
Web Service Aggregation and Selection Based on Join Operation in RDB 45

Web Service Aggregation and Selection Based

on Join Operation in RDB

Jianxiao Liu12, Xiaoxia Li2, Zhihua Xia1*

1 School of Computer & Software, Nanjing University of Information Science & Technology, China
2 College of Informatics, Huazhong Agricultural University, China

liujianxiao321@163.com, lixiaoxiahn@163.com, xia_zhihua@163.com

*Corresponding Author: Zhihua Xia; E-mail: xia_zhihua@163.com

DOI: 10.3966/160792642018011901005

Abstract

How to realize Web service organization and

management quickly and accurately, and build an

effective service selection mechanism to choose services

with correlations to meet users’ functional and non-

functional requests, and thus to meet the individual and

dynamic changing requirements is a key problem in the

Service-Oriented Software Engineering (SOSE). The

Web service and ontology information are stored into

RDB (relational database) in our method, it realizes Web

service aggregation and selection in term of service

interface (Input and Output) and execution capability

(Precondition and Effect). Firstly, the Web service

clustering method based on self-join operation in RDB is

proposed to cluster services efficiency. Then it uses the

abstract service extraction method to get abstract services,

and uses Web service aggregation approach based on join

operation to organize the clustered services. Finally, the

Web service selection method is proposed to select the

atomic service and a set of services with correlations to

meet users’ functional and QoS (quality of service)

requirements. In addition, the case study and experiments

are used to explain and verify the effectiveness of the

proposed methods.

Keywords: Web Service Clustering, Aggregation, Join

operation, Selection

1 Introduction

There are all kinds of services on the internet in the

era of service computing. Users will choose services to

meet their individual and dynamic changing

requirements, which include the functional and QoS

(Quality of Service) requests. It needs to organize and

manage Web service efficiently, and thus to supply the

services with high QoE (Quality of Experience) for

users and enhance the quality of on-demand service [1].

As we all know, users’ individual requests mainly

include functional and non-functional (QoS) requirements.

We should consider the two kinds of requirements

when to realize service organization. Service organization

refers to organize all kinds of Web services in the

service registration center based on users’ requirements.

Service clustering is a service organization method

according to users’ functional requirement. While there

are various types of services which realize different

functions on the internet, and users usually need a set

of services with different functions. Therefore, it is

necessary to organize service clusters in further based

on clustering Web services with similar functions. And

this approach is called as service aggregation. Service

aggregation refers to organize service clusters

according to service execution relationships. Then

users can find a set of services with correlations to

meet their requirements quickly and accurately in the

organized services. In addition, there are several Web

service description languages [2], such as WSDL,

OWL-S, WADL, SWSO/SWSL, WSMO/WSML, etc.

We can use ontology to annotate these heterogeneous

services that are described using different languages

from the semantic level. How to annotate services

(interface and capability) in the service registration

center using ontology and do matching calculation

from the semantic level, and thus help to organize and

select services for users are key technologies to be

solved. The main work of this paper includes the

following aspects.

(1) It proposes a Web service clustering approach

based on self-join operation in RDB. This approach

calculates the matching degree between services from

aspects of interface and capability, and uses the self-

join operation in RDB to join the related tables. The

semantic reasoning relationships and status path of

concepts are used to do the calculation. It can enhance

Web service clustering efficiency and accuracy.

(2) On the basis of service clustering, it proposes a

Web service aggregation method using join operation

in RDB. The abstract service of specific type is

extracted from the service clusters firstly. Then it gets

the execution dependency relationships between

abstract services in term of service interface and

capability. The join operation in RDB is used to

organize service clusters and thus to realize Web

46 Journal of Internet Technology Volume 19 (2018) No.1

service aggregation.

(3) A Web service selection method is proposed to

meet users’ individual requirements. Services are

selected to form service execution path dynamically

according to different requests. Then it selects proper

services furtherly to meet users’ QoS request. This

method can help users to get the atomic service and a

set of services with correlations, and thus to meet

users’ functional and QoS requirements.

(4) The case study and experiments are used to

illustrate and verify the proposed methods.

The related work will be described in Section 2. The

overall architecture is introduced in Section 3. The

algorithms of realizing Web service aggregation and

selection are elaborated in Section 4. The case study is

described in Section 5. In Section 6, the experiments

are used to validate the proposed approaches. The

conclusion and next step work are given finally.

2 Related Work

This section elaborates the related wok about Web

service clustering, service aggregation and selection.

2.1 Web Service Clustering

Service clustering refers to organize candidate Web

services by unsupervised classification approach.

Skoutas et al. have proposed a ranking and clustering

Web services method by defining the multi-criteria

dominance relationships between services [3]. Li et al.

have proposed a topic-oriented clustering approach for

domain services is [4]. This approach can cluster

services described in WSDL, owls and text, which can

effectively solve the problem of single service

document type. Dasgupta et al. have proposed a self-

organizing clustering algorithm called Taxonomic

clustering for organizing semantic Web Services

taxonomically [5]. Yu et al. have classified semantic

services according to different topics, functionality and

other aspects [6]. Liu et al. have proposed a service

clustering method using service ontology [7]. The

service ontology is got through the modeling of

specific service type, and it uses service ontology to

enhance service clustering efficiency. But the accuracy

of clustering will be determined by the accuracy of

service ontology. Kumara et al. mainly used the

ontology learning technology and information-

retrieval-based term similarity method to realize

service clustering [8]. Wu et al. have proposed a

service clustering method called WTCluster [9]. This

method mainly uses WSDL document and tags to

cluster services and two kinds of labels evaluation and

recommendation strategies are given. Kumara et al.

have proposed a context aware post-filtering for Web

service clustering method [10].

The other aspect research work concentrates on

using the traditional clustering methods [11]. Elgazzar

et al. have proposed a novel technique to mine Web

Service Description Language (WSDL) documents and

cluster them into Web service groups with similar

functions [12]. The Quality Threshold (QT) clustering

algorithm is used. Yu et al. use the k-means algorithm

to cluster service through computing the similarity of

the operation and other services properties [13], and

the service community can be formed. Liu et al. have

clustered services to form service community through

clustering the basic terms about services [14]. The k-

means clustering algorithm is used in [15] to cluster the

users’ requests and candidate services. Sellami et al.

have proposed a functionality-driven clustering

approach for distributed Web service registries [16].

This approach uses fuzzy clustering technique.

Some of the above Web services clustering

approaches use the traditional algorithms to cluster

Web services. But these methods do not use the

ontology technology to do the matching computation

from the semantic level, and it will influence the Web

service clustering accuracy. In addition, the time of

some methods is too much when to calculate the

service similarity, and this leads to service clustering

efficiency is too low. Our method in the paper uses the

semantic reasoning relationship between concepts, and

we use the self-join operation in RDB to do the

calculation on the tables of service interface and

capability. The parameter matching calculation times

can be reduced and the service clustering efficiency

and accuracy will be enhanced. In addition, all the

service clustering methods only organize the services

which realize similar function, but the services with

different function are not considered. This paper

proposes a Web service aggregation method based on

join operation in RDB to organize the formed service

clusters furtherly.

2.2 Web Service Aggregation

Service aggregation refers to organize service

clusters according to service dependency relationships.

There exist two kinds of research work about service

organization. The first one refers to organize services

in real-time according to users’ individual

requirements in the service registration center. The

implementation of this method is difficult and the

efficiency is relatively low [17]. The second one refers

to use the relationship between services and organize

them based on users’ common requests. Services are

organized in the orientation of specific topic in this

method. When users’ individual requirements have

been proposed, it will select service directly based on

the service execution dependency relationships. This

approach can make full use of the service relationships,

and thus to help find the atomic service and a set of

services with correlations quickly and accurately. We

mainly concentrate on the second aspect.

The second aspect mainly includes the following

research work. Wu et al. have used a logical petri net-

Web Service Aggregation and Selection Based on Join Operation in RDB 47

based approach to compose service clusters in virtual

layer [18]. The basic composition models of service

cluster nets (SCNs) are presented. Zhou et al. have

concentrated on the data providing services discovery

[19]. On the basis of clustering data providing services,

they have mentioned organizing different service

clusters into cluster network. But they have not

elaborated the detail process of how to organize service

clusters. On the basis of Web service clustering, we

have organized the service clusters from aspects of

semantic interoperability [20] and users’ requirement

features (role, goal, process) [21]. Hu et al. have

proposed a user-oriented service workflow

constructing method [22]. The services are clustered

and the spanning tree approach is used to represent the

services in the same cluster firstly. Then the service

clusters are organized through the workflow business

logic method. This method mainly uses the hybrid

particle swarm optimization algorithm to select

services with the best QoS. Aznag et al. have used the

Formal Concept Analysis (FCA) formalism to organize

the constructed hierarchical clusters into concept

lattices according to their topics [23]. Liu et al. have

organized Web services using the method of service

group and service node [24]. Service group is similar

to the service clusters that are formed through

clustering, and service node is similar to the abstract

service of specific service cluster in our method.

Sellami et al.
 have used the community to organize and

manage Web services [25]. The fuzzy clustering

algorithm is used to cluster services to form service

community, and the service communities are organized

from the point of functionality.

The above research approaches use the service

execution relationship to organize services. But some

of them are not doing the matching calculation from

the semantic level, and it can influence the service

organization accuracy. Some of them only consider the

business logic execution relationship, but the service

interface, execution capability and QoS information are

not considered. Based on the Web service clustering

and extracting abstract services, this paper uses the join

operation in RDB to determine the abstract service

execution dependency relationships quickly. Then it

aggregates and organizes services in further. This

method can lay the foundation of service selection to

meet users’ individual requirements.

2.3 Web Service Selection

Web service selection refers to select services to

meet users’ requirements in the registration center.

