced by the method (e.g., see lines

16-23) is usually directly sent back to the calling client.

4.7.4 Another MyXML example: Shopping Cart

Suppose a flexible e-commerce Web service needs to be built for the cultural organization

that specializes in selling musical tickets. The shopping cart is to allow users to manage

tickets that they wish to buy.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 60

1. <?xml version="1.0" encoding="US-ASCII"?>
2. <!DOCTYPE cart>
3. <cart xmlns:myxml="http://www.infosys.tuwien.ac.at/ns/myxml">
4. <title>
5. This is a simple shopping cart example using MyXML.
6. </title>
7.
8. <user>
9. <myxml:single>username</myxml:single>
10. </user>
11.
12. <items>
13. <myxml:loop>
14. <item>
15. <myxml:multiple name="id" create_name_element="no">
16. product_id</myxml:multiple>
17. <myxml:multiple name="name" create_name_element="no">
18. product_name</myxml:multiple>
19. <myxml:multiple name="quantity" create_name_element="no">
20. product_quantity</myxml:multiple>
21. <myxml:multiple name="price" create_name_element="no">
22. product_price</myxml:multiple>
23. </item>
24. </myxml:loop>
25. </items>
26. </cart>

Figure 4.11: MyXML content definition for a shopping cart

Again, the content and the layout are defined in separate files. The dynamic content of

the shopping cart is provided by the application logic at run-time. The application logic

determines from user input which tickets have been booked and gives out the contents of the

shopping cart using the MyXML generated layout/content encapsulating Java class.

Figure 4.11 depicts the MyXML document file for the shopping cart application. A

�myxml:single� variable provides the value for the name of the user currently logged in. A

�myxml:loop� element is used to iteratively step through the contents of the user’s shopping

cart. In the loop, �myxml:multiple� elements access the contents of the user’s shopping

cart. An item in the cart, consists of an ID number, a name, a price and the quantity of tickets

the user wishes to order.

The layout of the shopping cart is defined with an XSL stylesheet. Figure 4.12 shows the

XSL layout definition for the shopping cart. In this simple example, a welcome message is

printed for the user and a table contains all the items currently stored in the shopping cart.

Note that a special myxml.xsl stylesheet is imported in the layout definition (see line 5).

The imported stylesheet contains the default set of XSL processing rules for the MyXML

namespace.

The rule for the �cart� element provides a basic HTML structure (see line 9-16). The

content of the�user� element (see lines 8-10 in Figure 4.11) is used to print an introductory

message including the user’s name (see lines 18-20 in Figure 4.12). In the HTML docu-

ment’s body, a simple table is constructed containing the shopping cart’s contents. For every

�item� element (see lines 12-23 in Figure 4.11), a new table row is added that contains

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 61

1. <?xml version="1.0"?>
2.
3. <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
4. version="1.0">
5. <xsl:import href="myxml.xsl"/>
6. <xsl:output method="html" indent="yes"/>
7.
8. <!-- root element: create HTML skeleton -->
9. <xsl:template match="cart">
10. <html><head><title>
11. <xsl:value-of select="title"/>
12. </title></head><body>
13. <xsl:apply-templates/>
14. </body>
15. </html>
16. </xsl:template>
17.
18. <xsl:template match="user">
19. Shopping cart for user <xsl:apply-templates/>
20. </xsl:template>
21.
22. <xsl:template match="items">
23. <table border="1"> <xsl:apply-templates /></table>
24. </xsl:template>
25.
26. <xsl:template match="item">
27. <tr><td><xsl:apply-templates select="*[@name='id']" /></td>
28. <td><xsl:apply-templates select="*[@name='name']" /></td>
29. <td><xsl:apply-templates select="*[@name='quantity']" /></td>
30. <td><xsl:apply-templates select="*[@name='price']" /></td>
31. </tr>
32. </xsl:template>
33. </xsl:stylesheet>

Figure 4.12: XSL layout definition for the shopping cart

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 62

1. import java.io.*;
2. public class cart {
3. ...
4. public cart(String username, String[] product_quantity,
5. String[] product_id,
6. String[] product_name, String[] product_price) {
7. this.username = username;
8. this.product_quantity = product_quantity;
9. this.product_id = product_id;
10. this.product_name = product_name;
11. this.product_price = product_price;
12. }
13. public void printContents(PrintWriter pw) {
14. pw.println("<html><head><title>");
15. pw.println(
16. "This is a simple shopping cart example using MyXML.");
17. pw.println("</title></head><body>");
18. pw.println(
19. "This is a simple shopping cart example using MyXML.");
21. pw.println(”Shopping cart for user ");
22. pw.println(username);
23. pw.println("<table border=\"1\">");
24. printContents0(pw);
25. pw.println(”</table></body></html>");
26. }
27. public void printContents0(PrintWriter pw) {
28. for(int i=0; i<product_id.length; ++i) {
29. pw.println("<tr> <td>");
30. pw.println(product_id[i]);
31. pw.println("</td> <td>");
32. pw.println(product_name[i]);
33. pw.println("</td> <td>");
34. pw.println(product_quantity[i]);
35. pw.println("</td> <td>");
36. pw.println(product_price[i]);
37. pw.println("</td> </tr>");
38. }
39. }
40. }

Figure 4.13: Part of the generated shopping cart Java code encapsulating the HTML code

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 63

1. // test application for cart.java
2.
3. import java.io.*;
4.
5. public class carttest {
6. public static void main(String args[]) {
7.
8. // provide shopping cart values
9. String username = ”Engin Kirda";
10. String[] id = {"1", "3", "4"};
11. String[] name = {"PS/2 Mouse", "Cherry Keyboard",
12. "Logitech Wingman"};
13. String[] quantity = {"2", "1", "1"};
14. String[] price = {"399", "599", "799"};
15. cart c = new cart(username, quantity, id, name, price);
16. PrintWriter pw = new PrintWriter(System.out);
17. c.printContents(pw);
18. pw.flush();
19. pw.close();
20. System.out.println("Done.");
21. }
22. }

Figure 4.14: Invoking the generated code

table data elements for all the characteristics of the items in the shopping cart (i.e., ID, name,

quantity and price) (see lines 22-24 and 26-32 in Figure 4.12).

Figure 4.13 shows the Java code that the MyXML language compiler generates (i.e., in

a Java implementation) from the content and layout definitions and Figure 4.14 depicts how

the generated code is invoked from the application logic (see lines 15-17 in Figure 4.14).

Item information in the shopping cart such as the ID, name and quantity are passed to the

layout/content code using string arrays (see lines 9-14 in Figure 4.14).

4.7.5 Post XSL stylesheet application

In some cases, it is not advantageous to generate static content in HTML/XML or source

code functionality that produces dynamic content. There are situations when the developer

does not wish to add a layout to the content during the implementation, but would like to

keep it flexible and add it when the service is run. For example, the layout may be changing

often and generating HTML or source code might be costing too much time.

Post stylesheets are XSL stylesheets that can be applied to the content at run-time. For

example, if the first XSL stylesheet produces XML data instead of adding a layout to the

content, a second stylesheet, the post XSL stylesheet, can be used to process it and add a

layout. When the MyXML-generated source code is compiled and run, the specified post

stylesheet is automatically applied to the generated content.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 64

4.8 XSL stylesheet pre-processing for stylesheet reuse

The examples given in the previous sections used a single XSL definition to add a layout to

the content. Clearly, if the aim is to support multiple devices, it is possible to use a different

stylesheet for every device.

The problem is that as the number of devices increase, the number of stylesheets increase

proportionally. The stylesheets are often quite similar with respect the processing rules.

Often, the only difference is the formatting specifications and the Web format being used

(e.g., HTML, WML, etc.). In a service with 4 stylesheets, for example, 12 stylesheets would

be necessary to support 3 different devices. There would be much redundancy and hence,

the maintenance overhead would significantly increase.

Before a layout is added to the content, a technique called XSL stylesheet pre-processing

is used to eliminate the described duplication and enable the reuse of existing XSL stylesheets:

Instead of the traditional approach of using a new XSL stylesheet for every new device, the

information necessary for the device is integrated into the existing stylesheets using spe-

cial descriptors that help differentiate between the device-specific layout in the stylesheets.

The MyXML language compiler processes these specifications and generates the appropriate

XSL stylesheet for a particular device.

Figure 4.15 depicts a portion of an XSL stylesheet from a commercial Web site. The

single XSL match template (see lines 1-42) defines an HTML layout for traditional full-

fledged browsers and a simpler HTML version of the page for PDAs. The @myxml:device

descriptors (e.g., see lines 3 and 9) are used to define device-specific output. In the exam-

ple, HTML for traditional browsers is the default device family (see Section 4.1) and this

output is marked in @myxml:device:default blocks (e.g., see lines 3-6). The PDA-specific

output, on the other hand, is marked in @myxml:device:pda blocks (e.g., see lines 9-14).

New devices can be added to the stylesheets by embedding layout content in blocks of the

form @myxml:device:�Name of device�, where the name can be any string description of a

device family.

In the example, a descriptor of the form @myxml:device:default,pda in the stylesheet

(see lines 16-18) indicates that the layout is valid for the default device family as well as the

PDA device family. A comma can be used between device names to signal the compiler that

the following layout definition is valid for more than one device.

Figure 4.17 shows the XSL stylesheet for the traditional browser version of the page after

pre-processing. Figure 4.16 shows the XSL stylesheet for the PDA version of the page after

pre-processing. Pre-processing filters out the layout definitions that are not needed for the

device for which the XSL stylesheet is being generated.

The XSL pre-processing technique eliminates the need to copy the stylesheets and adapt

them for a new device. This is important because XSL stylesheets can become quite complex

in real-world Web sites. Using a separate stylesheet for a new device only shifts the problem

of copying and adapting source code to copying and adapting stylesheets.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 65

1. <xsl:template match="event_list">
2. <!-- %%%%%%%%%%%%% HTML %%%%%%%%%%%%%%%%%%%%%-->
3. @myxml:device:default{

4. <table border="0">
5. <tr><td>Event</td><td>Location</td></tr>
6. }@myxml:device

7.
8. <!-- %%%%%%%%%%%%% PDA %%%%%%%%%%%%%%%%%%%%%%-->
9. @myxml:device:pda{

11. <xsl:apply-templates select="//explanation"/>
12. <table border="1" cellspacing="0" cellpadding="2">
13. <tr><td>Events</td><td>Location</td></tr>
14. }@myxml:device

15.

16. @myxml:device:default,pda{

17. <xsl:apply-templates/>
18. }@myxml:device
19.
20. <!-- %%%%%%%%%%%%% HTML %%%%%%%%%%%%%%%%%%%%%-->
21. @myxml:device:default{ </table> }@myxml:device
22.
23. <!-- %%%%%%%%%%%%% PDA %%%%%%%%%%%%%%%%%%%%%%-->
24. @myxml:device:pda{

25 </table>
 <table border="0" width="400">
26. <tr><td alight="left">
27. <a href="/wf/
28. displayevents?device=pda">
29. <img border="0" src="/images/english/buttons/
30. vorige.gif"
31. alt="Previous events"/></td>
32. <td alight="right">
33. <a href="/wf/
34. displayevents?device=pda“>
35. <img border="0" alt="More events"
36. src="/images/english/buttons/naechste.gif"/>
37. </td></tr></table>
38.
39. Back to the
40. first event
41. }@myxml:device

42. </xsl:template>

Figure 4.15: XSL Stylesheet reuse with pre-processing

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 66

1. <xsl:template match="event_list">
3. <xsl:apply-templates select="//explanation"/>
4. <table border="1" cellspacing="0" cellpadding="2">
5. <tr><td>Events</td><td>Location</td></tr>
6. <xsl:apply-templates/>
7. </table>
8.

9. <table border="0" width="400">
10. <tr><td alight="left">
11. <a href="/wf/
12. displayevents?device=pda">
14. <img border="0" src="/images/english/buttons/vorige.gif"
15. alt="Previous events"/>
16. </td>
17. <td alight="right">
18. <a href="/wf/
19. displayevents?device=pda">
21. <img border="0" alt="More events"
22. src="/images/english/buttons/naechste.gif"/>
23. </td></tr></table>
26. Back to
27. the first event
29. </xsl:template>

Figure 4.16: XSL Stylesheet for PDA access after pre-processing

1. <xsl:template match="event_list">
2. <table border="0">
3. <tr><td>Event</td><td>Location</td></tr>
4. <xsl:apply-templates/>
5. </table>

6. </xsl:template>

Figure 4.17: XSL Stylesheet for full HTML access after pre-processing

4.9 Page splitting

The main idea behind page splitting in Web site construction is to split and partition the

content in XSL layout files by grouping layout elements. A group identifies a single unit of

information on the page that a device family is able to display. Groups can also be partitioned

and split using subgroups and thus, different splitting granularities can be achieved.

Figure 4.18 illustrates the concept of grouping and subgrouping on a commercial Web

page (belonging to the Vienna International Festival Web site) that displays a list of cultural

events (i.e., exhibitions, ensembles, theaters, performances) and their locations. On the page,

the entire event information has been marked as belonging to a group. Every two events on

the page make up a subgroup.

Depending on the order they appear on a page, each group and subgroup implicitly re-

ceives an ID to make it uniquely identifiable (the ID count starts from 0). In the Figure, for

example, there is one group with the ID 0, and the depicted subgroups have IDs 0, 1 and 2.

Each time the layout is presented, only the information in a single group is displayed and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 67

Figure 4.18: Page splitting using groups and subgroups

the other groups are ignored. If, for example, the layout in Figure 4.18 is presented with

the group ID 1, no event information would not be displayed and one would only see layout

elements that do not belong to any groups (i.e., the header, title, logo in the page).

If a group contains subgroups, similarly, the subgroups are displayed one after one. Only

the group and subgroup with the given ID would be displayed. For example, to display the

information in the second subgroup, the layout in Figure 4.18 would be presented with the

group ID 0 and subgroup ID 1.

By setting a so called step value, the subgroups that are to be displayed can be further

adjusted. For example, a step value of 2 and a subgroup ID of 0 would display the first

and the second subgroup and then stop. The next time the layout is presented, the next two

subgroups would be displayed. With a step value of 3, the first three subgroups would be

displayed, then the next three and so on.

The described simple mechanism allows the selection of portions of a page during Web

site construction so that they can be incrementally displayed on devices with small displays

and limited memory sizes.

The page splitting processor in the DIWE framework is responsible for giving out the

information partially over many smaller steps. It keeps track of the group and subgroup

numbers and can receive commands on which splits (i.e., layout fragments) to give out.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 68

4.9.1 Page splitting descriptors and parameters

Parameter Description

ui

sg Indicates the subgroup number to display

 Indicates the group number to display

reset
 Signals that all internal counters (e.g.,

 subgroup and group count) should be reset

Table 4.1: Page splitting-related CGI parameters that the page splitting processor interprets

Descriptor

 @myxml:nextGroup

 @myxml:currentGroup

 @myxml:previousGroup

 @myxml:currentSubgroup

 @myxml:previousSubgroup

 @myxml:nextSubgroup

Functionality

 Substitute this descriptor with the

 current group number

 Substitute this descriptor with the next

 group number

 Substitute this descriptor with the
 previous group number

 Substitutes this descriptor with the current
 subgroup number

 Substitutes this descriptor with the previous

 subgroup number

 Substitutes this descriptor with the next

 subgroup number

Table 4.2: Descriptors that the page splitting processor substitutes at run-time

Group and subgroup information is inserted into the XSL stylesheets using @myxml:group

and @myxml:subgroup descriptors. When processing an output stream at run-time, the page

splitting processor looks for these descriptors to split a page.

Further, a Web page is constructed in such a way that when a user follows a link, the

page splitting processor is invoked with CGI parameters that signal to it which group and

subgroup number it should display. Table 4.1 lists the page splitting-related CGI parameters

the page splitting processor understands. The ui parameter indicates the group and sg, the

subgroup number to display. The reset parameter can be used to reset all internal group and

subgroup counters. The page splitting processor can accept CGI parameters using both the

GET and POST HTTP methods.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 69

Because it is not always possible to know how many splits a page consists of and what

the next group or subgroup number is, the page splitting processor is able to recognize

and interpret descriptors at run-time that request group/subgroup information. Table 4.2

lists descriptors that the page splitting processor substitutes with appropriate values. The

@myxml:nextGroup descriptor, for example, is substituted with the next group number in

the page splitting processor’s internal counters.

4.9.2 A simple page splitting example

Suppose the information on the HTML page in Figure 4.18 has to be displayed on a WAP

device. Clearly, the information on the HTML page is too large and cannot be displayed in a

single WML page.

1. <event_list>
2. <myxml:sql>
3. <myxml:dbcommand>
4. select * from WF2001_EVENTSENGLISH as e, WF2001_LOCATION
5. as l where (e.location_id=l.id)
6. </myxml:dbcommand>
7. <event>
8. <title>
9. <link>
10 <myxml:dbitem> title </myxml:dbitem>
11 </link>
12 </title>
13 </event>
14 </myxml:sql>
15. </event_list>

Figure 4.19: MyXML document for the events page

1. <xsl:template match="event">
2. <tr>
3. <xsl:apply-templates/>
4. </tr>
5. </xsl:template>
6.
7. <xsl:template match="title">
8. <td>
9. <xsl:apply-templates select="link"/>
10. </td>
11. </xsl:template>
12.
13. <xsl:template match="link">
14. <a> <xsl:apply-templates/>
15. </xsl:template>

Figure 4.20: XSL layout definition for HTML event page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 70

1. <xsl:template match="event">
2. @myxml:group{
3. <xsl:apply-templates/>
4. }@myxml:group
5. </xsl:template>
6.
7. <xsl:template match="title">
8. @myxml:subgroup{
9. <p>
10. <xsl:apply-templates select="link"/>
11. </p>
12. <a href=“/collector?ui=@myxml:nextGroup
13. & sg=@myxml:nextSubGroup”>
14. Next Page
15.
16. }@myxml:subgroup
17. </xsl:template>
18.
19. <xsl:template match="link">
20. <a> <xsl:apply-templates/>
21. </xsl:template>

Figure 4.21: XSL layout definition for WML event page

Figure 4.19 shows the simplified MyXML document for the page. A �myxml:sql�

element selects the event information from a relational database. The event names in the

database column “title” are picked using the �myxml:dbitem� element.

