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Abstract. We propose and discuss a new class of processes, web Markov skeleton
processes (WMSP), arising from the information retrieval on the Web. The framework of
WMSP covers various known classes of processes, and it contains also important new classes
of processes. We explore the definition, the scope and the time homogeneity of WMSPs, and
discuss in detail a new class of processes, mirror semi-Markov processes. In the last section
we briefly review some applications of WMSPs in computing page importance on the Web.

1. Introduction. In this paper we propose and discuss a new class of processes, web
Markov skeleton processes (WMSP), arising from the information retrieval on the Web.

Intuitively, a Markov skeleton process is a stochastic process which contains a Markov
chain as its skeleton. A web Markov skeleton process is a jump process and also a Markov
skeleton process such that, given the information of its skeleton, the time slots between jumps
are conditionally independent to each other. The dynamics of a WMSP can be described as
follows:

X0
Y0−→ X1

Y1−→ · · ·Xn
Yn−→ · · ·

where {Xn, n ≥ 0} is a Markov chain, and {Yn, n ≥ 0} is the set of time slots between
jumps. The length of each Yn may depend on the states {Xn}, but will be independent of other
Yk, k �= n, when the information of {Xn} is known.

The dynamics described above appears in various natural and social sciences, such as
biology, finance, queueing theory, engineering. A direct motivation of investigating such dy-
namics comes from the information retrieval on the Web. The notion of WMSP was recently
invented in [9, 10], in which the authors found that WMSP is a very suitable framework for
modeling the user browsing behavior on the Web. When modeling the user browsing behavior,
the state space E is a collection of web pages, X = {Xn, n ≥ 0} describes the transition be-
havior between pages, which forms a Markov chain with state space E, and Y = {Yn, n ≥ 0}
represents staying times on the pages. The staying time on the current page is a random vari-
able which may depend on the information of the current page and some other pages the user
has visited or will visit, but in general will not depend on the other staying times. The frame-
work of WMSP is very useful for computing web page importance, it provides us a unified
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mathematical instrument applicable to most known algorithms for ranking web pages and
websites, such as PageRank [4, 18, 27], AggregateRank [1, 2, 8], TrustRank [12], Block-level
PageRank [5], PopRank [26], BrowseRank [19, 20, 21], and so on. Moreover, the framework
is essential in designing some new algorithms to handle more complex problems. For ex-
ample, mirror semi-Markov processes, a new class of processes in WMSP family, plays an
essential role in designing MobileRank for computing page importance of the mobile Web
[9, 10]. It is known that the structure of the mobile Web differs a lot from the usual Internet
Web [17].

Theoretically, the framework of WMSP covers various known classes of processes, in-
cluding discrete time Markov chains, time homogeneous continuous time Markov processes
(Q-processes), semi-Markov processes, and others. It contains also important new classes of
processes, such as simple WMSPs, which are of importance in theoretical study, and mirror
semi-Markov processes, which are important in modeling browsing behavior on the mobile
Web. Because of its natural and trackable structure, we expect that in the future there will be
more new classes of processes to be found useful within the framework of WMSP.

In this paper, we explore for the first time the theoretical aspects of WMSP. In the next
section we give a rigorous mathematical definition of WMSP. Along with it we clarify that our
notion of Markov skeleton processes is more general than that which was previously proposed
by Hou et al in [13, 14], because we need to meet the demand of information retrieval on the
Web. In Section 3 we describe the scope of WMSP. Among other things, we include a com-
plete proof that the semi-Markov processes previously discussed in the literature (which we
refer to as classical semi-Markov processes) are special cases of our semi-Markov processes
within the framework of WMSP. Section 4 is devoted to describing the time homogeneity of
WMSPs. The idea employed in this section might be useful elsewhere. In Section 5 we dis-
cuss in detail a new class of processes, mirror semi-Markov processes, which is essential in
modeling the browsing behavior on the mobile Web. In Section 6 we provide two results of
limit distributions, which will be used in computing page importance on the Web. The remark
of Section 7 suggests that the class of simple WMSPs is of importance in theoretical study.
Finally, in Section 8 we briefly review some applications of WMSPs to the web page ranking.
This section might be interesting for those readers who are not familiar with information re-
trieval but who want to know how mathematics can be well used in the study of information
retrieval on the Web.

Before we conclude this introduction, we would like to remark that the study of the
theory of WMSPs is just beginning. Considering the length of this paper, some important
topics, such as the theory of multivariate point process (cf. [16]), martingale methods (cf. [15,
24]), stability and reconstruction problems ([23]), will be discussed in our subsequent papers.
We hope that this paper will stimulate more researches on this important and new class of
stochastic processes.

2. Definition of WMSP. In this section we introduce the notion of web Markov skele-
ton process (WMSP in short). We start with a general definition of Markov skeleton processes.
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Let (Ω,F , P ) be a complete probability space. Let E be a metrizable Lusin space. We
adjoint an extra point ∆ (the cemetery) to E as an isolated point. Write Ẽ for E ∪ {∆} and E

for the Borel sets of Ẽ. We consider a right continuous stochastic process Z = {Zt, t ≥ 0}
with state space E and life time ζ . That is, Zt is a Ẽ valued random variable on Ω for each
t ≥ 0 and Z·(ω) is right continuous for each ω ∈ Ω , ζ is a (0,∞] valued random variable,
Zt(ω) ∈ E for t < ζ(ω), and Zt(ω) = ∆ for t ≥ ζ(ω). Let (Ft )t≥0 be the natural filtration
generated by Z. Namely, (Ft )t≥0 is the minimal right continuous increasing family of sub-
σ -algebras of F such that F0 contains all P -null sets and Zt is Ft measurable for each t .
Then (Ω,F , (Ft ), P ) forms a filtration space, Z is an (Ft ) adapted process and ζ is an (Ft )

stopping time. Recall that a random variable τ : Ω → [0,∞] is called an (Ft ) stopping time
(or simply stopping time) if {τ ≤ t} ∈ Ft for all t ≥ 0. For a stopping time τ , the σ -algebra
prior to τ is defined by Fτ := {A ∈ F ; A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Intuitively, a Markov skeleton process (MSP) is a stochastic process which contains a
Markov chain as its skeleton. We propose the definition of MSP as follows. For notational
convenience, we shall sometimes write Z(t) for Zt .

DEFINITION 2.1. Let Z = {Z(t), t ≥ 0} be a right continuous stochastic process
with state space E and life time ζ . With the above notations, we say that Z is a Markov
skeleton process (MSP in short) if there exists a sequence of stopping times {τn}n≥0 such that
0 = τ0 < τ1 < · · · < τn < τ(n+1) < · · · < ζ , limn→∞ τn = ζ , and {Z(τn)}n≥0 forms a
Markov chain, i.e., for all n ≥ 0,m ≥ 1, and Bk ∈ E , 1 ≤ k ≤ m, it holds that

P(Zτ(n+k)
∈Bk, 1 ≤ k ≤ m | Zτ0, Zτ1, . . . , Zτn)=P(Zτ(n+k)

∈ Bk, 1 ≤ k ≤ m | Zτn) .(1)

{Z(τn)}n≥0 will be referred to as the Markov skeleton or the embedded Markov chain of Z.

We remark that in the literature the notion of Markov skeleton process has been intro-
duced by Hou el al. in [13, 14], and the authors of [13, 14] studied their MSPs intensively. But
the framework of [13, 14] is not applicable to some applications in the research of Internet
information retrieval. Therefore we propose our Definition 2.1 of MSP, which is more general
than the one that proposed in [13, 14]. To simplify the terminology, in this paper we shall call
a Markov skeleton process in the sense of [13, 14] as Hou’s MSP. To compare the two notions,
we restate the definition proposed in [13] as follows.

DEFINITION 2.2 (cf. [13, Definition 1]). Let Z = {Z(t), t ≥ 0} be a right continuous
stochastic process with state space E and life time ζ . With the above notations, we say that Z

is Hou’s Markov skeleton process (Hou’s MSP in short) if there exists a sequence of stopping
times {τn}n≥0 satisfying 0 = τ0 < τ1 < · · · < τn < τ(n+1) < · · · < ζ , limn→∞ τn = ζ , such
that for all n ≥ 0 and all bounded E [0,∞) measurable functions f defined on Ẽ[0,∞), it holds
that

E
[
f

(
Z(τn + ·))∣∣ Fτn

] = E
[
f

(
Z(τn + ·))∣∣ Zτn

]
.(2)

Comparing (1) and (2), it is easy to verify that Hou’s MSP is always a Markov skeleton
process in the sense of Definition 2.1. But the converse is not true. For example, a mirror
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semi-Markov process, which will be discussed in detail in Section 5 below, is a MSP in the
sense of Definition 2.1, but not a Hou’s MSP.

Let Z = {Z(t), t ≥ 0} be a Markov skeleton process. We use the notations Xn = Z(τn),
and Yn = τn+1 − τn, for all n = 0, 1, . . . . Then X = {Xn, n ≥ 0} is a Markov chain
and Y = {Yn, n ≥ 0} is a sequence of positive random variables. Clearly the pair (X, Y ) is
uniquely determined by the MSP Z. Conversely, if

Z(t) = Xn for τn ≤ t < τn+1 , for all n ≥ 0 ,(3)

then Z is also uniquely determined by (X, Y ). We shall say that a Markov skeleton process Z

is a Markov Skeleton Jump Process if it satisfies (3).
Suppose that we are given a Markov chain X = {Xn, n ≥ 0} and a sequence of positive

random variables Y = {Yn, n ≥ 0}. Then a Markov skeleton jump process Z can be uniquely
determined by the following regime:

X0
Y0−→ X1

Y1−→ · · · Xn
Yn−→ · · ·(4)

More precisely, we can define a Markov skeleton jump process Z = {Z(t), t ≥ 0} by the
following procedure.

τ0 = 0 , τn =
n−1∑
k=0

Yk for n ≥ 1 , ζ =
∑
k≥0

Yk .(5)

Z(t) = Xn for τn ≤ t < τn+1 , and Z(t) = ∆ for t ≥ ζ .(6)

In what follows we shall write Z = (X, Y ) if a Markov skeleton jump process Z is
determined by (X, Y ) with the above procedure. We denote by FX the σ -algebra generated
by X = {Xn, n ≥ 0}. We are now in a position to introduce the notion of web Markov
skeleton process, which is the main objective of this paper.