There are a lot of research work about Web service

selection. The QoS-based service selection method

mainly uses certain mechanism to select services with

proper QoS values for users’ non-functional requests

[26]. Wang et al. have proposed a composite service

selection method [27]. They use fuzzy linear

programming technology to select composite services,

and it is a feasible and supplementary manner to select

services. There also exists some other service selection

approaches, such as the method of resolving the

conflicting requests [28], service selection for dynamic

service binding at runtime [29], ant colony method [30],

agent-based technology, cooperative evolution based

method [31], adaptive learning mechanism [32], etc..

The above methods use different mechanisms to select

services from different aspects. On the basis of

realizing service aggregation, this paper selects the

proper atomic service and a set of services with

correlations directly according to users’ requests. It can

help to enhance service selection efficiency and

accuracy.

3 Overall Architecture and Definition

3.1 Overall Architecture

On the basis of storing the information of Web

service and ontology, we realize Web service

aggregation and selection based on the join operation

in RDB. The overall architecture is shown in Figure 1.

In Figure 1, the architecture mainly includes the

following parts.

Web service and ontology information storage. It

uses tables in RDB to store Web service basic

information, such as Input, Output, precondition, etc.

The ontology is also stored for the calculation from the

semantic level. Services are annotated by the ontology

concepts, and it can help to enhance the accuracy of

Web service aggregation and selection.

Web service clustering. The tables of service interface

and capability are joined using self-join operation in

RDB. This can reduce the times of calculating

parameter matching degree, and enhance service

clustering efficiency and accuracy. Services can be

clustered to form different service clusters, and thus to

make foundation for service aggregation.

Web service aggregation. On the basis of service

clustering, it uses abstract service extraction algorithm

to extract abstract services in different service clusters.

The abstract service execution relationship can be got

in the view of service interface and capability. The join

operation is used to organize different service clusters,

and thus to realize service aggregation.

Service selection. According to users’ individual

requests, it uses Web service selection method to get

services that can meet users’ function and QoS

requirements. The atomic service and a set of services

with correlations can be selected for users.

3.2 Web Service Definition and Storage

Based on the definition of environment ontology

[33], we use the concept status transformation to

describe the capability of Web services.

Definition 1. Web Service (ws): ws={WSName,

Interface, Capability, QoS}

48 Journal of Internet Technology Volume 19 (2018) No.1

‧WSName represents the name of ws.

‧Interface={Input, Output}, and it denotes the

input and output set of ws.

Input={Ini, Ini∈Class, i=0,1,…, inum}

Output={Outo, Outo∈Class, o=0,1,…, onum}

‧Capability={Precondition, Effect}, it indicates the

prerequisite for service execution and the effect

resulting from ws execution.

Precondition={Precp, p=0,1,…, pnum}, Precp ={cp:

sp, cp∈Class, sp∈hsm(cp)}

Effect={Effe, e=0,1,…,enum}, Effe={ce:rte→ote,ce

∈Class, rte,ote∈hsm (ce), e=0,1,…,enum}

‧QoS={{QosNameq,Valueq}, QosNameq∈Class,

q=1,2… qnum}. QosNameq can be time, cost,

reliability, availability of ws. Valueq represents the

specific value of QoS.

In the above definition, Class denotes the concept

set of ontology and hsm(cp) denotes the status set of cp.

Ini in Input denotes each input element of ws, and i

denotes the input number in Input. Similarly, we can

get the meaning of Outo, Precp and Effe. The cp:sp in

Precp means the concept cp is in the status of sp, where

p denotes the precondition number in Precondition.

The ce:rte→ote means the status change of concept ce

(from rte to ote). Input, Output, Precondition and Effect

are called as IOPE.

We design service table to store the service basic

information. Service(ws_id, wsname, price, time,

availability, reliability). The ws_id represents the

service ID, the properties of price, time, availability

and reliability represent the QoS information of

services. The IOPE information of Web services are

designed in the following tables: Input(i_id, pid, ws_id),

Output(o_id, pid, ws_id), Precondition(pr_id, pid, tid,

ws_id), Effect(e_id, pid, tid_s, tid_e, ws_id). Para(pid,

pname, cid). Para stores the parameter information,

and the parameters in IOPE are correlated with Para

through pid.

In order to express Web service IOPE information

from the semantic level, the ontology information is

also stored. And we correlate it with the IOPE

properties of services. We design the following tables:

Class(cid, cname), Relation(rid, rname), Axiom(aid,

cid_1, cid_2, rid), State(tid, tname), ClassState(cs_id,

cid, sid), StateTrans(sp_id, tid_1, tid_2). Class stores

the concepts in ontology. Relation stores the relation

type of concepts. Axiom stores the concept relationships.

State stores the status information. ClassState store the

concept status. Each tuple in Para is correlated with

ontology concept through cid, and IOPE will be

described using ontology concepts. We mainly consider

the following semantic relationships: Exact/Plugin/

Subsume/Intersect/Fail. They refer to the relationships

of equivelantOf, subClassOf, superClassOf, intersection

and fail respectively. These relationships can be denoted

as c1≡c2、c1⊃c2、c1⊂c2、c1∩c2、c1ψc2 respectively.

The c1 and c2 are two concepts. The semantic reasoning

relationship between concepts can be got using

reasoning machine directly, such as Jena, Pellet, OWL-

API, etc..

4 Service Aggregation and Selection

4.1 Web Service Clustering

In this section, we mainly discuss the basic Web

service clustering algorithm, and how to realize Web

Web Service Aggregation and Selection Based on Join Operation in RDB 49

service clustering from the level of interface and

capability.

4.1.1 Web Service Clustering Algorithm

On the basis of storing Web services information

using RDB, a Web service clustering approach using

self-join operation in RDB is elaborated in Algorithm 1.

This method does the matching calculation from the

semantic level, and it can enhance service clustering

efficiency and accuracy.

Algorithm 1. Web service clustering algorithm

(RDBWSClustering)

Input: WS={ws1, ws2,….wsn}, Tables{ws, IOPE,

Para, Relation, Axiom, StateTrans, StatePath}

Output: cluster[]

1: iope1, iope2←IOPE, Cluster←∅, vin[n][n],

vout[n][n], vprec[n][n],veff[n][n], midiope, tempiope

2: midiope←iope1⋈ (iope1.pid@iope2.pid) ∧

(iope1.ws_id!=iope2.ws_id)iope2

3: foreach i∈midiope.ws_id_1

4: foreach j∈midiope.ws_id_2

5: tempiope←σws_id_1=i && w_sid_2=j(midiope)

6: vin[i][j]/vout[i][j]←matchIO(tempiope, Table{Para,

Relation, Axiom})

7: vprec[i][j]←matchPREC(tempiope, Table{Para,

Relation, Axiom, StateTrans, StatePath})

8: veff[i][j]←matchEFCT(tempiope,

Table{Para, Relation, Axiom, StateTrans,

StatePath})

9: endfch

10: endfch

11: assign each service into different clusters,

cluster[i]←wsi

12: cluster←clusterws(cluster, vin, vout, vprec, veff)

13: return cluster

In the above algorithm, ws_id_1 and ws_id_2 denote

the ID of two Web services. vin[n][n], vout[n][n],

vprec[n][n] and veff[n][n] represent the IOPE matching

matrix of services in WS. tempiope and midiope are the

intermediate tables. StatePath in the input of

Algorithm 1 is the status path table that is formed

through StateTrans, and it stores the concept status

path information. In step 2, iope1.pid@iope2.pid means

there exist semantic relationships in Relation between

the concept of iope1.pid and iope2.pid. In Algorithm 1,

it firstly does self-join operation on IOPE tables to get

midiope, as shown in step 2. Then it gets IOPE matching

matrix, as shown in step 3-10. Step 11 is used to

allocate services into n service clusters. Based on the

IOPE matching matrix, services are clustered using

step 12.

4.1.2 Service Clustering from Interface Level

In the step 6 of Algorithm 1, matchIO is used to get

matching degree (vin[i][j]) between the interface (Input

and Output) of wsi and wsj, as shown in Algorithm 2.

Algorithm 2. Interface matching algorithm (matchIO)

Input: tempIO, Table{Para, Relation, Axiom}

Output: valio

1: valsum←0, num←tempIO.count

2: foreach i 1←num

3: valsum+=match(πpid_1(tempIO), πpid_2(tempIO),

Table{Para, Relation, Axiom})

4:endfch

5: valio←valsum/num

6: return valio

In Algorithm 2, pid_1, pid_2 are the pid number of

tempIO. This algorithm gets the average matching

degree of parameters in different tuples of tempIO, and

it computes the IO matching degree between specific

services. The num in step 2 can be calculated using the

aggregation function Count(*) of SQL. In step 3,

match() is used to compute the matching value

between the specific pid, as shown in Algorithm 3.

Algorithm 3. Parameter matching algorithm (match)

Input: pid_1, pid_2, Table{Para, Relation, Axiom}

Output: val

1: Table{AR}, tcid1←0, tcid2←0, trname←∅

2: AR←Axiom⋈ Relation

3: tcid1←πcid (σpid=pid_1(Para)),

tcid2←πcid (σpid=pid_2(Para))

4: trname←πrname (σcid_1=tcid1 && cid_2=tcid2(AR))

5: if(trname==equivalentOf) then val←1.0

6: else if(trname==subClassOf) then val←0.8

7: else if(trname==superClassOf) then val←0.6

8: else if(trname==intersection) then val←0.4

9: else val←0

10: return val

In the above algorithm, AR is the intermediate table.

The tcid1 and tcid2 are two numbers of cids in Para.

Algorithm 3 firstly does the natural join of Axiom and

Relation to get AR, as shown in step 2. Then it finds

cid (tcid1 and tcid2) whose pid are equal to pid_1 and

pid_2 in Para respectively. The corresponding trname

of cid (tcid1 and tcid2) in AR will be got. Finally, the

matching value of pid_1 and pid_2 will be got

according to trname.