Figure 4.20 shows a part of the XSL layout definition for the HTML version of the page.

Figure 4.21 shows the layout definition for the WML version of the page. The stylesheets

are quite similar except for the differences in HTML and WML tags and the grouping and

subgrouping in the WML definition (e.g., compare the lines 1-5 in Figure 4.20 with the lines

1-5 in Figure 4.21).

In the WML stylesheet in Figure 4.21, groups and subgroups are defined using the de-

scriptors @myxml:group and @myxml:subgroup. As in the page shown on Figure 4.18, the

entire event information is defined in a group, but each event is marked as a subgroup (see

lines 1-5 and 7-17). The @myxml:nextGroup and @myxml:nextSubGroup descriptors in the

stylesheet are automatically replaced by the next group and subgroup numbers by the page

splitting processor at run-time. Whenever the user clicks the “Next Page” link, the next sub-

group in the current group is presented by the page splitting processor. If there are no more

subgroups, the next group and the first subgroup in the group are fetched and the information

is incrementally given out to the device. Setting the stepping count to 2, hence, would give

out the subgroups at 2 step intervals.

In the example, the page splitting processor is accessed via the URL /collector (see line

12 in Figure 4.21) and receives two parameters: ui for the group and sg for the subgroup

number to display.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 71

4.10 Process partitioning

The page splitting concept solves the problem of dealing with different page sizes various

Web devices are able to display. A database query, for example, can be made to display three

results per page for WAP devices and ten results per page for desktop browsers.

An important problem page splitting does not solve, however, is how to deal with inter-

active Web pages that use Web forms. If a Web form in a page is split and distributed over

two other pages, for example, it will not work because every Web form has a corresponding

target URL (i.e., the application logic) that it invokes with the parameters it collects. Hence,

if the parameters on the first page are submitted, the information in the following pages will

be missing.

Process partitioning is a technique that allows Web developers and designers to deal with

Web form-based dynamic interactions on devices with display and memory size limitations.

Process partitioning uses the page splitting technique to incrementally display Web forms

and provides a mechanism to partition the interactive process over a number of independent

steps.

WML Client

Collector

Application Logic

N
a

m
e

A
d

d
re

s
s

E
-m

a
il

C
re

d
it

c
a

rd
 i

n
fo

R
e

s
p

o
n

s
e

a) WML Scenario (process partitioning)

HTML Client

N
a

m
e

A
d

d
re

s
s

E
-m

a
il

C
re

d
it

c
a

rd
 i

n
fo

Application Logic

R
e

s
p

o
n

s
e

b) HTML Scenario

Figure 4.22: An online WML-based order with process partitioning compared to a traditional

HTML-based order

Using process partitioning in a WAP e-commerce application for selling cultural event

tickets, for example, the ordering process would be distributed over several WML pages.

Each time a part of the required information would be collected (e.g., customer’s name in

the first step, her address in the second, and so on) and sent to an intermediary processor that

temporarily stores the input. The intermediary processor would invoke the application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 72

with the input data it has collected when all necessary data is submitted. In the DIWE frame-

work, the functionality of the intermediary processor is provided by the process partitioning

processor.

Figure 4.22 depicts the ordering of an event ticket using HTML and WML. The HTML

page is able to collect all of the information in a single page, but the process is partitioned

into multiple steps for WML.

4.10.1 Process partitioning parameters

Parameter Description

colstat Signals that the collection process is finished

target
 Indicates the target URL to invoke once

 collection process is finished

Table 4.3: Table showing process partitioning-related CGI parameters the Collector compo-

nent understands

Two CGI parameters are used by the Collector component that help control the input

collection process over several steps. Table 4.3 lists these parameters and describes their

functionality. The colstat CGI parameter is used to signal the process partitioning processor

that the collection is finished. The process partitioning processor then invokes the URL that

it receives with the target parameter.

4.10.2 A simple process partitioning example

Figure 4.23 depicts the XSL stylesheet for a simple HTML Web form that displays four input

fields and collects the user’s name, age and address information and some miscellaneous

comments. A button is placed at the bottom of the form (see line 5) and the user has to press

it to submit the information. The POST method is used to submit the values in the input

fields and the target URL that processes the results is a program (i.e., servlet, script, etc.)

/show in the example (see line 3). Figure 4.24 shows the Web form as seen on a desktop

browser.

Figure 4.25 depicts the XSL stylesheet for the same HTML Web form that has been

partitioned into two HTML pages using page splitting. The target URL has been changed

from /show to /collector (see line 3) which is the URL for the process partitioning processor

in this example. The process partitioning processor accepts a command parameter ui that

indicates which group in the page should be displayed next. This command is embedded

into the form as a hidden input element and uses a @myxml:nextGroup identifier to retrieve

the next group number (see line 5).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 73

1. <xsl:template match=”page">
2. <html><head> <title> Page </title> </head> <body>
3. <form action="/show" method="post">
4. <xsl:apply-templates/>
5. <input type="submit"/>
6. </form>
7. </body></html>
8. </xsl:template>
9.
10. <xsl:template match="name">
11. <h2>
12. <xsl:apply-templates/>
13. <input type="text" name="name"/>
14. </h2>
15. </xsl:template>
16.
17. <xsl:template match="age">
18. <h2>
19. <xsl:apply-templates/>
20. <input type="text" name="age"/>
21. </h2>
22. </xsl:template>
23.
24. <xsl:template match="address">
25. <h2>
26. <xsl:apply-templates/>
27. <input type="text" name="address"/>
28. </h2>
29. </xsl:template>
30.
31. <xsl:template match="misc">
32. <h2>
33. <xsl:apply-templates/>
34. <input type="text" name="misc"/>
35. </h2>
36. </xsl:template>

Figure 4.23: XSL layout definition for HTML Web form

Figure 4.24: Screenshot of simple HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 74

1. <xsl:template match=“page“>
2. <html><head> <title> Page </title> </head> <body>
3. <form action="/collector" method="post">
4. <xsl:apply-templates/>
5. <input type="hidden" name="ui" value="@myxml:nextGroup"/>
6. <input type="submit"/>
7. </form>
8. </body></html>
9. </xsl:template>
10.
11. <xsl:template match="main">
12. @myxml:group{
13. <xsl:apply-templates select="name"/>
14. <xsl:apply-templates select="age"/>
15. <input type="hidden" name="target" value="/show"/>
16. }@myxml:group
17.
18. @myxml:group
19. <xsl:apply-templates select="address"/>
20. <xsl:apply-templates select="misc"/>
21. <input type="hidden" name="colstat" value="true"/>
22. }@myxml:group
23. </xsl:template>
24.
25. <xsl:template match="name">
26. <h2>
27. <xsl:apply-templates/>
28. <input type="text" name="name"/>
29. </h2>
30. </xsl:template>
31.
32. <xsl:template match="age">
33. <h2>
34. <xsl:apply-templates/>
35. <input type="text" name="age"/>
36. </h2>
37. </xsl:template>
38.
39. <xsl:template match="address">
40. <h2>
41. <xsl:apply-templates/>
42. <input type="text" name="address"/>
43. </h2>
44. </xsl:template>
45.
46. <xsl:template match="misc">
47. <h2>
48. <xsl:apply-templates/>
49. <input type="text" name="misc"/>
50. </h2>
51. </xsl:template>

Figure 4.25: XSL layout definition for the partitioned HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 75

In the XSL template for main (see lines 11-23), two groups have been defined with

@myxml:group. The name and age input fields are in the first group and the address and

misc input fields are in the second (see lines 12-16 and 18-22).

There is a hidden input named target in the first group (see line 15). This is a special

parameter that is passed to the process partitioning processor and that identifies the target

URL for this collection session. In the case of the example, this is the URL /show. The

process partitioning processor, hence, knows that it has to invoke this URL once it has col-

lected all parameters from both groups. The colstat hidden input in the second group (see

line 21) signals the process partitioning processor that it can invoke the target URL after it

has received the results of the second group. It indicates that there are no more groups and

input parameters in the page.

Figure 4.26: Screenshot of the partitioned HTML Web form – First group

Figure 4.27: Screenshot of the partitioned HTML Web form – Second group

Figures 4.26 and 4.27 depict screenshots of the partitioned HTML Web forms as seen on

a browser. Once the information in the first group has been submitted (i.e., first page), the

second group is displayed (i.e., second page) and the user is prompted for input. Pressing the

submit button in the second group invokes the application logic at the URL /show.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 76

4.11 Device-independent application logic interfacing

The traditional approach to supporting different layouts with the same application logic is

to build conditional (e.g., if/then/else) statements into the code and to present the layout

based on some criteria (e.g., the user chooses a device name from a list). For example, the

following pseudo application logic code:

... do some domain specific task ...

if (device="html") present HTML_LAYOUT

else if (device="wap") present WAP_LAYOUT

... do some domain specific task ...

checks the value of a variable named device and presents the appropriate HTML or WAP

layout.

The disadvantage of this approach is that the application logic has to be modified and

extended for every new device that is being supported. While writing the application code,

the Web developer often needs to know in advance what type of devices will be supported.

She has to try to design and optimize the code so that it can easily be extended: A task that

is not always easy to achieve.

The logic interfacing processor provides a solution to this problem and allows the ap-

plication logic to be reused for arbitrary devices. It acts as a wrapper to the layout/content

and eliminates the need for the application logic to explicitly choose and invoke a MyXML-

generated layout/content class.

4.11.0.1 Calling the logic in three steps

The first step in invoking a MyXML-generated layout/content class in a device-independent

way is to create an instance of the logic interfacing processor.

In the second step, instead of directly instantiating the layout/content class with the pa-

rameters it requires (e.g., as in the MyXML Web service construction example presented in

Section 4.7.4), the parameters are written in an array.

The logic interfacing processor provides a method invoke() that the application logic can

use to invoke layout/content classes. In the third step, this method is used to present the

output of the appropriate device-specific layout/content class.

The invoke() method has the following signature (i.e., in a Java implementation):

public void invoke(String name, Object array[]);

The method accepts two parameters: a string containing the name of the layout/content class

to be invoked and an Object array that the application logic uses to pass the parameters that

the layout/content class requires.

The logic interfacing processor uses a simple trick to enable a single invoke() method

in the application logic to work for arbitrary layout/content classes: A class naming con-

vention is used to identify layout/content classes that belong to the same page and this

enables the logic interfacing processor to automatically instantiate and invoke the appro-

priate layout/content class. The default device family layout/content class name for a page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 77

1. Output output = new Output(new
2. CheckoutRequestWrapper(request), response);
3. Object[] params = new Object[20];
4.
5. params[0] = cart.getTotalNumberOfTickets();
6. params[1] = cart.getMinimumPrice();
7. params[2] = cart.getMaximumPrice();
8. params[3] = "";
9. params[4] = "";
10. params[5] = "";
11. params[6] = "";
12. params[7] = "";
13. params[8] = "";
14. params[9] = "";
15. params[10] = "";
16. params[11] = "";
17. params[12] = cart.getEventName();
18. params[13] = cart.getEventLocation();;
19. params[14] = cart.getEventDate();
20. params[15] = cart.getEventTime();
21. params[16] = cart.getNumberOfTickets();
22. params[17] = cart.getCategoryName();
23. params[18] = cart.getCategoryInfo();
24. params[19] = creditCards;
25. output.invoke("Checkout",params);

Figure 4.28: Invoking the Checkout layout/content class from the application logic

1. public Checkout(String totalNumberOfTickets,String minimumPrice,
2. String maximumPrice,String errorMessage,String name,String address,
3. String phonePrivate,String phoneWork,String email,String comments,
4. String cardNumber,String validThru,String event_name[],
5. String event_location[],String event_date[],String event_time[],
6. String number_of_tickets[][],String category_name[][],
7. String category_info[][],String creditCard[]) {
8. this.totalNumberOfTickets=totalNumberOfTickets;
9. this.minimumPrice=minimumPrice;
10. this.maximumPrice=maximumPrice;
11. this.errorMessage=errorMessage;
12. this.name=name;
13. this.address=address;
14. this.phonePrivate=phonePrivate;
15. this.phoneWork=phoneWork;
16. this.email=email;
17. this.comments=comments;
18. this.cardNumber=cardNumber;
19. this.validThru=validThru;
20. this.event_name=event_name;
21. this.event_location=event_location;
22. this.event_date=event_date;
23. this.event_time=event_time;
24. this.number_of_tickets=number_of_tickets;
25. this.category_name=category_name;
26. this.category_info=category_info;
27. this.creditCard=creditCard;
28. }

Figure 4.29: The MyXML-generated Checkout layout/content class

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 78

is taken as the base identifier and device names are apprehended to this identifier for all

other device-specific layout/content classes. For example, if the name of the layout/content

class is homepage for the default device family, for the PDA layout/content class this would

be homepagepda (i.e., device name is “pda”), for the WAP layout/content class this would

be homepagewap (i.e., device name is “wap”) and so on. A CGI parameter called device

signals the logic interfacing processor the name of the device the application logic is being

invoked for. For example, if the user is visiting the home page that is available at the URL

/homepage, calling the URL as /homepage?device=pda would make the logic interfacing

processor invoke the PDA layout/content class homepagepda. The component would add

the “pda” device name to the default family layout/content class name (i.e., homepage) and

instantiate that class with the parameters.

The advantage of this simple approach is that the application logic is device-independent:

It can be used for many devices as long as the developer keeps to simple naming conventions

that the logic interfacing processor can correctly interpret.

4.11.0.2 A simple example

Figure 4.28 depicts a part of the Java application logic from an e-commerce Web application.

First, an instance of the logic interfacing processor is created (a Java implementation called

Output in this case – see lines 1-2). Then, a Java Object array is created that accepts 20

parameters (see lines 3-24). Finally, the layout/content class is invoked using its class name

(i.e., Checkout in this case) and the parameters it requires (see line 25). Figure 4.29 depicts

the constructor of the Checkout layout/content class.

Suppose an alternative PDA layout has to be provided. To cover this requirement, first, a

PDA layout/content class would be created using the MyXML compiler. Following the lay-

out/content class naming conventions, the device family name would be apprehended to the

name of the default device family layout/content class. The PDA layout/content class, hence,

would be called Checkoutpda. The logic interfacing processor would instantiate and invoke

the appropriate layout/content class based on the name of the device family the application

logic is being invoked for.

4.12 Summary

This chapter introduced a novel conceptual framework for device-independent Web engi-

neering. The Device-Independent Web Engineering (DIWE) framework consists of the

MyXML language, a compiler that can interpret the language, and four basic run-time pro-

cessors that are configured and deployed on the Web server at run-time to provide device-

independence support. These processors are Web services themselves. The framework in-

troduces two novel techniques, page splitting and process partitioning by layout marking,

that allow the Web developer to tune the selected information and the sizes of generated

pages according to the characteristics of a device that is being targeted. The framework also

introduces a novel technique called XSL stylesheet pre-processing that allows the reuse of

existing XSL stylesheets when adding new devices to a Web service.

Chapter 5

The MyXML tool suite: A prototype

implementation

This chapter presents the MyXML tool suite, an implementation of the Device-Independent

Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-

sists of the MyXML compiler, three configurable run-time device-independence components

and a visual Integrated Development Environment (IDE).

5.1 The MyXML tool suite

The MyXML compiler and the MyXMLDesigner IDE are development tools used to con-

struct flexible, XML/XSL-based Web services using the MyXML language. The config-

urable device-independence components in the tool suite are implementations of the device

detection, logic interfacing, page splitting and process partitioning processors discussed in

the previous chapter. These components are configured and deployed on the Web server at

run-time to provide device-independence support.

MyXML Compiler

MyXMLDesigner IDE

Configurable

Device-

Independence

Components

Configuration

Deployment

Figure 5.1: Relations between the tools in the MyXML tool suite

Each tool in the tool suite addresses a specific part of the Device-Independent Web En-

gineering (DIWE) framework. Table 5.1 shows the Web service life cycle phases each tool

in the tool suite supports and Table 5.2 shows the functionality each one provides.

Figure 5.1 depicts the relations between the tools in the suite. MyXMLDesigner is a

visual development environment and a user-friendly graphical front-end to the functionality

79

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 80

Phase/Tool MyXML Compiler

Device-

Independence

Components

MyXMLDesigner

IDE

Design

Implementation

Deployment

X X X

X

X

Maintainence X

Table 5.1: The Web service life cycle phases each tool in the MyXML tool suite supports

Functionality/Tool MyXML Processor

Device-

Independence

Components

MyXMLDesigner

IDE

LCL Separation

(with XML/XSL)

Logic Reuse

XSL Reuse

RDBMS

Integration

User-friendly IDE

Device Detection

Device

Configuration

Device

Management

XML Content and

Layout Generation

Layout Adaptation

X

X

X

X

X

X

X X

X

X

X

Table 5.2: The functionality provided by the tools in the MyXML tool suite

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 81

MyXML Compiler

MyXMLDesigner IDE

XML

XSL
Logic

Device-

Independence

Component

Collection

Application Logic

MyXML

Generated Web

Service

Device-

Independence

Components

Device-Specific

Web Page

Development

Environment

Web Server

(Run-time)

Web Device

(Client)

Deployment

Interactions

Figure 5.2: The MyXML tool suite in Web service construction and operation based on the

DIWE framework

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 82

provided by the tools in the tool suite. Device-independent Web sites can be created and

maintained with MyXMLDesigner and interactive functionality can be constructed.

Based on MyXML language specifications, MyXMLDesigner uses the MyXML com-

piler to generate static content embedded in HTML or XML, or Java source code that pro-

vides interactive functionality.

Although the MyXML compiler and the device-independence components can be con-

figured and deployed manually, the MyXMLDesigner IDE has integrated support for their

automated, user-friendly configuration, deployment and usage.

Figure 5.2 illustrates the role of the MyXML tool suite in Web service construction and

operation based on the DIWE framework discussed in the previous chapter. A typical deve-

lopment environment consists of MyXMLDesigner and the MyXML compiler. The device-

independence components are stored in a repository (i.e., component collection) integrated

into the MyXMLDesigner IDE. The developer creates (or integrates) XML content and XSL

layout definitions. If static layout is being generated, there is no need for application logic.