DEFINITION 2.3. Let Z = (X, Y ) be a Markov skeleton jump process described as
above. Z is called a web Markov skeleton process (WMSP in short), if given the σ -algebra
FX , the random variables Yn (n ≥ 0) are conditionally independent to each other.

The notion of WMSP appeared recently in [9, 10]. The authors found that WMSP is a
very suitable framework for modeling the user browsing behavior on the Web, and is a very
useful mathematical tool for computing the web page importance. When modeling the user
browsing behavior, the state space E is a collection of web pages, and the WMSP Z = (X, Y )

models a random walk on E. The random variable Z(t) denotes the current page browsed by
the user at time t . The process X = {Xn, n ≥ 0} describes the transition behavior between
pages, which forms a Markov chain, and the sequence Y = {Yn, n ≥ 0} represents staying
times on the pages. The staying time on the current page is a random variable which may
depend on the information of the current page and some other pages the user has visited or
will visit, but in general will not depend on the other staying times. To our knowledge the
framework of WMSP covers all the known stochastic processes used in studying the web
page importance ranking. This is why we call it a web Markov skeleton process.
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3. Scope of WMSP. The framework of WMSP is quite broad and convenient. It cov-
ers several existing classes of processes and contains also new classes of processes which are
important either in applications or in theoretical study. Below we list a few special classes of
WMSPs to outline an incomplete picture of its scope.

(A) Simple WMSP. We say that a WMSP Z = (X, Y ) is a simple web Markov
skeleton process, if the conditional distribution of Yn (given FX) depends only on Xn. More
precisely, we propose the following definition.

DEFINITION 3.1. A WMSP Z = (X, Y ) is called a simple web Markov skeleton pro-
cess (simple WMSP in short), if for all t ≥ 0, it satisfies

P(Yn ≤ t | FX) = P(Yn ≤ t | Xn), for all n ≥ 0 .(7)

The class of simple WMSPs contains usual Markov processes as its special cases. See
the two examples below for details.

• Example 1. Discrete-time Markov process. It is a simple WMSP Z = (X, Y ) such
that Yn is constant, i.e., P(Yn = 1) = 1 for all n.

• Example 2. Continuous-time Markov process. Note that a continuous-time Markov
process is always a Markov skeleton process in the sense of Definition 2.1 ( e.g. let τn ≡ n).
Here we emphasize that if a continuous time Markv process Z is time homogeneous with
right continuous sample paths on a discrete state space (i.e. Z is a Q-process), then Z is also
a simple WMSP. In this case we may define τn to be the n-th jump of Z (set τ0 = 0) and let
Xn = Zτn, Yn = τ(n+1) − τn. Conversely we have the following proposition.

PROPOSITION 3.2. Let Z = (X, Y ) be a simple WMSP. Suppose that X = {Xn, n ≥
0} is a time homogeneous Markov chain on a discrete space E, which satisfies P(Xn+1 �=
Xn) = 1 for all n ≥ 0, and that there exists a family of positive numbers {λx, x ∈ E} such
that

P(Yn ≤ t| FX) = 1 − exp{−λXnt} , for all n ≥ 0 .

Then Z is a time homogeneous continuous time Markov process.

We leave the proof of the above proposition to the readers.
We remark that the class of simple WMSP contains also processes which are not usual

Markov processes. A simple WMSP is a special example of a semi-Markov process (cf. part
(B) below). It is also a special example of a mirror semi-Markov process (cf. part (C) below).
Moreover, in some circumstance we may reduce the study of a semi-Markov process or a
mirror semi-Markov process to the study of a simple WMSP. We shall come back to this point
later in Section 7.

(B) Semi-Markov process. In our framework, we shall call a WMSP Z = (X, Y )

a semi-Markov process, if the conditional distribution of Yn depends only on Xn and Xn+1.
More precisely, we propose the following definition.



670 Y. LIU, Z.-M. MA AND C. ZHOU

DEFINITION 3.3. A WMSP Z = (X, Y ) is called a semi-Markov process, if for all
t ≥ 0, it satisfiies

P(Yn ≤ t | FX) = P(Yn ≤ t | Xn,Xn+1) , for all n ≥ 0 .(8)

We shall show that our notion of semi-Markov processes is in fact more general than the
one usually defined in the literature. To this end let us refer to the one defined in the literature
as the classical semi-Markov process. A classical semi-Markov process Z is defined as a
continuous time realization of a Markov renewal process. To be precise, let X = {Xn, n ≥ 0}
be a sequence of random variables taking values in E, and Y = {Yn, n ≥ 0} be a sequence of
positive random variables. The sequence (X, Y ) is called a Markov renewal process, if

P(Xn+1 ∈ B, Yn ≤ t | X0, . . . , Xn; Y0, . . . , Yn−1) = P(Xn+1 ∈ B, Yn ≤ t | Xn) ,(9)

for all n ≥ 0, B ∈ E , t ≥ 0. A classical semi-Markov process Z = {Z(t), t ≥ 0} is then
defined by the regime (5) and (6) with a Markov renewal process (X, Y ). In the literature it
is usually assumed further that the state space E is discrete and (X, Y ) is time homogeneous.
See e.g. [3, 6, 7, 25] and references therein for more details.

In the following theorem we do not require that (X, Y ) is time homogeneous.

THEOREM 3.4. Let Z be a classical semi-Markov process described as above. Then
Z = (X, Y ) is a semi-Markov process in the sense of Definition 3.3.

PROOF. By (9), it is clear that X = {Xn, n ≥ 0} is a Markov chain. We need only
to check that given the σ -algebra FX, the random variables Yn (n ≥ 0) are conditionally
independent and their conditional distributions satisfy (8). The latter is a direct consequence
of Lemma 3.5 below. �

The assertion (11) of Lemma 3.5 below might be known in the case where E is discrete
and (X, Y ) is time homogeneous. But we could not find a proof available to the stronger
assertion (10) in the case where E is discrete and (X, Y ) is not necessarily time homogeneous.
For the sake of the rigor and also for the convenience of the readers, we include a complete
proof here. We use N to denote the set of nonnegative integers.

LEMMA 3.5. Suppose that (X, Y ) is a Markov renewal process satisfying (9) with a
discrete state space E. Denote by Fτn = σ {X0,X1, . . . , Xn; Y0, Y1, . . . , Yn−1} (by conven-
tion Fτ0 := σ {X0}). Then for each n ∈ N , m ∈ N , tn ≥ 0, tn+1 ≥ 0, . . . , tn+m ≥ 0, we
have

P
(
Yn ≤ tn, Yn+1 ≤ tn+1, . . . , Yn+m ≤ tn+m | Fτn ∨ FX

)
(10)

= P
(
Yn ≤ tn | Xn,Xn+1

)
P

(
Yn+1 ≤ tn+1 | Xn+1,Xn+2

) × · · ·
× P

(
Yn+m ≤ tn+m | Xn+m,Xn+m+1

)
, a.s.

In particular, for each m ∈ N , t0 ≥ 0, t1 ≥ 0, . . . , tm ≥ 0, we have

P
(
Y0 ≤ t0, Y1 ≤ t1, . . . , Ym ≤ tm | FX

)
(11)

= P
(
Y0 ≤ t0 | X0,X1

)
P

(
Y1 ≤ t1 | X1,X2

) · · · P (
Ym ≤ tm | Xm,Xm+1

)
, a.s.
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PROOF. Denote by B(R+) the Borel sets of R+ := [0,∞). For A0 ∈ B(R+), A1 ∈
B(R+), . . . , An ∈ B(R+), b0 ∈ E, b1 ∈ E, . . . , bn+1 ∈ E, we have by (9) that

P
(
Yn ∈ An,Xn+1 = bn+1 | X0 = b0, . . . , Xn = bn, Y0 ∈ A0, . . . , Yn−1 ∈ An−1

)
= P

(
Yn ∈ An,Xn+1 = bn+1 | Xn = bn

)
= P

(
Yn ∈ An | Xn = bn,Xn+1 = bn+1

)
P

(
Xn+1 = bn+1 | Xn = bn

)
.

For notational convenience, we denote by F 0
τn

:= {X0 = b0, . . . , Xn = bn, Y0 ∈
A0, . . . , Yn−1 ∈ An−1} for the event in Fτn , and write the above formula in a concise form as
follows,

P
(
Yn,Xn+1 | F 0

τn

) = P
(
Yn,Xn+1 | Xn

) = P
(
Yn | Xn,Xn+1

)
P

(
Xn+1 | Xn

)
,

without explicitly mentioning A0, A1, . . . , An, b0, b1, . . . , bn+1. In the formulae (12), (13),
(14) and (15) below we take the same convention without explicitly mentioning Aks and bks.

For any q ∈ N large enough, we have

P
(
Yn,Xn+k, 1 ≤ k ≤ q | F 0

τn

)
(12)

= P
(
Yn,Xn+1 | F 0

τn

)
P

(
Xn+k, 2 ≤ k ≤ q | F 0

τ(n+1)

)
= P

(
Yn | Xn,Xn+1

)
P

(
Xn+1 | Xn

)
P

(
Xn+k, 2 ≤ k ≤ q | Xn+1

)
= P

(
Yn | Xn,Xn+1

)
P

(
Xn+k, 1 ≤ k ≤ q | Xn

)
.