4.1.3 Service Clustering from Capability Level

Using the step 2 in Algorithm 1, we can get

50 Journal of Internet Technology Volume 19 (2018) No.1

Precondition self-join table of Web services. In the

step 7 of Algorithm 1, vprec[i][j] can be calculated

using Algorithm 4.

Algorithm 4. Precondition matching algorithm

(matchPREC)

Input: tempprec, Table{Para, Relation, Axiom,

StateTrans, StatePath}

Output: valpre

1: valsum←0, tvalenty←0, tvalstate←0, tvalmid←0,

um←tempprec.count

2: foreach i 1←num

3: tvalenty←match(πpid_1(tempprec), πpid_2(tempprec),

able{Para, Relation, Axiom})

4: if(tvalenty>0.4) then

5: tvalstate←matchstate(πtid_1(tempprec),

πtid_2(tempprec), Table{StateTrans,StatePath})

6: tvalmid←tvalenty+tvalstate

7: endif

8: valsum←valsum+tvalmid

9: endfch

10: valpre←valsum/num

11: return valpre

The implementation of match in step 3 (Algorithm 4)

is shown in Algorithm 3. In Algorithm 3, the matching

degree tvalenty between cp in Precp=cp:statep is calculated

firstly. When the value is larger than the threshold,

matchstate (Algorithm 5) will be used to calculate the

matching degree tvalstate between statep. Then it gets

the average value of tvalenty and tvalstate.

Algorithm 5. Status matching algorithm (matchstate)

Input: tid_1, tid_2, Table{StateTrans, StatePath}

Output: val

1: Table{tempsp}, snum, enum, palength←0,

pathnum← StatePath.num

2: if(tid_1= =tid_2) return 1

3: foreach i:1←pathnum

4: tempsp←σsp_id=i (StatePath)

5: snum←πnum (σtid=tid_1(tempsp))

6: enum←πnum (σtid=tid_2(tempsp))

7: if(snum!=0 && enum!=0) then

8: palength←enum-snum; break

9: endif

10: endfch

11: val←1/(| palength |+1)

12: return val

Algorithm 5 gives the calculation process of getting

the matching degree of two specific tid according to

StateTrans and StatePath. In Algorithm 5, if tid_1 and

tid_2 are equal, then return 1. Otherwise, we judge

each path in StatePath to get the status path table of

specific path. Then we get the status number snum and

enum of tid_1 and tid_2 respectively, as shown in step

5-6. According to snum and enum, val will be got, and

return.

A concept in ontology has different status, and the

different status transformation path can be constructed

correspondently. There exist different semantic reasoning

relationships between concepts, and they are denoted

as c1≡c2，c1⊃c2，c1⊂c2，c1∩c2，c1ψc2. Using the

above concept reasoning relationships, we can get the

following concept status transformation rules.

(ci≡cj)∧(ci:tm)∧(ci:tn)∧(ci:tm→tn)⇒(cj:tm)∧(cj:tn)∧(cj:t

m→tn)

(ci⊃cj)∧(ci:tm)∧(ci:tn)∧(ci:tm→tn)⇒(cj:tm)∧(cj:tn)∧(cj:t

m→tn)

As shown in Figure 2, c5 has the following status:

t1、t2、t3 and t4. The corresponding status path

includes c5:t1→t3 and c5:t1→t2→t4. We can also get

c6:t1→t3, c6:t1→t2→t4, and c13:t1→t3, c13:t1→t2→t4

through status transformation rules.

Figure 2. Ontology concept status

The concrete process of getting Effect of ws is

similar to matchPREC. Due to limited spaces, we will

not elaborate it in detail.

Using above approach, the CA matching matrix of

Web services can be got. Thus the services in WS will

be clustered. A field named as_id will be added into

Service table to denote the cluster that the service

belongs to, and it is defined as ASService(ws_id,

wsname, as_id). Services whose as_id are same realize

same function and have different QoS values. When to

add a new service, the matching calculation between

the new service and each tuple in the Service table will

be done firstly. When the matching value is larger than

the threshold, the service will be inserted into the

corresponding service cluster.

4.2 Service Aggregation

This section mainly discusses the concrete process

of how to realize service aggregation.

4.2.1 Abstract Service Extraction

On the basis of service clustering, this section

mainly introduces how to extract the abstract service

(AS) from different service clusters, and thus to make

foundation for service aggregation. Abstract service

can be seen as the representative of particular service

Web Service Aggregation and Selection Based on Join Operation in RDB 51

cluster, and it does not refer to the actual service. The

definition of abstract service is similar to ws in

Definition 1. But the QoS of AS refers to the scope of

QoS property. We define it as QoS={{QosNameq,Unitq,

Minq, Maxq}, QosNameq, Unitq∈Class, q=1,2…qnum}.

The parameters express the corresponding name, unit,

minimum and maximum.

Algorithm 6. Abstract service extraction algorithm

(ExtractAS)

Input: Cluster[], Table{ws, IOPE, Para, Relation,

Axiom}

Output: as

1: IWS←∅, vinum←0, PidRela←∅

2: Create table TASInput(pid, inum, as_id)

3: foreach i: 1←Cluster.num

4: IWS=πws_id (σas_id=’i’(ws))

5: foreach j: 1←IWS.ws_id

6: foreach k∈πpid (σws_id=’j’(Input))

7: if(tuple<pid=k, as_id =i>∈TASInput)

8: Update TASInput set inum=inum+1 where

pid=k

9: else TASInput.insert(k, 1, i)

10: endfch

11: endfch

12: endfch

13: PidRela←GenePidRela(TASInput, Cluster[],

Table{Para, Relation,Axiom})

14: foreach i: 1←Cluster.num

15: foreach tuple tu∈σas_id=’i’(PidRela)

16: if(tu.rid= =1 || tu.rid= =2) then

17: tiopenum_1←πtnum(σtpid=’tu.pid1’ & as_id=’i’

(TASInput))

18: tiopenum_2←πtnum(σtpid=’tu.pid2’ & as_id=’i’

(TASInput))

19: if((tiopenum_1<=tiopenum_2) &&

(tiopenum_2/ Cluster[i].length>0.3)) then

20: Update TASInput Set

inum=inum+tiopenum_1 where

pid=’tu.pid2’ and as_id=’i’

21: Delete from TASInput where tpid=’tu.pid1’

and as_id=’i’

22: else Update tu.pid1 of TASInput

23: endif

24: endfch

25: endfch

26: ASInput←πpid,as_id (TASInput)

27: Similar to step 2-26 to get ASOutput/

ASPrecondition/ ASEffect

28: foreach i: 1←Cluster.num

29: TQOS←σsc_id=’i’(ws)

30: foreach q: 1←qnum

31: asi.QosNameq ←{TQOS.Min(QosNameq),

TQOS. Max(QosNameq)}

32: endfch

33: asi←ASInput/ASOutput/ASPrecondition/ASEffect

34: endfch

35: return as

Algorithm 6 gives the process of how to extract the

abstract service from each service cluster named

Cluster[]. For example, the step 2-12 realizes how to

generate TASInput according to ws.Input. The tuples

belongs to certain service cluster in ws will be found

firstly, then they will be inserted it into IWS, as seen in

step 4. The tuples in IWS will be judged, and it will

find the tuples which have same ws_id in Input. When

pid is in TASInput, its num will plus 1. Otherwise, the

tuple will be inserted into TASInput and assigned num

to 1. The step 13 uses Algorithm 7 (GenePidRela) to

generate concept semantic relationship table named

PidRela. Step 14-25 gives the process of updating

TASInput according to the semantic relationships and

the number of two pid in PidRela. When there exists

the relationship of subClassof or superClassof (rid=1

or rid=2) between pid of concepts, then it compares the

number of two concepts. The concept number with

fewer occurrences will be added onto the concept

number with more occurrences. Then it deletes the

tuple with fewer occurrences, as seen in step 16-26.

The properties of pid and as_id in TASInput are

extracted to form ASInput. The tables of ASOutput,

ASPrecondition and ASEffect are got using the same

approach. Step 29-32 is used to assign QoS scope of

services in the same service cluster to the QoS property

of the corresponding abstract service. The QoS

information of AS will be got and the AS table is

designed: AS(as_id, name, price_min, price_max,

time_min, time_max, …).

Algorithm 7. Getting concept semantic relationship

algorithm (GenePidRela)

Input: TIOPE, Cluster[], Table{Para, Relation, Axiom}

Output: PidRela

1: cid1, cid2, trid←0

2: Create Table PidRela(pid1, pid2, rid, as_id)

3: foreach i: 1←Cluster.num

4: STAB←σas_id=’i’(TIOPE)

5: if(STAB.count(*)<2) then goto step 3

6: foreach pid1,pid2∈πpid (STAB)

7: cid1←πcid (σpid=’pid1’(Para))

8: cid2←πcid (σpid=’pid2’(Para))

9: rid←πrid (σcid1=’cid1’ & cid2=’cid2’(Axiom))

10: PidRela.insert(pid1,pid2,rid,i)

11: endfch

12: endfch

13: return PidRela

Algorithm 7 gives the process of getting the

semantic relationships between the parameters of

52 Journal of Internet Technology Volume 19 (2018) No.1

specific abstract service. All the service clusters will be

judged in turn, the tuples will be extracted and inserted

into STAB according to its ID, as seen in step 4. If the

number of tuples in STAB is less than 2, it means there

is no parameter to be merged. Otherwise, it will get

two pid randomly, and find the corresponding cid in

Para according to pid. The rid between concepts in

Axiom will be found according to cid, and then inserted

into PidRela, as seen in step 6-10.

