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Increasingly, application developers seek the ability to search for existing Web services within large
Internet-based repositories. The goal is to retrieve services that match the user’s requirements.
With the growing number of services in the repositories and the challenges of quickly finding
the right ones, the need for clustering related services becomes evident to enhance search engine
results with a list of similar services for each hit. In this article, a statistical clustering approach is
presented that enhances an existing distributed vector space search engine for Web services with
the possibility of dynamically calculating clusters of similar services for each hit in the list found
by the search engine. The focus is laid on a very efficient and scalable clustering implementation
that can handle very large service repositories. The evaluation with a large service repository
demonstrates the feasibility and performance of the approach.
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1. INTRODUCTION

With the growing popularity of Web services throughout the service-oriented
community [Papazoglou 2003; Papazoglou et al. 2006], the methods for service
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discovery and search in repositories grow more sophisticated. The estab-
lishment of common description standards for Web services, such as WSDL
[Christensen et al. 2001], was an enabler for different research efforts in this
area, especially those related to service registries and their corresponding re-
trieval mechanisms. Particularly in registry-like directories, a huge number
of services have to be indexed and retrieved in a fast and efficient way to en-
sure scalability. An additional need that arises with the growing number of
entries is to automatically create a list of related services that match a given
query. Such rudimentary search capabilities are more or less part of every Web
service registry. In most cases though, these registries do not focus on the
search functionality or its efficiency. UDDI registries [OASIS 2005] retrieve
their contained data by searching tModel entries for a match to a given in-
quiry request. Some forms of registries use a simple full text search to react to
queries while others try to produce matches based on some form on semantic
index.

Apart from the direct relation to the issued query, there is currently no es-
tablished method to relate these possible matches to each other. The goal is
to enrich a search engine’s hits with a number of related services that fulfill
a similar task. Such a functionality would be an enormous help in browsing
the content of registry-like service directories. It is important to understand
though, that the original search result is unaffected by those relations. The
clusters are built for each element of the search result and aim to provide a set
of possible alternatives for each entry in a result list.

In this article, an approach is presented that uses statistical cluster analy-
sis to create the desired containment for the highest matches of a given query.
The focus is laid on an efficient algorithm that is scalable to large and dis-
tributed service repositories and still guarantees an efficient processing of
queries and subsequent clustering for the generated matches. For this pur-
pose, the usual Euclidean distance for proximity measurement is extended
by means of a multidimensional angle produced by a vector space search en-
gine. Furthermore, the very complex runtime creation of the matrix for the
distance measurements is discussed and changed to a more effective method.
This change is necessary, because large service repositories otherwise result
in cubic runtime complexity and are therefore limited in their processing
capacities.

The rest of this article is structured as follows: In Section 2, we present the
necessary prerequisites to perform cluster analysis on the given data struc-
tures. The topics discussed include quantification as well as normalization.
Section 3 presents the possible ways to perform service clustering for services
with, and services without, domain-specific information. Furthermore we eval-
uate the most promising algorithms for our approach. In Section 4, we present
the implementation of the aforementioned clustering concepts within our vec-
tor space search engine followed by an evaluation of the work in Section 5 In
Section 6, we present an overview of important related work. The approaches
discussed do not always deal with service clustering explicitly but often take
a larger view, reaching into semantics as well as metadata generation for Web
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services. Finally, the last section concludes the article and presents some of our
future work.

2. PREREQUISITES

This section gives an overview of the most important issues related to general
clustering problems and Web service clustering in particular. The principal
method is a modified version of common statistical cluster analysis [Eckey et al.
2002]. Because some of the statistical methods are not directly applicable here,
some adjustments have to be made to ensure they can still be used.

2.1 Requirements

Statistical cluster analysis can be used for a broad spectrum of input data, rang-
ing from Boolean values or even nominal scales, to relational scales. The more
unambiguous the data for the different variables can be set, the more signifi-
cant the clustering result will be. Therefore, it has to deal with the requirement
to have float or integer values for a numerical representation of a service de-
scription. Furthermore, the cluster algorithm must not be limited to a specific
number of variables and/or a maximum size for the stored entries to allow it
to be executed on a multidimensional term space. With these requirements in
mind, the indexing method can be examined.

2.2 WSDL Indexing

When processing a WSDL description in general, the desired result is an index
where each characteristic is represented as a dimension of an n-dimensional
vector space. The meaning of the dimensions strongly depends on the indexing
procedure used. If domain-specific information is characterized by a dimen-
sion, for example, the cluster analysis will produce a result where elements
of similar domains are grouped and identified as related to each other. How
well the desired outcome matches the expectations of a query therefore de-
pends on the quality of the index as well as the algorithms used. The following
types of index structures are possible when dealing with XML-based service
descriptions.