Then for any m ≤ q − 1, we have

P
(
Yn, Yn+1, . . . , Yn+m,Xn+k, 1 ≤ k ≤ q | F 0

τn

)
(13)

= P
(
Yn,Xn+1 | F 0

τn

)
P

(
Yn+1, . . . , Yn+m,Xn+k, 2 ≤ k ≤ q | F 0

τ(n+1)

)
= P

(
Yn,Xn+1 | F 0

τn

)
P

(
Yn+1,Xn+2 | F 0

τ(n+1)

)
× P

(
Yn+2, . . . , Yn+m,Xn+k, 3 ≤ k ≤ q | F 0

τ(n+2)

)
= P

(
Yn,Xn+1 | F 0

τn

) · · · P(
Yn+m−1,Xn+m | F 0

τ(n+m−1)

)
× P

(
Yn+m,Xn+k, m + 1 ≤ k ≤ q | F 0

τ(n+m)

)
= P

(
Yn | Xn,Xn+1

)
P

(
Xn+1 | Xn

) · · · P (
Yn+m−1 | Xn+m−1,Xn+m

)
× P

(
Xn+m | Xn+m−1

)
P

(
Yn+m | Xn+m,Xn+m+1

)
× P

(
Xn+m+k, m + 1 ≤ k ≤ q | Xn+m

)
= P

(
Yn | Xn,Xn+1

) · · · P(
Yn+m | Xn+m,Xn+m+1

)
P

(
Xn+k, 1 ≤ k ≤ q | Xn

)
,

and on the other hand, we have

P
(
Yn, Yn+1, . . . , Yn+m,Xn+k, 1 ≤ k ≤ q | F 0

τn

)
(14)

= P
(
Yn, Yn+1, . . . , Yn+m | F 0

τn
,Xn+k, 1 ≤ k ≤ q

)
P

(
Xn+k, 1 ≤ k ≤ q | F 0

τn

)
= P

(
Yn, Yn+1, . . . , Yn+m | F 0

τn
,Xn+k, 1 ≤ k ≤ q

)
P

(
Xn+k, 1 ≤ k ≤ q | Xn

)
.
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Comparing (13) and (14), we get

P
(
Yn, Yn+1, . . . , Yn+m | F 0

τn
,Xn+k, 1 ≤ k ≤ q

)
(15)

= P
(
Yn | Xn,Xn+1

) · · · P(
Yn+m | Xn+m,Xn+m+1

)
.

In the original non-concise form, (15) means that for m ≤ q −1, A0 ∈ B(R+), A1 ∈ B(R+),
. . . , An+m ∈ B(R+), b0 ∈ E, b1 ∈ E, . . . , bn+q ∈ E, we have

P
(
Yn+l ∈ An+l , 0 ≤ l ≤ m | Yh ∈ Ah, 0 ≤ h ≤ n − 1; Xk = bk, 0 ≤ k ≤ n + q

)
(16)

= P
(
Yn ∈ An | Xn = bn,Xn+1 = bn+1

) × · · ·
× P

(
Yn+m ∈ An+m | Xn+m = bn+m,Xn+m+1 = bn+m+1

)
.

Because (R+,B(R+)) is separable, there exists {Ck}k≥1 ⊆ B(R+) satisfying B(R+) =
σ({Ck}k≥1). For s ∈ N , s ≥ (m+1), we define Bs := σ({Cn}1≤n≤s) and Gs := σ

(
Y−1

l (Bs),

for all 0 ≤ l ≤ n − 1; X−1
k (E ), 0 ≤ k ≤ n + s

)
. Then Gs contains at most countable many

atoms, and each element in Gs is expressed as a union of some of the atoms. Therefore we
can use (16) to get

P
(
Yn+l ∈ An+l , 0 ≤ l ≤ m

∣∣ Gs

)
(17)

= P
(
Yn ∈ An

∣∣ σ (
X−1

n (E ),X−1
n+1(E )

)) × · · ·
× P

(
Yn+m ∈ An+m

∣∣σ (
X−1

n+m(E ),X−1
n+m+1(E )

))
a.s .

Notice that {Gs}s≥m+1 is an increasing family of sub-algebras and
∨

s≥m+1 Gs = Fτn ∨ FX .
Letting s → ∞ in (17), by the well known martingale convergence theorem (cf. e.g. [28]),
we obtain the assertion (10). Letting n = 0 in (10) we get the assertion (11). �

(C) Mirror semi-Markov process. Mirror semi-Markov processes are a new class
of processes in the framework of WMSP. We call a WMSP Z = (X, Y ) mirror semi-Markov
process, if the conditional distribution of Yn depends only on Xn and Xn−1. More precisely,
we propose the following definition.

DEFINITION 3.6. A WMSP Z = (X, Y ) is called a mirror semi-Markov process, if
for all t ≥ 0, it satisfies

P(Yn ≤ t | FX) =
{

P(Yn ≤ t | Xn,Xn−1) , for all n ≥ 1 ,

P (Y0 ≤ t | X0) , n = 0 .
(18)

Mirror semi-Markov process was invented in [9, 10] and played an important role in
modeling the browsing behavior on the mobile Web. It is a typical example of a Markov
skeleton process in the sense of Definition 2.1 but not a Hou’s Markov skeleton process (cf.
Definition 2.2).

4. Time-homogeneous WMSP. Time-homogeneous web Markov skeleton pro-
cesses are most important both in applications and in theoretical research. For concrete ex-
amples, such as semi-Markov process and mirror semi-Markov process, it is easy to describe
time homogeneity. We found that it is not easy to do so for general WMSPs. In this section
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we shall introduce a general definition of time homogeneity for WMSP. The idea employed
in our definition might be useful elsewhere.

To state our definition, we introduce first the notion of a shift operator on N . For m ∈ N ,

we define θm : N �→ N by setting θm(k) = m + k. The operator θm is called the m-step shift
operator on N . For an arbitrary subset S of N , we define S ◦ θm by setting

S ◦ θm = {θm(k); k ∈ S} = {k + m; k ∈ S} .(19)

The operator S ◦ θm is called the m-step shift of S. Further let S be an arbitrary finite subset
of N with #{k; k ∈ S} = d . We use (Xk, k ∈ S) to denote a d-dimensional random vector
consisting of random variables {Xk}k∈S , with subscripts listed in ascending order. That is,
(Xk, k ∈ S) = (Xk1 ,Xk2 , . . . , Xkd ) ∈ Ẽd with ki ∈ S for all i and k1 < k2 < · · · < kd . Here
and henceforth Ẽd := ⊗d

k=1 Ẽk with each Ẽk identically equal to Ẽ. We shall use B(Ẽd ) to
denote the Borel sets of Ẽd .

Below is our definition of time homogeneity for WMSP.

DEFINITION 4.1. A WMSP Z = (X, Y ) is said to be time-homogeneous (after n0), if
its embedded Markov chain X is time-homogeneous, and for each n ≥ 0 there exists a finite
set Sn ⊂ N with maxn≥0 #{k; k ∈ Sn} < ∞, satisfying the following properties:

P(Yn ≤ t| FX) = P
(
Yn ≤ t| (Xk, k ∈ Sn)

)
,(20)

Sn+m = Sn ◦ θm , for all m ≥ 0, n ≥ n0 := max
n≥0

#{k; k ≤ n, k ∈ Sn} ,(21)

P
(
Yn ≤ t| (Xk, k ∈ Sn) ∈ B

) = P
(
Yn+m ≤ t| (Xk, k ∈ Sn+m) ∈ B

)
,

for all m ≥ 0 , n ≥ n0 , B ∈ B(Ẽd ) , (d := #{k; k ∈ Sn}) .

(22)

In the study of time homogeneous WMSP, the concept of the kernel (cf. Remark 4.4
bellow) is quite useful. We are now going to describe it. Let Z be a time homogeneous
WMSP and Sn be specified by the above definition. We set

S+
n := {k > n; k ∈ Sn} , d+

n := #{k > n; k ∈ Sn} ,(23)

and

S−
n := {k < n; k ∈ Sn} , d−

n := #{k < n; k ∈ Sn} .(24)

By the property (21), when n ≥ n0, all the d+
n ’s are the same, which will be denoted by

d+. Also all the d−
n ’s for n ≥ n0 are the same, which will be denoted by d−. For notational

convenience, we shall make the convention that Ẽ0 = ∅ and {(Xk, k ∈ ∅) ∈ A} = Ω , where
∅ is the empty set. With the above convention, the expressions (25) and (26) below are still
meaningful when d− = 0.

Let A ∈ B(Ẽd−
), B ∈ B(Ẽd+

), I ∈ B(Ẽ) = E , and t ≥ 0. We define for n ≥ n0,

AQIB(t) := P
(
(Xl, l ∈ S+

n ) ∈ B, Yn ≤ t | Xn ∈ I, (Xk, k ∈ S−
n ) ∈ A

)
,(25)

AFIB(t) := P
(
Yn ≤ t | Xn ∈ I, (Xk, k ∈ S−

n ) ∈ A, (Xl, l ∈ S+
n ) ∈ B

)
.(26)
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PROPOSITION 4.2. Both AQIB(t) and AFIB(t) are independent of n. Moreover, if
(n + 1) ∈ S+

n , then the probability distribution of Z is uniquely determined by the initial
distribution of {X0, Y0,X1, . . . , Yn0−1,Xn0} and the family of conditional probabilities

{AQIB(t); A ∈ B(Ẽd−
), B ∈ B(Ẽd+

), I ∈ B(Ẽ), t ≥ 0} .(27)

PROOF. It follows directly from the property (22) that AFIB(t) is independent of n. By
(25) and the Markov property of X, we get

AQIB(t) = P
(
Yn ≤ t | Xn ∈ I, (Xk, k ∈ S−

n ) ∈ A, (Xl, l ∈ S+
n ) ∈ B

)
(28)

×P
(
(Xl, l ∈ S+

n ) ∈ B | Xn ∈ I, (Xk, k ∈ S−
n ) ∈ A

)
= AFIB(t) · PIB ,

where PIB := P
(
(Xl, l ∈ S+

n ) ∈ B | Xn ∈ I
)

is independent of n by the time homogeneity
of X. Hence AQIB(t) is independent of n. Conversely, from (28) we get

PIB = lim
t→∞ AQIB(t) = P

(
(Xl, l ∈ S+

n ) ∈ B | Xn ∈ I
)
,(29)

AFIB(t) =
{

AQIB(t)
PIB

if PIB > 0 ,

1 if PIB = 0 .
(30)

Therefore, {AFIB(t)} and {PIB} are also uniquely determined by {AQIB(t)}, from which the
second assertion of the proposition follows. �

