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entity descriptions based on the Resource Description 
Framework (RDF) in data sets such as DBPedia, Uniprot, 
and Geonames. On the other hand, the Web 2.0 community 
has increasingly embraced the idea of data portability, and 
the first efforts have already produced billions of RDF-
equivalent triples either embedded inside HTML pages us-
ing microformats or exposed directly using eRDF (embed-
ded RDF) and RDFa (RDF attributes).

Incentives for exposing such data are also finally becom-
ing clearer. Yahoo!’s SearchMonkey, for example, makes 
Web sites containing structured data stand out from others 
by providing the most appropriate visualization for the end 
user in the search result page. It will not be long, we envi-
sion, before search engines will also directly use this infor-
mation for ranking and relevance purposes—returning, for 
example, qualitatively better results for queries that involve 
everyday entities such as events, locations, and people.

Even though we’re still at the beginning of the data Web 
era, the amount of information already available is clearly 
much larger than what could be contained, for example, in 
any current-generation triple store (a database for storing 
and retrieving RDF metadata) typically running on single 
servers.

Although many applications will need to work with large 
amounts of metadata, one particular application would cer-
tainly not exist without the capability of accessing and pro-
cessing arbitrary amounts of metadata: search engines that 
locate the data and services that other applications need. For 
this reason, Semantic Web search engines and large-scale 
services are now the first in harnessing grid computing’s 
power when it comes to scaling far beyond the current gen-
eration of triple stores.

Cloud computing for the web of data 
Not all computationally intense problems require simi-
larly structured hardware configurations. Classic super-
computers, typically characterized by superior arithmetic 

performance per CPU and high-end CPU interconnection 
technologies, are proven tools that have scored great suc-
cesses in physics, astronomy, chemistry, biology, and many 
other fields. In general, researchers find it hard to surpass 
such high-end machines when they’re facing problems that 
tend to be hard to parallelize or when they need intense in-
terprocess communication.

When this isn’t the case, however, cluster-computing ap-
proaches typically exhibit far greater flexibility in resource 
utilization and much lower overall costs. In an extreme 
case, clouds can extend to the entire Internet: computa-
tions involving relatively small data blocks, with no coor-
dination needs and no significant constraints on execu-
tion times, have been performed across the Internet—for 
example, using free desktop cycles such as in the SETI or 
Folding@ projects. 

The computations needed in Web data processing lie 
somewhere between these extremes. On the one hand, 
Web data is interlinked, and the analysis of its mesh has 
proven to be fundamental in gaining insights about its im-
plicit nature. At the same time, however, the data is by na-
ture distributed and can be said to be consistent with itself, 
if at all, only within the boundaries of a single Web site. 
Furthermore, a prominent characteristic is definitely the 
sheer amount of such data, with a petabyte being a com-
mon order of magnitude.1

To process this kind of data, leading Internet search 
providers have been pioneering ways to perform large-
scale Web data computations on clusters of commodity 
machines interconnected with mainstream networking 
technology. Google’s publications about its MapReduce 
framework2 and more recently the Yahoo!-initiated, open 
source implementation Hadoop (www.hadoop.apache.org) 
are attracting increasing attention from developers and us-
ers alike.

The MapReduce style of computation works well with 
the possibilities offered by the emerging cloud-computing 
paradigm. This computation style provides generally use-
ful abstractions so that developers can focus on the task at 
hand (see the sidebar “More about These Technologies”). 
Executing computations “in the clouds” refers to the model 
in which an application requests computational resources 
from a service provider without needing to bother with the 
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computational offer’s details. An example 
that’s recently enjoying popularity is the 
Amazon Elastic Computing service offer, 
which allows computing capabilities to be 
allocated within minutes and increased 
dynamically as required—for example, to 
quickly cope with an unexpected peak of 
visitors. Because MapReduce is agnostic 
with regard to the actual size of the clus-
ter it runs on, executing Hadoop on such 

cloud-like infrastructures is an appeal-
ing strategy for performing data-intensive 
computations while minimizing, or opti-
mizing, the upfront infrastructure invest-
ment. The combined paradigm is generally 
referred to as data-intensive scalable (or 
super)computing (DISC). 

