
82	 	 1541-1672/08/$25.00 © 2008 IEEE	 IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

entity descriptions based on the Resource Description
Framework (RDF) in data sets such as DBPedia, Uniprot,
and Geonames. On the other hand, the Web 2.0 community
has increasingly embraced the idea of data portability, and
the first efforts have already produced billions of RDF-
equivalent triples either embedded inside HTML pages us-
ing microformats or exposed directly using eRDF (embed-
ded RDF) and RDFa (RDF attributes).

Incentives for exposing such data are also finally becom-
ing clearer. Yahoo!’s SearchMonkey, for example, makes
Web sites containing structured data stand out from others
by providing the most appropriate visualization for the end
user in the search result page. It will not be long, we envi-
sion, before search engines will also directly use this infor-
mation for ranking and relevance purposes—returning, for
example, qualitatively better results for queries that involve
everyday entities such as events, locations, and people.

Even though we’re still at the beginning of the data Web
era, the amount of information already available is clearly
much larger than what could be contained, for example, in
any current-generation triple store (a database for storing
and retrieving RDF metadata) typically running on single
servers.

Although many applications will need to work with large
amounts of metadata, one particular application would cer-
tainly not exist without the capability of accessing and pro-
cessing arbitrary amounts of metadata: search engines that
locate the data and services that other applications need. For
this reason, Semantic Web search engines and large-scale
services are now the first in harnessing grid computing’s
power when it comes to scaling far beyond the current gen-
eration of triple stores.

Cloud computing for the web of data
Not all computationally intense problems require simi-
larly structured hardware configurations. Classic super-
computers, typically characterized by superior arithmetic

performance per CPU and high-end CPU interconnection
technologies, are proven tools that have scored great suc-
cesses in physics, astronomy, chemistry, biology, and many
other fields. In general, researchers find it hard to surpass
such high-end machines when they’re facing problems that
tend to be hard to parallelize or when they need intense in-
terprocess communication.

When this isn’t the case, however, cluster-computing ap-
proaches typically exhibit far greater flexibility in resource
utilization and much lower overall costs. In an extreme
case, clouds can extend to the entire Internet: computa-
tions involving relatively small data blocks, with no coor-
dination needs and no significant constraints on execu-
tion times, have been performed across the Internet—for
example, using free desktop cycles such as in the SETI or
Folding@ projects.

The computations needed in Web data processing lie
somewhere between these extremes. On the one hand,
Web data is interlinked, and the analysis of its mesh has
proven to be fundamental in gaining insights about its im-
plicit nature. At the same time, however, the data is by na-
ture distributed and can be said to be consistent with itself,
if at all, only within the boundaries of a single Web site.
Furthermore, a prominent characteristic is definitely the
sheer amount of such data, with a petabyte being a com-
mon order of magnitude.1

To process this kind of data, leading Internet search
providers have been pioneering ways to perform large-
scale Web data computations on clusters of commodity
machines interconnected with mainstream networking
technology. Google’s publications about its MapReduce
framework2 and more recently the Yahoo!-initiated, open
source implementation Hadoop (www.hadoop.apache.org)
are attracting increasing attention from developers and us-
ers alike.

The MapReduce style of computation works well with
the possibilities offered by the emerging cloud-computing
paradigm. This computation style provides generally use-
ful abstractions so that developers can focus on the task at
hand (see the sidebar “More about These Technologies”).
Executing computations “in the clouds” refers to the model
in which an application requests computational resources
from a service provider without needing to bother with the

Editor: Steffen Staab
University of Koblenz-Landau
staab@uni-koblenz.de

T h e S e m a n t i c W e b

Web Semantics in the Clouds

Peter Mika, Yahoo! Research
Giovanni Tummarello, Digital Enterprise Research Institute

In the last two years, the amount of structured data made

available on the Web in semantic formats has grown by

several orders of magnitude. On one side, the Linked Data

effort has made available online hundreds of millions of

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 83

computational offer’s details. An example
that’s recently enjoying popularity is the
Amazon Elastic Computing service offer,
which allows computing capabilities to be
allocated within minutes and increased
dynamically as required—for example, to
quickly cope with an unexpected peak of
visitors. Because MapReduce is agnostic
with regard to the actual size of the clus-
ter it runs on, executing Hadoop on such

cloud-like infrastructures is an appeal-
ing strategy for performing data-intensive
computations while minimizing, or opti-
mizing, the upfront infrastructure invest-
ment. The combined paradigm is generally
referred to as data-intensive scalable (or
super)computing (DISC).