REMARK 4.3. If (n + 1) ∈ S+
n , from (29) one can re-capture the one step transition

function of X by setting B = B1 × ⊗d+
k=2 Ẽk with B1 running over all the Borel sets of Ẽ. In

the case where (n + 1) is not in S+
n , it is not clear whether or not we can re-capture the one

step transition function of X. But if we set

S̃+
n := {

k > n; k ∈ Sn ∪ {(n + 1)}} , d̃+ := #{k > n; k ∈ S̃+
n } ,

then we can re-capture the one step transition function of X from the family of conditional
probabilities

{AQIB(t); A ∈ B(Ẽd−
), B ∈ B(Ẽd̃+

), I ∈ B(Ẽ), t ≥ 0} .(31)

Actually, all the assertions of Proposition 4.2 as well as the above Remark 4.3 remain
true, if we replace S+

n by S̃+
n , d+ by d̃+, and (27) by (31). Note that if (n + 1) is not in S+

n ,
then AFIB(t) will be independent of Xn+1. For example if d+ = 0 and hence d̃+ = 1, then
(28) will become

AQIB(t) = P
(
Xn+1 ∈ B, Yn ≤ t | Xn ∈ I, (Xk, k ∈ S−

n ) ∈ A
)

= P
(
Yn ≤ t | Xn ∈ I,Xn+1 ∈ B, (Xk, k ∈ S−

n ) ∈ A
)

×P
(
Xn+1 ∈ B | Xn ∈ I, (Xk, k ∈ S+

n ) ∈ A
)

= P
(
Yn ≤ t | Xn ∈ I, (Xl, l ∈ S−

n ) ∈ A
) × P

(
Xn+1 ∈ B | Xn ∈ I

)
:= AFI (t)PIB .
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REMARK 4.4. Because of the importance of the family of conditional probabilities
(31), we shall call (31) the kernel of Z, which describes the statistical properties of Z =
(X, Y ) after n0. For a given kernel (31) as well as an initial distribution of X0 and a family of
conditional probability distributions P(Yn ≤ t | (Xk)k∈Sn) for n = 0, 1, . . . , n0 − 1, we can
construct a unique (in weak sense) time homogeneous (after n0) WMSP. The details will be
discussed in our forthcoming paper [23].

EXAMPLE 4.5. Let Z = (X, Y ) be a time homogeneous WMSP with a discrete state
space E. Denote the transition probabilities by

Pij := P(Xn+1 = j |Xn = i) = P(X1 = j |X0 = i) , for all i, j ∈ Ẽ .(32)

(A) If Sn = {n}, then Z is called a time-homogeneous simple WMSP. In this case if we
define

Fi(t) = P(Yn ≤ t | Xn = i) ,(33)

then the kernel of Z is expressed as

Qij (t) := P(Xn+1 = j, Yn ≤ t| Xn = i) = Fi(t) · Pij , for all i, j ∈ Ẽ , t ≥ 0 .(34)

(B) If Sn = {n, n + 1}, then Z is called a time-homogeneous semi-Markov process. In
this case if we define

Fij (t) = P(Yn ≤ t | Xn = i, Xn+1 = j) ,(35)

then the kernel of Z is expressed as

Qij (t) := P(Xn+1 = j, Yn ≤ t | Xn = i) = Fij (t) · Pij , for all i, j ∈ Ẽ , t ≥ 0 .(36)

(C) If Sn = {n − 1, n}, then Z is called a time-homogeneous mirror semi-Markov
process. In this case if we define

iFj (t) = P(Yn ≤ t | Xn−1 = i, Xn = j) ,(37)

then the kernel of Z is expressed as

iQjk(t) : = P(Xn+1 = k, Yn ≤ t | Xn−1 = i, Xn = j)(38)

= iFj (t) · Pjk , for all i, j, k ∈ Ẽ , t ≥ 0 .

We shall discuss in more detail the class of time homogeneous mirror semi-Markov pro-
cesses in the next section.

5. Mirror semi-Markov process. Throughout this section we assume that Z =
(X, Y ) is a time homogeneous mirror semi-Markov process with a discrete state space E.

For simplicity we assume further that ζ := ∑
k≥0 Yk = ∞.
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5.1. Further discussion on time homogeneity. We denote by N the set of nonnega-
tive integers, and by N+ the set of positive integers.

LEMMA 5.1. Let m ∈ N+, s1, . . . , sm ∈ N+, 1 ≤ s1 < · · · < sm and A1, . . . , Am ∈
B(R+). Suppose that S ⊂ N satisfies {0, . . . , s1 − 1} ∩ S �= ∅. Then for any {ik, k ∈ S} ⊂ E

and any n ∈ N+, we have

P
[
Ys1 ∈ A1, . . . , Ysm ∈ Am | {Xk = ik}k∈S

]
= P

[
Yn+s1 ∈ A1, . . . , Yn+sm ∈ Am | {Xn+k = ik}k∈S

]
.

PROOF. For notational convenience, we verify only a concrete case where m = 2, s1 =
2, s2 = 4, S = {1, 5}. The general case can be verified following the same idea. Thus we are
going to verify

P
[
Y2 ∈ A1, Y4 ∈ A2 | X1 = i1,X5 = i5

]
(39)

= P
[
Yn+2 ∈ A1, Yn+4 ∈ A2 | Xn+1 = i1,Xn+5 = i5

]
.

Denote by C = {Xn+1 = i1,Xn+5 = i5}. Without loss of generality we assume that P(C) >

0, otherwise the case will be negligible. By the definition of mirror semi-Markov processes
we have

P
[
Yn+2 ∈ A1, Yn+4 ∈ A2 | Xn+1 = i1,Xn+5 = i5

]
= 1

P(C)

∫
C

P
[
Yn+2 ∈ A1, Yn+4 ∈ A2 | FX

]
dP

= 1

P(C)

∫
C

P
[
Yn+2 ∈ A1 | FX

]
P

[
Yn+4 ∈ A2 | FX

]
dP

= 1

P(C)

∫
C

P
[
Yn+2 ∈ A1 | Xn+1,Xn+2

]
P

[
Yn+4 ∈ A2 | Xn+3,Xn+4

]
dP

= 1

P(C)

∫
C

( ∑
i2

P
[
Yn+2 ∈ A1 | Xn+1 = i1,Xn+2 = i2

] × I{Xn+1=i1,Xn+2=i2}
)

×
( ∑

i3,i4

P
[
Yn+4 ∈ A2 | Xn+3 = i3,Xn+4 = i4

] × I{Xn+3=i3,Xn+4=i4}
)

dP

= 1

P(C)

( ∑
i2,i3,i4

P
[
Yn+2 ∈ A1 | Xn+1 = i1,Xn+2 = i2

]
× P

[
Yn+4 ∈ A2 | Xn+3 = i3,Xn+4 = i4

]
× P

[
Xn+1 = i1,Xn+2 = i2,Xn+3 = i3,Xn+4 = i4,Xn+5 = i5

])

=
∑

i2,i3,i4

P
[
Yn+2 ∈ A1 | Xn+1 = i1,Xn+2 = i2

]
× P

[
Yn+4 ∈ A2 | Xn+3 = i3,Xn+4 = i4

]
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× P
[
Xn+2 = i2,Xn+3 = i3,Xn+4 = i4,Xn+5 = i5 | Xn+1 = i1

]
P [Xn+5 = i5 | Xn+1 = i1]

=
∑

i2,i3,i4

P
[
Y2 ∈ A1 | X1 = i1,X2 = i2

] × P
[
Y4 ∈ A2 | X3 = i3,X4 = i4

]

× P
[
X2 = i2,X3 = i3,X4 = i4,X5 = i5 | X1 = i1

]
P [X5 = i5 | X1 = i1] .

In the above last step we used the time homogeneity assumption. By the same way we have

P
[
Y2 ∈ A1, Y4 ∈ A2 | X1 = i1,X5 = i5

]
=

∑
i2,i3,i4

P
[
Y2 ∈ A1 | X1 = i1,X2 = i2

] × P
[
Y4 ∈ A2 | X3 = i3,X4 = i4

]

× P
[
X2 = i2,X3 = i3,X4 = i4,X5 = i5 | X1 = i1

]
P [X5 = i5 | X1 = i1] ,

Hence (39) is verified. �

REMARK. The idea employed above is quite useful. Below we shall employ it again
several times. The idea can also be employed for other classes of time homogeneous WMSPs,
which will be discussed in our subsequent paper.

COROLLARY 5.2. In the situation of Lemma 5.1, for any bounded Borel function f on
Rm, we have

E
[
f (Ys1, Ys2, . . . , Ysm) | {Xk = ik}k∈S

]
= E

[
f (Yn+s1, Yn+s2 , . . . , Yn+sm) | {Xn+k = ik}k∈S

]
.

PROOF. By the monotone class theorem. �

For n ∈ N+ and A ∈ F , we define iP
(n)
j (A) := P(A | Xn−1 = i, Xn = j) provided

that P(Xn−1 = i, Xn = j) > 0. Then iP
(n)
j is a probability measure on the space (Ω,F ).

For t ≥ 0 we define Z̃
(n)
t = Zτn+t . We may regard Z̃(n) = {Z̃(n)

t , t ≥ 0} as a random variable
taking values on RẼ[0,∞), here and henceforth RẼ[0,∞) denotes the sample space of all
the Ẽ-valued right continuous and piecewise-constant functions.

THEOREM 5.3. The random variable Z̃(n) on the probability space (Ω,F , iP
(n)
j )

and the random variable Z̃(1) on the probability space (Ω,F , iP
(1)
j ) induce the same prob-

ability distributions on the sample space RẼ[0,∞).