With respect to the complex tasks in-
volved in processing the Web of data, a 
DISC approach is for many reasons a natural 

choice. On the one hand, many tasks, such 
as crawling, can be performed in a fashion 
similar to the processing of regular Web 
content (HTML pages). Semantic data 
crawling often requires special treatment 
and dedicated intelligence but doesn’t gen-
erally differ very much from crawling the 
HTML Web. Similarly, ranking a Semantic 
Web source such as sites or data sets on the 
basis of algorithms similar to PageRank, and 

Although distributed computing is almost as old as computer 
networks, the paradigm has been rapidly gaining popular-
ity recently under the name cloud computing. This surge in 
interest is partly due to limitations of single-machine hard-
ware architectures but is also the result of improvements in 
software abstractions that hide the complexity of underlying 
hardware architectures from the programmer. Three of these 
software layers—Hadoop, HBase, and Pig—all implement 
data structures (maps and relational tables, for instance) and 
processing pipelines that are familiar to most programmers. 
In cases where the developer can map the problem at hand 
to these solution spaces, the task of cluster programming 
becomes almost as simple as developing software for single 
machines (although testing might be more involved). All 
three are Java-based open-source projects developed under 
the Apache organization. The descriptions we provide de-
scribe only the systems’ core functionality.

Hadoop
Hadoop (http://hadoop.apache.org/core) implements a dis-
tributed file system (HDFS) and a MapReduce framework 
similar to the Google File System and Google’s original 
implementation of MapReduce.1 HDFS provides a virtual 
disk space that is physically distributed across the machines, 
where the data is replicated to withstand the failure of 
single machines and speed up processing. MapReduce pro-
vides a simple processing pipeline consisting of two phases, 
a Map and a Reduce phase. The machines in the cluster work 
in parallel in both phases, running identical jobs but on dif-
ferent slices of the data. MapReduce builds on HDFS in that 
the input, output, and intermediate results are stored on the 
distributed file system. 

The input and output of the Map phase is a bag of (key, 
value) pairs, in which the keys need not be unique. The data 
on disk can be in any structure as long as the developer can 
provide a function that loads it into key-value pairs. Keys and 
values can be arbitrarily complex Java objects as long as they 
implement the necessary interfaces. At the end of the Map 
phase, the system collects the pairs with the same key and 
sends them to separate machines. The Reduce-phase jobs 
then operate on a bag of pairs with the same key to produce 
some output. (The output most often also consists of key-
value pairs to serve as input for some other processing.) So, 
the Reduce phase can begin only after all the Map tasks are 
done. However, this is the only synchronization point and 
the only interprocess communication, thus greatly simplify-
ing implementation.

HBase
HBase (http://hadoop.apache.org/hbase) builds on Hadoop 
to provide a virtual database abstraction similar to the origi-
nal BigTable system.2 An HBase table always has a column 
that serves as the key; rows can only be located by this key’s 
value (that is, the table has a single index). Thus, HBase ta-
bles can also be considered key-value pairs, where the keys 
are unique and the value provides the content for the non-
key columns. BigTable was originally developed for storing 
the results of crawling, and HBase preserves some of these 
characteristics such as the ability to store different versions 
of cell contents, which can be distinguished by time stamp. 
HBase doesn’t provide a join operation on these tables, only 
simple lookups by key. HBase tables are stored on the distrib-
uted file system in an indexed form to support this. 