4.2.2 Abstract Service Execution Relationship

Extraction

Based on the abstract services from different service

clusters, this section introduces how to extract the

execution relationship between abstract services in

terms of interface and capability.

Algorithm 8. AS service execution relationship

extraction algorithm (GetASRelation)

Input: AS={as1, as2,….asn}, Tables{ASIOPE, Para,

Relation, Axiom, StateTrans, StatePath}

Output: ASRelation

1: tableIO, tableCA,tempIO←∅, inum, tnum, iasid,

oasid, valc, onum←0

2: Create Table ASRelation(as_s, as_e)

3: tableIO←ASOutput⋈ (ASOutput.pid@ASInput.pid) &&

(ASOutput.as_id!=ASInput.as_id)ASInput

4: foreach tuple tu∈tableIO

5: oasid←tu.as_id_o, iasid←tu.as_id_i

6: onum←(πas_id=oasidASOutput).count(*)

7: inum←(πas_id=iasidASInput).count(*)

8: tempIO←σas_id_o=oasid && as_id_i=iasid(tableIO)

9: tunum←tempIO.count(*)

10: if(tunum= =onum && tunum= =inum) then

11: ASRelation.insert(’as’+oasid, ’as’+iasid)

12: endif

13: endfch

14: tableCA←ASEffect⋈ (ASEffect.pid@ASPrecondition.pid) &&

(ASEffect.tid_e# ASPrecondition.tid) &&

(ASEffect.as_id!=ASPrecondition.as_id)ASPrecondition

15: foreach tuple tu∈tableCA

16: valc←match(tu.pid_e, tu. pid_p, Table{Para,

Relation, Axiom})

17: if(valc>0.4) then

18: vals←matchstate(tu.tid_e, tu.tid_p,

Table{StateTrans, StatePath})

19: if((valc+vals)/2>0.5) then

20: ASRelation.insert(’as’+tu.as_id_e, ’as’+

tu.as_id_p)

21: endif

22: endif

23: endfch

24: return ASRelation

In step 6, onum can be got through the aggregation

function Count(*) in SQL. The step 2 in Algorithm 8 is

used to create the service execution dependency table

(ASRelation). The service execution matching pair

about service interface will be extracted firstly using

step 3-13. Then it gets the service matching pair from

the aspect of capability using step 14-23. ASOutput and

ASInput will be joined to get tableIO about service

interface. The tuples in tableIO will be judged in turn

and the corresponding service execution dependency

matching pair will be inserted into ASRelation.

Similarly, it will do join operation from the aspect of

service capability. Finally, return ASRelation.

Supposing S1 and S2 are two Web services, SO1m

expresses the parameter numbers in the Output of S1,

and SI2n expresses the parameter numbers in the Input

of S2. The num is the tuple number of as_id_o and

as_id_i in tableIO. (1) SO1m=SI2n=num; (2) SO1m=num

and SI2n≠num; (3) SO1m≠num and SI2n=num. When one

of the above three conditions is met, it is included that

there exist IO execution relationship between S1 and S2.

As shown in Figure 3, p1-pn denotes the IO elements

between S1 and S2.

Figure 3. Service IO relationship

4.2.3 Web Service Aggregation Using Join

Operation

Based on the abstract services (as1-asn) execution

dependency relationship between services (ws1-wsm),

this section mainly introduces how to organize service

clusters and thus to realize service aggregation.

Algorithm 9. Generating ASExePath (GeneService

ExePath)

Input: ASRelation

Output: ASExePath

1: i, j, pnum←1, fnum←2

2: ASPA1←ASRelation, pnum←1

3: repeat

4: ASPAi←ASPAi-1⋈ ASPAi-1.as_e=ASRelation.as_sASRelation

5: foreach tuple tu∈ASPAi

6: id←’p’+j;

7: foreach k:1←TBi.column

8: ASExePath.insert(<id,tu.tid_’k’, pnum>)

9: pnum←pnum+1

10: endfch

11: j←j+1, pnum←1

12: endfch

13: pnum←1, fnum←fnum+1

14: until ASPAi has no tuples

15: return ASExePath

Web Service Aggregation and Selection Based on Join Operation in RDB 53

Algorithm 9 gives the process of how to generate

status path table (ASExePath) based on ASRelation. It

does the self-join operation of ASRelation in turn. Each

tuple will be inserted into ASExePath. When i=1,

ASPA1=ASRelation. It will be stored into ASExePath

through ASPathNum. When i=2, ASRelation will be

done self-join operation. Then we store each path into

ASExePath.

4.3 Web Service Selection

On the basis of aggregating services, this section

mainly introduces how to select services to meet users’

functional and QoS requirements. We define the users’

request in Definition 2.

Definition 2. Request(RE): RE={ReInput, ReOutput,

ReCapa, ReQoS}

ReInput={rinputi, rinputi∈Class,i=1,2,…, rinum}.

ReOutput={routputo, routputo∈Class, o=1,2,…,

ronum}.

ReCapa={reffc, c=1, 2,…, efnum}, reffc={rentityc:

rprestatec→rpoststatec, rentityc∈Class, rprestatec,

rpoststatec∈hsm(rentityc)}.

ReQoS={{rqosnameq, rvalueq, runitq}, rqosnameq,

reunitq∈Class,q=1,2, …, rqnum}.

4.3.1 Service Selection for Functional Requirements

On the basis of aggregating services, this section

mainly introduces how to construct service execution

path according to users’ functional requests. It selects

abstract services from aspects of interface and

capability, and thus to select a set of services with

correlations to meet users’ requirements in further.

In Algorithm 10, the elements in RE.ReInput are

judged firstly, and the corresponding as_id will be

found in ASInput according to RE.ReInput. The as_id

will be inserted into asst, and it deletes the duplicate

services in asst, as shown in step 2-11. Then it judges

asi in asst to get whether its output includes the

elements in ReOutput or not. If it includes the elements,

we add asi into cas and update ReOutput, as seen in

step 13-16. When ReOutput is not null, the tuple whose

as_s is equal to asi in ASPathNum will be inserted into

tableASPath. Then each tuple tu in tableASPath will be

judged. If the output of tu.as_e includes the elements

of ReOutput, the tuples of specific pa_id in ASExePath

will be inserted into tablePathIF. The elements of column

as in tablePathIF will be taken out in turn to construct

service execution path. Then it adds the path into cas

and update RE.ReOutput, as seen in step 17-27. Step

30-33 is used to add the service execution path into cas,

and the path includes the services which has

correlation with the service in asca. Finally, return cas.

The cas stores the abstract service execution path, and

it is denoted as <as_s, as_e>. When as_s=as_e, it

refers to atomic service. When as_s≠as_e, <as_s,

as_e> expresses a set of services with correlations.

Algorithm 10. Service selection algorithm for functional

requirements (RWSFunSelect)

Input: RE, Table{ASIOPE, ASRelation, ASPathNum,

ASExePath, Para, Relation, Axiom}

Output: cas

1: cas, rpath, asio, tableASPath, asca←∅, pidnum,

valin←0, i←1, listas, tablePathIF

2: foreach Rini∈RE.ReInput

3: pidnum←getpid(Rini, Table{Class, Para})

4: foreach tuple tu∈ASInput

5: valin←match(pidnum, tu.pid, Table{Para,

Relation, Axiom})

6: if(valin>0.5) then

7: asio.add(‘as’+tu.as_id)

8: endif

9: endfch

10: endfch

11: asio←DelDuplicate(asio)

12: Similar to step 2-11, and get asca whicn can realize

RE.ReCapa

13: foreach asi∈asio

14: if(asi.Output⊆RE.ReOutput) then

15: cas←cas∪ <asi, asi>

16: RE.ReOutput←RE.ReOutput-asid.Output

17: if(RE.ReOutput!=null) then

18: tableASPath←σas_s= asi (ASPathNum)

19: foreach tuple tu∈tableASPath

20: if(tu.as_e.Output⊆RE.ReOutput) then

：21 tablePathIF←σpa_id=tu.pa_id(ASExePath)

22: foreach tuple tupath∈tablePathIF

23: listas←listas∪tupath.as

24: endfch

25: cas←cas∪<listas>

26: RE.ReOutput←RE.ReOutput-tu.as_e.Output

27: endfch

28: endif

29: endfch

30: foreach asc∈asca

31: find the tuple tu with as_s=asc || as_e=asc

32: cas←cas∪<tu.as_s, tu.as_e>

33: endfch

34: return cas

4.3.2 Service Selection for QoS Requirements

Based on the abstract service execution paths, this

section mainly introduces how to select services to

meet users’ QoS requirements in further.

On the basis of the abstract service execution paths,

the above algorithm selects services to meet QoS

requirements in further. It judges each abstract service

execution path in cas, and the atomic service which

includes one service will be handled firstly. Then it

deals with the service execution path which includes

multiple services. When there is one service in abstract

54 Journal of Internet Technology Volume 19 (2018) No.1

Algorithm 11. Service selection algorithm for QoS

(RWSQoS)

Input: RE, cas, ASIOPE, ASPathNum, ASExePath,

ASService, IOPE

Output: RWS

1: RWS←∅, tablews, tablein, tableout, listaws, listcws←∅,

tableASPath

2: foreach casi=<as_s,…, as_e>∈cas

3: if(casi.length=2 && as_s= =as_e) then

4: tablews←σ’as’+as_id=as_s (ASService)

5: foreach tuple tu∈tablews

6: tablein←σws_id=tu.ws_id (Input)

7: tableout←σws_id=tu.ws_id (Output)

8: if(tablein.pid⊆RE.ReInput&&tableout.pid⊆RE.