PROOF. For m ∈ N+, t1, . . . , tm ≥ 0 and i1, . . . , im ∈ E, we have

iP
(n)
j (Z̃

(n)
t1

= i1, . . . , Z̃
(n)
tm = im)

= P(Z(τn+t1) = i1, . . . , Z(τn+tm) = im | Xn−1 = i, Xn = j)

=
∑

l1∈N,...,lm∈N

P(Z(τn+t1) = i1, . . . , Z(τn+tm) = im, τ(n+l1) − τn ≤ t1 < τ(n+l1+1) − τn,

. . . , τ(n+lm) − τn ≤ tm < τ(n+lm+1) − τn | Xn−1 = i, Xn = j)
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=
∑

l1∈N,...,lm∈N

P(X(n+l1) = i1, . . . , X(n+lm) = im, τ(n+l1) − τn ≤ t1 < τ(n+l1+1) − τn,

. . . , τ(n+lm) − τn ≤ tm < τ(n+lm+1) − τn | Xn−1 = i, Xn = j)

=
∑

l1∈N,...,lm∈N

P(τ(n+l1) − τn ≤ t1 < τ(n+l1+1) − τn, . . . , τ(n+lm) − τn ≤ tm < τ(n+lm+1) − τn

| Xn−1 = i, Xn = j,X(n+l1) = i1, . . . , X(n+lm) = im)

×P(X(n+l1) = i1, . . . , X(n+lm) = im | Xn−1 = i, Xn = j)

=
∑

l1∈N,...,lm∈N

P(τ(1+l1) − τ1 ≤ t1 < τ(2+l1) − τ1, . . . , τ(1+lm) − τ1 ≤ tm < τ(2+lm) − τ1

| X0 = i, X1 = j,X(1+l1) = i1, . . . , X(1+lm) = im)

×P(X(1+l1) = i1, . . . , X(1+lm) = im | X0 = i, X1 = j)

=
∑

l1∈N,...,lm∈N

P(X(1+l1) = i1, . . . , X(1+lm) = im, τ(1+l1) − τ1 ≤ t1 < τ(1+l1+1) − τ1,

. . . , τ(1+lm) − τ1 ≤ tm < τ(1+lm+1) − τ1 | X0 = i, X1 = j)

=
∑

l1∈N,...,lm∈N

P(Z(τ1+t1) = i1, . . . , Z(τ1+tm) = im, τ(1+l1) − τ1 ≤ t1 < τ(1+l1+1) − τ1,

. . . , τ(1+lm) − τ1 ≤ tm < τ(1+lm+1) − τ1 | X0 = i, X1 = j)

= P(Z(τ1+t1) = i1, . . . , Z(τ1+tm) = im | X0 = i, X1 = j)

= iP
(1)
j (Z̃

(1)
t1

= i1, . . . , Z̃
(1)
tm

= im).

In the middle step of the above deduction we employed Corollary 5.2. The proof of the
theorem is completed by applying the monotone class theorem. �

5.2. Renewal theory. Thanks to the results obtained in the above subsection, we can
now develop a renewal theory for mirror semi-Markov processes which is of importance in
various applications.

In what follows we define

D(n)(k) := inf{t ≥ Yn; Z̃
(n)
t = k} ,(40)

and we call D(n)(k) the first entry time of Z̃(n) into the state k.

PROPOSITION 5.4. For i, j, k ∈ E, t ≥ 0 and m,n ∈ N+, we have

iP
(1)
j (D(1)(k) ≤ t) = iP

(n)
j (D(n)(k) ≤ t) := iGjk(t) ,(41)

iP
(1)
j

(
Xm+1 = k,

m∑
s=1

Ys ≤ t

)
= iP

(n)
j

(
Xm+n = k,

m+n−1∑
s=n

Ys ≤ t

)
:= iQ

(m)
jk (t) ,(42)

iP
(1)
j (Z̃

(1)
t = k) = iP

(n)
j (Z̃

(n)
t = k) := ifjk(t) .(43)

PROOF. All the assertions follow from Theorem 5.3 and Corollary 5.2. We omit the
details. �
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Note that iQ
(1)
jk (t) := iQjk(t) coincides with the kernel of Z expressed by (38).

For the sake of future references, we rewrite the formula (37) with our present notations
in the following form.

iP
(1)
j (Y1 ≤ t) = iP

(n)
j (Yn ≤ t) := iFj (t) .(44)

The following lemma will be used in developing our renewal equations and renewal
functional.

LEMMA 5.5. For A1, A2 ∈ B(R+) and t ≥ 0, we have

iP
(1)
j

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2 | X2 = l, Y1 ∈ A1

)

= jP
(2)
l

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2

)
,

(45)

iP
(1)
j (Z̃

(2)
t = k | X2 = l, Y1 ∈ A1) = jP

(2)
l (Z̃

(2)
t = k),(46)

iP
(1)
j (D(2)(k) ≤ t | X2 = l, Y1 ∈ A1) = jP

(2)
l (D(2)(k) ≤ t) , for all l �= k .(47)

PROOF. We prove only (45). The other two assertions can be proved similarly. We have

iP
(1)
j

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2 | X2 = l, Y1 ∈ A1

)

= P

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2 | X0 = i, X1 = j,X2 = l, Y1 ∈ A1

)

= P

(
Y1 ∈ A1,

n+1∑
m=2

Ym ∈ A2 | X0 = i, X1 = j,X2 = l, Xn+2 = k

)

×P(X0 = i, X1 = j,X2 = l, Xn+2 = k)

P (X0 = i, X1 = j,X2 = l, Y1 ∈ A1)

= P(Y1 ∈ A1 | X0 = i, X1 = j) × P

( n+1∑
m=2

Ym ∈ A2 | X1 = j,X2 = l, Xn+2 = k

)

×P(Xn+2 = k | X1 = j,X2 = l)

P (Y1 ∈ A1 | X0 = i, X1 = j)

= P(Xn+2 = k | X1 = j,X2 = l) × P

( n+1∑
m=2

Ym ∈ A2 | X1 = j,X2 = l, Xn+2 = k

)

= P

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2 | X1 = j,X2 = l

)
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= jP
(2)
l

(
Xn+2 = k,

n+1∑
m=2

Ym ∈ A2

)
.

Thus assertion (45) is proved. �

In what follows we shall frequently use the following notations. For t > 0, we take a
partition {uh}0≤h≤s of the interval [0, t], i.e., 0 = u0 < u1 < · · · < us < u(s+1) = t . Write
∆uh := (uh, u(h+1)], for all 0 ≤ h ≤ s, δu := maxh |u(h+1) − uh|, and ∆[iQjk(uh)] :=
iQjk(u(h+1)) − iQjk(uh). Write δjk = 1 if j = k, and δjk = 0 if j �= k.

Below is our renewal equations concerning ifjk(t) and iGjk(t).

THEOREM 5.6. (i) ifjk(t) = δjk[1 − iFj (t)] + ∑
l∈E

∫ t

0 [j flk(t − u)]d[iQjl(u)];
(ii) iGjk(t) = iQjk(t) + ∑

l �=k

∫ t

0 [jGlk(t − u)]d[iQjl(u)].
PROOF. For the assertion (i), employing the right continuity of {Z̃(1)

t , t ≥ 0}, and ap-
plying (46), we get

ifjk(t) = iP
(1)
j (Z̃

(1)
t = k)

= iP
(1)
j (Z̃

(1)
t = k, Y1 > t) + iP

(1)
j (Z̃

(1)
t = k, Y1 ≤ t)

= δjk[1 − iFj (t)] +
∑
l∈E

lim
δu→0

s∑
h=0

iP
(1)
j (Z̃

(1)
(Y1+t−uh) = k, Y1 ∈ ∆uh,X2 = l)

= δjk[1 − iFj (t)] +
∑
l∈E

lim
δu→0

s∑
h=0

(
jP

(2)
l (Z̃

(2)
(t−uh) = k)∆[iQjl(uh)]

)

= δjk[1 − iFj (t)] +
∑
l∈E

∫ t

0
[j flk(t − u)]d[iQjl(u)] .

For the assertion (ii), we can employ (47) to get

iGjk(t) = iP
(1)
j (D(1)(k) ≤ t)

= iP
(1)
j (D(1)(k) ≤ t, X2 = k) +

∑
l �=k

iP
(1)
j (D(1)(k) ≤ t, X2 = l)

= iP
(1)
j (Y1 ≤ t, X2 = k)

+
∑
l �=k

lim
δu→0

s∑
h=0

iP
(1)
j (D(1)(k) − Y1 ≤ t − uh,X2 = l, Y1 ∈ ∆uh)

= iQjk(t) +
∑
l �=k

lim
δu→0

s∑
h=0

(
jP

(2)
l (D(2)(k) ≤ t − uh)∆[iQjl(uh)])

= iQjk(t) +
∑
l �=k

∫ t

0
[jGlk(t − u)]d[iQjl(u)] .

�



WEB MARKOV SKELETON PROCESSES 681

Denote by Ñt (k) the number of visits to the state k by the process Z̃(1) during the interval
(0, t]. We define the renewal functional M(i, j, k; t) of Z as the expectation of Ñt (k) with
respect to the probability iP

(1)
j , namely,

M(i, j, k; t) := E[Ñt (k) | X0 = i, X1 = j ].
Below are our results about the renewal functional.

THEOREM 5.7. (i) M(i, j, k; t) = ∑∞
n=1 iQ

(n)
jk (t).

(ii) iQ
(n+1)
jk (t) = ∑

l∈E

∫ t

0 [jQ(n)
lk (t − u)]d[iQjl(u)].

PROOF. To prove the assertion (i), we write An = I{Xn+1=k,
∑n

m=1 Ym≤t} for n ≥ 1.

Then Ñt (k) = ∑∞
n=1 An. Therefore,

M(i, j, k; t) = E[Ñt (k) | X0 = i, X1 = j ]

=
∞∑

n=1

E[An | X0 = i, X1 = j ]

=
∞∑

n=1

iP
(1)
j

(
Xn+1 = k,

n∑
m=1

Ym ≤ t

)

=
∞∑

n=1
iQ

(n)
jk (t) .

To prove the recursion equation (ii), we have

iQ
(n+1)
jk (t) = iP

(1)
j

(
Xn+2 = k,

n+1∑
m=1

Ym ≤ t

)

=
∑
l∈E

iP
(1)
j

(
X2 = l, Xn+2 = k,

n+1∑
m=1

Ym ≤ t

)
.