Pig
Pig (http://incubator.apache.org/pig) also builds on Hadoop 
but goes a step further toward database-like functional-
ity. A table in Pig is a bag of tuples, in which each field can 
hold a value or a bag of tuples (that is, nested tables are also 
possible). Tables in Pig aren’t stored on disk in any special 
form but are loaded by a custom load function the program-
mer defines. (This has the disadvantage that the data isn’t 
indexed by any key.) PigLatin, Pig’s scripting language, is pro-
cedural—that is, writing a Pig script is more similar to writing 
a “query plan” than to writing a query in SQL. Nevertheless, 
most users find learning PigLatin easy because it provides all 
the familiar constructs of SQL such as filtering (projection), 
joins, grouping, sorting, and so on. PigLatin can also be ex-
tended using custom functions. Furthermore, it can also be 
embedded inside Java to provide additional control such as 
conditionals and loops. PigLatin scripts are translated into a 
sequence of MapReduce jobs.
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thus efficiently computed over MapReduce, 
has been proposed. On the other hand, many 
other data-intensive, batch-processing tasks 
are needed for specifically addressing the 
challenges of the Web of data. Examples 
include large-scale data analysis, cleaning, 
reasoning, entity recognition and consolida-
tion, and ontology mapping. 

Grid computing is certainly useful in 
some of these tasks. We first show how 
Yahoo! is building on grid computing us-
ing Hadoop to enable the analysis, trans-
formation, and querying of large amounts 
of RDF data in a batch-processing mode 
using clusters of hundreds of machines, 
without apparent bottlenecks in scalabil-
ity. Next, we show how the Semantic Web 
search engine Sindice is exploiting Hadoop 
and related technologies to scale seman-
tic indexing beyond the limits of dedicated 
cluster environments while reducing cost 
and complexity.3

Batch-processing  
RDF using Yahoo! Pig
Yahoo! is building on grid computing us-
ing Hadoop to enable the analysis, trans-
formation, and querying of large amounts 
of RDF data in a batch-processing mode 
using clusters of hundreds of machines, 
without apparent bottlenecks in scalability. 
The Yahoo! crawler affectionately named 
Slurp began indexing microformat content 
in the spring of this year, and the company 
recently added eRDF and RDFa to its sup-
ported formats. Yahoo! has also innovated 
in the Semantic Web area by allowing 
site owners to expose metadata using the 
 DataRSS format, an Atom-based format for 
delivering RDF data. The Yahoo! Search-
Monkey application platform will likely 
produce a further explosion in the amount 
of data handled. SearchMonkey developers 
can create so-called custom data services to 
extract metadata from existing Web sites or 
turn APIs into sources of metadata. All the 
metadata collected by Yahoo! is stored in 
an RDF-compatible format, so processing it 
requires the ability to query and transform 
large amounts of RDF data.

Yahoo! aims to develop data solutions 
that address wide classes of data man-
agement problems and that can easily be 
adapted to new problems, such as the one 
posed by SearchMonkey.4 One of these 
tools, Yahoo! Pig, simplifies the processing 
of large data sets on computer clusters by 
applying concepts from parallel databases.5 

It was originally developed inside Yahoo! 
Research but has been recently made avail-
able as open source under the Apache 2.0 
license. Pig natively provides support for 
data transformations such as projections, 
grouping, sorting, joining, and composi-
tions. The expressivity of Pig’s transforma-
tion language is roughly equivalent to stan-
dard relational algebra (which also forms 
the basis of SQL), with the added benefit 
of extensibility through custom functions 
written in Java. Pig programmers develop 
custom code for loading and saving data in 
other formats into Pig’s data model, which 
again builds on the relational model (bags 
of tuples) with additional features such as 

maps and nested bags of tuples.
Scripts written in PigLatin, Pig’s native 

language, are executed on the cluster using 
the Hadoop framework or Galago (www.
galagosearch.org), a tuple-processing en-
gine. In contrast to HBase, Pig can’t actu-
ally be called a database: processing takes 
place by iterating through the whole data 
set (the data isn’t indexed and can’t be 
updated), and the results of computation 
are saved. HBase, however, doesn’t offer a 
query language, only the retrieval of tuples 
by their index. 

We observed that Pig’s data model and 
transformation language are similar to the 
relational representations of RDF and the 
Sparql query language, respectively, so 
we recently extended Pig to perform RDF 
querying and transformations. As part of 
this work, we implemented load and save 
functions to convert RDF to Pig’s data 
model, created a mapping between Sparql 
and PigLatin, and proved that the mapping 
is complete.