ReOutput)

9: listaws.add(tu.ws_id)

10: endif

11: endfch

12: if(listaws.length= =0) then

13: RWS.add(GetWSIDSeman(as_s, ASService,

Input, Output))

14: else if(listaws.length= =1) then RWS.add

(listaws.ws_id)

15: else foreach ws_id∈listaws

16: if(matchqos(RE.ReQoS, ws_id, Service)>0.5)

then

17: RWS.add(tu.ws_id)

18: endfch

19: else

20: get pa_id of <as_s, …, as_e> in ASPathNum

21: listcws←matchCompoWS(pa_id, ASExePath)

22: using step 15-18 to get service with proper QoS

in listcws, and store into RWS

23: endfch

24: return RWS

service execution path, it will find service with

proper QoS in service cluster directly, as seen in step 3-

18. The services whose Input and Output are matched

from the grammar level will be selected firstly, as seen

in step 4-11. When there is no this kind of services, it

will select services from the semantic level and add it

into RWS. Step 19-22 gives the process of dealing with

the situation of there are multiple abstract service

execution paths. Through Algorithm 14

(matchCompoWS), it can find services which have

Exact relationship with abstract services. These

services can construct the service execution path

named listcws, and the service with proper QoS values

will be added into RWS. Finally, return RWS.

The GetWSIDSeman in step 13 of Algorithm 11 is

used to calculate concept matching degree from the

semantic level. The realization of finding service id of

specific abstract service as_s in particular service

cluster is shown in Algorithm 12.

Algorithm 12. Service selection algorithm from

semantic level (GetWSIDSema)

Input: as, ASService, Input, Output

Output: ws_id

1: ws_id←∅, tablews, tablein, tableout, listws_id

2: tablews←σ’as’+as_id=as(ASService)

3: foreach tuple tu∈tablews

4: tablein←σws_id=tu.ws_id (Input)

5: tableout←σws_id=tu.ws_id (Output)

6: foreach tuple tuin∈tablein

7: foreach element elein⊆RE.ReInput

8: valin←match(tuin.p_id, getpid(elein))

9: use bipartite graph algorithm to get input

matching value TREin between tablein and

RE.ReInput

10: endfch

11: Same to step 6-10 to get output matching value

TREout between tableout and RE.ReOutput

12: if((TREin+ TREout)/2>0.6) then

13: listws_id.add(tu.ws_id, (TREin+ TREout)/2)

14: endif

15: endfch

16: find the ws_id whose matching value is the biggest

in listws_id

17: return ws_id

The above algorithm is used to find services which

have semantic relationships with specific abstract

service as. It firstly extracts services in certain service

cluster of abstract service in ASService to construct

tablews, as seen in step 2. Then it judges each tuple tu

in tablews, and gets the Input and Output information of

tu.ws_id in Input and Output to construct tablein and

tableout, as seen in step 3-5. The bipartite graph

algorithm is used to calculate the matching degree

TREin between tablein and RE.ReInput, TREout between

tableout and RE.ReOutput, as seen in step 6-11. The

services with ws_id will be added into listws_id when the

threshold is larger than the average value of TREin and

TREout, as shown in step 12-15. Finally, it finds the

service with ws_id whose matching value is the largest

in listws_id.

The matchqos in step 16 of Algorithm 11 is used to

calculate the matching degree between RE.ReQoS and

the QoS of specific service with ws_id. The concrete

realization process is shown in Algorithm 13.

Algorithm 13 is used to calculate the matching

degree between users’ QoS request and the QoS

information of specific service. It finds the specific

service in Service according to ws_id firstly, as seen in

step 2-3. Then it compares the service QoS with the

users’ request in turn to see whether it meets users’

request or not. If it meets the condition, the

corresponding matching value is assigned to 1.

Otherwise, it is assigned to 0, as seen in step 4-11.

Finally, it gets the average matching value of all the

QoS properties.

Web Service Aggregation and Selection Based on Join Operation in RDB 55

Algorithm 13. Service QoS matching algorithm

(matchqos)

Input: ReQoS, ws_id, Service

Output: valqos

1: valqos←0, num←ReQoS.num, revalq[num],

sumqos←0

2: foreach tuple tu∈Service

3: if(tu.ws_id==ws_id) then

4: foreach q∈{1,2, …, num}

5: if(ReQoS.rqosnameq= =availability ||

reliability)

6: if(tu.availability>=rvalueq || tu.reliability>=

rvalueq)

7: revalq[q] ←1.0

8: if(tu.Price<=rvalueq || time<=rvalueq) then

9: revalq[q] ←1.0

10: endif

11: endfch

12: endif

13: endfch

14: foreach q∈{1,2, …, num}

15: sumqos←sumqos+ revalq[q]

16: endfch

17: valqos←sumqos/num

18: return valqos

Algorithm 14. Composite service selection algorithm

(matchCompoWS)

Input: pa_id, ASExePath, ASService

Output: listcws

1: listcws←∅, tableASPath, asfirst, listfirst, asnum←2,

astotalnum

2: tableASPath←σpa_id=pa_id (ASExePath)

3: astotalnum←tableASPath.count(*)

4: asfirst←πas (σnum=1(tableASPath))

5: Same to step 4-18 in Algorithm 11 to get listfirst of

the first service asfirst

6: foreach ws ws_id∈listfirst

7: listcws.add(ws_id)

8: tableout←σws_id=ws_id (Output)

9: while(asnum<astotalnum)

10: asnext←πas (σnum=asnum(tableASPath))

11: tablews←σ’as’+as_id=as_next (ASService)

12: foreach tuple tu∈tablews

13: tablein←σws_id=tu.ws_id (Input)

14: find the tu.ws_id which is exactly matched

between tableout and tablein

15: endfch

16: listcws.get(ws_id).add(tu.ws_id)

17: asnum++

18: end while

19: endfch

20: return listcws

The above algorithm gives the process of finding the

services with proper QoS values in service clusters of

specific abstract services in the service execution path.

It finds the abstract service execution path of specific

pa_id in ASExePath firstly. Services in the path will be

stored into tableASPath, as shown in step 2. Then the first

service asfirst in tableASPath will be found. Step 4-18 in

Algorithm 11 will be used to find listfirst with proper

QoS of asfirst, as seen in step 3-4. Each service ws_id in

listfirst is judged in turn to get the tableout (output

information) of ws_id. Then it gets asnext which is after

asfirst in tableASPath. In the service cluster of asnext,

services whose Input are matched with tableout will be

found and added into the service execution path listcws

of ws_id, as seen in step 6-19. Through the above

method, it finds the service whose interface is exactly

matched with the services in the abstract service

execution path of ws_id. Finally, return listcws.

5 Case Study

Table 1 shows the IOPE information of Web services

(ws1-ws15).

Table 1. Web service examples

WSName Input Output Precondition Effect

ws1 p10 p5 - -

ws2 p5,p22 p7, p8 - p5: t2→t5

ws3 - p6 p4:t3 -

ws4 p3 p12 - -

ws5 p10 p5 - -

ws6 p4,p19 p22 - p4:t1→t3

ws7 - p6 p11:t3 -

ws8 p11,p19 p22 - p4:t1→t3

ws9 p5,p36 p7, p2 - p5: t2→t5

ws10 - p14 p4:t7 -

ws11 p6 p18 p5:t6

ws12 p7,p8 p24 - p4:t3→t7

ws13 p6 p18 p5:t6

ws14 p18 p26,p28 - -

ws15 p7,p8 p24 - -

In Table 1, p1~p28 represent the parameters in Para.

t1~t7 represent the states in State. p11: t3 means the

concept p11 is in the status of t3, and p4: t1→t3

denotes the status change of p4 (from t1 to t3). In

practice, the name and IOPE of services can be got

easily from service description documents, such

as .wsdl, .owls, etc.

The IOPE of ws1-ws15 in Table 1 is shown in

Figure 4. Para store the parameter information. The

parameters in IOPE are correlated with Para through

pid.

The tables in Figure 5 store the ontology information

of ws1-ws15 in Table 1.

56 Journal of Internet Technology Volume 19 (2018) No.1

Figure 4. IOPE information of Web services

Figure 5. Ontology information

As shown in Definition 1, we use concepts and

concept status to express the interface and capability of

Web services. The ontology information of web

services in Table 1 is shown in Figure 6.

Figure 6. Ontology concept relationships

Through the above method, WS={ws1,ws2,….ws15}in

Table 1 will be clustered into different service clusters

in terms of IO and CA. We can get cluster[1]={ws1,

ws4, ws5}, cluster[2]={ws2, ws9}, cluster[3]={ws12,

ws15}, cluster[4]={ws6, ws8}, cluster[5] ={ws3, ws7,

ws10}, cluster[6]={ws11, ws13}, cluster[7]={ws14}. A

field named as_id will be added to denote the cluster

that the service belongs to, as shown in Table 2.

Table 2. ASService

ws_id wsname as_id

1 ws1 1

2 ws2 2

… …

15 ws3 3

Services whose as_id is same realize same function

and have different QoS values. When to add a new

service, the matching calculation between the new

service and each tuple in the table of Service will be

done firstly. When the matching value is larger than

the threshold, the service will be inserted into the

corresponding service cluster.

5.1 Abstract Service Extraction

The TASInput will be generated using step 3-12 in

Algorithm 6. When Cluster.num=1, IWS will be got

through step 4, as seen in Table 3.

Table 3. IWS

ws_id

1

4

5

When IWS.ws_id=1, the tuple with ws_id=1 in Input:

tuple<pid=10, as_id=1>∉TASInput, EXE(TASInput.

insert(10, 1, 1)).

When IWS.ws_id=4, the tuple with ws_id=4 in Input:

tuple<pid=3, as_id =1>∉TASInput, EXE(TASInput.

insert(3, 1, 1)).

When IWS.ws_id=5, the tuple with ws_id=5 in Input:

tuple<pid=10, as_id =1> ∈ TASInput, EXE(Update

TASInput set inum=2 where pid=10).