(48)

Applying (45), we get

iQ
(n+1)
jk (t) =

∑
l∈E

lim
δu→0

s∑
h=0

iP
(1)
j

(
X2 = l, Xn+2 = k, Y1 ∈ ∆uh,

n+1∑
m=2

Ym ≤ t − uh

)

=
∑
l∈E

lim
δu→0

s∑
h=0

(
iP

(1)
j

(
Xn+2 = k,

n+1∑
m=2

Ym ≤ t − uh | X2 = l, Y1 ∈ ∆uh

)

× iP
(1)
j (X2 = l, Y1 ∈ ∆uh)

)

=
∑
l∈E

lim
δu→0

s∑
h=0

(
jP

(2)
l

(
Xn+2 = k,

n+1∑
m=2

Ym ≤ t − uh

)
iP

(1)
j (X2 = l, Y1 ∈ ∆uh)

)



682 Y. LIU, Z.-M. MA AND C. ZHOU

=
∑
l∈E

lim
δu→0

s∑
h=0

(
jQ

(n)
lk (t − uh)∆[iQjl(uh)]

)

=
∑
l∈E

∫ t

0
[jQ(n)

lk (t − u)]d[iQjl(u)] . �

5.3. Staying times and first entry times. We write iTj and iVjk for Y1 and D(1)(k)

respectively when they are viewed as the random variables on the probability space (Ω,F ,

iP
(1)
j ). We call iTj the staying time on the state j with the knowledge of the previous state

i, and call iVjk the first entry time into the state k from the present state j with the knowl-
edge of the previous state i. By (44) and (41) we know that their distributions are iFj (t)

and iGjk(t). We denote their expectations by iαj and iµjk respectively. With the renewal
equations obtained in the last subsection we can establish the following relation.

THEOREM 5.8. iµjk = iαj + ∑
l �=k Pjl · jµlk.

PROOF. Taking the Laplace transforms of both sides of the assertion (ii) in Theorem
5.6, we get

iG
∗
jk(s) = iQ

∗
jk(s) +

∑
l �=k

jG
∗
lk(s) · iQ

∗
j l (s) .

By (38), we have iQjk(t) = iFj (t) · Pjk . Therefore

iG
∗
jk(s) = iF

∗
j (s) · Pjk +

∑
l �=k

jG
∗
lk(s) · iF

∗
j (s) · Pjl .

Taking the derivative for s and then letting s = 0, we obtain

iµjk = Pjk · iαj +
∑
l �=k

(jµlk + iαj )Pjl

=
∑
l∈E

Pjl · iαj +
∑
l �=k

jµlk · Pjl

= iαj +
∑
l �=k

Pjl · jµlk . �

Sometimes we need to study the staying times and the first entry times without knowing
the previous states. But for a mirror semi-Markov process the conditional distribution of Yn

in general depends on both the current state Xn and the previous state Xn−1, which brings us
some extra difficulty. To deal with it we introduce the following quantity:

c
(n)
ij := P(Xn−1 = i | Xn = j) , for all n ≥ 1 , i ∈ E , j ∈ E ,(49)

provided that P(Xn = j) > 0. Note that if P(Xn = j) > 0, then {c(n)
ij }i∈E forms a probabil-

ity distribution on E. We call c
(n)
ij the contribution probability from the state i to the state j

(at the n step). The concept of contribution probability was first introduced and employed in
[9].
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In practice we often wish the contribution probabilities are independent of n. In this
aspect the following simple lemma is useful.

LEMMA 5.9. Suppose that the embedded Markov chain X admits a stationary distri-
bution Π = (πi)i∈E with πi > 0 for all i ∈ E, and the initial distribution of X0 is Π . Then
for each i, j ∈ E, c

(n)
ij =: cij is independent of n.

PROOF. Let Pij be the transition probability of X. Then by the assumption of the lemma
we have

cij := c
(n)
ij = P(Xn−1 = i | Xn = j) = PijP (Xn−1 = i)

P (Xn = j)
= Pijπi

πj

,(50)

which is independent of n. �

When the contribution probabilities c
(n)
ij s are independent of n, the staying times and

the first entry times without knowing the previous states will be also independent of n. We
summarize it in the proposition below.

PROPOSITION 5.10. Suppose that for each i, j ∈ E, c
(n)
ij =: cij is independent of n.

Then the following assertions hold.

Fj (t) := P(Y1 ≤ t | X1 = j) = P(Yn ≤ t | Xn = j) =
∑
i∈E

iFj (t) · cij .(51)

Gjk(t) := P(D(1)(k) ≤ t | X1 = j) = P(D(n)(k) ≤ t | Xn = j) =
∑
i∈E

iGjk(t) · cij .(52)

PROOF. We prove only the first assertion, the second assertion can be proved similarly.

P(Yn ≤ t | Xn = j) =
∑
i∈E

P(Yn ≤ t, Xn−1 = i | Xn = j)

=
∑
i∈E

P(Yn ≤ t | Xn−1 = i, Xn = j)P (Xn−1 = i | Xn = j)

=
∑
i∈E

P(Y1 ≤ t | X0 = i, X1 = j)P (X0 = i | X1 = j)

=
∑
i∈E

iFj (t) · cij . �

In what follows we assume that the contribution probabilities c
(n)
ij s are independent of n.

We write Tj for Y1 when it is viewed as a random variable under the probability P(· | X1 = j),
and write Vjk for D(1)(k) when it is under the probability P(· | X1 = j). We call Tj the
staying time on the state j without knowing the previous state, and call Vjk the first entry time
into the state k from the present state j without knowing the previous state. We denote their
distributions by Fj (t) and Gjk(t) (cf. the above proposition), and denote their expectations
by αj and µjk respectively.

The results below will be used in the next section.

THEOREM 5.11. We have the following relations among the expectations.
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(i) µjk = ∑
i∈E cij · iµjk ,

(ii) αj = ∑
i∈E cij · iαj ,

(iii) µjk = αj + ∑
l �=k Pjl · jµlk.

If in addition the assumption of Lemma 5.9 is fulfilled, then we have further

(iv) µjj =
∑

i∈E αiπi

πj
.

PROOF. The assertions (i) and (ii) are direct consequences of (51) and (52), and the
assertion (iii) follows from (i), (ii) and Theorem 5.8. By the assertion (iii) and the formula
(50) we have, ∑

j∈E

πj · µjk =
∑
j∈E

πj · αj +
∑
j∈E

∑
l �=k

πj · Pjl · jµlk

=
∑
j∈E

πj · αj +
∑
j∈E

∑
l �=k

πl · cjl · jµlk

=
∑
j∈E

πj · αj +
∑
l �=k

πl · µlk .

Namely
∑

j∈E πj · αj = πk · µkk , thus the assertion (iv) is obtained. �

6. Two results about limit distributions. In this section we discuss two results about
the limit distributions of WMSPs. We show that under certain conditions the limit distribu-
tions of WMSPs are equal to the proportion of their average sojourn times. Hence the limit
distributions play essential roles in computing page importance on the Web.

6.1. Limit distributions for semi-Markov processes. In this subsection we assume
that Z = (X, Y ) is a time homogeneous semi-Markov process with a discrete state space E.
Assume further that ζ := ∑

k≥0 Yk = ∞ and X is an irreducible, recurrent Markov chain.
For fixed state j ∈ E, we define

ξ0 = inf{n ≥ 0; Xn = j } ,

ξ1 = inf{n > ξ0; Xn = j } ,

. . .

ξn = inf{n > ξn−1; Xn = j } ,

. . . .

Recall that τn = ∑n−1
k=0 Yk .

LEMMA 6.1. Define V
(n)
jj = τξ(n+1)

− τξn and T
(n)
j = τ(ξn+1) − τξn = Yξn . Then

{V (n)
jj , n ≥ 0} are i.i.d. random variables, and {T (n)

j , n ≥ 0} are i.i.d. random variables.

PROOF. The assertions are more or less classical. We give only a sketch of the proof. It
is easy to check that {ξn, n ≥ 0} is a set of stopping times of X. By the strong Markov property
and time homogeneity of X we know that ξ1 − ξ0, ξ2 − ξ1, . . . are i.i.d. random variables.
Note that ξ1, ξ2, . . . are all FX measurable and Y1, Y2, . . . are conditionally independent to
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each other given FX, from which together with the time homogeneity of Z we can obtain the
desired assertions. �

We denote by Fj (t) and Gjj (t) the distributions of T
(1)
j and V

(1)
jj , and by αj and µjj

their expectations respectively. The readers may refer to the last subsection, in particular
(51) and (52), to compare the corresponding concepts and notations for mirror semi-Markov
processes.

Theorem 6.2 below is also more or less classical (cf. e.g. p. 217–p. 219 in [7]). We
include a complete proof here because it is our base for deducing the corresponding result on
mirror semi-Markov processes in the next subsection.

THEOREM 6.2. For fixed j ∈ E, if V
(1)
jj is not a lattice random variable and µjj =

EV
(1)
jj < ∞, then fj := limt→∞ P(Z(t) = j) exists and

fj = αj

µjj

= lim
t→∞

∫ t

0 1{Zs=j}ds

t
, a.s.(53)

If in addition X admits a unique limit distribution Π = (πi)i∈E , then we have further

fj = αjπj∑
i∈E αiπi

.(54)

PROOF. Using the notation Z̃t = Zτξ0+t , we can regard the process {Z̃t , t ≥ 0} as a
renewal process which starts from the state j and returns to the state j when the next renewal
occurs. The lengths of time period between two successive renewals form a family of i.i.d
random variables {V (n)

jj }n≥0, and the variable V
(n)
jj can be divided into two successive parts:

V
(n)
jj = T

(n)
j + T

(n)
�=j , where T

(n)
�=j denotes the length of the time period within the nth circle

during which the process Z̃t is not on the state j . In this way, {Z̃t , t ≥ 0} can be regarded as
an alternating renewal process taking two values ‘j ’ and ‘non j ’ alternatively in the periods
T

(0)
j , T

(0)
�=j , T

(1)
j , T

(1)
�=j , . . . . By the theory of alternating renewal processes (cf. e.g. p. 169–

p. 170 in [7] and p. 286–p. 290 in [25]), we have

lim
t→∞ P(Zt = j) = lim

t→∞ P(Z̃t = j) = E(T
(1)
j )

E(T
(1)
j ) + E(T

(1)
�=j )

= E(T
(1)
j )

E(V
(1)
jj )

= αj

µjj

.