With respect to the complex tasks in-
volved in processing the Web of data, a
DISC approach is for many reasons a natural

choice. On the one hand, many tasks, such
as crawling, can be performed in a fashion
similar to the processing of regular Web
content (HTML pages). Semantic data
crawling often requires special treatment
and dedicated intelligence but doesn’t gen-
erally differ very much from crawling the
HTML Web. Similarly, ranking a Semantic
Web source such as sites or data sets on the
basis of algorithms similar to PageRank, and

Although distributed computing is almost as old as computer
networks, the paradigm has been rapidly gaining popular-
ity recently under the name cloud computing. This surge in
interest is partly due to limitations of single-machine hard-
ware architectures but is also the result of improvements in
software abstractions that hide the complexity of underlying
hardware architectures from the programmer. Three of these
software layers—Hadoop, HBase, and Pig—all implement
data structures (maps and relational tables, for instance) and
processing pipelines that are familiar to most programmers.
In cases where the developer can map the problem at hand
to these solution spaces, the task of cluster programming
becomes almost as simple as developing software for single
machines (although testing might be more involved). All
three are Java-based open-source projects developed under
the Apache organization. The descriptions we provide de-
scribe only the systems’ core functionality.

Hadoop
Hadoop (http://hadoop.apache.org/core) implements a dis-
tributed file system (HDFS) and a MapReduce framework
similar to the Google File System and Google’s original
implementation of MapReduce.1 HDFS provides a virtual
disk space that is physically distributed across the machines,
where the data is replicated to withstand the failure of
single machines and speed up processing. MapReduce pro-
vides a simple processing pipeline consisting of two phases,
a Map and a Reduce phase. The machines in the cluster work
in parallel in both phases, running identical jobs but on dif-
ferent slices of the data. MapReduce builds on HDFS in that
the input, output, and intermediate results are stored on the
distributed file system.

The input and output of the Map phase is a bag of (key,
value) pairs, in which the keys need not be unique. The data
on disk can be in any structure as long as the developer can
provide a function that loads it into key-value pairs. Keys and
values can be arbitrarily complex Java objects as long as they
implement the necessary interfaces. At the end of the Map
phase, the system collects the pairs with the same key and
sends them to separate machines. The Reduce-phase jobs
then operate on a bag of pairs with the same key to produce
some output. (The output most often also consists of key-
value pairs to serve as input for some other processing.) So,
the Reduce phase can begin only after all the Map tasks are
done. However, this is the only synchronization point and
the only interprocess communication, thus greatly simplify-
ing implementation.

HBase
HBase (http://hadoop.apache.org/hbase) builds on Hadoop
to provide a virtual database abstraction similar to the origi-
nal BigTable system.2 An HBase table always has a column
that serves as the key; rows can only be located by this key’s
value (that is, the table has a single index). Thus, HBase ta-
bles can also be considered key-value pairs, where the keys
are unique and the value provides the content for the non-
key columns. BigTable was originally developed for storing
the results of crawling, and HBase preserves some of these
characteristics such as the ability to store different versions
of cell contents, which can be distinguished by time stamp.
HBase doesn’t provide a join operation on these tables, only
simple lookups by key. HBase tables are stored on the distrib-
uted file system in an indexed form to support this.