TASInput can be generated using the above method

and it is shown in Table 4.

Table 4. TASInput

pid inum as_id

10 2 1

3 1 1

5 2 2

22 1 2

36 1 2

7 2 3

8 2 3

4 1 4

11 1 4

19 2 4

6 2 6

18 1 7

When Cluster.num=1 in Algorithm 6, we can get

STAB through step 4 and it is shown in Table 5.

Web Service Aggregation and Selection Based on Join Operation in RDB 57

Table 5. STAB

pid inum as_id

10 2 1

3 1 1

We can get cid1=10, cid2=3 and rid=2 (superClassOf),

then the tuple (10, 3, 2, 1) will be inserted into PidRela.

PidRela can be generated based on TASInput using

above method, and it is shown in Table 6.

Table 6. PidRela

pi_id pid1 pid2 rid as_id

1 10 3 2 1

2 5 22 5 2

3 5 36 5 2

4 22 36 1 2

5 7 8 5 3

6 4 11 1 4

7 4 19 5 4

8 11 19 5 4

Through the step 14-25 in Algorithm 6, TASInput

can be updated using PidRela.

When Cluster.num=1, it gets tu(1, 10, 3, 2, 1)∈

σas_id=1(PidRela). Then (tu.rid=2) ∧ (tiopenum_1=2)

∧ (tiopenum_2=1)∧ (tiopenum_1>tiopenum_2)⇒EX

E(Update TASInput Set inum=3 where pid=10 &&

as_id=1, Delete from TASInput where pid=3 &

as_id=1). Then TASInput will be updated.

We can get TASInput using the above method, as

shown in Table 7.

Table 7. TASInput

pid inum as_id

10 3 1

5 2 2

22 2 2

7 2 3

8 2 3

4 2 4

19 2 4

6 2 6

18 1 7

It gets the property of pid and as_id in TASInput,

and generates ASInput. Similarly, it generates

ASOutput, ASPrecondition and ASEffect using the

same method. The IOPE of abstract service in different

service clusters of ws1-ws15 in Table 1 are shown in

Table 8 to Table 11.

Through step 29-32 in Algorithm 6, the QoS

information of AS will be got and it is shown in Table

12.

Table 8. ASInput

pid as_id

10 1

5 2

22 2

7 3

8 3

4 4

19 4

6 6

18 7

Table 9. ASOutput

pid as_id

5 1

7 2

8 2

24 3

22 4

6 5

18 6

26 7

28 7

Table 10. ASPrecondition

pid tid as_id

4 3 5

5 6 6

Table 11. ASEffect

pid tid_s tid_e as_id

5 2 5 2

4 1 3 4

Table 12. AS

as_id name price_min price_max time_min time_max …

1 as1 0.7 1.0 0.4 0.8 …

2 as2 0.8 1.0 0.3 0.6 …

3 as3 0.5 0.5 0.1 0.3 …

5.2 Abstract service execution relationship

extraction

Using step 3 in Algorithm 8, tableIO can be

generated through ASOutput and ASInput, as shown in

Table 13.

Table 13. TableIO

pid_o as_id_o pid_i as_id_i

5 1 5 2

7 2 7 3

8 2 8 3

22 4 22 2

6 5 6 6

18 6 18 7

58 Journal of Internet Technology Volume 19 (2018) No.1

For example, for the tuple tu(5, 1, 5, 2) in tableIO, we

get oasid=1, iasid=2, onum=1 and inum=2. The tempIO

will be got through step 8, as shown in Table 14.

Table 14. TempIO

pid_o as_id_o pid_i as_id_i

5 1 5 2

Then it gets tunum=1⇒tunum=onum⇒ASRelation.

insert(as1, as2). The service execution dependency

table (ASRelation) will be generated using the above

method, as shown in Table 15.

Table 15. ASRelation(IO)

as_s as_e

as1 as2

as2 as3

as4 as2

as5 as6

as6 as7

Using step 14 in Algorithm 8, tableCA can be

generated through ASPrecondition and ASEffect. It is

shown in Table 16.

Table 16. TableCA

pid_e tid_s tid_e as_id_e pid_p tid_p as_id_p

4 1 3 4 4 3 5

5 2 5 2 5 6 6

For the tuple tu(5, 2, 5, 2, 5, 6, 6) in TableCA,

valc=match(5, 5, Table{Para, Relation, Axiom})=1.0,

vals=matchstate(5, 6, Table{StateTrans, StatePath})=0.5,

and ASRelation.insert(as2, as6). Similarly, ASRelation.

insert(as4, as5). The service execution dependency

table (ASRelation) will be got from the CA level, as

shown in Table 17.

Table 17. ASRelation(CA)

as_s as_e

as2 as6

as4 as5

We can get the execution relationship between as1-

as7 through ASRelation(IO) and ASRelation(CA), as

shown in Table 18.

Table 18. ASRelation

as_s as_e

as1 as2

as2 as3

as4 as2

as5 as6

as6 as7

as2 as6

as4 as5

5.3 Service Selection

For example, for the users’ request RE.ReInput={p4,

p19}, RE.ReOutput={p24}, the abstract service with

proper function will be selected to form service

execution path based on the service aggregation set

(ws1-ws15). The concrete process is shown as follows.

<1>Rin1=p4⇒pidnum=4

<2>In match() of Algorithm 3: (tcid1=4) ∧ (tcid2

=4)∧ (trname=equivalentOf)⇒valin=1.0

<3>valin>0.5⇒asio={as4}, and Rin1=p19⇒asio.

add(as4)⇒asio={as4, as4}

<4>DelDuplicate(asio) ⇒asio={as4}

<5>as4.Output={p22}⇒as4.Output⊄RE.ReOutput,

RE.ReOutput={p24}⇒RE.ReOutput!=null. Using step

18 in Algorithm 10, tableASPath can be got and it is

shown in Table 19.

Table 19. TableASPath

pa_id as_s as_e

p3 as4 as2

p7 as4 as5

p11 as4 as3

p12 as4 as6

p13 as4 as6

p16 as4 as7

p17 as4 as7

<6>When tu=<p11, as4, as3>, tu.as_e=as3⇒

tu.as_e.Output⊆RE.ReOutput. The tablePathIF can be

got through step 21, and it is shown in Table 20.

Table 20. TablePathIF

pa_id as num

p11 as4 1

p11 as2 2

P11 as3 3

<7>listas={as4, as2, as3}, RE.ReOutput←RE.

ReOutput-as3.Output⇒ RE.ReOutput=NULL.

<8>cas=listas={as4, as2, as3}.

6 Experiment

6.1 Experiment Environment

Software Environment: Windows XP, MyEclipse

8.5 M2, Mindswap OWL-S API(http://www.mindswap.

org/2004/owls/api/), xampp(http://www.apachefriends.

org/en/xampp.html).

Hardware Environment: CPU: double Intel (R) Core

(TM)2 Duo CPU P8400@ 2.26GHz, memory: 2G.

Dataset: OWLS-TC(http://projects.semwebcentral.org/

projects/owls-tc/). This dataset includes 5 subdirectories:

services, queries, ontology, domains and wsdl. Services

in different areas are in the directory of services, and

ontology set are in the directory of ontology. In order

Web Service Aggregation and Selection Based on Join Operation in RDB 59

to do the validation, we take a number of concepts with

certain semantic relationships between them. We

generate Web service randomly for experiment from

the aspect of interface.

6.2 Experiment Analysis and Comparison

This section discusses the concrete experiments we

have done about service clustering, service aggregation

and service selection.

6.2.1 Service Clustering Experiment

Experiment 1. Comparison of Web service clustering

efficiency, accuracy and recall rate

We use three criteria to evaluate the performance of

our approach, namely Time, Accuracy and Recall [4].

The following methods use the semantic

relationships among concepts to calculate service

similarity, and we compare the time, accuracy and

recall rate of these methods.

RDBJO: it uses the self-join method of RDB to

realize Web service clustering in our approach.

AGENES [34]: it uses the traditional agglomerative

nesting algorithm to cluster Web services.

QT [9]: it uses Quality Threshold (QT) algorithm to

cluster the similar Web services.

K-medoids [35]: the partition clustering algorithm of

K-medoids is used to realize Web service clustering.

This experiment is mainly to compare the time,

accuracy and recall rate of RDBJO, AGENES, QT and

K-medoids. The service interface is mainly considered.

The experiment is taken in the following different

services numbers: 20, 40, 60, 80, 100, 120, 140, 160,

180 and 200. The service clustering time, accuracy and

recall rate of the above four approaches are shown in

Figure 7, 8 and 9 respectively.

For the specific clustering method in Figure 7, Web

service clustering time increases dramatically as the

service number becomes larger. For the certain number

of services, we can see the service clustering time is

largely different using different methods. The

clustering time of RDBJO is the least of all, the

AGENES is the most, and the K-medoids is followed

by RDBJO. This is because AGENES method needs to

calculate the similarity of every two services, and it

leads to the clustering time of this method is the

maximum. The RDBJO method proposed in this paper

uses the self-join operation in RDB. It helps to reduce

the time of calculating concept matching degree, and

the services can be clustered quickly. The QT method

needs to do IO matching calculation between different

services in turn, and it uses the semantic reasoning

relationships to calculate service similarity. The time

used is more than the RDBJO method.

In Figure 8 and 9, the service clustering accuracy

and recall rate of RDBJO, AGENES and QT are same

in the case of particular number of Web services. And

K-medoids method is the lowest. This is because the

service cluster centers are determined randomly when

using K-medoids method to cluster services. The

correctness of these service cluster center will

influence the service clustering accuracy and recall rate

directly.