If dynamic content is being created, however, an application logic (i.e., Java source code) is

created (or integrated) using editors in MyXMLDesigner. The application logic, the gener-

ated layout and source code files, and the configured device-independence components are

automatically compiled, configured and deployed on the Web server.

5.2 The MyXML compiler

The implementation of the MyXML language compiler in the MyXML tool suite is a plug-

gable, stand-alone application. As a part of this dissertation, three versions of the MyXML

compiler have been developed since early 2000: rudimentary prototypes to estimate the fea-

sibility of the tool (e.g., [KK01, KK00]) and the final version that is pluggable into external

applications and that can support arbitrary content types and XML content. This section

focuses on the final version (called MyXML version 1.3 Xenon).

5.2.1 Usage

The MyXML compiler has a command-line interface that can be used to invoke it by hand

or from scripts. It can be started with the syntax:

java myxml.Xenon <MyXML File> <XSL File>

-p <XSL Post Style> <Class/Document Name>

<ConnectURL> <User name> <Password>

<Device Name>

The user provides:

� A MyXML document file

� An XSL stylesheet that defines the layout

� An optional XSL post stylesheet

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 83

� A Java class name for the generated layout/content class or a name for the generated

static content HTML/XML file

� A connection URL, user name and password for the relational database

� A device name for XSL stylesheet pre-processing

The compiler also provides a Java Application Programming Interface (API) to its func-

tionality and can be configured and invoked from inside programs. The MyXMLDesigner

visual IDE uses this API to start the MyXML compiler.

5.2.2 Implementation

Command-line / API

parameters

Read content and

MyXML elements

MyXML Document

Read layout
Device-specific

layout in XSL file

Generate XSL for

device

Apply XSL to

content read

Process MyXML

elements

Are all MyXML

elements static?

Generate

HTML/XML

Content and layout in

HTML/XML

Generate Java

source code

Java source code

encapsulating

content and layout

Yes

No

MyXML

Compiler Documents

Figure 5.3: Flowchart showing the main steps taken by the MyXML compiler

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 84

The flowchart in Figure 5.3 shows the main steps taken by the MyXML compiler during

the processing of MyXML documents and XSL specifications.

The compiler is invoked using either command-line parameters or its Application Pro-

gramming Interface (API). First, the compiler reads the MyXML document it is given. Then,

it reads the XSL layout definition. Based on the device for which the content and layout is

being generated, XSL stylesheet pre-processing is performed and an XSL stylesheet is gen-

erated for the target device.

The generated device-specific XSL stylesheet is applied to the MyXML document and

the elements from the MyXML namespace are parsed and interpreted. If all MyXML el-

ements are static (i.e., do not contain any variables, loops, CGI elements that need to be

instantiated at run-time), an HTML or XML file is generated based on the layout informa-

tion in the XSL definition. If dynamic MyXML elements exist, on the other hand, a Java

source code file (i.e., Java class) is generated that encapsulates the content and the layout.

+generate()

+getDirectory() : String

+loadFile() : String

+main()

+processDevices() : String

+processImports() : String

+setDirectory()

Xenon

XenonLexparser

sym

+getName() : String

Single

+getLevel() : Integer

+getName() : String

Multiple

+addMultiple()

+addSingle()

+addSoapSingle()

+getLastMultiple()

+getMultiples()

+getSingles()

+getSoapSingles()

Variables

+getBooleanData() : Boolean

+getIntData() : Integer

+getStringData() : String

-booleanData : Boolean

-stringData : String

-intData : Integer

LexCurrentData

Generated from parser.cup specification

Generated from XenonLex JLex specification

Figure 5.4: UML class diagram describing the architecture of the MyXML compiler

The MyXML compiler reference implementation has been written in Java (JDK Version

1.2). The compiler first uses the Apache Xalan [Apa01a] XSL processor and the Apache

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 85

Xerces [Apa01b] XML parser to parse MyXML documents (i.e., XML content and MyXML

elements) and to add a layout to them. The resulting documents are then processed by

the JLex lexical analyzer [Ber01] and the JCup code generator [Ani01] and the embedded

MyXML elements are interpreted and resolved.

Figure 5.4 shows the architecture of the MyXML compiler with simplified UML class

diagram. The classes parser (i.e., code generator), sym and XenonLex (i.e., lexical analyzer)

are generated from JLex and JCup lexical analysis and grammar specifications and are used

for content and code generation.

The class Xenon provides a command-line interface and an API to the compiler. The

classes XenonLexCurrentData, Variables, Single and Multiple are used to pass information

from the lexical analyzer to the code generator and to keep track of MyXML variables during

the parsing.

5.3 Configurable device-independence components

There are three components in the MyXML tool suite that provide device-independence

support: The Dispatcher, Output and Collector components. These components are imple-

mentations of the default device-independence run-time processors in the DIWE framework

that were discussed in Chapter 4. The components are configurable and are instantiated and

used at run-time in combination with the static and dynamic Web services generated by the

MyXML compiler based on MyXML language specifications.

Table 5.3 shows the Dispatcher, Output and Collector device-independence components

and lists the functionality each one provides.

Functionality/

Component
Dispatcher Output Collector

Application Logic

Interfacing

Page Splitting X

X

Device Detection X

Process

Partitioning
X

Table 5.3: Table showing the device-independence components and the functionality they

provide

The Dispatcher component is responsible for device-detection and is a Java implemen-

tation of the device detection processor. It can be configured to detect the device a user is

using based on the HTTP request header and respond accordingly.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 86

The configurable Output component provides device-independent application logic inter-

facing support to the services generated by the MyXML compiler and is an implementation

of the logic interfacing processor discussed in the previous chapter. It allows the applica-

tion logic to be written once and used for multiple device-specific MyXML-generated Web

services without any modifications.

The Collector component is one of the most important run-time tools in the MyXML tool

suite. It provides layout adaptation support and is an implementation of the page splitting

and process partitioning processors in the DIWE framework.

5.3.1 The Dispatcher component

The Dispatcher component detects devices by analyzing the User-Agent attribute that is

sent by most clients (i.e., browsers) in the HTTP request header. This attribute provides

information about the client the user is using to access the Web service such as its name and

version number.

By maintaining a list of clients and URLs they should be ”mapped” to (i.e., the appropri-

ate response), the Dispatcher component allows two users on two different devices to access

the same URL, but see two differing pages that have been custom-tailored for the device.

Detecting devices based on the User-Agent attribute is not a new idea. Other systems

and programs have been using this attribute for various purposes (e.g., collecting statistics

on browser usage) since the early days of the Web. One limitation of the approach is that not

all clients may send the User-Agent attribute with HTTP requests. Therefore, the component

allows the configuration of a default action if it cannot detect the client agent.

A second limitation of detecting devices based on the User-Agent HTTP attribute is that

a list of known devices have to be maintained. If the user is using an unknown device that

is not in the list (e.g., a new micro-browser for the Compaq iPAQ PDA), the Dispatcher will

not be able to detect it. Nevertheless, by analyzing the Web access logs, it is possible to

find out what devices users are using to access a particular service. The configuration of the

Dispatcher component, thus, can be adjusted for each service.

5.3.1.1 Configuration grammar

The Dispatcher component provides an XML configuration language. Figure 5.5 depicts the

DTD that defines the configuration grammer of the Dispatcher component.

A typical configuration consists of a list of user agents and a default agent in case there

are no matches (see line 3). Each agent entry is accompanied by a name and a mapping URL

(i.e., �name� and�map to� elements – see lines 5-6 and 12-15). The name entry defines a

string that should be matched to the contents of the User-Agent attribute in the HTTP request

header.

The Dispatcher component can dispatch or redirect requests. Redirecting requests means

that the Dispatcher component forwards the request to another URL via HTTP. Dispatching

requests, on the other hand, means that the Dispatcher component invokes another compo-

nent internally with the parameters it has received. Each agent entry in the configuration

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 87

1. <?xml encoding="UTF-8"?>

2.

3. <!ELEMENT agents ((agent)+,default>

4.

5. <!ELEMENT agent (name,map_to)>

6. <!ATTLIST agent action CDATA #IMPLIED>

7.

8. <!ELEMENT default (target,action)>

9. <!ELEMENT target (#PCDATA)>

10. <!ELEMENT action (#PCDATA)>

11.

12. <!ELEMENT name (#PCDATA)>

13.

14. <!ELEMENT map_to (#PCDATA)>

15. <!ATTLIST map_to static CDATA #IMPLIED>

Figure 5.5: The Dispatcher component configuration DTD

definition accepts an action attribute (see line 6). This attribute defines if the request should

be dispatched or redirected (i.e., its value can be “dispatch” or “redirect”).

The �map to� element accepts an attribute static (see line 15). The attribute signals the

Dispatcher component that the service that is being configured is static. It is assumed per

default that the service being configured is dynamic.

5.3.1.2 A configuration example

Imagine device detection support is needed for a service that is accessible at the URL

http://kirda.com/welcome/. There are users that access the service with traditional desktop

HTML browsers and users that access it using micro-browsers on PDAs.

The goal is that users on PDAs should automatically see the contents in the URL

http://kirda.com/welcome/pda/ and the desktop browser users should see the content at the

URL http://kirda.com/welcome/pc/.

First the Web server has to be configured to divert any requests that come to the URL

http://kirda.com/welcome/ to the Dispatcher component. Web servers offer configuration

facilities with which this is easily done. Then, based on the User-Agent attribute, the Dis-

patcher component has to be configured to dispatch the request to the device-specific URLs

listed above.

Figure 5.6 depicts the XML Dispatcher component configuration for the service. The

action=”dispatch” attributes in the agent entries (see lines 4,9,14) signal to the Dispatcher

component that it should dispatch a request instead of redirecting it. The name and map to

tags in the agent entries define the mapping between the name of a user agent (i.e., device)

and the URL it should be mapped to (e.g., see lines 5-6). In the example, two user agents,

Windows CE and Palm, are mapped to the /welcome/pda URL (see lines 5-6 and 10-11).

PDAs running the Windows CE and Palm operating systems usually send these strings in

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 88

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE agents SYSTEM "agents.dtd">
3. <agents>
4. <agent action="dispatch">
5. <name> Windows CE </name>
6. <map_to> /welcome/pda </map_to>
7. </agent>
8.
9. <agent action=“dispatch”>
10. <name> Palm </name>
11. <map_to> /welcome/pda </map_to>
12. </agent>
13.
14. <agent action="dispatch">
15. <name> Mozilla </name>
16. <map_to> /welcome/pc </map_to>
17. </agent>
18.
19. <default>
20. <map_to> /welcome/pc </map_to>
21. </default>
22. </agents>

Figure 5.6: A Dispatcher configuration for a service

the HTTP requests they make. When the Dispatcher component receives an HTTP request

header User-Agent attribute that contains these strings, it dispatches the request to the URL

designated for the PDA.

In the example, the Dispatcher component detects Mozilla-based browsers and dis-

patches them to the /welcome/pc URL (see lines 14-17). The default rule in this configuration

is to dispatch all requests to the /welcome/pc URL (see lines 19-21).

It is usually not necessary to configure a Dispatcher component for every single page in

a service. The home page, for example, can act as an entry point into the device-specific

pages.

5.3.1.3 Implementation

The Dispatcher component has been implemented as a stand-alone Java servlet and uses the

Apache Xerces XML parser for processing configuration files. It is based on the Java Servlet

API Version 2.3 and has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

The Dispatcher class is instantiated and invoked by the servlet engine (i.e., Web server).

The RequestWrapper class is used in the Java Servlet API Version 2.3 to wrap and mod-

ify/extend an incoming HTTP request. It is usually used in request dispatching. The ParseEr-

rorHandler class is used by the Xerces XML parser to process errors that are encountered

during the parsing.

Figure 5.7 depicts a UML class diagram that describes the architecture of the Dispatcher

component.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 89

+doGet()

+doPost()

+getClassName()

+getDefaultAction()

+getDefaultTarget()

+getManageCookies()

+getMapRelative()

+getRequest()

+getResponse()

+getSessionID()

+init()

+mapActionDescription()

+processAction()

+processRequest()

+setClassName()

+setDefaultAction()

+setDefaultTarget()

+setManageCookies()

+setMapRelative()

+setRequest()

+setResponse()

+setSessionID()

+Dispatcher()

Dispatcher

+error()

+fatalError()

+warning()

ParseErrorHandler

+setParams()

+getParameter() : String

+getParameterNames() : Object

+getParameterValues() : Object

RequestWrapper

Figure 5.7: UML class diagram showing the architecture of the Dispatcher component

5.3.2 The Collector component

The Collector component in the MyXML tool suite is a configurable, stand-alone applica-

tion that provides both the page splitting and process partitioning processor functionality

discussed in the previous chapter. It is responsible for giving out the information partially

over many smaller steps, keeps track of the group and subgroup numbers and can receive

commands on which splits (i.e., layout fragments) to give out. Furthermore, it invokes the

application logic with the input data it has collected when all necessary data has been sub-

mitted.

5.3.2.1 Configuration grammer

The Collector component provides an XML configuration language that allows the Web

developer to define page splitting stepping values and content types for devices. A Web

device requests information from the Web server with a specific content type HTTP attribute.

A WAP phone, for example, signals the Web server with the content type vnd.wap.wml that

it is awaiting a WML page.

Figure 5.8 depicts the DTD that defines the configuration grammer of the Collector com-

ponent.

A typical configuration consists of a list of device names and the corresponding content

type definitions and stepping values. There is also default device definition (see line 3).

The XML definition contains a list of �device� elements with �contentType� and

�steps� elements (see line 5). Each device name is mapped to a content type definition

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 90

1. <?xml encoding="UTF-8"?>

2.

3. <!ELEMENT config ((device)+,default>

4.

5. <!ELEMENT device (name,contentType,steps)>

6.

8. <!ELEMENT default (contentType,steps)>

9.

10. <!ELEMENT contentType (#PCDATA)>

11.

12. <!ELEMENT steps (#PCDATA)>

Figure 5.8: The Collector component configuration DTD

and a stepping value.

5.3.2.2 A configuration example

1. <?xml version="1.0" ?>
2. <config>
3.
4. <device>
5. <name> pda </name>
6. <contentType> text/html </contentType>
7. <steps> 3 </steps>
9 </device>
10. <device>
11. <name> wap </name>
12. <contentType> text/vnd.wap.wml </contentType>
13. <steps> 3 </steps>
15. </device>
16. <default>
17. <contentType> text/html </contentType>
18. <steps> </steps>
19. </default>
20. </config>

Figure 5.9: A typical XML Collector component configuration

Figure 5.9 shows the Collector component configuration file for a Web service. The

content type for the default device family is HTML (i.e., text/html, see line 17) and a stepping

value is not given (i.e., no page splitting or process partitioning is required).

Two other devices, PDAs and WAP phones, are also supported. The content type defini-

tion for PDA devices is HTML (i.e., text/html, see line 6) and WML for WAP phones (i.e.,

vnd.wap.wml, see line 12). Both devices use a stepping value of 3.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 91

5.3.2.3 Implementation

The Collector component has been implemented as a stand-alone Java servlet. It is uses the

request dispatching and session management feature of the Java Servlet API Version 2.3.

The component has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

Figure 5.10 shows a UML class diagram describing the architecture of the Collector

component. The class Collector processes the result stream that the calling component passes

to it. In a typical setting, the Dispatcher component instantiates and invokes this main class.

The class CollectorStore is used to keep track of group and subgroup numbers and the target

URLs for process partitioning. The class ParameterStore is used to keep track of all CGI

parameters that the Collector component receives so that they can be forwarded to the target

URL when the collection is finished.

+dispatchToTargetServlet()

+doGet()

+doPost()

+getCollectorStore()
+getRequest()

+getReponse()

+init()

+processRequest()

+setCollectorStore()

+setRequest()

+setResponse()

+Collector()

Collector

+getContentType() : String

+getCurrentUserInterfaceNumber() : Integer

+getNextSubGroupNumber() : Integer

+getNextUserInterfaceNumber() : Integer

+getParameter() : String

+getParameters() : Object

+getPreviousSubGroupNumber() : Integer

+getPreviousUserInterfaceNumber() : Integer

+getRequest() : Object

+getSubGroupNumber() : Integer

+getSubGroupSteps() : Integer

+getTarget() : String

+getUserInterface() : String

+incSubGroupNumber()

+init()

+setContentType()

+setParameters()

+setRequest()

+setSubGroupNumber()

+setSubGroupSteps()

+setTarget()

+setUserInterface()

+CollectorStore()

CollectorStore

+getParameterName() : String

+getParameterValue() : String

+setParameterName()

+setParameterValue()

+ParameterStore()

ParameterStore

Figure 5.10: UML class diagram describing the architecture of the Collector Component

5.3.3 The Output component

The Output component in the MyXML tool suite is a stand-alone application that provides

the functionality of the logic interfacing processor in the DIWE framework. Just like the

other two device-independence components, it can be configured to adjust its behavior.

5.3.3.1 Configuration grammer

The Output component provides an XML configuration language that allows the Web de-

veloper to specify how the component should deal with the output that it receives from the

layout/content classes. Figure 5.11 depicts the DTD that defines the configuration grammer

of the Output component.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 92

1. <?xml encoding="UTF-8"?>

2.

3. <!ELEMENT config ((device)+,default>

4.

5. <!ELEMENT device (name,processor)>

6.

7. <!ELEMENT default (#PCDATA)>

Figure 5.11: The Output component configuration DTD

A typical configuration consists of a list of device names and the appropriate processor

that the Output component should invoke with its output. Usually, the Output component

will invoke the Collector component with an output stream that should be processed for

page splitting and process partitioning. However, the configuration mechanism of the Out-

put component provides flexibility and allows other processors to be invoked as well. For

example, an output stream for a device could be sent to a specific Java servlet developed by

the Web developer for creating and saving PDF files.

Figure 5.11 shows the Output component configuration DTD. The XML definition con-

tains a list of �device� elements with �name� and �processor� elements (see line 5).

Each device name is mapped to a processor available at a specific URL. Furthermore, a de-

fault processor is also given for the default device family using the �default� element (see

lines 3 and 7).