Pig
Pig (http://incubator.apache.org/pig) also builds on Hadoop
but goes a step further toward database-like functional-
ity. A table in Pig is a bag of tuples, in which each field can
hold a value or a bag of tuples (that is, nested tables are also
possible). Tables in Pig aren’t stored on disk in any special
form but are loaded by a custom load function the program-
mer defines. (This has the disadvantage that the data isn’t
indexed by any key.) PigLatin, Pig’s scripting language, is pro-
cedural—that is, writing a Pig script is more similar to writing
a “query plan” than to writing a query in SQL. Nevertheless,
most users find learning PigLatin easy because it provides all
the familiar constructs of SQL such as filtering (projection),
joins, grouping, sorting, and so on. PigLatin can also be ex-
tended using custom functions. Furthermore, it can also be
embedded inside Java to provide additional control such as
conditionals and loops. PigLatin scripts are translated into a
sequence of MapReduce jobs.

References
 1. J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-

cessing on Large Clusters,” Proc. 6th Symp. Operating System
Design and Implementation (OSDI 04), Usenix Assoc., 2004.

 2. F. Chang et al., “Bigtable: A Distributed Storage System for
Structured Data,” Proc. 7th Symp. Operating System De-
sign and Implementation (OSDI 06), Usenix Assoc., 2006, pp.
205–218.

More about These Technologies

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

84	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

thus efficiently computed over MapReduce,
has been proposed. On the other hand, many
other data-intensive, batch-processing tasks
are needed for specifically addressing the
challenges of the Web of data. Examples
include large-scale data analysis, cleaning,
reasoning, entity recognition and consolida-
tion, and ontology mapping.

Grid computing is certainly useful in
some of these tasks. We first show how
Yahoo! is building on grid computing us-
ing Hadoop to enable the analysis, trans-
formation, and querying of large amounts
of RDF data in a batch-processing mode
using clusters of hundreds of machines,
without apparent bottlenecks in scalabil-
ity. Next, we show how the Semantic Web
search engine Sindice is exploiting Hadoop
and related technologies to scale seman-
tic indexing beyond the limits of dedicated
cluster environments while reducing cost
and complexity.3

Batch-processing
RDF using Yahoo! Pig
Yahoo! is building on grid computing us-
ing Hadoop to enable the analysis, trans-
formation, and querying of large amounts
of RDF data in a batch-processing mode
using clusters of hundreds of machines,
without apparent bottlenecks in scalability.
The Yahoo! crawler affectionately named
Slurp began indexing microformat content
in the spring of this year, and the company
recently added eRDF and RDFa to its sup-
ported formats. Yahoo! has also innovated
in the Semantic Web area by allowing
site owners to expose metadata using the
 DataRSS format, an Atom-based format for
delivering RDF data. The Yahoo! Search-
Monkey application platform will likely
produce a further explosion in the amount
of data handled. SearchMonkey developers
can create so-called custom data services to
extract metadata from existing Web sites or
turn APIs into sources of metadata. All the
metadata collected by Yahoo! is stored in
an RDF-compatible format, so processing it
requires the ability to query and transform
large amounts of RDF data.

Yahoo! aims to develop data solutions
that address wide classes of data man-
agement problems and that can easily be
adapted to new problems, such as the one
posed by SearchMonkey.4 One of these
tools, Yahoo! Pig, simplifies the processing
of large data sets on computer clusters by
applying concepts from parallel databases.5

It was originally developed inside Yahoo!
Research but has been recently made avail-
able as open source under the Apache 2.0
license. Pig natively provides support for
data transformations such as projections,
grouping, sorting, joining, and composi-
tions. The expressivity of Pig’s transforma-
tion language is roughly equivalent to stan-
dard relational algebra (which also forms
the basis of SQL), with the added benefit
of extensibility through custom functions
written in Java. Pig programmers develop
custom code for loading and saving data in
other formats into Pig’s data model, which
again builds on the relational model (bags
of tuples) with additional features such as

maps and nested bags of tuples.
Scripts written in PigLatin, Pig’s native

language, are executed on the cluster using
the Hadoop framework or Galago (www.
galagosearch.org), a tuple-processing en-
gine. In contrast to HBase, Pig can’t actu-
ally be called a database: processing takes
place by iterating through the whole data
set (the data isn’t indexed and can’t be
updated), and the results of computation
are saved. HBase, however, doesn’t offer a
query language, only the retrieval of tuples
by their index.