We implemented these results as a new 
back end for the popular Sesame triple 
store.6 Sesame comes with several com-
ponents for storing and retrieving tuples 
(including an in-memory implementation, 
a native disk-based implementation, and a 
relational-database-management-system-
based implementation) but also lets us plug 
in additional back ends with minimal effort. 
As a result, Sesame applications can switch 
transparently to a Pig-based RDF store when 
scalability requires it without requiring any 
changes to the application code.

We evaluated our system by performing 
the common Lehigh University Benchmark 
(LUBM). We experimented with the first 
two queries of the LUBM set, varying the 
number of nodes used for computation and 
the size of the data.

Figure 1 shows Pig’s performance us-
ing the same query (the first one in the test 
set) on different sizes of test data and with 
varying numbers of nodes. In Figure 2, 
we show how performance changes as we 
move from the first, simple query to the 
second, more complex query. The latter re-
quires five joins instead of one.

Both figures show that asymptotically the 
execution time is more or less independent 
of the data set’s size and is around 100 sec-
onds. In other words, no matter how large 
a data set is, given sufficient resources this 
query can be executed in about 100 seconds. 
On the other hand, we consider this a lower 
bound, because it’s associated with the fixed 
costs of allocating nodes and distributing the 
job. This confirms that—as expected—our 
solution isn’t applicable to online, interac-
tive tasks.

The results also show that the improve-
ment from adding additional nodes depends 
on whether the execution is balanced. A 
balanced execution is one where each node 
processes an equal number of blocks—that 
is, when
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where k ∈ N+, b is the number of blocks, 
and m is the number of machines. Between 
points that result in balanced executions, 
additional nodes won’t improve perfor-
mance, because performance is determined 
by the nodes that need to process the larger 
number of blocks. However, we do observe 
the expected linear scale-up for balanced 
execution without any notable communica-

Using the Sindice API, it’s 

possible to search for 

people, places, events, and 

connections on the basis 

of semantically structured 

documents found on the Web.
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tion overhead, even when scaling up to hun-
dreds of nodes. Furthermore, this holds true 
for the second, more complex query: execu-
tion time increases proportionally with the 
query, but the general scaling behavior stays 
the same.

Although we don’t report the results in 
this article, we also experimented with 
RDF reasoning using a forward-chain-
ing algorithm. Reasoning in this scenario 
requires executing queries iteratively and 
adding the results to the data set until no 
more new triples are produced. Also, this 
method is easy to extend with rule-based 
implementations of OWL subsets. 

As for the limitations of the approach, 
Pig processing provides a solution only to 
 offline batch-processing tasks because of 
the overhead of distributing the job to pro-
cessing nodes and copying data if neces-
sary. Also, because no index is provided, 
updates require full parsing. (On the other 
hand, adding data is as simple as copy-
ing it to a directory of the distributed file 
system.) Despite these drawbacks, a Map-
Reduce-based infrastructure is most likely 
to offer the best resource utilization in an 
analytical or research scenario by relying 
only on commodity hardware and offering 
a general-purpose computing platform. In 
our research environment, the same cluster 
of machines that’s used to analyze ad clicks 
or query logs is used to query and reason 
with metadata, because both tasks can be 
fitted to the same paradigm. The system al-
locates computing nodes dynamically and 
releases them back to the pool as soon as 
the job is finished.

Because of their versatility, MapReduce 
clusters are used in production for large-
scale data processing at both Google2 and 
Yahoo! (http://developer.yahoo.com/blogs/
hadoop/2008/02/yahoo-worlds-largest- 
production-hadoop.html). However, given 
that the software is free and requires no 
special hardware, this solution is also open 
to universities that must perform experi-
ments with large amounts of metadata. 

Sindice: Large-scale 
processing of structured 
Web data
Developed by the Digital Enterprise Re-
search Institute’s Data Intensive Infrastruc-
tures group (http://di2.deri.ie), the Sindice 
project deals with building scalable APIs 
to locate and use RDF and microformat 
data as found on the Web. By using the Sin-

dice API, for example, it’s possible to use 
keywords and semantic-pattern queries to 
search for people, places, events, and con-
nections on the basis of semantically struc-
tured documents found on the Web. This 
includes, for example, FOAF (friend-of-a-
friend) files, HTML pages using the hcard 

microformat, XML Social Network (XFN) 
information, and so on. 