5.3.3.2 A configuration example

1. <?xml version="1.0" ?>
2. <config>
3.
4. <device>
5. <name> pda </name>
6. <processor> /collector </processor>
7 </device>
8. <device>
9. <name> wap </name>
10. <processor> /collector </processor>
11. </device>
12. <device>
13. <name> pdf </name>
14. <processor> /pdfgenerator </processor>
15. </device>
16. <default>
17. /collector
18. </default>
19. </config>

Figure 5.12: A typical XML Output component configuration

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 93

Figure 5.12 shows the Output component configuration file for a Web service. The pro-

cessor for the default device family is the Collector component available at the URL /col-

lector (see lines 16-18). The device families pda and wap have been configured to use the

Collector component as well (see lines 4-7 and 8-11). The device family pdf has been config-

ured in this case to use a processor available at the URL /pdfgenerator. The Web developer

has written this processor herself.

5.3.3.3 Implementation

The Output component has been implemented as a simple Java class and uses the Apache

Xerces XML parser for processing configuration files. It uses the Reflection mechanism of

Java to create instances of layout/content classes from their class names.

Figure 5.13 shows the UML class diagram of the Output component. The application

logic creates an instance of the Output Java class. Errors in the configuration files are pro-

cessed with the ParseErrorHandler class.

+invoke()

+init()

+Output()()

Output

+error()

+fatalError()

+warning()

ParseErrorHandler

Figure 5.13: UML class diagram of the Output component

5.4 MyXMLDesigner

A user-friendly visual development environment is important for device-independent Web

engineering because of the increased complexity of Web sites that are built with XML and

XSL. The Web site planning, organization and maintenance overhead may increase signif-

icantly with the use of XML and XSL technologies [KKJK01]. Web sites may become

even more complex when application logic separation support is also provided and separate

layouts have to be managed for different Web devices. The MyXMLDesigner visual de-

velopment environment attacks this problem and aims to ease device-independent Web site

development and maintenance.

Compared to other visual Web site development tools and environments, one of MyXML-

Designer’s distinguishing features is its editing support for the separation of layout, content

and logic during the implementation. Furthermore, MyXMLDesigner is one of the few visual

development environments that aims to support the construction and maintenance of device-

independent Web sites. It provides a user-friendly interface to the MyXML compiler and the

device-independence components in the MyXML tool suite.

MyXMLDesigner provides the following functionality to Web developers:

� Customizable, XML-based menus for layout, content and logic separation, and page

splitting and process partitioning support.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 94

� Configuration mechanisms that allow the definition and management of devices and

the configuration of the Dispatcher, Collector and Output device-independence com-

ponents.

� User-friendly code editing facilities with syntax highlighting for MyXML, XML, XSL

and Java documents.

� Creation, organization and management of Web projects and project files.

� Visual definition and management of Web pages that support multiple layouts.

� Generation, deployment and compilation of static and dynamic content (using the

MyXML compiler).

5.4.1 Overview of the IDE

Figure 5.14: The MyXMLDesigner visual Integrated Development Environment (IDE)

The MyXMLDesigner IDE contains of a desktop that is able to display multiple docu-

ments. Figure 5.14 presents a screenshot of the application. The MyXML, Layout and Logic

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 95

menu items in the main menu are customizable by the user. To add and manage devices,

the user chooses the Devices menu item. The Project menu contains items that allow the

generation of pages, compilation of sources, managing of projects and configuration settings

(e.g., setting the Java CLASSPATH Environment).

A message pane is embedded into the bottom of the desktop pane that displays system

messages. In the screenshot, for example, the messages indicate that the user (i.e., Web

developer) has processed and generated pages for the project using the MyXML compiler.

The project view on the left side of the desktop supports two views: the project view and

the file view: The project view provides a collapsible tree view of the MyXML documents

and XSL layout definitions in the project, the pages in the Web site and the devices each

page supports. The file view provides a collapsible tree view of the files in the project and

their physical locations.

By clicking on the nodes of the collapsible tree, page properties can be displayed, new

pages can be created by visually combining MyXML documents and XSL definitions, and

the contents of the files in a project can be opened as documents in the desktop. In the

screenshot, for example, an XSL stylesheet layout.xsl has been opened and is being edited.

5.4.2 Support for design

One important feature of MyXMLDesigner is its support for data organization. Data orga-

nization is an old issue in Web site design. A frequent problem is that as the site grows,

content managers lose track of the files and resources in the site. The results are often bro-

ken (or dangling) links, a growing need for extra storage space and files that are “forgotten”

[KKJK01, RM98]. If XML/XSL technologies are deployed, data organization problems may

worsen because the number of involved files and their dependencies increases. In a typical

site, for example, an XML file may reference a DTD, import other XML files and point to a

stylesheet that, yet again, imports other stylesheets. Data organization planning also includes

writing makefiles and scripts that allow the easy compilation of sources and copying of files.

MyXMLDesigner decreases the data organization planning and management effort by

automatically creating content, layout and source code directories and generating makefiles.

Static and dynamic content can then be generated and deployed by calling these makefiles.

Files that are being inserted into the project, as well as new content, layout and application

logic files that are created are automatically stored in the corresponding locations.

In MyXMLDesigner, a project is the highest organizational unit. Web sites and Web

services are treated as projects in MyXMLDesigner. The project in MyXMLDesigner de-

fines the content, layout and application logic resources that are available and the necessary

settings for the development environment such as the location of the deployment directories.

A Web site can constitute a single project in MyXMLDesigner. From a management and

organization point of view, it is more practical to structure Web sites as a combination of

separate projects. For example, a main project can be created that defines the main layout

infrastructure and content in the Web site and other projects can then import and extend this

functionality.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 96

5.4.3 Support for implementation

HTML editors are quite popular in Web development. They often provide syntax highlight-

ing for editing HTML content. One common feature of such editors is their ability to gener-

ate HTML elements: The developer can choose HTML layout elements such as �br� and

�table� from a menu that are then inserted into the HTML document that is being edited.

The customizable development menus in MyXMLDesigner are similar. The menus allow

Web developers to encode layout, content and application logic-specific elements and code

into MyXML, XSL and Java documents.

The advantage of having customizable development menus is that the Web developer

can extend them to contain device and problem-specific code. The layout definition menu

supports HTML, WML and MyXML layout code by default, but the Web developer, for

example, can add VoiceXML elements to it simply by extending the XML menu definition.

Contrary to other Web site construction tools that intermix the layout, content and appli-

cation logic information, MyXMLDesigner guides the Web development during the imple-

mentation and supports the layout, content and logic separation by enabling and disabling

menu items. For example, when the Web developer is editing an XSL layout file, menu ele-

ments from the MyXML Namespace are disabled and cannot be automatically inserted into

the document.

In real-world projects, it is sometimes necessary to mix layout and content to some de-

gree (e.g., when embedding links). The separation mechanism, does not prevent the Web

developer in inserting elements manually. It merely encourages the separation and provides

some guidance.

MyXMLDesigner provides syntax highlighting and editing support for pure text, XML,

XSL, MyXML and Java code files. By displaying the file contents in a combination of colors,

the Web developer can distinguish between MyXML, general XML and XSL elements and

identify the layout, content and logic during the development.

5.4.4 Support for configuration and deployment

Figure 5.15 shows a screenshot of MyXMLDesigner’s device configuration dialogs. MyXML-

Designer provides a graphical user interface for the configuration of the Dispacher, Collec-

tor and Output device-independence components. Device families and their properties can

be easily configured and managed without the need to edit the XML configuration files by

hand. In the screenshot, for example, the Web service (the Vienna International Festival e-

commerce component in this case) has been configured to support 5 device families: PDAs

(device name pda), PDF generation (device name fop), speech-recognition interface using

VoiceXML (device name voice) and WAP access (device name wap).

In the screenshot, the properties of WAP devices are currently being edited. The splitting

step has been set to 3 and the Collector component available at the URL /collector has been

selected as the processor for the device.

Whenever a Web site is generated, MyXMLDesigner automatically instantiates, con-

figures and deploys the device-independence components on the Web server based on the

project settings.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 97

Figure 5.15: Configuring general device properties

5.4.5 Support for Web page creation and maintenance

Compared to other visual Web tools, one of the main distinguishing features of MyXMLDe-

signer is its support for device-independent Web page creation and management. The Web

developer can add device-specific layouts to pages and multi-device support is part of the

page creation and management process.

MyXMLDesigner provides visual mechanisms for:

� Listing the pages that constitute a service or a site (i.e., site overview).

� Displaying information about each device a page supports.

� Grouping of pages to ease organization and management.

� Displaying which MyXML documents and XSL stylesheets each page uses.

A page is created with a dialog that allows the Web developer to enter descriptive in-

formation about the page such as its name and purpose. The user is then presented a page

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 98

property dialog that displays the MyXML documents and layout stylesheets in the project.

The minimum setting needed to create a page is to choose a MyXML document and a layout

stylesheet for the default device family.

The developer can later choose a page and add arbitrary numbers of devices to it by

simply specifying the stylesheet in the project that applies the suitable layout for the device

(i.e., either a new stylesheet or an existing one that uses XSL stylesheet pre-processing).

The devices each page supports are listed in a collapsible tree in the project view. In the

screenshot in Figure 5.15, for example, the project panel contains a page ListOfEvents that

supports the PDA, WAP and HTML device families. By expanding each device node in the

tree, the layout components that they support become visible.

5.4.6 Architecture and implementation

MyXMLDesigner has been implemented in Java and uses the Swing Graphical User Inter-

face (GUI) classes. It accesses and uses the MyXML compiler using the processor’s API.

The device-independence components are stored and managed in a repository on the local

file system.

MyXMLDesigner generates XML makefiles that can be processed by the Apache Jakarta

Ant [ant02] tool. Furthermore, it uses the Ant libraries to compile Java sources generated by

the MyXML compiler.

MyXMLDesigner

MainFrame

Notepad

JakartaAnt

JakartaAntBuilder
ComponentCollection

MyXML

Processor

Jakarta Ant

Figure 5.16: Simplified UML class diagram describing the architecture of MyXMLDesigner

Figure 5.16 shows a simplified UML class diagram describing the architecture of the

MyXMLDesigner IDE. The MyXMLDesigner class is the main class of the application and

creates the desktop with the MainFrame class. MyXML, XML and Java documents are

opened in the desktop using the Notepad class. The device-independence components are

stored and accessed using the ComponentCollection class. The IDE imports the MyXML

compiler and Jakarta Ant packages. The MyXML compiler is directly accessed using its

API in the Xenon class (see Section 5.2). The Jakarta Ant libraries are accessed using the

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 99

JakartaAnt class (for makefile generation) and the JakartaAntBuilder (for source code com-

pilation).

5.5 Summary

This chapter presented the MyXML tool suite, an implementation of the Device-Independent

Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-

sists of the MyXML compiler, three configurable run-time device-independence components

and a visual Integrated Development Environment (IDE). The set of tools in the suite provide

support for the design, implementation, deployment and maintenance of device-independent

Web sites.

Chapter 6

Case Study: VIF e-Commerce Web

service

The two previous chapters discussed the conceptual details of the Device-Independent Web

Engineering (DIWE) framework and presented the technical details of its prototype imple-

mentation; the MyXML tool suite.

To evaluate the DIWE framework and its concepts of LCL separation, page splitting,

process partitioning and XSL pre-processing, the MyXML tool suite was used to design,

implement and extend a device-independent version of the online ticket booking and ordering

Web service of the Vienna International Festival (VIF) Web site.

The Web service supports a default full-fledged HTML layout for traditional Web

browsers on medium to large displays, a simpler HTML layout for PDA micro-browsers

and small displays, and a WAP-layout for WAP-enabled mobile phones. Furthermore, after

the user has completed an order, she has the possibility of downloading the receipt as a PDF

file. The PDF information is generated dynamically and is treated as an additional device

layout that the developer can add to an existing service.

The case-study Web service demonstrates that the devices a Web service will have to

support in the near future might not only have varying display sizes and technical capabilities,

but may also use different Web formats (e.g., WML for WAP, XSL:FOP for PDF, etc.). It

shows that devices supported by a Web service do not necessarily have to be mobile or

computing devices (e.g., PDF file generation).

The next sections give an overview of the Vienna International Festival (VIF) Web site,

the functionality of the VIF e-commerce Web service and the device-independent implemen-

tation of the service with the MyXML tool suite.

6.1 The Vienna International Festival (VIF) Web site

The Vienna International Festival (Wiener Festwochen) is the major cultural event in Vienna.

Visitors from around the globe come to Vienna during the festival. The festivities take place

in various famous theater locations and concert halls. The annual festival, which usually lasts

five weeks, presents operas, plays, lectures, concerts, musicals and exhibitions, featuring and

hosting eminent international directors, performers and ensembles.

100

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 101

6.1.1 Service overview

The VIF Web site provides an extensive range of services to the visitors. Event locations,

information on the current programme, an archive on former performances since 1995, on-

line ticket service, as well as maps of major stages and venues are just some of the service

offerings by the site. All of the information and interactive services are designed bilingually,

in English and German, with the potential for extending the service to integrate other lan-

guages.

The number of services offered vary each year. The received user input and collected

site statistics are analyzed annually, and the services offered, including the look-and-feel of

the site, are tuned accordingly. These modifications can be anything from minor changes to

significant transformations with major implications on the provided services.

6.1.2 Main VIF components

The festival programme, the archive system and the ticket reservation service are the main

components of the VIF Web site. Additionally, services are offered that inform the user on

stage highlights, press coverage, site news and some text translations of musicals and stage

performances. The site visitor is able, anytime, to switch between German and English ver-

sions of the offered information.

Figure 6.1: Main VIF Components in 2000

All of the site is indexed and coupled with a search engine. The user can search ex-

tensively in the archive and the current programme for specific locations, performances and

events.

The programme information and the ticket management data are stored in an external

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 102

data source: a relational DBMS. The DBMS is used to manage all performance and event-

related information.

The programme information is very dynamic and changes occur frequently. Online Web

forms enable the content managers to modify the information in the DBMS. The information

stored in the DBMS is retrieved every night and static HTML pages are compiled from it.

Figure 6.1 depicts the various VIF components.

6.2 VIF e-commerce Web service

The VIF e-commerce Web service allows users to browse through cultural events such as

operas and theater performances in the festival, retrieve detailed information about them and

order tickets online.

The application is backed by a MySQL database (version 3.22.32). The layout and look-

and-feel of the e-commerce Web service change every year. The general information struc-

ture and the way it is presented to the user is usually the same.

The graphical look of the site has also shown similarities in the last couple of years.

There is a header on each page that contains logos and a navigation bar that allows the user

to jump to different sections of the site. Sponsor logos are usually placed at the bottom and

sides of pages.

This information is presented to the user over a number of pages: the programme (i.e.,

overview of events), detailed event information, ticket information, the shopping cart and the

order form. The information in the database in the case study is from the 2001 festival.

6.2.1 The programme

The programme page gives an overview of the events in the festival for the specific season.

There are about 30-40 events that are displayed in a clickable list. By clicking on an event,

the user is taken to a page that provides more in-depth information about the event.

The typical HTML implementation of the festival programme displays all of the events

in a single page. The user needs to vertically scroll to get an overview of all the events. This

scrolling is acceptable as the number of events is low.

6.2.2 Detailed event information

In each detailed event page, the user can retrieve information about the event such as its

language, short and long descriptions, dates and times, length, performers, authors and di-

rectors. Typically, some events also provide an introductory image.

After looking at the details of an event, the user can either go back to the programme

overview, or can decide to book tickets for the event.

By clicking on a button (i.e., image) that is designated for ticket reservation, the user is

taken to a page that displays ticket booking information for the event.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 103

6.2.3 Ticket availability, date and price information

The ticket reservation page provides price and booking information about the available tick-

ets for an event.

The page displays a list of dates, times and locations that show where and when the event

is performed. By typing in the number of tickets into a corresponding input field, the user is

able to specify the number of seats she would like to book for a specific performance. Once

she has booked the tickets, her order is placed in a virtual shopping cart.

If the tickets for a specific performance are sold out, the input field for that date is re-

placed by an image that indicates that no more tickets are available.

The number of performances of a single event usually vary. There is often one perfor-

mance per day and events may be performed for up to seven days. The entire information is

displayed on a single page.

There are four different price categories for the tickets: A,B,C,D – A being the most

expensive. The prices per category change from event to event and are listed with the perfor-

mance dates, times and locations.

6.2.4 The shopping cart

Whenever the user books a ticket for an event, she is taken to a page that displays the contents

of her virtual shopping cart.

The user is shown a list of tickets she has booked, the dates, times and locations of the

performances, the prices of the tickets and the total sum she has to pay for the tickets if she

decides to confirm and go ahead with the booking.

At the shopping cart page, the user can choose to go back to the programme page to

browse information about other events and to book more tickets. She can also decide to

complete the order (i.e., check out) by providing the necessary purchase information such as

her name and credit card number.

6.2.5 Completing the order (checking out)

Once the user decides to go ahead with the purchase and buy the tickets she has booked, she

is taken to a page that displays an order form.

The page presents a list of tickets she has booked with the corresponding dates, times

and locations. The total sum that she has to pay for the tickets is displayed.

If there are any errors in the bookings, the user has a final chance to go back and make

modifications. Otherwise, by entering the necessary purchasing information such as her

name, address, credit card number and e-mail address, she confirms the bookings she has

made and the order is sent to the festival organization.

The user is displayed a finishing page that thanks her for the purchase. It serves as a

receipt for the purchase.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 104

6.3 Implementation with the MyXML tool suite

Using the MyXML tool suite, a device-independent version of the VIF e-commerce Web

service was designed and implemented. The constructed e-commerce Web service was ex-

tensible and able to support different devices with the same application logic.

The engineering of the case study covered four phases: Design, implementation, deploy-

ment and maintenance. In all engineering phases of the case study, the MyXMLDesigner

visual IDE was used.

The target development and deployment environment for the case study consisted of the

Java Development Kit (JDK) version 1.2 and the Apache Tomcat servlet engine version 4.0.

MM MYSQL version 1.1b was used as the JDBC driver for the MySQL relational database.

Some extra libraries were also needed for implementing the application logic. The fol-

lowing libraries were used: PerlTools version 1.2.0a, Apache FOP toolkit version 0.20.2,

Apache Xerces XML parser version 1.4.0 and the Apache Xalan XSL processor version

2.2.D6.

6.3.1 Design

The design phase consisted of five stages: device identification, data organization planning,

content definition and XSL stylesheet definition.