We observed that Pig’s data model and
transformation language are similar to the
relational representations of RDF and the
Sparql query language, respectively, so
we recently extended Pig to perform RDF
querying and transformations. As part of
this work, we implemented load and save
functions to convert RDF to Pig’s data
model, created a mapping between Sparql
and PigLatin, and proved that the mapping
is complete.

We implemented these results as a new
back end for the popular Sesame triple
store.6 Sesame comes with several com-
ponents for storing and retrieving tuples
(including an in-memory implementation,
a native disk-based implementation, and a
relational-database-management-system-
based implementation) but also lets us plug
in additional back ends with minimal effort.
As a result, Sesame applications can switch
transparently to a Pig-based RDF store when
scalability requires it without requiring any
changes to the application code.

We evaluated our system by performing
the common Lehigh University Benchmark
(LUBM). We experimented with the first
two queries of the LUBM set, varying the
number of nodes used for computation and
the size of the data.

Figure 1 shows Pig’s performance us-
ing the same query (the first one in the test
set) on different sizes of test data and with
varying numbers of nodes. In Figure 2,
we show how performance changes as we
move from the first, simple query to the
second, more complex query. The latter re-
quires five joins instead of one.

Both figures show that asymptotically the
execution time is more or less independent
of the data set’s size and is around 100 sec-
onds. In other words, no matter how large
a data set is, given sufficient resources this
query can be executed in about 100 seconds.
On the other hand, we consider this a lower
bound, because it’s associated with the fixed
costs of allocating nodes and distributing the
job. This confirms that—as expected—our
solution isn’t applicable to online, interac-
tive tasks.

The results also show that the improve-
ment from adding additional nodes depends
on whether the execution is balanced. A
balanced execution is one where each node
processes an equal number of blocks—that
is, when

b

m
k

2∗

=

where k ∈ N+, b is the number of blocks,
and m is the number of machines. Between
points that result in balanced executions,
additional nodes won’t improve perfor-
mance, because performance is determined
by the nodes that need to process the larger
number of blocks. However, we do observe
the expected linear scale-up for balanced
execution without any notable communica-

Using the Sindice API, it’s

possible to search for

people, places, events, and

connections on the basis

of semantically structured

documents found on the Web.

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 85

tion overhead, even when scaling up to hun-
dreds of nodes. Furthermore, this holds true
for the second, more complex query: execu-
tion time increases proportionally with the
query, but the general scaling behavior stays
the same.

Although we don’t report the results in
this article, we also experimented with
RDF reasoning using a forward-chain-
ing algorithm. Reasoning in this scenario
requires executing queries iteratively and
adding the results to the data set until no
more new triples are produced. Also, this
method is easy to extend with rule-based
implementations of OWL subsets.

As for the limitations of the approach,
Pig processing provides a solution only to
 offline batch-processing tasks because of
the overhead of distributing the job to pro-
cessing nodes and copying data if neces-
sary. Also, because no index is provided,
updates require full parsing. (On the other
hand, adding data is as simple as copy-
ing it to a directory of the distributed file
system.) Despite these drawbacks, a Map-
Reduce-based infrastructure is most likely
to offer the best resource utilization in an
analytical or research scenario by relying
only on commodity hardware and offering
a general-purpose computing platform. In
our research environment, the same cluster
of machines that’s used to analyze ad clicks
or query logs is used to query and reason
with metadata, because both tasks can be
fitted to the same paradigm. The system al-
locates computing nodes dynamically and
releases them back to the pool as soon as
the job is finished.

Because of their versatility, MapReduce
clusters are used in production for large-
scale data processing at both Google2 and
Yahoo! (http://developer.yahoo.com/blogs/
hadoop/2008/02/yahoo-worlds-largest-
production-hadoop.html). However, given
that the software is free and requires no
special hardware, this solution is also open
to universities that must perform experi-
ments with large amounts of metadata.