Technically, Sindice is designed to pro-
vide these services, fulfilling three main 
nonfunctional requirements: scalability, 
runtime performance, and ability to cope 
with the many changes in standards and 
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usage practices on the Web of data. Fig-
ure 3 shows a sketch of Sindice’s internal 
architecture. 

In terms of scalability, the goal is to 
handle massive amounts of data on the Web, 
with predicted scalability needs in the range 
of trillions of triples. We achieve this by us-
ing information retrieval techniques to an-
swer both textual and semantic queries over 
large collections of structured documents. 
This approach trades limited query complex-
ity (for example, only allowing simple pat-
tern queries and limited join capability) for 
high scalability, as we see in traditional Web 
search engines. Although answering queries 
doesn’t require cloud-computing techniques, 
these are fundamental for Sindice to reach its 
scalability goals during the entire prepro-
cessing phase and in particular to perform 
harvesting, storage, and data transformation. 

At the harvesting level, SindiceBot (a 

Web crawler that collects Web pages and 
RDF documents for the Sindice search  
engine) employs Hadoop/Nutch (http:// 
lucene.apache.org/nutch) to distribute the 
crawling jobs across multiple machines. 
The main crawling strategy is not unlike 
what’s commonly used in Web harvesting, 
but specific tasks differ and require data-
intensive operations. One such case is the 
efficient handling of large data sets pub-
lished using the Linked Data model (a set 
of best practices for publishing and deploy-
ing instance and class data using the RDF 
data model). DBPedia.org, for example, 
exposes several million virtual RDF files 
derived on demand by querying the under-
lying data set. 

Crawling one such site requires consid-
erable time, poses limits to the frequency 
of recrawling and therefore of information 
updates by the search engine, and imposes 

a nonnegligible computational burden 
on the remote site. This is similar to the 
problem of Deep Web crawling, which the 
Sitemap protocol (www.sitemaps.org) is 
currently addressing. Similarly, an exten-
sion to the Sitemap protocol (http://sw.deri.
org/2007/07/sitemapextension) allows 
data sets to be described in a way that the 
crawler can download the data as a dump 
and avoid retrieving each individual URI 
(uniform resource identifier) referenced in 
the data. Processing such dumps is data 
intensive, requiring RDF processing at the 
triple level to create entity representations, 
which are then individually indexed. Simi-
lar to what we described earlier about Pig, 
the Sindice crawler performs this task ef-
ficiently across the cluster using a MapRe-
duce implementation.7

After collection, data is stored in its raw 
form, mostly HTML or RDF, in the HBase 
distributed column-based store (see the 
sidebar “More about These Technologies”). 

For complex data analysis, HBase consti-
tutes the distributed storage medium with 
possibilities for structured queries—albeit 
limited—as well as input for any analytics 
implemented with MapReduce. To sup-
port runtime requirements of data analysis 
tasks, the Sindice index must be precom-
puted and fully expanded. This is done in 
three steps. 

First, the Sindice indexing pipeline pre-
processes raw data from HBase. It analyzes 
the HTML using the Hadoop pipeline to 
extract RDFa, microformats, and many 
other significant elements and summary in-
formation. These include statistics but also 
extra bits of information such as the page’s 
title, the presence of RSS or other machine-
processible elements, and context elements 
such as keywords found in the text. At this 
point, the document’s semantics, regard-
less of the original format, is represented in 
RDF and proceeds in the pipeline for rea-
soning and consolidation.