6.3.1.1 Device identification

The default device family for the VIF e-commerce Web service was identified as being the

traditional HTML access that the VIF had been supporting since 1995. The default family

was to provide full support to all the functionality.

It was also decided to provide full functionality and service support to PDA devices. The

total provided information, however, would be less. The detailed event pages, for example,

would not present long descriptions of events because of the smaller display sizes. The user

would be able to access all the pages with a PDA and book and purchase tickets online with a

custom-tailored layout. This layout would be a simpler HTML layout that would not contain

as many images and tables as the default family HTML layout.

The objective was to initially provide support for the default and PDA device families

and to add additional devices during the maintenance phase.

6.3.1.2 Data organization planning

MyXMLDesigner provided support for the data organization and planning of the case-study.

A new project was created for the e-commerce Web service and a development directory

structure was created automatically. Build files (i.e., makefiles) were also generated that

enabled command line compilation and generation outside of MyXMLDesigner.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 105

6.3.1.3 Content definition

The content definition identified which MyXML elements would be necessary to select the

content from the relational database and how the XML content should be structured.

Page MyXML Functionality

Programme
<myxml:sql> (<myxml:dbcommand>,

<myxml:dbitem>)

Event details
<myxml:sql> (<myxml:dbcommand>,

<myxml:dbitem>),<myxml:cgi>

Ticket details <myxml:single>,<myxml:multiple>

Shopping cart <myxml:single>,<myxml:multiple>

Order form <myxml:single>,<myxml:multiple>

Receipt <myxml:single>,<myxml:multiple>

Table 6.1: Identification of MyXML dynamic content functionality on each page

Six different types of pages had to be constructed: The programme, event details, ticket

information, shopping cart, order form and a final receipt.

By analyzing the content provided in these pages, some commonalities were identified:

The final page, for example, displayed the tickets the user had ordered and its contents over-

lapped with the contents of the shopping cart page. The order form also displayed the con-

tents of the user’s shopping cart and there was again a commonality with the shopping cart

page.

In the pages that had to be constructed, the content often had to be retrieved from the

database. �myxml:sql� elements were necessary to retrieve the contents from the database

and in some of the pages, there was also a need for�myxml:single� and�myxml:multiple�

elements for dynamic content.

Table 6.1 presents the list of pages in the case study and the MyXML elements that

they use. The programme page uses a �myxml:sql� command to select all the event titles

from the database. The detailed event pages are constructed by passing a CGI database ID

parameter to the service (using �myxml:cgi�) with which the necessary event details are

retrieved (using �myxml:sql� again). Pages such as the shopping cart, on the other hand,

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 106

receive dynamic content from the application logic directly. A �myxml:single� element,

for example, is used that contains the total number of tickets the user has ordered. The total

sum is calculated in the application logic.

The content is structured in four different MyXML documents: Show events, Show event

details, Shopping cart and Ticket information. Two pages, the receipt and the order form,

reuse existing content definitions. The description granularity was kept as high as possible.

Appendix A lists the content definition for the shopping cart and the order form.

6.3.1.4 XSL stylesheet definition

During the XSL stylesheet definition, the default HTML layout was analyzed and common-

alities were identified such as header, footer and navigational constructs. The main aim in

defining the XSL stylesheets was to keep the number of stylesheets needed to generate the

pages as small as possible.

The XSL stylesheets for the pages were defined incrementally: First, stylesheets were

written that generated the common layout elements and that were to be imported by the rest.

Then, XSL stylesheets were built that displayed simple HTML pages (i.e., without icons,

logos, pictures, etc.) that implemented the functionality and that were used for testing.

The XSL stylesheet infrastructure that had been defined was then extended and adapted

to the graphical look of the default HTML layout: Headers, navigational constructs, icons,

images and the correct fonts were added.

Appendix A lists the XSL default device family layout definition for the shopping cart.

6.3.2 Implementation

6.3.2.1 Construction of the pages

The application logic was created traditionally using servlet session management to keep

track of the tickets the user had booked. The logic accessed the database to check for ticket

availability and to build the dynamic content accordingly. Based on the discussion in Chapter

5, it used the Output component to pass the dynamic content to the layout/content code by

using string variables and arrays. Appendix A lists the Java application logic for the shopping

cart servlet.

MyXMLDesigner’s page creation and management functionality was used to construct

pages by choosing MyXML documents and XSL layout files.

Figure 6.2 shows a screenshot of the project pane in MyXMLDesigner for the VIF e-

commerce Web service. Two groups have been defined to organize the pages: Event infor-

mation and Ticket booking. The following pages have been defined: ListOfEvents (i.e., the

programme page), EventDetails (i.e., the detailed event information), TicketDetails (i.e., the

ticket information), ShowCart (i.e., the shopping cart), Checkout (i.e., the order form) and

Receipt (the receipt page).

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 107

Figure 6.2: Screenshot of the project pane for the VIF project

6.3.2.2 Integration of PDA device family

After the default device family pages had been implemented, the aim now was to integrate a

PDA layout that had been identified in the design phase.

Because of the smaller display sizes of PDAs, page splitting and process partitioning

information was integrated into the existing stylesheets. The HTML pages for PDAs had

less images and simpler tables and the selected content also varied. The detailed event page,

for example, presented less information and omitted a long description of the event. PDA

devices were added to the existing pages in MyXMLDesigner as discussed in the previous

chapter.

Figure 6.3: Adding the PDA layout to the Web service

Figure 6.3 presents a screenshot of the project pane for the case study that shows the PDA

and default stylesheets the ListOfEvents page supports. This implementation uses the same

stylesheets for the default and PDA layouts and makes use of XSL stylesheet pre-processing.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 108

6.3.3 Deployment

Device name Content type definition Steps Processor

default text/html none /collector

pda text/html 3 /collector

wap text/vnd.wap.wml 2 /collector

pda text none /fopprocessor

Table 6.2: Device configurations for the VIF case study

Four devices were configured for the service during deployment. Table 6.2 shows the

device configurations for the VIF e-commerce Web service. A stepping value of 3 is used,

for example, for the PDA device family.

The default family service was configured to be accessible via the URL /wf/displayevents.

The Dispatcher component detects the device the user is using (see discussion in the previous

chapter) and dispatches the corresponding URL.

6.3.4 Maintenance

During the maintenance, it was decided that a WAP layout should be added to the e-

commerce service. The WAP layout was to support full access to the service.

Page splitting and process partitioning had to be used again to provide WAP access sup-

port. In contrast to the default and PDA device families, no images were used for the WAP

pages.

The existing service was extended by both adding new device stylesheets to the pages

(where necessary) using MyXMLDesigner, and by extending the existing stylesheets using

stylesheet pre-processing.

During the maintenance phase, it was also decided that the receipt page that the user

sees at the end of a completed order should be downloadable as a PDF file. A PDF device

family was added to the receipt page that generates XSL:FOP commands. The XSL:FOP

information is sent to a FOP processor (i.e., via URL /fopprocessor). The FOP processor

then generates PDF information that is sent to the user’s browser.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 109

6.4 Usage scenarios

This section illustrates the usage of the device-independent VIF e-commerce Web service

with three different devices. Screenshots from the Web service are presented.

6.4.1 Ordering a ticket using a traditional browser

Imagine Dr K is using a common PC browser, the Internet Explorer, and would like book

and purchase a ticket. He is thinking about going to Le Nozze di Figaro when the festival

starts a couple of months later.

He accesses the service and sees the complete list of events in the festival programme.

Figure 6.4 shows the screenshot of the default device layout that Dr K sees.

He clicks on the link for Le Nozze di Figaro and is taken to a page that provides detailed

information about the event. Figure 6.5 presents the screenshot of the default detailed event

information page for Le Nozze di Figaro. Dr. K reads a description of the opera and decides

that he would like to go. He clicks on an image for ticket reservation.

He sees a page that lists performance dates and locations for Le Nozze di Figaro (Figure

6.6). He decides to book and purchase one ticket for the 18th of June. He types in “1” in

the input field for Category A (that may cost between 1800 and 2450 ATS depending on

availability).

When Dr K submits the ticket booking form, he sees a page that shows the contents of his

shopping cart. Figure 6.7 shows a screenshot of his shopping cart. He decides to go ahead

with the booking and clicks an image to complete the order.

He is presented a page that displays the tickets he has reserved and a number of empty

input fields prompting for information such as his name and credit card number (Figure 6.8).

He fills in the information and confirms the order.

He sees a confirmation and receipt page (Figure 6.9). He clicks on a link at the bottom

of the page and downloads his receipt as PDF.

6.4.2 Ordering a ticket using an iPAQ PDA

A few days later, Dr K is attending a meeting with his Compaq iPAQ Windows CE PDA.

During a short break, he decides to book another ticket and accesses the VIF e-commerce

application with his PDA.

He sees a page that fits his PDA display and that uses simple tables and small images for

navigation. Figure 6.10(a) shows a screenshot of the programme page that Dr K sees. By

pressing the previous and next buttons, he is able to see two event titles at a time (i.e., he is

browsing through the page splits on the same page).

He clicks on Intolleranza and sees a new page that displays information about the event.

Figure 6.10(b) shows a screenshot of the PDA Intolleranza information page. He sees that

the event is in German and the music is by Luigi Nono. He has heard of him before and

decides to buy a ticket.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 110

Once Dr K clicks the ticket reservation button, he is presented a number of small pages

with booking information (i.e., the ticket information page splits). He clicks through the

pages by pressing the next button. Figures 6.10(c) and 6.10(d) present screenshots of the

PDA page splits for the ticket availability and information page that Dr K is shown. He

decides to book a ticket for the 15th of May. He enters the amount into the input field and

submits the form.

Dr K is shown the contents of his shopping cart – again, over a number of smaller pages

(i.e., Figure 6.11(a) depicts the first page split).

Dr. K clicks the link to complete the order and sees a final confirmation page that lists

the tickets he is buying (i.e., Figure 6.11(b)). He continues by pressing the next button and

is prompted for input over a number of smaller pages (i.e., page splits) where he enters

information such as his name and address (i.e., Figures 6.11(b), 6.11(c) and 6.11(d)).

Finally, he sees a receipt page that confirms that his order has been successfully sent.

6.4.3 Ordering a ticket using a WAP phone

Dr K is waiting at an airport and is waiting for his flight to Chicago. He will be attending a

conference there. He decides book another ticket for Intolleranza and invite somebody when

he is back. He takes out his WAP phone and accesses the VIF service.

He is able to browse through the festival programme over a number of smaller WAP

pages and sees two events per page (i.e., Figure 6.12(a) shows the first page split). He clicks

on Intolleranza and is displayed a page that provides short information about the event such

as its length and language (i.e., Figure 6.12(b)).

He clicks on ticket reservation and is presented a number of smaller pages that contain

general ticket reservation information (i.e., ticket information page splits in Figures 6.12(c)

and 6.12(d)).

He then chooses the 5th of May again and clicks a link to book a ticket for Category A

(i.e., Figure 6.13(a)).

He is shown his shopping cart over a number of pages (i.e., page splits in Figures 6.13(b),

6.13(c) and 6.13(d)).

He clicks a link to complete the order and is taken to a final confirmation page. He enters

information such as his name and address over a number of smaller pages and confirms the

order (i.e., Figures 6.14(a), 6.14(b) and 6.14(c)).

Finally, he sees a page that confirms that his order has been sent successfully (i.e., Figure

6.14(d)).

6.5 Summary

This chapter presented the case study Vienna International Festival (VIF) Web site. It de-

scribed the functionality of the VIF e-commerce Web service and the device-independent

implementation of the service with the MyXML tool suite.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 111

Figure 6.4: Default HTML programme page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 112

Figure 6.5: Default HTML detailed event information

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 113

Figure 6.6: Default HTML ticket reservation page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 114

Figure 6.7: Default HTML shopping cart

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 115

Figure 6.8: Completing the order (checking out) in the default HTML layout

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 116

Figure 6.9: Default HTML order confirmation

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 117

(a) Programme (first page split) (b) Detailed event information

(c) Ticket reservation (first page split) (d) Ticket reservation (second page

split)

Figure 6.10: Programme, detailed event information and ticket reservation for the PDA de-

vice family (screenshots from an iPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 118

(a) Shopping cart (first page split) (b) Order form (first page split)

(c) Order form (second page split) (d) Order form (third page split)

Figure 6.11: Shopping cart and order form for the PDA device family (screenshots from an

iPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 119

(a) Programme (first page split) (b) Detailed event information

(c) Ticket reservation (first page

split)

(d) Ticket reservation (second

page split)

Figure 6.12: Programme, detailed event information and ticket reservation for the WAP

device family (as seen on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 120

(a) Ticket reservation (third page

split)

(b) Shopping cart (second page

split)

(c) Shopping cart (third page split) (d) Shopping cart (fourth page

split)

Figure 6.13: Part of ticket reservation and shopping cart for the WAP device family (as seen

on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 121

(a) Order form (first page split) (b) Order form (second page split)

(c) Order form (third page split) (d) Final message

Figure 6.14: Order form for the WAP device family (as seen on a WAP emulator)

Chapter 7

Evaluation and Future Work

The device-independent implementation of the VIF case study with the MyXML tool suite

provides access to four different Web devices: traditional HTML browsers, micro browsers

on PDAs, WAP-enabled mobile phones and PDF readers. The case study backs my general

thesis that Web services can effectively be made device-independent if device-independence

support is integrated into the Web service design, implementation and maintenance phases

and that adaptation is not only the key to mobile information access [Sat96b], but to multi-

device access in general.

This chapter analyzes the DIWE framework and the concepts of page splitting, process

partitioning and XSL stylesheet pre-processing in practice. It discusses the advantages and

disadvantages of the concepts and compares the DIWE approach to existing solutions. The

chapter also lays out future work.

7.1 Empirical proof of concepts

This section discusses the difficulty of providing useful empirical data to measure and com-

pare the extensibility and maintainability of Web service engineering approaches. The prob-

lem may become even more complex if device-independence is involved.

7.1.1 Setting up an experiment

To set up controlled experiments to measure the flexibility, extensibility and maintainability

provided by the tools and concepts presented in the dissertation, software metrics are neces-

sary. Some software metrics and methods for metric definition have already been introduced

that can be used to measure qualities such as complexity, productivity and maintainability

(e.g., see [Fen96, vSB99]). The problem, however, is that Web services are not traditional

software: They do not only consist of source code and libraries, but also content, layout files

and a large number of resources such as images.

The following example illustrates the ineffectiveness of using traditional software engi-

neering metrics for Web services.

122

CHAPTER 7. EVALUATION AND FUTURE WORK 123

7.1.2 Example: Measuring readability

If traditional metrics are used, one can show that the readability of the logic code improves

using the DIWE framework: It has been reported that readability of code is an important

factor in determining maintainability.

De Young and Kampen defined (in [YK79]) the readability R of programs as:

R=0.295a-0.499b+0.13c

The variable a is the average normalized length1 of variables, b is the number of lines contain-

ing statements, and c is McCabe’s cyclomatic number2 (see [Fen96]). The authors derived

this formula using regression analysis of data about subjective evaluation of readability. They

discovered that readability worsens as the number of lines in a program increase no matter

how complex it is and how long the variables are. Based on this finding, it can be deduced

that the readability of the logic source code increases when the DIWE framework is used.

This is because the layout is not encoded into the source code and as a result the logic has

less number of lines.

This empirical evidence, however, is not really convincing. Readability might improve

for the application logic source code, but there is no evidence about the readability of XML

and XSL files and other resources that the Web service depends on.

Special metrics are needed to measure the flexibility, extensibility and maintainability

of Web services. The field of Web metrics is young (e.g., [MMC01]) and much work is

still needed. This chapter presents a qualitative analysis of the concepts introduced in this

dissertation.

7.2 Analysis and discussion

This section analyzes the device-independent implementation of the VIF e-commerce Web

service with the DIWE framework (i.e., the MyXML tool suite) and compares it to the tradi-

tional single-device implementations in the past.

7.2.1 Stylesheet complexity and numbers

Using traditional servlet writing techniques, the layout information is often encoded into

the source code. This can be a tedious and error-prone task. The header information that

contained a logo and a navigation bar in a typical servlet-based implementation, for example,

need to be duplicated in all the servlets. Whenever there is a requirements change and the

general layout needs to be adapted, all the duplicated code has to be analyzed and modified.

Although this approach works, the code usually becomes difficult to maintain and reuse

(e.g., for different devices), and may show the typical symptoms of spaghetti code (e.g.,

poor readability).

1Number of characters in a variable
2Defines the complexity of the code

CHAPTER 7. EVALUATION AND FUTURE WORK 124

The usage of stylesheets for defining and generating the layout is criticized sometimes.

The argument is that the effort spent in separating the layout information by using stylesheets

is not less (and sometimes even more) than integrating the layout into the code directly. This

argument is justified to a certain degree. Not separating the layout, however, makes device-

independence support difficult.

In the case study, the use of stylesheets eased the integration, separation and maintenance

of layout information. Commonalities could be grouped together and imported.

Although using stylesheets has advantages, it has disadvantages as well. The following

discussion lists two stylesheet-related problems and presents solutions.

7.2.1.1 Discussion

The DIWE framework allows developers to use a separate stylesheet for each supported

device, but this feature may have a negative and significant effect on maintainability. When

a separate stylesheet is used for each device in a project, the number of XSL stylesheets

needed to implement the service increase proportionally to the number of supported devices.

For a service that supports four devices, for example, each XSL stylesheet is duplicated four

times. Hence, it may become difficult to maintain repeated complex XSL functionality such

as cascading �xsl:when� statements.

XSL stylesheet pre-processing support in the DIWE framework eliminates the problem

of increased number of stylesheets in projects. The stylesheets, however, become more

complex. Each stylesheet usually supports more than one device and good documentation

(i.e., comments in the stylesheets) became a critical factor in reducing the complexity and

readability.

When adding new devices, it is often easier to copy and adapt an XSL stylesheet rather

than integrate a new layout directly into existing stylesheets with XSL pre-processing. This

is because the unnecessary layout code in the stylesheet can be completely deleted – hence,

increasing readability – and the new layout can be incrementally built in.

7.2.1.2 Conclusion

Obviously, a tradeoff is necessary in deciding between using separate stylesheets or stylesheet

pre-processing when adding new devices. The aim is to combine the advantages of both ap-

proaches.