Sindice: Large-scale
processing of structured
Web data
Developed by the Digital Enterprise Re-
search Institute’s Data Intensive Infrastruc-
tures group (http://di2.deri.ie), the Sindice
project deals with building scalable APIs
to locate and use RDF and microformat
data as found on the Web. By using the Sin-

dice API, for example, it’s possible to use
keywords and semantic-pattern queries to
search for people, places, events, and con-
nections on the basis of semantically struc-
tured documents found on the Web. This
includes, for example, FOAF (friend-of-a-
friend) files, HTML pages using the hcard

microformat, XML Social Network (XFN)
information, and so on.

Technically, Sindice is designed to pro-
vide these services, fulfilling three main
nonfunctional requirements: scalability,
runtime performance, and ability to cope
with the many changes in standards and

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of nodes

Se
co

nd
s

to
 c

om
pl

et
e

lubm-q1.pig - 50
lubm-q1.pig - 100
lubm-q1.pig - 1,000

Data sets:

Figure 1. Pig’s performance on Query 1 of the Lehigh University Benchmark (LUBM)
using varying numbers of nodes. Different curves represent different sizes of
data—that is, the LUBM 50, LUBM 100, and LUBM 1,000 data sets.

Se
co

nd
s

to
 c

om
pl

et
e

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of nodes

100 - lubm-q1.pig
100 - lubm-q2.pig

Figure 2. Pig’s performance on two queries, both taken from the LUBM benchmark.
Q1 is simpler, and Q2 is more complex using varying numbers of nodes.

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

86	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

usage practices on the Web of data. Fig-
ure 3 shows a sketch of Sindice’s internal
architecture.

In terms of scalability, the goal is to
handle massive amounts of data on the Web,
with predicted scalability needs in the range
of trillions of triples. We achieve this by us-
ing information retrieval techniques to an-
swer both textual and semantic queries over
large collections of structured documents.
This approach trades limited query complex-
ity (for example, only allowing simple pat-
tern queries and limited join capability) for
high scalability, as we see in traditional Web
search engines. Although answering queries
doesn’t require cloud-computing techniques,
these are fundamental for Sindice to reach its
scalability goals during the entire prepro-
cessing phase and in particular to perform
harvesting, storage, and data transformation.

At the harvesting level, SindiceBot (a

Web crawler that collects Web pages and
RDF documents for the Sindice search
engine) employs Hadoop/Nutch (http://
lucene.apache.org/nutch) to distribute the
crawling jobs across multiple machines.
The main crawling strategy is not unlike
what’s commonly used in Web harvesting,
but specific tasks differ and require data-
intensive operations. One such case is the
efficient handling of large data sets pub-
lished using the Linked Data model (a set
of best practices for publishing and deploy-
ing instance and class data using the RDF
data model). DBPedia.org, for example,
exposes several million virtual RDF files
derived on demand by querying the under-
lying data set.

Crawling one such site requires consid-
erable time, poses limits to the frequency
of recrawling and therefore of information
updates by the search engine, and imposes

a nonnegligible computational burden
on the remote site. This is similar to the
problem of Deep Web crawling, which the
Sitemap protocol (www.sitemaps.org) is
currently addressing. Similarly, an exten-
sion to the Sitemap protocol (http://sw.deri.
org/2007/07/sitemapextension) allows
data sets to be described in a way that the
crawler can download the data as a dump
and avoid retrieving each individual URI
(uniform resource identifier) referenced in
the data. Processing such dumps is data
intensive, requiring RDF processing at the
triple level to create entity representations,
which are then individually indexed. Simi-
lar to what we described earlier about Pig,
the Sindice crawler performs this task ef-
ficiently across the cluster using a MapRe-
duce implementation.7

After collection, data is stored in its raw
form, mostly HTML or RDF, in the HBase
distributed column-based store (see the
sidebar “More about These Technologies”).

For complex data analysis, HBase consti-
tutes the distributed storage medium with
possibilities for structured queries—albeit
limited—as well as input for any analytics
implemented with MapReduce. To sup-
port runtime requirements of data analysis
tasks, the Sindice index must be precom-
puted and fully expanded. This is done in
three steps.