Figure 7. Comparison of Web service clustering time

Figure 8. Comparison of Web service clustering

accuracy

Figure 9. Comparison of Web service clustering recall

We can conclude that the service clustering time of

RDBJO is the least of all, but its Web service

clustering accuracy and recall rate are influenced. The

time of K-medoids is slightly higher than RDBJO, but

its accuracy and recall rate is the lowest of the four

methods. The clustering accuracy and recall rate of

AGENES is same to RDBJO, but it needs to specify

the number of service clusters in advance.

Experiment 2. Comparison of efficiency and accuracy

using different semantic relationships between concepts.

60 Journal of Internet Technology Volume 19 (2018) No.1

Exact method: it only considers the Exact relationship

between concepts to computer service similarity, and it

uses the self-join operation in RDB to cluster services.

This experiment compares the service finding

efficiency and accuracy of Exact and RDBJO methods.

We evaluate service clustering accuracy of RDBJO and

Exact. The experiment is taken in the following

services numbers: 100, 200, 300, 400, 500, 600, 700,

800, 900 and 1000 separately. The service clustering

time and accuracy of Exact and RDBJO are shown in

Figure 10 and Figure 11.

Figure 10. Comparison of Web service clustering time

Figure 11. Comparison of Web service clustering

accuracy

From Figure 10 and Figure 11, we can see Web

service clustering time increases as the service number

becomes larger of the two methods. For the certain

number of services, the time of Exact method is less

than RDBJO method. This is because Exact method

only compares whether two concepts are equivalent or

not when to calculate the matching degree between

ontology concepts. It doesn’t consider the concept

reasoning relationships, such as superClassof,

subClassof, etc. Therefore the clustering efficiency of

Exact method is the largest. But its service clustering

accuracy is far less than RDBJO. This is because it

only considers the concept equivalence relationship,

and it does not consider other reasoning relationships

between concepts. Its concept matching degree is not

accurate and the service similarity calculation accuracy

will be influenced. Thus its service clustering accuracy

will be reduced.

6.2.2 Service Aggregation Experiment

On the basis of the 36 service clusters that are

formed through RDBJO clustering method of 1000

services, we do experiment about the abstract service

extraction and getting abstract service execution

relationships.

Experiment 3. Comparison of extracting abstract

service time in different service clusters

The abstract services can be extracted from the 36

service clusters using Algorithm 6. This experiment

compares the time that is used to extract abstract

services from different service clusters. The

experiment result is shown in Table 21.

In Table 21 we can see the abstract service

extraction time is different in different service clusters.

This is mainly related to the different number of

services in clusters. We can see the time of extracting

abstract service is becoming more as the service

number increases. For example, there are 52 services in

the service cluster of Cluster ID=1 and 24 services in

the service cluster of Cluster ID=2. The time of the

former (12.809s) is about twice than the latter (6.634s).

Experiment 4. Comparison of time and numbers of

extracting execution dependency relationships

On the basis of 36 abstract services being formed,

this experiment compares the time of extracting

abstract service execution relationships and the

corresponding numbers. The result is shown in Table

22.

Table 22. Comparison of getting extract service

execution relationship time and number

Parameters
Different cases

Time(s) Number

Exact/super/sub/interaction 1.4966228 200

Exact/super/sub 1.0899271 134

Exact/super 0.8873854 92

Exact 0.6838185 53

Web Service Aggregation and Selection Based on Join Operation in RDB 61

In the case of different semantic relationships

between concepts, the time of getting abstract service

execution relationships using Algorithm 8 and the

number of service execution relations is largely

different. The time is the least of all when it only

considers the Exact relationship, and the corresponding

number of abstract service execution dependency

relationship is the least of all. When it uses the

relationships of Exact/super/sub/interaction, the time

and the number of abstract service execution relations

is the most of all. It means the more comprehensive of

the concept semantic relationships, the more time and

number of finding service execution relationships. This

is because the more semantic relationships that is used,

the more number of services which can meet this kind

of relationship.

Experiment 5. Comparison of service aggregation

time

The abstract service execution relationship table is

joined in turn to realize service aggregation. The 36

abstract services will be organized and the different

service execution paths will be formed. In the case of

including 2~9 services in execution path, this experiment

compares the time and path numbers of generating

ASExePath. The result is shown in Table 23.

In the case of including different number of services

in service execution paths, the number of service

execution path is largely different. As the service

number in certain service path increases, the time of

realizing service aggregation and number of service

execution path are becoming larger.

6.2.3 Service Selection Experiment

Experiment 6. Comparison of service finding time

and average path number under different request

numbers

On the basis of service aggregation, this experiment

generates different number of service requests.

According to the service requests, it uses Algorithm 11

to find services to meet users’ functional requests

based on service aggregation. In the case of different

thresholds (0.1-0.9), we compare the service finding

time and the average service finding numbers. The

result is shown in Figure 12 and Figure 13.

Figure 12. Service finding time of different request

numbers

Figure 13. Service finding average numbers of different

request numbers

For the certain threshold in Figure 9 and Figure 10,

the service finding time and the average service

numbers are becoming more as the number of users’

request increases. For the certain number of users’

requests, the service finding time and the average

service numbers are becoming less as the threshold

increases. This is because as the threshold increases,

the number of services that can meet the condition is

becoming less. The number of services that can be

composed will be reduced, and it leads to the service

finding time to be reduced.

There are different numbers (1~9) of services in the

service execution path. In the condition of setting

different thresholds, we can find there are different

service numbers in execution path. The result is shown

in Table 24.

62 Journal of Internet Technology Volume 19 (2018) No.1

Table 24. Average path numbers with different service

numbers

Average path numbers
Thresholds

1 2 3 4 5 6 7 8 9

0.1 1.0 1.6 2.7 3.3 4.7 6.4 9.0 12.9 17.8

0.2 1.0 1.6 2.1 3.1 5.3 6.6 9.7 13.9 20.2

0.3 1.0 1.4 1.9 2.5 4.0 5.2 7.6 10.5 15.2

0.4 0.2 0.6 0.8 0.9 1.7 2.3 3.0 4.7 6.3

0.5 0.5 0.5 0.7 1.4 1.8 2.5 3.4 5.1 6.5

0.6 0.2 0.1 0.3 0.4 0.7 0.7 1.3 1.4 2.6

0.7 0.2 0.2 0.3 0.3 0.5 0.8 1.0 1.4 2.1

0.7 0.0 0.1 0.1 0.1 0.1 0.3 0.3 0.4 0.7

0.9 0.0 0.0 0.1 0.0 0.2 0.3 0.2 0.5 0.6

For the certain threshold in Table 24, as the service

numbers which is included in service execution path

increases, the average path number of services that

meet request is becoming more and more. For the

certain service numbers in service execution path, the

average path number is becoming less as the threshold

increases.

For example, for the specific service request RE, its

interface is Input=http://127.0.0.1/ontology/books.owl

#F, and Output=http://127.0.0.1/ontology/books.owl#

Once.

<1> Services whose Input is matched with RE.Input

are cas=<5.owls, 10.owls, 17.owls, 18.owls, 22.owls,

30.owls>.

<2> The Input of 5.owls is Input=http://127.0.0.1

/ontology/books.owl#F, and match(RE.Input, 5.owls.

Input)=1.0. The Output of 5.owls is Output=http://

127.0.0.1/ontology/books.owl#Weekly, and match(RE.

Output, 5.owls.Output)=0.4. Then we can get

(1.0+0.4)/2=0.7 and 5.owls can be matched with RE.

The output of service in <10.owls, 17.owls, 18.owls,

22.owls, 30.owls> is not matched with RE.Output.

<3> Services in cas are seen as the first service, and

we get the service execution path to meet RE, as shown

in the following.

10.owls→17.owls

30.owls→31.owls

18.owls→29.owls→31.owls

5.owls→3.owls→10.owls→17.owls

10.owls→17.owls→9.owls→17.owls

17.owls→27.owls→36.owls→33.owls→29.owls→3

1.owls, etc.

We get the total service execution path number that

can meet RE is 56. The number of atomic service is 1.

The number of service execution path which includes 2

services is 2. The number of service execution path

which includes 3 services is 4. The number of service

execution path which includes 9 services is 21, etc.

7 Conclusion

In the service-oriented software engineering, how to

organize and manage Web services, and thus to select

the atomic service and a set of composite services with

correlations to meet users’ functional and QoS

requirements efficiently is a key problem to be solved.

On the basis of storing Web service and ontology

information, a Web service clustering approach based

on self-join operation in RDB is firstly proposed to

cluster services in term of service interface and

capability. Then the abstract service extraction method

is used to get abstract service from specific service

clusters. The dependency relationship between abstract

services are determined in the view of interface and

capability, and thus to realize service aggregation and

organization. Then it selects the atomic service and a

set of service to meet the functional and QoS

requirements for users’ individual requirements. The

experiments are used to verify the proposed methods.

The next step research work includes the following

aspects: considering the service operation, the

relationship between operation and IO to cluster

services; considering users’ features to realize service

aggregation and selection; building evolution

mechanism to update the service aggregation.

Acknowledgments

This research is supported by the National Basic

Research Program of China (2014CB340401), the

Project Funded by the Priority Academic Program

Development of Jiangsu Higer Education Institutions

(PAPD), the Jiangsu Collaborative Innovation Center

on Atmospheric Environment and Equipment

Technology (CICAEET), the NSFC (61173141), the

Fund of Jiangsu Engineering Center of Network

Monitoring (KJR1308, KJR1402), the Fund of MOE

Internet Innovation Platform (KJRP1403).

References

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,

Service-Oriented Computing: A Research Roadmap,

International Journal of Cooperative Information Systems,

Vol. 17, No. 2, pp. 223-255, June, 2008.