An effective solution is to initially use separate stylesheets by copying and adapting ex-

isting ones. Once the layout has been debugged and is functioning correctly, the layout

is extracted and integrated into the default family stylesheets by using XSL stylesheet pre-

processing.

As a result, the total number of stylesheets does not increase and one can effectively deal

with the increased complexity of using XSL pre-processing when adding new devices.

CHAPTER 7. EVALUATION AND FUTURE WORK 125

7.2.2 Complexity

The traditional, single-device implementation of the VIF e-commerce Web service with

servlets took three days, but more than a week was needed to have a first running device-

independent version. This section discusses the problem of increased design and implemen-

tation complexity of device-independent Web services.

7.2.2.1 Discussion

Obviously, the design and implementation of device-independent Web services is more com-

plex than traditional Web engineering techniques and needs more time. The main reason is

because more steps are involved (e.g., content definition with a sufficient description gran-

ularity) and the separation of layout, content and application logic not only needs more

analysis, but is also more difficult to implement.

XSL requires the programming of the layout by use of templates and XSL commands.

Hence, although the layout becomes more flexible, building and debugging the initial layout

requires a significantly higher effort.

7.2.2.2 Conclusion

The advantages provided by the DIWE framework may not be apparent during the design

and implementation phase, but the extra deployment effort pays off once new devices are

added to the service.

In the case study, although it took longer to create a device-independent version of the

VIF e-commerce Web service, adding new device layouts during maintenance was much

easier than traditional approaches and technologies. For example, once the XSL infrastruc-

ture had been built, both the PDA and WAP layouts were built within one day without any

modifications to the application logic.

The more devices that need to be supported by the Web service, the more the usage of the

DIWE framework pays off. Setting up a service initially is more difficult, but it enables the

construction of custom-tailored services that can meet evolving access requirements (e.g.,

VoiceXML-based speech access in the near future).

7.2.3 Layout adaptation

Figure 7.1 shows the screenshot of the full HTML layout of the VIF programme as seen on

an iPAQ PDA and motivates the usage of the page splitting and process partitioning concepts

in the case study. The user is only able to see a small proportion of the available information

and needs to scroll a lot.

Although the idea of page splitting and process partitioning works, how much effort is

necessary to deploy the techniques? The following discussion evaluates page splitting and

process partitioning in practice.

CHAPTER 7. EVALUATION AND FUTURE WORK 126

Figure 7.1: The full HTML interface of the VIF programme as seen on an iPAQ PDA

7.2.3.1 Discussion

When a PDA layout was being added to the VIF e-commerce Web service in the case study,

groups and subgroups had to be defined in the stylesheets.

The same group and subgroup definitions were used in the stylesheets for supporting

WAP access. Only minor adaptations were necessary. By using different step values (i.e.,

3 for PDA and 2 for WAP),the grouping and subgrouping infrastructure could be reused for

page splitting and process partitioning on two different device families.

Hence, the design of groups and subgroups for device families with similar restrictions

and characteristics is only required once and the design can often be reused.

7.2.3.2 Conclusion

Clearly, splitting and process partitioning imposes an extra design effort on the Web devel-

oper. This effort, however, is acceptable because 1) it is not needed for every device family

2) in most cases, it can be reused (e.g., for mobile devices).

In the case study, for example, four devices are supported and page splitting and process

partitioning is only needed for PDAs and WAP phones. For both devices, grouping and

subgrouping was done once.

7.2.4 Graphical and navigational design

In the usage scenarios presented in the last chapter, Dr K. accesses the VIF service using

different devices. Although the functionality is the same, the ways the interactions are sup-

ported are different. When viewing the shopping cart contents on a PDA, for example, Dr K

is required to press the next button at the bottom of each page to continue, but no such button

exists in the default layout.

CHAPTER 7. EVALUATION AND FUTURE WORK 127

The following discussion analyzes the graphical and navigational design issues involved

in device-independent Web service engineering.

7.2.4.1 Discussion

One difficulty of device-independent Web engineering is that the main navigation and layout

features may not work on some devices. In the case study, for example, the main navigational

information in the default HTML layout was in the header of each page. Putting the naviga-

tional information in the header of the PDA interface, on the other hand, did not make any

sense because of the small display size. Furthermore, using a header was also not possible

on WAP devices.

Hence, the navigation and layout features may not always be portable to other devices.

As a consequence, the graphical design process of device-independent Web services differ

from traditional, single-device Web services and there is a need for a systematic approach.

7.2.4.2 Conclusion

The DIWE framework does not focus on navigation and layout design issues. Its focus is on

the engineering of flexible and extensible Web services that can effectively support different

layouts for different Web devices.

The layout and navigation features of a device-independent Web service often have to

be redesigned for most devices and there is a considerable effort involved. It is important

to consider this effort during the design stage. When more than one layout is involved, the

interactions and the navigational model have to adapted to the device characteristics.

7.2.5 Layout/Content/Logic (LCL) separation

This section discusses LCL separation in device-independent Web engineering.

7.2.5.1 Discussion

Although a full LCL separation has many advantages such as multi-lingual 3 and multi-

device support, a full separation is not always easy to achieve. Application logic separation

can be quite easy, but the main problem is the separation of content and layout. The effort

needed to achieve a full separation of layout and content may not be trivial and there may be

a tendency by Web developers to make quick fixes by intermixing them.

Dealing with hyper-links, for example, often raises the question of where the links be-

long: are they content or layout? It is usually better to treat hyper-links as content because

a link description (i.e., text such as “click here to continue”) is described in a specific lan-

guage. Encoding this link directly into a stylesheet eliminates the possibility of reusing the

stylesheet for multiple languages.

3e.g., Separating the content enables the stylesheets to be reused for supporting content in different lan-

guages

CHAPTER 7. EVALUATION AND FUTURE WORK 128

On the other hand, it is often much easier and faster to encode links directly into a

stylesheet without defining and selecting them as content.

7.2.5.2 Conclusion

Obviously, a tradeoff is necessary in separating layout and content. The aim should be to

achieve a complete separation of layout and content whenever possible, but if there are time

problems, content may be encoded into the stylesheet. It is important, however, to make

corrections later and to continue supporting the separation for easing maintenance and future

extensions.

The process is similar to writing source code and documenting it later. Unfortunately,

the problems with this approach are also similar: Just as there may be a tendency not to

document code although it is written with the intention of documenting later, there may also

be a tendency to ignore the LCL separation goal during maintenance.

7.2.6 Comparison of the DIWE framework to other approaches

This section compares the DIWE framework to the related approaches. Tables 7.1 and 7.2

show the comparison and evaluation of the DIWE framework with the device-independent

Web engineering taxonomy defined in Chapter 3.

Table 7.1 compares the general technical features, the life cycle support and the usability

of each approach. Based on the discussion in Chapter 4, the Deployment phase has also been

inserted into life cycle section in the table.

It can be seen in the table that OOH, IStudio and WebML are the only approaches besides

DIWE that have full life cycle support. Although these approaches cover the Web service

life cycle, only DIWE provides all the technical features that are important for constructing

Web services. WebML, for example, does not have any dynamic content support and OOH

does not support the integration of external databases.

In comparison, Cocoon and Total e-mobile are conceptually platform independent and

provide all important technical features, but do not cover the full Web service life cycle.

When usability is evaluated, DIWE is not easy to learn and requires high developer skills

when compared to the other approaches. A user interface, however, is provided to make its

usage easier.

Table 7.2 compares the standard usage, flexibility and maintainability and device-

independence support of each approach.

Only Cocoon, Total e-mobile and DIWE use layout and content definition standards.

Most of the other approaches at least use one standard for content definition (e.g., XML in

WebML), but the layout is defined in a system-specific, proprietary way.

When the flexibility and maintainability of each approach is evaluated, the table shows

that Cocoon and DIWE are the only approaches that provide a maximum flexibility and main-

tainability because they support the complete layout, content and logic separation (LCL).

The importance of logic reuse has been identified by most of the approaches: SISL,

UIML, iStudio, Cocoon and DIWE all support logic reuse.

CHAPTER 7. EVALUATION AND FUTURE WORK 129

A
p

p
ro

a
c
h

 N
a

m
e

O
O

H
W

e
b

M
L

J
M

L
S

IS
L

U
IM

L
iS

tu
d

io
C

o
c
o

o
n

M
S

 M
D

T
T

o
ta

l e
-

M
o

b
ile

E
a

s
e

 o
f L

e
a

rn
in

g

R
e

q
u

ire
d

D
e

v
e

lo
p

e
r S

k
ills

S
e

rv
ic

e
 C

o
m

p
le

x
ity

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

H
ig

h

M
e

d
iu

m

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

H
ig

h

L
o

w

L
o

w

(h
id

d
e

n
)

M
e

d
iu

m

M
e

d
iu

m

U
n

k
n

o
w

n

V
is

u
a

l In
te

rfa
c
e

Y
e

s
Y

e
s

N
o

N
o

N
o

Y
e

s
N

o
Y

e
s

N
o

Life Cycle SupportUsability

D
e

p
lo

y
m

e
n

t

S
u

p
p

o
rt

Y
e

s
Y

e
s

N
o

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

M
a

in
 O

b
je

c
tiv

e
T

o
 s

u
p

p
o

rt a
ll

W
e

b
 d

e
v

ic
e

s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt

s
p

e
e

c
h

in
te

rfa
c
e

s

T
o

 s
u

p
p

o
rt a

ll
U

s
e

r

In
te

rfa
c
e

s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v
ic

e
s

T
o

 s
u

p
p

o
rt

fle
x
ib

le

s
e

rv
ic

e
s

T
o

 s
u

p
p

o
rt

m
o

b
ile

d
e

v
ic

e
s

T
o

 s
u

p
p

o
rt

m
o

b
ile

d
e

v
ic

e
s

C
o

n
c
e

p
tu

a
lly

P
la

tfo
rm

In
d

e
p

e
n

d
e

n
t

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
N

o
Y

e
s

S
ta

tic
 C

o
n

te
n

t

S
u

p
p

o
rt

E
x

te
rn

a
l D

a
ta

b
a

s
e

In
te

g
ra

tio
n

D
y
n

a
m

ic
 C

o
n

te
n

t

S
u

p
p

o
rt

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

General Technical

Features

Im
p

le
m

e
n

ta
tio

n

S
u

p
p

o
rt

D
e

s
ig

n
 S

u
p

p
o

rt
Y

e
s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

M
a

in
te

n
a

n
c
e

S
u

p
p

o
rt

Y
e

s
Y

e
s

Y
e

s
N

o
N

o
Y

e
s

Y
e

s
N

o
N

o

D
IW

E

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

Y
e

s

Y
e

s

T
o

 s
u

p
p

o
rt a

ll

W
e

b
 d

e
v

ic
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Table 7.1: Comparison of the DIWE framework with other approaches

CHAPTER 7. EVALUATION AND FUTURE WORK 130

Standards
Flexibility and

Maintainability

Device-

Independence

Support

X
M

L
 W

e
b

 F
o

rm
a

ts

O
O

H

Y
e

s

W
e

b
M

L

Y
e

s

J
M

L

Y
e

s

S
IS

L

N
o

U
IM

L

Y
e

s

iS
tu

d
io

Y
e

s

C
o

c
o

o
n

Y
e

s

M
S

 M
D

T

Y
e

s

T
o

ta
l e

-

M
o

b
ile

Y
e

s

D
e

v
ic

e
 D

e
te

c
tio

n
N

o
N

o
N

o
N

o
N

o
N

o
Y

e
s

Y
e

s
Y

e
s

S
ta

n
d

a
rd

 C
o

n
te

n
t

D
e

fin
itio

n
 (e

,g
,,

X
M

L
)

S
ta

n
d

a
rd

 L
a

y
o

u
t

D
e

fin
itio

n
 (e

.g
.,

X
S

L
)

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

L
C

 S
e

p
a

ra
tio

n

L
L

 S
e

p
a

ra
tio

n

L
C

L
 S

e
p

a
ra

tio
n

L
o

g
ic

 R
e

u
s
e

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

Y
e

s

N
o

U
n

k
n

o
w

n

O
v
e

ra
ll S

e
rv

ic
e

F
le

x
ib

ility
M

e
d

iu
m

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

M
e

d
iu

m
H

ig
h

L
o

w
M

e
d

iu
m

O
v
e

ra
ll S

e
rv

ic
e

M
a

in
ta

in
a

b
ility

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

A
p

p
ro

a
c
h

 N
a

m
e

D
IW

E

Y
e

s

Y
e

s

Y
e

s

H
ig

h

H
ig

h

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Table 7.2: Comparison of the DIWE framework with other approaches

CHAPTER 7. EVALUATION AND FUTURE WORK 131

Cocoon, MS MDT, Total e-mobile and DIWE are the only approaches that have full

device-independence support. Although WebML, OOH, JML, UIML and iStudio support

different XML Web formats, they provide no support for device detection.

The tables show that although DIWE is not easier to learn or use than most of the other

approaches, it provides maximum flexibility and maintainability, important technical device-

independence features and full support for the Web service life cycle. Furthermore, it is one

of the only approaches that uses standards for content and layout definition and hence can be

used together with other industrial tools.

7.3 Laying out future work

The DIWE framework supports and enables the engineering of device-independent Web ser-

vices, but there is room for improvement. This section discusses and lays out future work.

7.3.1 Higher level abstractions

One of the difficulties of Web projects is the lack of easy-to-use and easy-to-understand

graphical notations for communicating with the customers. For example, UML has become

a standard in software engineering projects for communicating system requirements and ar-

chitecture, but how does one describe and communicate the structure of a Web site to the cus-

tomers? Existing Web design methodologies (e.g., [ISB95, SR95]) are too low level for Web

managers or customers without a technical background to appreciate and may cause confu-

sion and misunderstanding (i.e., technical terms such as node and entity are often unknown

to customers). Although these methodologies are useful for the developers in designing the

site, they are not as useful during the requirements discussions with the involved parties.

No graphical notations have been proposed that support device-independent Web access.

It would be useful, for example, to able to depict which pages provide which services on

different devices.

There is a need for more work in this area for improving communication with non-

technical users and customers.

7.3.2 UML for visual modeling

In [Con99] Conallen proposed an extension of UML for modeling Web applications. How-

ever, the use of UML in modeling Web applications has not universally been accepted by

Web developers yet. These extensions of UML for the Web domain concentrate on the mod-

eling of the architectures of Web applications and not the information structure for Web

sites. Furthermore, it remains to be seen if UML will be easy to understand by Web man-

agers and customers who may lack technical knowledge and experience in object-oriented

domain modeling.

The UML model that Conallen proposes assumes that the Web service will be HTML-

based. The model, hence, needs to be extended for device-independent Web services.

CHAPTER 7. EVALUATION AND FUTURE WORK 132

7.3.3 Re-engineering for device-independence

An important question that remains to be discussed is how to deal with existing Web ap-

plications. In many cases, it is not feasible to rewrite these applications to meet the new

device-independence requirements.

Not much work exists on the re-engineering of Web applications to make them flexible

and multi-device-aware. The developer in the field often has to deploy ad-hoc techniques

and tools if she is faced with a need to re-engineer Web sites and applications for device-

independent access.

Although some work has been done in re-engineering and analyzing Web sites (e.g.,

[RP00, RT01]), the adaptation of legacy Web applications to make them flexible and multi-

device-enabled has received less attention. [HH01] presents a framework to recover the

architecture of Web applications to gain a better understanding of the underlying system. It

does not deal with the code-adaptation of Web applications, though.

Kienle’s[KM01] states that Web application reverse- engineering is ad-hoc and tradi-

tional reverse-engineering tools are ill-equipped to meet the needs of Web developers.

There is a need for re-engineering approaches and tools that aim to adapt existing Web

services to make them device-independent.

7.4 Summary

This chapter analyzed the DIWE framework and the concepts of page splitting, process par-

titioning and XSL stylesheet pre-processing in practice. It discussed the advantages and dis-

advantages of the concepts, compared the DIWE approach to existing solutions and briefly

discussed future work.

Chapter 8

Conclusion

When the first laptop computers became commercially available, they were quite weak com-

pared to desktop computers. Their displays were small and they had memory limitations.

Many believed that software applications had to be adapted to cope with the technical re-

strictions. They were wrong. Laptops and notebooks have become so powerful in the last

decade that many companies are only issuing notebooks to their employees and are not using

desktop computers anymore. While notebook sales are constantly increasing, desktop sales

are decreasing.

The popularity of computing devices such as PDAs (e.g., the new generation such as the

Compaq iPAQ) and mobile phones (e.g., the Nokia Communicator) have been increasingly

and these devices have been getting more powerful every day. Limitations such as memory

and CPU power will probably become less important in the near future. Although the latest

PDAs are even able to display frames, it is still important to adapt the content for these

devices in order to provide a satisfactory surfing experience for users. Web services in the

near future will not only have to support mobile access, but will also have to deal with other

forms of Web access such as voice interfaces. Hence, Web services will often need to be

device-independent and will have to support different XML Web formats.

My general thesis was that Web services can effectively be made device-independent if

device-independence support is integrated into the Web service design, implementation and

maintenance phases.

Much work has been done on providing mobile access to Web content, but the focus has

mainly been the adaptation of HTML content to make it viewable on mobile devices that

might have memory and screen-size limitations. Only a few attempts have been made to date

to integrate device-independence into the design, implementation and maintenance phases

of Web services.

The dissertation presented an extended model of the traditional Web service life cycle

that takes device-independence support into account and presented the Device-Independent

Web Engineering (DIWE) framework for engineering device-independent Web services. It

introduced the novel concepts of page splitting, process partitioning and XSL stylesheet pre-

processing. The MyXML tool suite is a prototype implementation of the DIWE framework

and consists of the MyXML processor, three configurable run-time device-independence

components and the MyXMLDesigner visual Integrated Development Environment (IDE).

The MyXML tool suite was used in the device-independent implementation of the Vienna

133

CHAPTER 8. CONCLUSION 134

International Festival e-commerce Web service. The service provides Web access to full-

fledged HTML browsers, PDAs and WAP-enabled mobile phones with the same application

logic.