First, the Sindice indexing pipeline pre-
processes raw data from HBase. It analyzes
the HTML using the Hadoop pipeline to
extract RDFa, microformats, and many
other significant elements and summary in-
formation. These include statistics but also
extra bits of information such as the page’s
title, the presence of RSS or other machine-
processible elements, and context elements
such as keywords found in the text. At this
point, the document’s semantics, regard-
less of the original format, is represented in
RDF and proceeds in the pipeline for rea-
soning and consolidation.

Second, the Sindice indexing pipeline
applies reasoning to fact sets. Reasoning
is important when indexing native RDF
documents, because it makes information
explicit and therefore directly available for
indexing purposes. As an example, in the
case of social-networking data described
using the FOAF ontology, it wouldn’t be
possible to answer a query for “entities
labeled ‘giovanni’” unless you could infer
that a foaf:name is a subproperty of rdfs:label.
Microformats, on the other hand, require

WWW

HDFS

HBase

Physical storage Data processing Index storages

W
eb craw

ling
Indexing

Postindexing

Crawler database

Sitemap manager

List to crawl

Quad store

Ontology
repository

Ranker storage

Main index

[URI scores]

[Sitemaps]

[URI]

[URI] cronjob

[URI]

Document list

URI score

Ontology

Description

Autopinger

Ping processor

Crawler

Triplifier

Indexing
pipeline

Entity processing

Graph reasoner
Distributed
document

storage

Distributed
nTriple

document
storage

Update manager

Front-end
applications

Ranker

Front end
APIs

URI

URI data

Update
request

RDF or HTML
with �Formats + metadata

n3 documents

A

A

B

B
Object A storing data in B

Object B drafting data from A

Figure 3. The Sindice architecture. In the Sindice indexing pipeline, documents are
first discovered and crawled from the Web. The pipeline then extracts data from the
documents and performs reasoning and entity consolidation before creating the
index that’s used for serving clients.

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

SEpTEMbEr/OcTObEr 2008 www.computer.org/intelligent 87

even more sophisticated handling—for
example, to extract the named entities
from a description text and turn them into
triples in the RDF representation. Effi-
cient up-front reasoning requires that Map-
Reduce jobs employ some form of state,
which is unusual: MapReduce jobs must
be functional by definition, which stands in
contrast with the need to reuse previously
obtained reasoning results (for instance,
reasoning on TBox statements of reused
ontologies should be performed just once).
Our solution is based on the use of several
“reasoning servers” shared across MapRe-
duce jobs, which cache reasoning results in
large main memories.

Third, entity consolidation is required
to establish appropriate cross-references
between the data and its index. Let’s as-
sume that the engine has indexed documents
containing a given term—for example, URI1.
If the engine learns that URI1 owl:sameAs URI2,
it will need to reindex all the originally in-
dexed documents to add the equivalence of
URI2 in the document term index. Similarly,
the indexer often needs to modify the rules
for data transformation—for instance, from
microformats to RDF—to increase the qual-
ity of the search results or to address new
usage patterns or new standards. Once this
is done, the engine must reindex most of the
data starting back from the HTML form.

At the output of the indexing pipeline,
the RDF documents are now consolidated
and contain explicit semantic statements
together with consolidation information.
Finally, these are both sent to the index and
added to HBase for later retrieval and fur-
ther offline processing.

Having illustrated the data-intensive pro-
cesses in a semantic-search engine, the need
for distributing storage and effectively shar-
ing the computational load across the clus-
ter is evident. In Sindice, we’ve found that
Hadoop and the associated technology stack
effectively address data-intensive tasks,
whether for data management or analysis,
including those specific to processing struc-
tured data. In our experience, the indexing
pipeline’s processing throughput can grow
almost linearly with the number of serv-
ers. In the current setup, Sindice’s cluster of
eight machines can process approximately
150 documents per second.

Cloud-computing techniques, already the

processing backbone of the Web of HTML
pages, are also now being exploited to
deal with the explosion of the Web of data,
both in research and in production envi-
ronments. Hadoop’s MapReduce frame-
work and extensions to it such as HBase
and Yahoo! Pig are being employed to do
large-scale processing of arbitrarily shaped
semantic data sets with no scalability lim-
its in sight. As always, conforming to a
framework entails the need for adaptation:
both data and algorithms must be recast so
that they fit platform design. However, in
Semantic Web research—and in Web sci-
ence in general—we can study some of the
most interesting phenomena such as the
emergence of semantics only on large data
sets. So, there’s no way to escape the com-
promises required for addressing problems
of scale.