[2] Z. J. Fu, X. M. Sun, Q. Liu, L. Zhou, J. G. Shu, Achieving

Efficient Cloud Search Services: Multi-keyword Ranked

Search over Encrypted Cloud Data Supporting Parallel

Computing, IEICE Transactions on Communications, Vol.

E98-B, No. 1, pp. 190-200, January, 2015.

[3] D. Skoutas, D. Sacharidis, A. Simitsis, T. Sellis, Ranking and

Clustering Web Services Using Multicriteria Dominance

Relationships, IEEE Transactions on Services Computing,

Vol. 3, No. 3, pp. 163-177, July-September, 2010.

[4] Z. Li, K. Q. He, J. Wang, N. Zhang, An On-Demand Services

Discovery Approach Based on Topic Clustering, Journal of

Internet Technology, Vol. 15, No. 4, pp. 543-555, July, 2014.

[5] S. Dasgupta, S. Bhat, Y. Lee, Taxonomic Clustering and

Query Matching for Efficient Service Discovery, Proc. of

2011 IEEE International Conference on Web Services,

Web Service Aggregation and Selection Based on Join Operation in RDB 63

Washington, DC, 2011, pp. 363-370.

[6] L. Yu, Z. L. Wang, L. M. Meng, X. S. Qiu, Clustering and

Recommendation for Semantic Web Service in Time Series,

KSII Transactions on Internet and Information Systems, Vol.

8, No. 8, pp. 2743-2762, August, 2014.

[7] J. X. Liu, K. Q. He, J. Wang, D. Ning, A Clustering Method

for Web Service Discovery, Proc. of 2011 IEEE International

Conference on Services Computing, Washington, DC, 2011,

pp. 729-730.

[8] B. T. G. S. Kumara, I. Paik, W. H. Chen, Web-service

Clustering with a Hybrid of Ontology Learning and

Information-retrieval-based Term Similarity, Proc. of IEEE

20th International Conference on Web Services, Santa Clara,

CA, 2013, pp. 340-347.

[9] L. Chen, L. K. Hu, Z. B. Zheng, J. Wu, J. W. Yin, Y. Li, S. G.

Deng, WTCluster: Utilizing Tags for Web Services

Clustering, Proc. of 9th International Conference on Service-

Oriented Computing (ICSOC 2011), Paphos, Cyprus, 2011,

pp. 204-218.

[10] B. T. G. S. Kumara, I. Paik, H. Ohashi, W. H. Chen, K. R. C.

Koswatte, Context Aware Post-Filtering for Web Service

Clustering, Proc. of 2014 IEEE International Conference on

Services Computing, Anchorage, AK, 2014, pp. 440-447.

[11] Y. H. Zheng, B. Jeon, D. H. Xu, Q. M. J. Wu, H. Zhang,

Image Segmentation by Generalized Hierarchical Fuzzy C-

means Algorithm, Journal of Intelligent and Fuzzy Systems :

Applications in Engineering and Technology, Vol. 28, No. 2,

pp. 961-973, March, 2015.

[12] K. Elgazzar, A. E. Hassan, P. Martin, Clustering WSDL

Documents to Bootstrap the Discovery of Web Services, Proc.

of 2010 IEEE International Conference on Web Services,

Miami, FL, 2010, pp. 147-154.

[13] Q. Yu, M. Rege, On Service Community Learning: A Co-

clustering Approach, Proc. of 2010 IEEE International

Conference on Web Services, Miami, FL, 2010, pp. 283-290.

[14] X. Z. Liu, Q. Zhao, G. Huang, H. Mei, T. Teng, Composing

Data-Driven Service Mashups with Tag-based Semantic

Annotations, Proc. of 2011 IEEE International Conference

on Web Services, Washington, DC, 2011, pp. 243-250.

[15] X. Z. Wang, Z. J. Wang, X. F. Xu, Semi-Empirical Service

Composition: A Clustering Based Approach, Proc. of 2011

IEEE International Conference on Web Services, Washington,

DC, 2011, pp. 219-226.

[16] M. Sellami, W. Gaaloul, S. Tata, Functionality-Driven

Clustering of Web Service Registries, Proc. of 2010 IEEE

International Conference on Services Computing, Miami, FL,

2010, pp. 631-634.

[17] Y. J. Ren, J. Shen, J. Wang, J. Han, S. Y. Lee, Mutual

Verifiable Provable Data Auditing in Public Cloud Storage,

Journal of Internet Technology, Vol. 16, No. 2, pp. 317-323,

March, 2015.

[18] H. Y. Wu, Y. Y. Du, A Logical Petri Net-Based Approach for

Web Service Cluster Composition, Chinese Journal of

Computers, Vol. 38, No. 1, pp. 204-218, January, 2015.

[19] Z. B. Zhou, M. Sellami, W. Gaaloul, M. Barhamgi, B. Defude,

Data Providing Services Clustering and Management for

Facilitating Service Discovery and Replacement, IEEE

Transactions on Automation Science and Engineering, Vol.

10, No. 4, pp. 1131-1146, October, 2013.

[20] J. X. Liu, K. Q. He, D. Ning, Web Service Aggregation Using

Semantic Interoperability Oriented Method, Journal of

Information Science and Engineering, Vol. 28, No. 3, pp.

437-452, May, 2012.

[21] J. X. Liu, K. Q. He, J. Wang, F. Liu, X. X. Li, Service

Organization and Recommendation Using Multi-granularity

Approach, Knowledge-Based Systems, Vol. 73, pp. 181-198,

January, 2015.

[22] C. H. Hu, M. Wu, G. P. Liu, D. Z. Xu, An Approach to

Constructing Web Service Workflow Based on Business

Spanning Graph, Chinese Journal of Software, Vol. 18, No. 8,

pp. 1870-1882, August, 2007.

[23] M. Aznag, M. Quafafou, Z. Jarir, Leveraging Formal Concept

Analysis with Topic Correlation for Service Clustering and

Discovery, Proc. of 2014 IEEE International Conference on

Web Services, Anchorage, AK, 2014, pp. 153-160.

[24] S. L. Liu, Y. X. Liu, F. Zhang, G. F. Tang, N. Jing, A

Dynamic Web Services Selection Algorithm with QoS Global

Optimal in Web Services Composition, Chinese Journal of

Software, Vol. 18, No. 3, pp. 646-656, March, 2007.

[25] M. Sellami, O. Bouchaala, W. Gaaloul, S. Tata, Communities

of Web Service Registries: Construction and Management,

Journal of Systems and Software, Vol. 86, No. 3, pp. 835-853,

March, 2013.

[26] D. H. Lin, C. Q. Shi, T. Ishida, Dynamic Service Selection

Based on Context-Aware QoS, Proc. of 2012 IEEE Ninth

International Conference on Services Computing, Honolulu,

HI, 2012, pp. 641-648.

[27] P. Wang, K. M. Chao, C. C. Lo, On Optimal Decision for

QoS-aware Composite Service Selection, Expert Systems with

Applications, Vol. 37, No. 1, pp. 440-449, January, 2010.

[28] G. S. Kang, J. X. Liu, M. D. Tang, X. Q. Liu, K. K. Fletcher,

Web Service Selection for Resolving Conflicting Service

Requests, Proc. of 2011 IEEE International Conference on

Web Services, Washington, DC, 2011, pp. 387-394.

[29] K. Vukojevic-Haupt, F. Haupt, D. Karastoyanova, F.

Leymann, Service Selection for On-demand Provisioned

Services, Proc. of 2014 IEEE 18th International Enterprise

Distributed Object Computing Conference, Ulm, Germany,

2014, pp. 120-127.

[30] R. X. Wang, L. Ma, Y. P. Chen, The Research of Web

Service Selection Based on the Ant Colony Algorithm, Proc.

of 2010 International Conference on Artificial Intelligence

and Computational Intelligence, Sanya, China, 2010, pp. 551-

555.

[31] X. Q. Fan, X. W. Fang, C. J. Jiang, Research on Web Service

Selection Based on Cooperative Evolution, Expert Systems

with Applications, Vol. 38, No. 8, pp. 9736-9743, August,

2011.

[32] X. G. Wang, J. Cao, Y. Xiang, Dynamic Cloud Service

Selection Using an Adaptive Learning Mechanism in Multi-

cloud Computing, The Journal of Systems and Software, Vol.

100, pp. 195-210, February, 2015.

64 Journal of Internet Technology Volume 19 (2018) No.1

[33] P. W. Wang, Z. Jin, L. Liu, G. J. Cai, Building Toward

Capability Specifications of Web Services Based on an

Environment Ontology, IEEE Transactions on Knowledge

and Data Engineering, Vol. 20, No. 4, pp. 547-561, April,

2008.

[34] P. Sun, C. J. Jiang, Using Service Clustering to Facilitate

Process-oriented Semantic Web Service Discovery, Chinese

Journal of Computers, Vol. 31, No. 8, pp. 1340-1353, August,

2008.

[35] S. Ram, Y. Hwang, H. M. Zhao, A Clustering Based

Approach for Facilitating Semantic Web Service Discovery,

Proc. of the 15th Annual Workshop on Information

Technolgies & Systems (WITS), Milwaukee, WI, 2006, pp. 1-

6.

Biographies

Jianxiao Liu is a lecture in college of

informatics of Huazhong Agricultural

University. He received the Ph.D.

degree in software engineering from

Wuhan University of China in 2012.

Until now, he has published over 20

papers. His current research interest is

service computing and machine learning.

Xiaoxia Li is a lecture in college of

informatics of Huazhong Agricultural

University. She received the Ph.D.

degree in computer application

technology from Wuhan University of

China in 2012. Her current research

interest is collaborative computing.

Zhihua Xia received the Ph.D. degree

in computer science and technology

from Hunan University of China in

2011. He works as an associate

professor in School of Computer &

Software, Nanjing University of

Information Science & Technology.

His research interests include digital forensic and

encrypted image processing.