Second, the Sindice indexing pipeline 
applies reasoning to fact sets. Reasoning 
is important when indexing native RDF 
documents, because it makes information 
explicit and therefore directly available for 
indexing purposes. As an example, in the 
case of social-networking data described 
using the FOAF ontology, it wouldn’t be 
possible to answer a query for “entities 
labeled ‘giovanni’” unless you could infer 
that a foaf:name is a subproperty of rdfs:label. 
Microformats, on the other hand, require 
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even more sophisticated handling—for 
example, to extract the named entities 
from a description text and turn them into 
triples in the RDF representation. Effi-
cient up-front reasoning requires that Map-
Reduce jobs employ some form of state, 
which is unusual: MapReduce jobs must 
be functional by definition, which stands in 
contrast with the need to reuse previously 
obtained reasoning results (for instance, 
reasoning on TBox statements of reused 
ontologies should be performed just once). 
Our solution is based on the use of several 
“reasoning servers” shared across MapRe-
duce jobs, which cache reasoning results in 
large main memories.

Third, entity consolidation is required 
to establish appropriate cross-references 
between the data and its index. Let’s as-
sume that the engine has indexed documents 
containing a given term—for example, URI1. 
If the engine learns that URI1 owl:sameAs URI2, 
it will need to reindex all the originally in-
dexed documents to add the equivalence of 
URI2 in the document term index. Similarly, 
the indexer often needs to modify the rules 
for data transformation—for instance, from 
microformats to RDF—to increase the qual-
ity of the search results or to address new 
usage patterns or new standards. Once this 
is done, the engine must reindex most of the 
data starting back from the HTML form.

At the output of the indexing pipeline, 
the RDF documents are now consolidated 
and contain explicit semantic statements 
together with consolidation information. 
Finally, these are both sent to the index and 
added to HBase for later retrieval and fur-
ther offline processing. 

Having illustrated the data-intensive pro-
cesses in a semantic-search engine, the need 
for distributing storage and effectively shar-
ing the computational load across the clus-
ter is evident. In Sindice, we’ve found that 
Hadoop and the associated technology stack 
effectively address data-intensive tasks, 
whether for data management or analysis, 
including those specific to processing struc-
tured data. In our experience, the indexing 
pipeline’s processing throughput can grow 
almost linearly with the number of serv-
ers. In the current setup, Sindice’s cluster of 
eight machines can process approximately 
150 documents per second. 

Cloud-computing techniques, already the 

processing backbone of the Web of HTML 
pages, are also now being exploited to 
deal with the explosion of the Web of data, 
both in research and in production envi-
ronments. Hadoop’s MapReduce frame-
work and extensions to it such as HBase 
and Yahoo! Pig are being employed to do 
large-scale processing of arbitrarily shaped 
semantic data sets with no scalability lim-
its in sight. As always, conforming to a 
framework entails the need for adaptation: 
both data and algorithms must be recast so 
that they fit platform design. However, in 
Semantic Web research—and in Web sci-
ence in general—we can study some of the 
most interesting phenomena such as the 
emergence of semantics only on large data 
sets. So, there’s no way to escape the com-
promises required for addressing problems 
of scale.

Cloud-computing techniques have been 
well known for large commercial players, 
but they’re now within the reach even of 
academic research labs and small and me-
dium-scale enterprises. Thanks to the use 
of inexpensive, commodity hardware and 
open source implementations, experiment-
ing with these techniques is easy, even 
with very low budgets. Adopting cloud-
 computing techniques, however, requires 
a special kind of expertise. To aid in this 
process, cloud computing must have a sta-
ble place in academic curricula. Although 
several universities are starting to provide 
courses on these paradigms, a notable lag 
exists between academia and the research 
centers of large commercial Internet play-
ers. Europe, it seems, is also lagging a bit. 
We can only wish that this theme becomes 
increasingly recognized as a strategic fo-
cus for achieving competitiveness in the 
Web market. 

Finally, with respect to the Semantic 
Web research community, we are very in-
terested in continuing to develop Semantic 
Web algorithms cast into the MapReduce 
framework or its higher-level abstractions 
such as Pig and HBase. We believe we can 
successfully transform some of the research 
problems we’ve been facing into the well-
understood MapReduce paradigm and 
then apply solutions based on open source 
implementations and commodity hard-
ware. We call on the research community 
to explore the entire range of Semantic Web 
algorithms that could be successfully trans-
formed into this increasingly popular solu-
tion space. Many of the Semantic Web’s 

scalability problems will likely turn out to 
be less challenging after all.
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