Nielsen predicts in [Nie99] that the Web will eventually suffer a usability meltdown

unless the vast majority of Web sites are improved considerably. He states that the emphasis

has to be placed on quality content and software and not on “dazzle and coolness.” Not only

these factors will determine the future of the Web, but also the development and usage of

device-independent Web engineering techniques and tools.

Appendix A

Sample case study code listings

<?xml version="1.0" ?>

<root xmlns:myxml="http://www.infosys.tuwien.ac.at/myxml/ns">

<pageInformation>

<explanation>

If you have entered all tickets you want into your order list, please click

 "Order". This will connect you with our secure server, where you can

enter all information required for processing your order, such as your address

 and mode of payment.

</explanation>

<explanation2>

Please fill in the missing fields with the required information and press "order" to

complete your purchase.

</explanation2>

</pageInformation>

<ticketinfo>

 <myxml:loop>

<booking>

<event_information>

<event_name>

<myxml:multiple> event_name </myxml:multiple>

</event_name>

<event_date>

<myxml:multiple> event_date </myxml:multiple>

</event_date>

<event_location>

<myxml:multiple> event_location </myxml:multiple>

</event_location>

<event_time>

<myxml:multiple> event_time </myxml:multiple>

</event_time>

</event_information>

MyXML Document for shopping cart

135

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 136

<tickets>

<myxml:loop>

<loop>

<category_info>

<myxml:multiple> category_info </myxml:multiple>

</category_info>

<category_name>

<myxml:multiple> category_name </myxml:multiple>

</category_name>

<number_of_tickets>

<myxml:multiple> number_of_tickets</myxml:multiple>

</number_of_tickets>

</loop>

</myxml:loop>

</tickets>

</booking>

 </myxml:loop>

</ticketinfo>

<summary>

<totalNumberOfTickets>

<myxml:single> totalNumberOfTickets </myxml:single>

</totalNumberOfTickets>

<minimumPrice>

<myxml:single> minimumPrice </myxml:single>

</minimumPrice>

<maximumPrice>

<myxml:single> maximumPrice </myxml:single>

</maximumPrice>

</summary>

<orderform>

<errorMessage> <myxml:single> errorMessage </myxml:single> </errorMessage>

<name> <myxml:single> name </myxml:single> </name>

<address> <myxml:single> address </myxml:single> </address>

<phonePrivate> <myxml:single> phonePrivate </myxml:single> </phonePrivate>

<phoneWork> <myxml:single> phoneWork </myxml:single> </phoneWork>

<email> <myxml:single> email </myxml:single> </email>

<comments> <myxml:single> comments </myxml:single> </comments>

<creditCard>

<myxml:loop>

<creditCardType>

<myxml:multiple> creditCard </myxml:multiple>

</creditCardType>

</myxml:loop>

</creditCard>

<cardNumber> <myxml:single> cardNumber </myxml:single> </cardNumber>

<validThru> <myxml:single> validThru </myxml:single> </validThru>

</orderform>

</root>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 137

XSL stylesheet for shopping cart

<?xml version="1.0" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:myxml="http://

www.infosys.tuwien.ac.at/myxml/ns" version="1.0">

<xsl:import href="/home/ek/eksstuff/xenon/resources/xenon.xsl"/>

<xsl:import href="/home/ek/eksstuff/xenon/resources/well-formed-html.xsl"/>

<xsl:output method="html" indent="yes"/>

<myxml:import name="/home/ek/eksstuff/xenon/case-study-devices/Styles/layout.xsl"/>

<xsl:template match="ticketinfo">

@myxml:device:default{

<tr><td class="hl1" align="left"> Order List </td></tr>

<tr><td>

So far, you have ordered the tickets listed here. You can add to this list by selecting tickets

 for other events from the Vienna Festival's

Programme.

<br clear="none" /><br clear="none" />When ordering tickets,

you will divulge personal information that, however, will be transmitted using a

 secure, state-of-the-art transmission protocol.</td>

</tr>

<tr><td>

<table border="0" cellpadding="2" cellspacing="0">

}@myxml:device

<xsl:apply-templates/>

@myxml:device:default{

</table>

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="booking">

@myxml:device:pda{

@myxml:group{

Shopping cart contents:

<table border="1" cellspacing="0" cellpadding="0">

}@myxml:device

<xsl:apply-templates/>

@myxml:device:pda{

</table>

<table width="400" border="0">

<tr><td align="left">

<img border="0" alt="Show previous

page" src="/images/english/buttons/vorige.gif"/>

</td><td align="right">

<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif"/>

</td></tr>

</table>

}@myxml:group

}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 138

<xsl:template match="event_information">

<xsl:apply-templates select="event_name"/>

<xsl:apply-templates select="event_date"/>

</xsl:template>

<xsl:template match="event_name">

@myxml:device:default{

<tr><td class="hl1" colspan="4">

<xsl:apply-templates/>

<xsl:apply-templates select="../event_location"/>

</td></tr>

}@myxml:device

@myxml:device:pda{

<tr><td>

<xsl:apply-templates/>

<xsl:apply-templates select="../event_location"/>

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="event_location">

(<xsl:apply-templates/>)

</xsl:template>

<xsl:template match="event_date">

@myxml:device:default,pda{

<tr><td>

<xsl:apply-templates/>

<xsl:apply-templates select="../event_time"/>

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="event_time">

,<xsl:apply-templates/>

</xsl:template>

<xsl:template match="tickets">

<xsl:apply-templates/>

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 139

<xsl:template match="loop">

@myxml:device:default{

<tr>

<xsl:apply-templates select="number_of_tickets"/>

<xsl:apply-templates select="category_name"/>

<xsl:apply-templates select="category_info"/>

</tr>

}@myxml:device

@myxml:device:pda{

<tr><td>

<table border="0">

<tr>

<xsl:apply-templates select="number_of_tickets"/>tks.

Category <xsl:apply-templates select="category_name"/>, Prices

<xsl:apply-templates select="category_info"/>

</tr>

</table>

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="category_info">

@myxml:device:default{

<td align="center">

Prices <xsl:apply-templates/> ATS

</td>

}@myxml:device

@myxml:device:pda{

<td>

<xsl:apply-templates/>

</td>

}@myxml:device

</xsl:template>

<xsl:template match="category_name">

@myxml:device:default{

<td align="center">

Category <xsl:apply-templates/>

</td>

}@myxml:device

@myxml:device:pda{

<td>

<xsl:apply-templates/>

</td>

}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 140

<xsl:template match="number_of_tickets">

@myxml:device:default{

<td align="center">

<xsl:apply-templates/>ticket(s)

</td>

}@myxml:device

@myxml:device:pda{

<td>

<xsl:apply-templates/>

</td>

}@myxml:device

</xsl:template>

<xsl:template match="minimumPrice">

@myxml:device:default{

<tr><td>

}@myxml:device

Minimum price: <xsl:apply-templates/>

@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="maximumPrice">

@myxml:device:default{

<tr><td>

}@myxml:device

Maximum price: <xsl:apply-templates/>

@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>

}@myxml:device

</xsl:template>

<xsl:template match="totalNumberOfTickets">

@myxml:device:default{

<tr><td>

}@myxml:device

Number of tickets: <xsl:apply-templates/>

@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>

}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 141

<xsl:template match="summary">

@myxml:device:default{

<xsl:apply-templates/>

<tr><td>

<table border="0" width="460">

<tr><td align="left">

</td>

<td align="right">

</td></tr>

</table>

</td></tr>

}@myxml:device

<!-- %%%%%%%%%%%%%%%%%%% PDA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-->

@myxml:device:pda{

@myxml:group{

<xsl:apply-templates/>

<table width="400" border="0">

<tr><td align="left">

<img border="0" alt="Show previous

page" src="/images/english/buttons/vorige.gif"/>

</td><td align="right">

<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif"/>

</td></tr>

</table>

}@myxml:group

@myxml:group{

 Please choose:

<table width="400" border="0">

<tr><td align="left">

<img border="0" src="/images/english/buttons/

programm.gif"/>

</td><td align="right">

<img border="0" src="/images/english/

buttons/abschliessen.gif"/>

</td></tr>

</table>

}@myxml:group

}@myxml:device

</xsl:template>

<xsl:template match="orderform">

<!-- Ignore -->

</xsl:template>

</xsl:stylesheet>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 142

Application logic for shopping cart

public class ShoppingCart {

 private String totalNumberOfTickets = null;

 private String minimumPrice = null;

 private String maximumPrice = null;

 private String[] event_name = null;

 private String[] event_location = null;

 private String[] event_date = null;

 private String[] event_time = null;

 private String[] termin_id = null;

 private String[][] number_of_tickets = null;

 private String[][] category_name = null;

 private String[][] category_info = null;

 public void init(String totalNumberOfTickets, String minimumPrice, String maximumPrice,

 String[] event_name, String[] event_location, String[] event_date, String[] event_time,

 String[][] number_of_tickets, String[][] category_name, String[][] category_info) {

this.totalNumberOfTickets = totalNumberOfTickets;

this.minimumPrice = minimumPrice;

this.maximumPrice = maximumPrice;

this.event_name = event_name;

this.event_location = event_location;

this.event_date = event_date;

this.event_time = event_time;

this.number_of_tickets = number_of_tickets;

this.category_name = category_name;

this.category_info = category_info;

 }

 public void addEvent(String terminID, String eventName, String eventLocation, String eventDate, String

eventTime) {

if (event_name==null) {

 event_name = new String[1];

 event_location = new String[1];

 event_date = new String[1];

 event_time = new String[1];

 termin_id = new String[1];

 event_name[0] = eventName;

 event_location[0] = eventLocation;

 event_date[0] = eventDate;

 event_time[0] = eventTime;

 termin_id[0] = terminID;

 number_of_tickets = new String[1][];

 category_name = new String[1][];

 category_info = new String[1][];

 return;

}

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 143

else {

 int dimension = event_name.length+1;

 String[][] number_of_tickets2;

 String[][] category_name2;

 String[][] category_info2;

 number_of_tickets2 = new String[dimension][];

 category_name2 = new String[dimension][];

 category_info2 = new String[dimension][];

 for (int i=0;i<event_name.length;i++) {

number_of_tickets2[i] = number_of_tickets[i];

category_name2[i] = category_name[i];

category_info2[i] = category_info[i];

 }

 number_of_tickets = number_of_tickets2;

 category_name = category_name2;

 category_info = category_info2;

}

String[] name = new String[event_name.length+1];

String[] location = new String[event_location.length+1];

String[] date = new String[event_date.length+1];

String[] time = new String[event_time.length+1];

String[] termin = new String[termin_id.length+1];

for (int i=0;i<event_name.length;i++) {

 name[i] = event_name[i];

 location[i] = event_location[i];

 date[i] = event_date[i];

 time[i] = event_time[i];

 termin[i] = termin_id[i];

}

name[event_name.length] = eventName;

location[event_name.length] = eventLocation;

date[event_name.length] = eventDate;

time[event_name.length] = eventTime;

termin[termin_id.length] = terminID;

event_name = name;

event_location = location;

event_date = date;

event_time = time;

termin_id = termin;

 }

 public void addOrder(String numberoftickets, String categoryname, String categoryinfo) {

int eventIndex = event_name.length-1;

String tickets[];

String categories[];

String categoryinfos[];

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 144

if (number_of_tickets[eventIndex]!=null) {

 tickets = new String[number_of_tickets[eventIndex].length+1];

 categories = new String[number_of_tickets[eventIndex].length+1];

 categoryinfos = new String[number_of_tickets[eventIndex].length+1];

 for (int i=0;i<number_of_tickets[eventIndex].length;i++) {

tickets[i] = number_of_tickets[eventIndex][i];

categories[i] = category_name[eventIndex][i];

categoryinfos[i] = category_info[eventIndex][i];

 }

}

else {

 tickets = new String[1];

 categories = new String[1];

 categoryinfos = new String[1];

 tickets[0] = numberoftickets;

 categories[0] = categoryname;

 categoryinfos[0] = categoryinfo;

 number_of_tickets[eventIndex] = tickets;

 category_name[eventIndex] = categories;

 category_info[eventIndex] = categoryinfos;

 return;

}

tickets[number_of_tickets[eventIndex].length] = numberoftickets;

categories[number_of_tickets[eventIndex].length] = categoryname;

categoryinfos[number_of_tickets[eventIndex].length] = categoryinfo;

number_of_tickets[eventIndex] = tickets;

category_name[eventIndex] = categories;

category_info[eventIndex] = categoryinfos;

 }

 public String getTotalNumberOfTickets() {

int total = 0;

for (int i=0;i<event_name.length;i++) {

 for (int t=0;t<number_of_tickets[i].length;t++) {

Integer totalInt = new Integer(number_of_tickets[i][t]);

total = total + totalInt.intValue();

 }

}

totalNumberOfTickets = new Integer(total).toString();

return totalNumberOfTickets;

 }

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 145

 public String getMinimumPrice() {

int total = 0;

for (int i=0;i<event_name.length;i++) {

 for (int t=0;t<category_info[i].length;t++) {

String str = category_info[i][t];

if (str.indexOf("-")==-1) {

 Integer totalInt = new Integer(category_info[i][t]);

 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();

}

else {

 Integer totalInt = new Integer(category_info[i][t].substring(0,category_info[i][t].indexOf("-")));

 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();

}

 }

}

minimumPrice = new Integer(total).toString();

return minimumPrice;

 }

 public String getMaximumPrice() {

int total = 0;

for (int i=0;i<event_name.length;i++) {

 for (int t=0;t<category_info[i].length;t++) {

String str = category_info[i][t];

if (str.indexOf("-")==-1) {

 Integer totalInt = new Integer(category_info[i][t]);

 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();

}

else {

 Integer totalInt = new Integer(category_info[i][t].substring(category_info[i][t].indexOf("-

")+1,category_info[i][t].length()));

 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();

}

 }

}

maximumPrice = new Integer(total).toString();

return maximumPrice;

 }

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 146

 public String[] getEventName() {

return event_name;

 }

 public String[] getEventLocation() {

return event_location;

 }

 public String[] getEventDate() {

return event_date;

 }

 public String[] getEventTime() {

return event_time;

 }

 public String[][] getNumberOfTickets() {

return number_of_tickets;

 }

 public String[][] getCategoryName() {

return category_name;

 }

 public String[][] getCategoryInfo() {

return category_info;

 }

}

Bibliography

[Abr00] Marc Abrams. Device-Independent Authoring with UIML. In W3C

Workshop on Web Device Independent Authoring, Bristol, Englandm,

http://www.harmonia.com/resources/papers/, October 2000.

[AF99] Prathima Agrawal and David Famolari. Mobile computing in next generation

wireless networks. In 3rd international workshop on Discrete algorithms and

methods for mobile computing and communications (DIAL 99), Seattle, WA,

USA, August 1999.

[Alp] Alphaworks. Web Services - http://www.alphaworks.ibm.com/webservices.

[AMM�98a] P. Atzeni, G. Mecca, G. Merialdo, P. Masci, and G. Sindoni. The Araneus

Web-Based Management System. In L.M. Haas and A. Tiwary, editors, Pro-

ceedings of the International Conference Sigmod98, Exhibits Program, Seat-

tle, WA, USA, page 544 546, June 1998.

[AMM98b] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data-

Intensive Web Sites. In I. Ramos H. J. Schek, F. Saltor and G. Alanso, editors,

Proceedings of the International Conference on Extending Database Technol-

ogy, EDBT98, Valencia, Spain, page 436 450, March 1998.

[Ani01] Scott Anian. JCup: CUP Parser Generator for Java -

http://www.cs.princeton.edu/ appel/modern/java/CUP/ , 2001.

[ant02] Apache Jakarta ANT -

http://jakarta.apache.org/ant. Technical report, 2002.

[AP99] Marc Abrams and Constantinos Phanouriou. UIML: An XML Language

for Building Device-Independent User Interfaces. In XML ’99 Conference,

Philadelphia, PA, USA, http://www.harmonia.com/resources/papers/, Decem-

ber 1999.

[Apa01a] Apache. Xalan XSL Processor - http://xml.apache.org/xalan-j , 2001.

[Apa01b] Apache. Xerces XML Parser - http://xml.apache.org/xerces-j , 2001.

[APBW99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, and

Stephen M. Williams. UIML: an appliance-independent XML user interface

147

BIBLIOGRAPHY 148

language. In Proceedings of the 8th International World Wide Web Confer-

ence, Toronto, Canada, volume 31 of Computer Networks, page 1695 1708.

Elsevier Science, 1999.

[Arc01] Tom Archer. Inside C#. Microsoft, 2001.

[BCD�00] Thomas Ball, Christopher Colby, Peter Danielsen, Lalita Jategaonkar Ja-

gadeesan, Radha Jagadeesan, Konstantin Laeufer, Peter Mataga, and Kenneth

Rehor. Sisl: Several interfaces, single logic. International Journal of Speech

Technology, 3:93 108, 2000.

[BCL�94] T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, and A. Secret. The

World-Wide Web. Communications of the ACM, 37(8), August 1994.

[Ber01] Eliot Berk. JLex: A Lexical Analyser Generator for Java-

http://www.cs.princeton.edu/ appel/modern/java/JLex/, 2001.

[BFJT01] George Buchanan, Sarah Farrant, Matt Jones, and Harold Thimbleby. Improv-

ing Mobile Internet Usability. In Proceedings of the 10th International World

Wide Web Conference, Hong Kong, China, May 2001.

[BGP00] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Focused

Web searching with PDAs. In Proceedings of the 9th International World Wide

Web Conference, Amsterdam, Netherlands, May 2000.

[BGP01] Orkut Buyukkokten, Hektor Garcia-Molina, and Andreas Paepcke. Seeing the

Whole in Parts: Text Summarization for Web Browsing on Handheld Devices.

In Proceedings of the 10th International World Wide Web Conference, Hong

Kong, China, May 2001.

[blu02] Hp bluestone home page, http://www.bluestone.com, 2002.

[BMY95] V. Balasubramanian, Bang Min Ma, and Joonhee Yoo. A Systematic Approach

to Designing a WWW Application. Communications of the ACM, 38(8):47–8,

August 1995.

[BN96] Martin Bichler and Stefan Nusser. Modular Design of Complex Web-

Applications with W3DT. In Proceedings of the 5th Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE ’96),

page 328 333. IEEE Comput. Soc. Press., Los Alamitos, CA, USA, 1996.