2.2.1 Syntactic Indexes. A syntactic index has the advantage of being able
to process any valid WSDL file from any source simply because input data is not
restricted by any means. In Platzer and Dustdar [2005] such an index is used
to create vectors for WSDL files and process queries upon them by calculating
document similarities. The basic idea is to parse through WSDL documents
and extract as many keywords as possible. This method is a common approach
used in all fields of natural language processing. The list of keywords is then
mapped to a vector space, where every dimension represents a characteristic or
in this case a keyword. All dimensions together then span an n-dimensional
vector space, where n is the number of characteristics that have been
quantified.
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Using these indexing methods, the following elements are extracted:

—Types. The type names and their corresponding attributes are extracted.
Those types are usually assigned by developers and give clues about the
functionality; for example, “CardNumber” or “customerId.” The words are
split up and indexed accordingly.

—Messages. Similar to types, messages allow a specific functionality and
are created by programmers in most cases. Sample message names are
“doGoogleSearch” or “getStockQuote.” Just like types, they can be split and
indexed.

—Port types. Port types finally define operations, where certain messages are
composed as input and output. Here, the names of the operations are inter-
esting and are considered the same way, message names are.

—URLs. The endpoint URLs of a Web service description holds valuable infor-
mation about the domain: where it is registered, the implementation, and
any other important information such as service location and service owner.
Properly processed, these values can help to build service clusters.

—Comments. Comments are among the most important information a WSDL
description contains when it comes to searching. Most of the comments are
written by humans or sometimes generated by service engines. For the clus-
tering approach, comments are not of the topmost priority, because they are
not expected to hold a large amount of domain-specific information. In real-
ity, commentary sections are used quite rarely. From a variety of 250 distinct
and functional real-world Web service descriptions, just three contained com-
ments that were entered by a human. The rest either contained generated
comments (most frequently by the servlet engine) or no comments at all.
Therefore, comments are handled with low priority and a low importance
rating when it comes to clustering.

Although there are other elements of a WSDL file, they are not considered
here because of their limited information. The service’s binding is a good exam-
ple. It just assembles all available port types and assigns a transport means,
which is not interesting for the keyword generation process.

2.2.2 Rich Indexes. As contrasted with purely syntactic indexes, a rich in-
dex deals with some sort of specialized information contained in the original
input data. The information can be of various structures. The four most impor-
tant values are listed here.

—Semantic descriptions. When a WSDL description is enriched with some sort
of semantic descriptions like RDF[W3C 2000], this data can be parsed and
stored for further use. The information can be mapped to a domain-specific
ontology in most cases and processed accordingly. For this purpose however,
this is not an option because no real-world service really implements se-
mantic descriptions in the form of RDF tags. The same applies for semantic
annotated Web service descriptions (SAWSDL).

—Domain information. Other than semantic descriptions that might be entered
directly into the WSDL description, it is possible to query a user for domain
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information about a specific service. Unfortunately it cannot be assumed
that every service comes with such information attached. If it is the case
nevertheless, it can of course be used to build a rich index.

—Location information. It can be gathered from the endpoint of a given service.
There are services like GeoIP1 that make it possible to determine the location
and additional information using the endpoint IP of a service.

—QoS descriptions. Similar to domain and location knowledge, QoS descrip-
tions for performance related aspects of Web services are a type of meta-data
that can be gathered for Web services[Rosenberg et al. 2006]. When the eval-
uated QoS is used to build indexes, the clustering algorithm will produce
groups of similar performance values. This can be an intended behavior or
an unwanted side-effect depending on the desired clusters that should be
produced as a result.

Although it is possible to merge information from these categories with syn-
tactical information, it is not recommended. The information within a rich index
is usually already structured. Therefore, vectorizing these elements and apply-
ing information-retrieval techniques is not necessary. Semantic descriptions
for instance, can simply be queried to produce exact matches. Furthermore,
vector spaces built from service descriptions tend to span a large number of
dimensions. Even when additional information like domain information pro-
duces an exact match, the multitude of other vectors that have to be considered
is likely to move such vectors apart from each other, and therefore, reduce the
effectiveness of the clustering algorithm.

Finally, an index that is based on QoS will not benefit from a combination with
natural language processing, even when the numerical structure is identical.
A search issued on a combined space would result in a broken search semantic.
An example will clarify this situation. A cluster analysis based on a search
string like “credit card verification” expects to find clusters of the same domain.
With a merged QoS index however, the result would possibly contain a service
that verifies lotto numbers but has the same QoS attributes and list it as very
strongly related. Therefore, vector spaces should not be merged across different
index strategies.