Denote by N
j
t = #{n ∈ N; Xn = j, τn < t}. Applying the strong law of large numbers

we get ∫ t

0 1{Zs=j}ds

t
=

∫ t

0 1{Zs=j}ds

N
j
t

N
j
t

t

t→∞−−−→ αj

µjj

a.s. ,

verifying the assertion (53).
We now verify the assertion (54). Denote by N

(n)
j the number of times that X visits the

state j in the past n transitions. By the ergodicity theory we know πj = limn→∞ N
(n)
j /n a.s.

Let p
(n)
j be the proportion of staying time on the state j during the previous n transitions.
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According to (53), we have fj = limn→∞ p
(n)
j a.s. Recall that T

(k)
j represents the staying

time of the k-th visit on the state j , we may rewrite p
(n)
j as

p
(n)
j =

∑N
(n)
j

k=1 T
(k)
j∑

i

∑N
(n)
i

k=1 T
(k)
i

=
N

(n)
j

n
1

N
(n)
j

∑N
(n)
j

k=1 T
(k)
j

∑
i

N
(n)
i

n
1

N
(n)
i

∑N
(n)
i

k=1 T
(k)
i

.

Taking the limit in the above equation and applying the strong law of large numbers, we obtain

fj = πjE(T
(1)
j )∑

i πiE(T
(1)
i )

= πjαj∑
i∈E πiαi

,

verifying the assertion (54). �

6.2. Limit distributions for mirror semi-Markov processes. Let Z = (X, Y ) be a
time homogeneous mirror semi-Markov process with a discrete state space E. We assume
that ζ := ∑

k≥0 Yk = ∞. It can be uniquely determined by the following regime:

X0
Y0−→ X1

Y1−→ · · · Xn
Yn−→ · · · .

We now let Ê′ = {(i, j); Pij > 0}, X̂ = {X̂n = (Xn,Xn+1); n ≥ 0} and Ŷ = {Yn+1; n ≥ 0}.
Then Ẑ = (X̂, Ŷ ) is a simple WMSP with state space Ê′, and is a special case of a semi-
Markov process. It can be described by the following regime:

(X0,X1)
Y1−→ (X1,X2)

Y2−→ · · · (Xn,Xn+1)
Yn+1−−→ · · · .

Use the notation N̂t = max{n ≥ 0; ∑n
k=1 Yk ≤ t} (with the convention max ∅ = 0). Then

the process Ẑt defined by (5) and (6) with (X, Y ) replaced by (X̂, Ŷ ) can be expressed as
Ẑt = X̂

N̂t
. In what follows the corresponding notations related to Ẑ will be marked by the

superscript ˆ .

THEOREM 6.3. Suppose that the embedded Markov chain X admits a unique station-
ary distribution Π = (πi)i∈E with πi > 0 for all i ∈ E, and the initial distribution of X0 is
Π . Let j ∈ E. If V̂

(1)
(i,j)(i,j) is not a lattice random variable and µ̂(i,j)(i,j) = EV̂

(1)
(i,j)(i,j) < ∞

for all (i, j) ∈ Ê′. Then fj := limt→∞ P(Z(t) = j) exists and

fj = αj

µjj

= αjπj∑
i∈E αiπi

= lim
t→∞

∫ t

0 1{Zs=j}ds

t
, a.s .(55)
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PROOF. By the assumption of the theorem we can verify that X̂ is irreducible and
recurrent. Applying Theorem 6.2, we have

f̂(i,j) := lim
t→∞ P

(
Ẑ(t) = (i, j)

) = α̂(i,j)

µ̂(i,j)(i,j)

= lim
t→∞

∫ t

0 1{Ẑs=(i,j)}ds

t
, a.s.

Then

lim
t→∞ P

(
Z(Y0 + t) = j

) = lim
t→∞ P

( ⋃
i∈E

Ẑ(t) = (i, j)
)

= lim
t→∞

∑
i∈E

P
(
Ẑ(t) = (i, j)

)

=
∑
i∈E

lim
t→∞

∫ t

0 1{Ẑs=(i,j)}ds

t
, a.s.

= lim
t→∞

∫ t

0 1{Z̃(1)
s =j}ds

t
, a.s.

Employing the notations and results of Theorem 5.11 in Section 5, we have

µ̂(i,j)(i,j) =
∑

(m,n)∈Ê′ α̂(m,n)π̂(m,n)

π̂(i,j)

=
∑

(m,n)∈Ê′ mαn · πm · Pmn

πiPij

=
∑

(m,n)∈E×E mαn · πn · cmn

πjcij

=
∑

n∈E αnπn

πjcij

= µjj

cij

.

Therefore

lim
t→∞ P

(
Z(Y0 + t) = j

) = lim
t→∞ P

( ⋃
i∈E

Ẑ(t) = (i, j)
)

= lim
t→∞

∑
i∈E

P
(
Ẑ(t) = (i, j)

)

=
∑
i∈E

α̂(i,j)

µ̂(i,j)(i,j)

=
∑
i∈E

cij · α̂(i,j)

cij · µ̂(i,j)(i,j)

=
∑
i∈E

cij · iαj

µjj
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= αj

µjj

= αjπj∑
i∈E αiπi

.

Hence we get

lim
t→∞ P

(
Z(Y0 + t) = j

) = αj

µjj

= αjπj∑
i∈E αiπi

= lim
t→∞

∫ t

0 1{ZY0+s=j}ds

t
, a.s.

Due to the fact that Y0 < ∞ a.s., we conclude that fj := limt→∞ P(Z(t) = j) exists and

fj = αj

µjj

= αjπj∑
i∈E αiπi

= lim
t→∞

∫ t

0 1{Zs=j}ds

t
, a.s. �

7. A remark on simple WMSP. A key step in proving Theorem 6.3 is to reduce the
mirror semi-Markov process into a simple WMSP. This idea is powerful and can be applied
to more general cases, which reveals that the class of simple WMSPs is of importance in
theoretical study.

Suppose that Z = (X, Y ) is a time homogeneous (after n0) WMSP with a discrete state
space E. Let Sn, S+

n , S−
n , d , d+ and d− be the corresponding notations specified in Section

4. If Sn = {n − d−, . . . , n − 1, n, n + 1, . . . , n + d+} for each n ≥ n0, then we can use the
following method to reduce Z into a simple WMSP.

We define Ê = {(i1, . . . , id); i1, . . . , id ∈ E}. For (i1, . . . , id ) ∈ Ê and (j1, . . . , jd ) ∈
Ê, we define

P̂
(
(i1, . . . , id ), (j1, . . . , jd)

) =
{

Pidjd if ik = jk−1 , for all k = 2, . . . , d ,

0 otherwise ,

where Pij is the original transition probability of X. We set

X̂n = (Xn+n0−d−, . . . , Xn+n0−1,Xn+n0 ,Xn+n0+1, . . . , Xn+n0+d+) , for all n ≥ 0 .

Then the process X̂ = {X̂n, n ≥ 0} is a Markov chain on the state space Ê with the transition
probability:

P̂ = {
P̂

(
(i1, . . . , id ), (j1, . . . , jd)

)}
.

We write Ŷ = {Yn+n0 , n ≥ 0}. Then the new process Ẑ = (X̂, Ŷ ) is a simple WMSP
with the state space Ê. Moreover, Ẑ inherits time homogeneity from Z. By this method, in
some cases we can borrow the results of simple WMSP for the study of a time homogeneous
WMSP, as we have done in the proof of Theorem 6.3. But we should aware that during the
course of inducing a general WMSP Z into a simple WMSP Ẑ, we may also lose some good
properties of the original WMSP. For example, suppose that the embedded Markov chain X of
the original Z is irreducible, and that there exists a pair of states {i, j } ⊂ E such that Pij = 0.
Then the new Markov chain X̂ will never reach the states (j1, . . . , jd ) of Ê which contain the
ordered pair {i, j }, and hence the new embedded Markov chain X̂ will become reducible.
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8. Applications to Web page ranking. In this section we explore how the framework
of WMSP can be applied to the study of web page ranking. Recently the authors in [9, 10]
found that the page importance is mainly affected by two factors: the page reachability, the
average possibility that the surfer arrives at the page; and the page utility, the average value
that the page gives to the surfer in a single visit. The page reachability can be quantized as the
value of the stationary distribution of the embedded Markov chain, and the page utility can be
quantized as the mean staying time on a page. Thus the page importance can be represented
as the product of these two trackable factors. We show that the framework of WMSP is very
suitable to analyze the page importance in this way. The framework can cover many existing
algorithms including PageRank, TrustRank, and BrowseRank as its special cases. We show
also that the framework can help us design new algorithms to handle more complex problems.
For example, we can employ mirror semi-Markov processes to design MobileRank, handling
mobile Web which differs a lot from the usual Web structurally.

8.1. PageRank and discrete time Markov processes. PageRank is one of the most
famous link analysis algorithms for the page importance ranking. It was proposed by Brin
and Page in 1998 [4, 27], and has been successfully used by the Google search engine. In this
algorithm, a PageRank matrix is constructed by the link graph, and the surfing on the Web is
modeled as a discrete time Markov chain with PageRank matrix as its transition probability
matrix. It employs a power method [11] to calculate the stationary distribution of the Markov
chain. Accordingly the stationary distribution is interpreted as the PageRank values of web
pages (see Langville and Meyer [18]). Here we briefly describe the discrete time Markov
process employed in PageRank.

We regard the hyperlink structure of web pages on a network as a directed graph G̃ =
(Ṽ , E). A vertex i ∈ Ṽ of the graph represents a web page, and a directed edge

−→
ij ∈ E

represents a hyperlink from the page i to the page j . Suppose that |Ṽ | = N . Let B̃ =
(B̃ij )N×N be the adjacent matrix of G̃ and b̃i be the sum of the i-th row of B̃, i.e. b̃i =∑N

j=1 B̃ij . If b̃i = 0, then we let all entries of the i-th row of B equal to 1. By this way we
get a modified matrix B. Denote by bi the sum of the i-th row of B and by D the diagonal
matrix with diagonal entry bi. Now, we construct a stochastic matrix P̄ = D−1B.