Cloud-computing techniques have been
well known for large commercial players,
but they’re now within the reach even of
academic research labs and small and me-
dium-scale enterprises. Thanks to the use
of inexpensive, commodity hardware and
open source implementations, experiment-
ing with these techniques is easy, even
with very low budgets. Adopting cloud-
 computing techniques, however, requires
a special kind of expertise. To aid in this
process, cloud computing must have a sta-
ble place in academic curricula. Although
several universities are starting to provide
courses on these paradigms, a notable lag
exists between academia and the research
centers of large commercial Internet play-
ers. Europe, it seems, is also lagging a bit.
We can only wish that this theme becomes
increasingly recognized as a strategic fo-
cus for achieving competitiveness in the
Web market.

Finally, with respect to the Semantic
Web research community, we are very in-
terested in continuing to develop Semantic
Web algorithms cast into the MapReduce
framework or its higher-level abstractions
such as Pig and HBase. We believe we can
successfully transform some of the research
problems we’ve been facing into the well-
understood MapReduce paradigm and
then apply solutions based on open source
implementations and commodity hard-
ware. We call on the research community
to explore the entire range of Semantic Web
algorithms that could be successfully trans-
formed into this increasingly popular solu-
tion space. Many of the Semantic Web’s

scalability problems will likely turn out to
be less challenging after all.

Acknowledgments

We acknowledge the support of Ben Reed of
Yahoo! Research in carrying out some of the
research described. We also acknowledge the
support of Renaud Delbru, Michele Catasta,
Gabriele Renzi, Paolo Capriotti, Holger Sten-
zhorn, and Richard Cyganiak for other parts of
our research.

References
 1. F. Chang et al., “Bigtable: A Distributed

Storage System for Structured Data,” Proc.
7th Symp. Operating System Design and
Implementation (OSDI 06), Usenix Assoc.,
2006, pp. 205–218.

 2. J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clus-
ters,” Proc. 6th Symp. Operating System
Design and Implementation (OSDI 04),
Usenix Assoc., 2004, pp. 137–150.

 3. E. Oren et al., “Sindice.com: A Document-
Oriented Lookup Index for Open Linked
Data,” Int’l J. Metadata, Semantics, and
Ontologies, vol. 3, no. 1, 2008.

 4. R. Baeza-Yates and R. Ramakrishnan,
“Data Challenges at Yahoo!” Proc. 11th
Int’l Conf. Extending Database Technol-
ogy (EDBT 08), ACM Press, 2008, pp.
652–655.

 5. C. Olston et al., “PigLatin: a Not-So-
 Foreign Language for Data Processing,”
Proc. 2008 ACM Sigmod Int’l Conf. Man-
agement of Data (Sigmod 08), ACM Press,
2008, pp. 1099–1110.

 6. J. Broekstra, A. Kampman, and F. van
Harmelen, “Sesame: An Architecture
for Storing and Querying RDF and RDF
Schema,” Proc. 1st Int’l Semantic Web
Conf. (ISWC 02), LNCS 2342, Springer,
2002, pp. 54–68.

 7. R. Cyganiak et al., “Exposing Large Data
Sets with Semantic Sitemaps,” Proc. 5th
European Semantic Web Conf., LNCS
5021, Springer, 2008, pp. 690–704.

peter Mika is a researcher at Yahoo! Re-
search. Contact him at pmika@yahoo-inc.
com.

Giovanni Tummarello is a research fel-
low, head of the Data Intensive Infrastruc-
tures research unit, and project leader for
the Sindice Data Web Search Engine proj-
ect (http://sindice.com) at the Digital En-
terprise Research Institute. Contact him at
giovanni.tummarello@deri.org.

Authorized licensed use limited to: CINVESTAV IPN. Downloaded on September 29, 2009 at 12:51 from IEEE Xplore. Restrictions apply.