[BS97] Timothy W. Bickmore and Bill N. Schilit. Digestor: Device-Independent Ac-

cess To The World Wide Web. In Proceedings of the 6th World Wide Web

Conference, Santa Clara, CA, USA, 1997.

[BS98] Robert Barta and Markus W. Schranz. JESSICA – An Object-Oriented Hy-

permedia Publishing Processor. Computer Networks and ISDN Systems, 30(1–

7):281, Apr. 1998.

BIBLIOGRAPHY 149

[BS00a] Robert Barta and Markus Schranz. Syndication with JML. In Proceedings

of the ACM Symposium on Applied Computing, Como. Italy, pages 962–70,

March 2000.

[BS00b] C. Bauer and A. Scharl. Tool-supported Web Development: Rethinking Tra-

ditional Modeling Principles. In Proceedings of the 8th European Conference

on Information Systems, Vienna, Austria, volume 1, pages 282–289. Vienna

University of Econ. and Bus. Adm., 2000.

[CE99] S. Chandra and C.S. Ellis. JPEG Compression metric as a quality aware im-

age transcoding. In Proceedings of the 2nd USENIX Symposium on Internet

Technologies and Systems, page 81 92. USENIX Assoc., Berkeley, CA, USA,

1999.

[CEV99] Surendar Chandra, Carla SChlatter Ellis, and Amin Vahdat. Multimedia Web

Services for Mobile Clients Using Quality Aware Transcoding. In 2nd ACM

International Workshop on Wireless Mobile Multimedia (WoWMoM 99), Seat-

tle, WA, USA, August 1999.

[CEV00] Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Application-Level

Differentiated Multimedia Web Services Using Quality Aware Transcoding.

IEEE Journal on selected areas in communications, 18(12):2544 2565, De-

cember 2000.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language

(WebML): a modeling language for designing Web sites. In Proceedings of

the 9th World Wide Web Conference, Amsterdam, Netherlands, volume 33 of

Computer Networks, page 137 157. Elsevier Science B.V, May 2000.

[CFP99] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-Driven, One-

To-One Web Site Generation for Data-Intensive Applications. In Malcolm P.

Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and

Michael L. Brodie, editors, VLDB’99, Proceedings of 25th International Con-

ference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scot-

land, UK, pages 615–626. Morgan Kaufmann, 1999.

[Coc96] Alistair Cockburn. The Interaction of Social Issues and Software Architecture.

Communications of the ACM, 39(10):40–6, October 1996.

[col] Coldfusion home page, http://www.coldfusion.com.

[Con99] Jim Conallen. Modeling Web Application Architectures with UML. Commu-

nications of the ACM, October 1999.

[cvs] CVS,

http://cellworks.washington.edu/pub/docs/cvs.

[dev] Essential .NET :Component Development with C#. Technical report, Devel-

opmentor.

BIBLIOGRAPHY 150

[DIMG95] Alicia Diaz, Tomas Isakowitz, Vanesa Maiorana, and Gabriel Gilabert. RMC:

A Tool To Design WWW Applications. December 1995.

[DMCS95] D.B.Ingham, M.C.Little, S.J. Caughey, and S.K. Shrivastava. W3Objects:

bringing object-oriented technology to the Web. In Proceedings of the 4th

International World Wide Web Conference, Boston, MA, USA, 1995.

[Eng95] Douglas C. Engelbart. Toward Augmenting the Human Intellect and Boosting

our Collective IQ. Communications of the ACM, 38(8):30–3, August 1995.

[FC96] Mohamed Fayad and Marshall P. Cline. Aspects of Software Adaptability.

Communications of the ACM, 39(10):58–9, October 1996.

[Fen96] Norman E. Fenton. Softare Metrics. Thomson Computer Press, 1996.

[FFKL98] Mary Fernandez, Daniela Florescu, Jaewoo Kang, and Alon Levy. Catching

the Boat with Strudel: Experiences with a Web-Site Management System. In

Proceedings of Sigmod ’98, Seattle, Washington, USA, page 414 425, June

1998.

[FKST00] Thomas Feyer, Odej Kao, Klaus-Dieter Schwebe, and Bernhard Thalheim.

Design of Data-Intensive Web-Based Information Services. In Proceedings of

the First International Conference on Web Information Systems Engineering,

volume 1, page 462 467. IEEE Computer Society, Los Alamitos, CA, USA,

2000.

[FP00] Piero Fraternali and Paolo Paolini. Model-Driven Development of Web Ap-

plications: The Autoweb System. ACM Transactions on Information Systems,

18(4):323 382, 2000.

[Fra97] Larry Francis. Mobile computing - a fact in your future. In 15th Annual Inter-

national Conference on Computer Documentation (SIGDOC 97), Snowbird,

UT, USA, October 1997.

[Fra99] Piero Fraternali. Tools and approaches for developing data-intensive applica-

tions: A survey. ACM Computing Surveys, 31(3):227 263, 1999.

[GCP01] Jaime Gomez, Christina Cachero, and Oscar Pastor. Conceptual Modeling of

Device-Independent Web Applications. IEEE Multimedia, 8(2):26–39, April-

June 2001.

[GGS�99] Martin Gaedke, Hans-W. Gellersen, Albrecht Schmidt, Ulf Stegemueller, and

Wolfgang Kurr. Object-oriented web engineering for large-scale web service

management. In Proceedings of the 32nd Annual Hawaii International Con-

ference on System Sciences. IEEE Computer Society, Los Alamitos, CA, USA,

January 1999.

[GJJL00] Patrice Godefroid, Lalita Jagadeesan, Radha Jagadeesan, and Konstantin

Laeufer. Automated systematic testing for constraint-based interactive ser-

vices. pages 40–50. ACM Press, November 2000.

BIBLIOGRAPHY 151

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-

neering. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Gla01] Steve Glasgow. Enterprise Applications, Electronic Commerce and XML. In

Proceedings of OMG Days, Vienna, Austria. OMG, February 2001.

[GM01] Athula Ginige and San Murugesan. Web Engineering: An Introduction. IEEE

Multimedia, Special Issue on Web Engineering, 8(1):14–18, March 2001.

[Goe98] Karl M. Goeschka. Architectures of Web applications. PhD thesis, 1998.

[GWG97a] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-

tion: An object oriented support system for the web engineering life cycle.

Computer Networks and ISDN Systems, pages 1429–38, April 1997.

[GWG97b] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-

tion: An object oriented support system for the web engineering life cycle.

Computer Netowrks and ISDN Systems, pages 1429–38, April 1997.

[Har99] Elliotte Rusty Harold. XML Bible. IDG Books, 1999.

[HH01] Ahmed Hassan and Richard C. Holt. Towards a better understanding of Web

applications. In Scot Tilley, editor, Proceedings of the 3rd Web Evolution

Workshop, International Conference on Software Maintenance 2001, Flo-

rence, Italy, page 112 116. IEEE Computer Society Press, November 2001.

[HKO�00] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin ichi Hirose, and Sandeep

Singhal. Annotation-based Web content transcoding. In Proceedings of the

9th International World Wide Web Conference, Amsterdam, Netherlands, May

2000.

[HM00] Udo Hahn and Inderjeet Mani. The challenges of automatic summarization.

IEEE Computer, 33(11):29 35, November 2000.

[HS94] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model.

Communications of the ACM, 37(2):30–39, February 1994.

[ICL96] D. B. Ingham, S. J. Caughey, and M.C. Little. Fixing the ”broken

link”problem: the W3Objects approach. In Proceedings of the 5th Interna-

tional World Wide Web Conference, Paris, France, volume 28 of Computer

Networks and ISDN Systems, page 1255 1268. Elsevier Science, 1996.

[ICL97] D. B. Ingham, S. J. Caughey, and M.C. Little. Supporting highly manageable

Web services. In Proceedings of the 6th International World Wide Web Con-

ference, Santa Clara, California, number 29 in Computer Networks and ISDN

Systems, page 1405 1416. Elsevier Science, 1997.

[ISB95] Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. Rmm: A

methodology for structured hypermedia design. Communications of the ACM,

38(8):34–43, August 1995.

BIBLIOGRAPHY 152

[Jaw98] J. Jaworski. Java 1.2 UNLEASHED. Sams Publ., 1998.

[KAK�00] Eija Kaasinen, Matti Aaltonen, Juha Kolari, Suvi Melakoski, and Timo

Laakko. Two approaches to bringing internet services to wap devices. In

9th International World Wide Web Conference, Amsterdam, Netherlands, May

2000.

[KBGP01] Oliver Kaljuvee, Orkut Buyukkokten, Hector Garcia-Molina, and Andreas

Paepcke. Efficient Web Form Entry on PDAs. In Proceedings of the 10th

International World Wide Web Conference, Hong Kong, China, May 2001.

[KJKS01] Engin Kirda, Mehdi Jazayeri, Clemens Kerer, and Markus Schranz. Experi-

ences in Engineering Flexible Web Services. IEEE Multimedia, 8(1):58–65,

April-June January - March 2001.

[KK00] Engin Kirda and Clemens Kerer. MyXML: An XML based template engine

for the generation of flexible Web content. In Proceedings of WEBNET 2000,

San Antonio, Texas, USA, November 2000.

[KK01] Clemens Kerer and Engin Kirda. Layout, Content and Logic Separation in

Web Engineering. In Proceedings of the 9th International World Wide Web

Conference, 3rd Web Engineering Workshop, Amsterdam, Netherlands, May

2000, number 2016 in Lecture Notes in Computer Science, page 135 147.

Springer Verlag, 2001.

[KKJK01] Clemens Kerer, Engin Kirda, Mehdi Jazayeri, and Roman Kurmanowytsch.

Building XML/XSL-Powered Web Sites: An Experience Report. In Proceed-

ings of the 25th International Computer Software and Applications Confer-

ence (COMPSAC), Chicago, IL, USA. IEEE Computer Society Press, October

2001.

[KM01] Holger M. Kienle and Hausi A. Mueller. Leveraging Program Analysis for

Web Site Reverse Engineering. In Scot Tilley, editor, Proceedings of the 3rd

Web Evolution Workshop, International Conference on Software Maintenance

2001, Florence, Italy, page 117 125. IEEE Computer Society Press, November

2001.

[LB96] Songwu Lu and Vaduvur Barghavan. Adaptive resource management algo-

rithms for indoor mobile computing envoironments. In ACM SIGCOMM 96,

Stanford, CA, USA, August 1996.

[Lin01] Sumanth Lingham. UIML for Voice Interfaces. In UIML Europe 2001 Con-

ference, http://www.harmonia.com/resources/papers/, March 2001.

[LS99] Hakon Wium Lie and Janne Saarela. Multipurpose Web Publishing: Using

HTML, XML, and CSS. Communications of the ACM, 42(10), October 1999.

[Luc00] Bruce Lucas. Voicexml for web-based distributed conversational applications.

Communications of the ACM, 43(9):53 57, September 2000.

BIBLIOGRAPHY 153

[Mau96] Hermann Maurer. Hyper-G now Hyperwave, the next generation Web solution.

Addison-Wesley England, 1996.

[MES95] Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Expoliting weak

connectivity for mobile file access. In 15th ACM Symposium on Operating

Systems Principles, Copper Mountain, CO, USA, December 1995.

[MMC01] Emilia Mendes, Nile Mosley, and Steve Counsell. Web Metrics – Estimat-

ing Design and Authoring Effort. IEEE Multimedia, 8(1):50–67, April-June

January - March 2001.

[Nel95] Theodor Holm Nelson. The Heart of Connection: Hypermedia Unified by

Transaction. Communications of the ACM, 38(8):31–3, August 1995.

[Nie99] Jacob Nielsen. User interface directions for the web. Communications of the

ACM, 42, January 1999.

[NKR�02] C. Narayanaswami, N. Kamijoh, M. Raghunath, Inoue T, T. Cipolla, J. San-

ford, E. Schlig, S. Venkiteswaran, D. Guniguntala, V. Kulkarni, and K. Ya-

mazaki. IBM’s Linux watch, the challenge of miniaturization. IEEE Com-

puter, 35(1):33–41, January 2002.

[NN95] Jocelyne Nanard and Marc Nanard. Hypertext design environments and the

hypertext design process. Communications of the ACM, 38(8):49–56, August

1995.

[Pag] Perl Home Page. http://www.perl.com.

[Qui94] Christine A. Quinn. From Grass Roots to Corporate Image - The Maturation of

the Web. In Proceedings of the 2nd International World Wide Web Conference,

Chicago, Illinois, USA, 17-20 October 1994, October 1994.

[RAS00] Rob Howard Richard Anderson, Alex Homer and Dave Sussman. A Preview

of Active Server Pages+. Wrox Press, 2000.

[RM98] Louis Rosenfeld and Peter Morville. Information Architecture for the World

Wide Web. O’Reilly & Associates, February 1998.

[RP00] F. Ricca and P.Tonella. Web site analysis: Structure and evolution. In Proceed-

ings of the International Conference on Software Maintenance 2000, page 76

86. IEEE Computer Society Press, 2000.

[RS01] D. Ralph and C. G. Shephard. Services via mobility portals. BT Technology

Journal, 19(1):88–99, January 2001.

[RSL99] Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. Web Application

Models are more than Conceptual Models, volume 1727 of Lecture Notes in

Computer Science, chapter Proceedings of the World Wide Web and Concep-

tual Modeling ’99 Workshop, ER ’99 Conference, page 239 252. Springer,

Paris, 1999.

BIBLIOGRAPHY 154

[RSS�99] Harish Rawat, Sascha Schumann, Chris Scollo, Jesus M. Castagnetto, and

Deepak T. Valiath. Professional PHP Programming. Wrox Press. Incorporated

ISBN: 1861002963, 1999.

[RT01] F. Ricca and P. Tonella. Understanding and restructuring Web sites with

ReWeb. IEEE Multimedia, 8(2), April-June 2001.

[Sat89] M. Satyanarayanan. Coda: A highly available file system for a distributed

workstation environment. In Proceedings of the Second IEEE Workshop on

Workstation Operating Systems, Pacific Grove, California, USA, September

1989.

[Sat96a] M. Satyanarayanan. Fundamental challenges in mobile computing. In 15th

Annual ACM Symposium on Principles of Distributed Computing, Philadel-

phia, PA, USA, May 1996.

[Sat96b] Mahadev Satyanarayanan. Accessing information on demand at any location:

Mobile information access. IEEE Personal Communications, pages 26–30,

February 1996.

[Sch97] M. W. Schranz. Management process of WWW services: An Experience

Report. In Proceedings of the 9 �� International Conference on Software Engi-

neering and Knowledge Engineering (SEKE ’97),Madrid, Spain, pages 16–23.

Knowledge Systems Institute, June 1997.

[Sch98a] Arno Scharl. Reference Modeling of Commercial Web Information Systems

Using the Extended World Wide Web Design Technique (eW3DT). In Pro-

ceedings of the 31st Hawaii International Conference on System Sciences

(HICSS-31), Hawaii, USA. IEEE Computer Society Press, 1998.

[Sch98b] Markus W. Schranz. World Wide Web Service Engineering – Object Oriented

Hypermedia Publishing. PhD thesis, Distributed Systems Group, Technical

University of Vienna, September 1998.

[Sd98] Daniel Schwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid Pro-

totyping of Hypermedia Applications in the WWW. Technical Report MCC

08/98, Department of Informatics, PUI-Rio, Brasil, 1998.

[Sen00] James A. Senn. The emergence of m-commerce. IEEE Computer, 33(12):148–

51, December 2000.

[She95] Deri Sheppard. An Introduction to Formal Specification with Z and VDM. The

McGraw-Hill International Series in Software Engineering, 1995.

[SHKE01] Andrea H. Skarra, Karrie J. Hanson, Gerald M. Karam, and Jeff Elliott. The

iStudio Environment: An Experience Report. In Proceedings of the XML in

Software Engineering Workshop (XSE 2001), 23rd International Conference

on Software Engineering (ICSE 2001), May 2001.

BIBLIOGRAPHY 155

[SR95] Daniel Schwabe and Gustavo Rossi. The Object-Oriented Hypermedia Design

Model. Communications of the ACM, 38(8):45–6, August 1995.

[SRB96] Daniel Schwabe, Gustavo Rossi, and Simone D.J. Barbosa. Systematic Hy-

permedia Application Design with OOHDM. In Proceedings of the Seventh

ACM Conference on Hypertext, New York, NY, USA, page 116 128, 1996.

[Str95] Norbert A. Streitz. Designing hypermedia: A collaborative activity. Commu-

nications of the ACM, 38(8):70–1, August 1995.

[Sun] Sun. Implementing Services on Demand with the SUN Open Net Environment

– Sun ONE. Technical report, Sun Microsystems.

[TL97] Kenji Takahashi and Eugene Liang. Analysis and Design of web-based In-

formation Systems. In Proceedings of the 6th International World Wide Web

Conference, Santa Clara, CA, USA, 1997.

[tot01] Hp bluestone mobile and wireless computing description,

http://www.bluestone.com, March 2001.

[TYF86] TJ. Teorey, D. Yang, and J. Fry. A logical design methodology for relational

databases using the extended entity-relationship model. ACM Computing Sur-

veys, 18(2):197–222, 1986.

[Var00] Ken Varnum. Information @ your fingertips: porting library services to the

PDA. Online, 24(5):14 17, September - October 2000.

[vSB99] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: A

Practical Guide for Quality Improvement of Software Development. McGraw

Hill, 1999.

[W3C] W3C.

Cascading Style Sheets,

http://www.w3.org/Style/CSS/ . Technical report.

[W3C98a] W3C. Extensible Markup Language (XML) 1.0 -

http://www.w3.org/TR/1998/REC-xml-19980210. Technical report, Feb.

1998.

[W3C98b] W3C.

XML Specification DTD

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm. Technical

report, Sep. 1998.

[W3C00] W3C. eXtensible Stylesheet Language 1.0 -

http://www.w3.org/TR/xsl/. Technical report, Jan. 2000.

[web01] The webml tool site, http://webml.org, 2001.

[YK79] G. E. De Young and G. R. Kampen. Program factors as predictors of pro-

gram readability. In Proceedings of the Computer Software and Applications

Conference (COMSAC), pages 668–673. IEEE Computer Society Press, 1979.