When a surfer browses on the Web, he may choose the next page by randomly clicking
one of the hyperlinks in the current page with a large probability α (in practice it is often
set α = 0.85), which means that with probability α, the surfer may randomly walk on G̃

with transition probability P̄ ; while with probability (1 − α), the surfer may also open a new
page from the Web, and the new page might be selected randomly according to his personal
preference ϕ, which means that he walks randomly on G̃ with transition probability eT ϕ,
where e is a row vector of all ones, and ϕ is an N-dimensional probability vector (in practice
it is often set ϕ = e/N for simplicity), which is called the personalized vector. Combining
the above two random walks, an irreducible transition matrix, the so called PageRank matrix,
is formulated as follows,

P = αP̄ + (1 − α)eT ϕ .(56)
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The browsing behavior of a random surfer is then modeled as a discrete time Markov process
X with the transition matrix P specified by (56). As has being illustrated in Example 1 of
Section 3, it is a special WMSP. In the framework of WMSP, we may write it as Z = (X, Y )

with Yn ≡ 1 for all n.

In practice, researchers assume usually that the Markov chain X is aperiodic due to the
huge number of web pages. Then by the ergodicity theorem, X admits a unique stationary
distribution Π = (π1, π2, . . . , πN ), which satisfies

Π = ΠP , and
∑N

k=1
πk = 1 .(57)

In PageRank, the page reachability is computed as the above stationary distribution Π ,
and the page utility is equal to one for all pages under the assumption that all pages are equally
useful for the random surfer, which is indicated by P(Yn = 1 | FX) = 1, for all n ≥ 0.

As TrustRank is a modified PageRank by starting the iterative process from a reliable
seed set, it can also be covered by the framework of WMSP. Similarly, other models of
PageRank-alike algorithms can be regarded as special cases of WMSPs.

8.2. BrowseRank family and simple WMSPs. Although PageRank has many ad-
vantages, recently people have realized that it has also certain limitations as a model for
representing page importance. For example, the link graph, which PageRank relies on, is not
a very reliable data source, because hyperlinks on the Web can be easily added or deleted
by the web content creators. It is clear that those purposely created hyperlinks (e.g. created
by link farms) are not suitable for calculating the page importance. To tackle the limitations
of PageRank, recently a family of new algorithms called the BrowseRank family has been
proposed [19, 20, 21].

The BrowseRank algorithm was first introduced in [19], where the browsing behavior
of a random surfer is modeled as a time homogeneous continuous-time Markov process (i.e.
Q-process) {Zt, t ≥ 0}, which is called the user browsing process. By the algorithm one
should collect the user behavior data in web surfing and build a user browsing graph, which
is different from the traditional link graph, refer to [22] for more details. The process takes its
values in the state space V consisting of all the web pages in the user browsing graph. Thus
the user browsing process Z contains both user transition information and user staying time
information. The evaluation of Zt at time t represents the web page that the random surfer
is browsing at the time point t , where t may take value in the set R+ of all the nonnegative
real numbers. Afterwards, a number of variations of the algorithm, which we refer to as
the BrowseRank family, were introduced and discussed in [20, 21]. The browsing processes
modeled in the BrowseRank family are not necessarily Q-processes, but they are all time
homogeneous simple WMSPs as described by Example 4.5 (A) in Section 4.

For a time homogeneous simple WMSP Z = (X, Y ), the conditional distribution of
the random variable Yn depends only on Xn, which means that the length of staying time
on a page depends only on the current page itself. Moreover, by the time homogeneity the
conditional distribution is independent of n. We introduce a random variable Ti representing
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the staying time on the state i. Then the mean staying time on the page i can be calculated by
the following formula,

αi := E(Ti) =
∫ ∞

0
tFi(dt) .

For a browsing process Z = (X, Y ), the embedded Markov chain X is always constructed
to be irreducible and recurrent. Then we can calculate the page importance of web pages by
Theorem 6.2. In particular, if the browsing process Z is a Q-process, then the distribution
function of Ti is given by Fi(t) = 1 − e−λi t , for all t ≥ 0. Here λi is a parameter which
depends on the page i. In this case the mean staying time on the page i can be explicitly
calculated as follows,

αi = E(Ti) =
∫ ∞

0
tFi (dt) =

∫ ∞

0
tλie

−λi t dt = 1

λi
.

Let Π be the the unique stationary distribution of X determined by (57). Then the page
importance, which was called the BrowseRank score in [21], can be calculated by (54) as
follows,

fi = θ
πi

λi

, for all i ∈ E ,

where θ = (∑
j∈E πj/λj

)−1.
In fact in [21] the authors discussed 8 variations of BrowseRank algorithms family.

Among them 4 variations (BR(M, ·) family) are based on simple WMSPs, and 4 variations
(BR(A, ·) family) are based on Q-processes.

8.3. ExtBrowseRank and semi-Markov processes. In the algorithms mentioned
above, the staying time on a page is assumed to depend only on the current page and to
be independent of other pages. As a first approximation this assumption is acceptable. But if
we want to have a more accurate model, we will find that this assumption is too rough. Ac-
tually, when a user is browsing on web pages to search some desired information, sometimes
the staying time will not depend only on the current page, but depends also on the next page.
For example, if he finds a hyperlink directing to a very interesting page, or he is attracted by
a beautiful advertisement displayed on the page, he may immediately jump to the next more
attractive page, without completing his current reading. In this situation we may employ a
semi-Markov process to model the browsing behavior of the user.

Let Z = (X, Y ) be a semi-Markov process which is employed to model a browsing
behavior. The (conditional) distribution of the random variable Yn depends on two successive
states Xn and Xn+1, which means that the length of the n-th staying time depends not only
on the current page, but also on the next page which the user will visit. Suppose that Z

is time homogeneous. Then the distribution will be independent of n. We may introduce a
random variable Tij representing the staying time on the state i by knowing the next state j .
We introduce also a random variable Ti representing the staying time on the state i without
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knowing the next state. By (35) and (36) we have:

Fij (t) = P(Tij ≤ t) = P(Yn ≤ t | Xn = i, Xn+1 = j) = Qij (t)

Pij
.

By the formula of the total probability we have,

Fi(t) := P(Ti ≤ t) =
∑
j∈E

Fij (t)Pij .(58)

Similarly as the BrowseRank algorithm, we define the page reachability as the stationary
distribution of the embedded Markov chain X if it exists, and define the page utility as the
mean staying time on the considered page. Therefore, the page importance can be calculated
by equations (53) and (54). The stationary distribution Π involved in (54) can be determined
by (57). To compute the mean staying times, we may design the following extension of the
Browserank algorithm, which we call the ExtBrowseRank algorithm.

We denote by αij the expectation of Tij .
Step 1: Suppose that the transition probability matrix P of X, and the time information

αij , for all i, j ∈ E have been estimated from real users browsing log data.
Step 2: Estimate the distribution function of staying time on page i, for all i ∈ E, by

(58) mentioned above.
Step 3: Compute the mean staying time αi, for all i ∈ E, by (59) below.

αi =
∫ ∞

0
tFi(dt)

=
∑
j∈E

∫ ∞

0
tPij Fij (dt)

=
∑
j∈E

Pij αij .

(59)

Step 4: Compute the page importance scores according to (60) below, which is deduced
also from (54).

fi = πi

∑
j∈E Pij αij∑

i∈E

(
πi

∑
j∈E Pij αij

) .(60)

8.4. MobileRank and mirror semi-Markov processes. In recent years a new type of
Web structure, namely mobile Web structure, developed rapidly. Mobile Web differs largely
from general Web in several aspects. For example, the topology of the mobile Web graph
differs significantly from that of the general Web graph [17]. Because the owners of websites
on mobile Web tend to create hyperlinks only to their own pages or pages of their business
partners. Consequently there are more disconnected components in the mobile web graph,
and links do not always mean recommendation, but often mean business connection. In this
situation, it is clear that the scores computed by existing algorithms like PageRank may not
reflect the true importance of the pages. By employing mirror semi-Markov processes, the
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authors in [9, 10] proposed a new algorithm called MobileRank for computing the page im-
portance on mobile Web. Actually they found a new way of calculating mean staying time.
Here we just briefly introduce part of the related work. For more details the reader is referred
to [9, 10].

Let Z = (X, Y ) be a time homogeneous mirror semi-Markov process which is em-
ployed to model a browsing behavior on mobile Web. Then the staying time Yn depends not
only on the current page Xn, but also on the inlink page Xn−1. This means that the mirror
semi-Markov process has the ability to make use of the inlink information for promoting or
demoting staying time on the current page. For example, if an inlink is from a partner web-
site, then the user may demote the staying time of visits from the website. Introduce a random
variable kTi representing the staying time on page i by knowing the previous page k (cf. the
beginning of Subsection 5.3). By (37) and (38) we have

kFi(t) := P(kTi ≤ t) = P(Yn ≤ t|Xn−1 = k,Xn = i) = kQij (t)

Pij

.

Suppose that the assumption of Lemma 5.9 is fulfilled. By (51) and (50) we obtain

Fi(t) =
∑
k∈E

kFi(t)cki =
∑

k∈E kFi(t)Pkiπk

πi
,

where {cki} is the contribution probability introduced in Subsection 5.3 and {πi} is the sta-
tionary distribution of X. Then we can calculate the expectation of Fi(t), which is called the
mean staying time on the state i in [9], by the formula below,

αi =
∫ ∞

0
tFi (dt)

=
∑
k∈E

Pkiπk

πi

∫ ∞

0
tkFi(dt)

=
∑
k∈E

kαiPkiπk

πi

.

Further we can calculate the limit distribution fi := limt→∞ P(Z(t) = i) of Z by the
formula (55) as follows,

fi =
∑

k∈E kαiPkiπk∑
i∈E

( ∑
k∈E kαiPkiπk

) , for all i ∈ E .

By Theorem 6.3 we know that fi is the proportion of the average sojourn time on the page i.
Therefore it was used in [9] as the page importance score.
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