In this particular case the most feasible and also most depictive indexing
method is syntactic clustering. First, the data cloud produced is of the highest
density and on the other hand it forces the changes that allow the algorithm to
operate on spaces with unbounded dimensionality.

3. BASIC CONCEPTS OF STATISTICAL CLUSTERING

Assuming there is an already established vector space for an existing WSDL
repository, the clustering approach can be discussed in detail. As mentioned
in the introduction, traditional statistical cluster analysis does apply in a Web
service environment with certain limitations. Those limitations and how to
overcome them are discussed in this section.

1http://www.maxmind.com/app/ip-location
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3.1 Proximity Measure

When dealing with metric scale levels as in this approach, some ways exist
to measure the distance between two elements. Two of these norms are most
commonly used.

3.1.1 City-Block Distance. In an m-dimensional vector space, the City-
Block distance between two elements j and k is calculated with:

djk =
m∑

i=1

|xij − xik|.

This distance measurement is designed to be used for a data cloud where el-
ements are not very different from each other. The absolute value for the dif-
ference on each axis is added pairwise. As a result, one dimension with a large
deviance results in a large distance for the tuple as a whole.

3.1.2 Euclidean Distance. Although the City-Block distance is a valid mea-
surement for this purpose, the Euclidean distance has the advantage of con-
sidering the direct distance between two points in the vector space, no matter
how large the value for a particular dimension is. The Euclidean distance is
calculated as follows:

djk =
√√√√ m∑

i=1

(xij − xik)2.

A variation of this measurement is the squared Euclidean distance. Its only
difference from the standard method lies in omitting the square root for the
final value.

Both of these methods are theoretically applicable in this environment. Nev-
ertheless, the practical use shows the limitations and restrictions. The first step
when splitting a data cloud into clusters is to calculate distances for every pair
of elements in the space. We use the term element for every dot in the space,
because they will be used to represent an element of our service repository (a
WSDL file) later in the article. Consequently, the term dimension refers to one
dimension of the matrix on which the clustering should be performed. For sta-
tistical use, the number of elements is usually limited to amounts of around
100. The number of dimensions rarely exceeds 100 as well. For that amount of
data, the values can be processed relatively quickly and precisely. For WSDL
repositories however, 104 entries are considered medium size. Even though the
amount of currently available entries is far less, the observation explained in
Section 1 implies a growth in service repository size. Furthermore, the dimen-
sional size of the vector space is also considerably larger. Depending on the
input data, 102 to 103 dimensions is a reasonable amount for a single WSDL
document and 104 for the whole vector space. With those assumptions in mind,
the expense of processing standard distances can be calculated:

(1) All distances for all elements within the vector space have to be processed.
Permuting n elements without repeating, results in a Gaussian progression
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for the number of needed iterations:

#Iterations =
n∑

k=1

k = n(n + 1)
2

.

So the number of iterations alone results in an upper bound of O(n2) for the
problem complexity. Additionally, each iteration needs to process as many
elements as there are dimensions present. It is possible to precompute the
distances on a local repository. With a distributed vector space, however,
access to all vectors is not guaranteed, which impedes a synchronous pro-
cessing of the vectors.

(2) In the next step, a cluster algorithm has to be applied, where near elements
are grouped by either hierarchical or agglomerative procedures. Assuming
the worst case scenario, each application of the cluster algorithm results
in a pair of two elements, leaving n − 1 elements for the next iteration of
the algorithm. As a result, the cluster algorithm consumes an additional
(n − 1) ⇒ O(n) iterations in the worst case.

(3) Finally these results, and possibly the results of remote vector spaces can
be combined and displayed.

Such a high computation expense for the cluster analysis is usually compen-
sated by precomputing these values and updating them when the repository
changes. Unfortunately, this method is only applicable in a centralized ap-
proach and not in a distributed environment as the one at hand. Besides these
performance-related drawbacks, there is also a problem where documents of
different length are not considered in one cluster because they are represented
by a different cardinality. As an example, two descriptions are taken that are
both of the financial sector. After the indexing phase, both documents are rep-
resented by the keywords “interest” and “investment.” Because one document
is longer than the other and the keywords occur more often, the cardinality is
different, which means that the Euclidean distance puts those two documents
in different clusters even though they are strongly related.

With all these restrictions it is obvious that a better way to compute distance
values has to be found; one that copes with performance and precision at the
same time.

3.1.3 Multidimensional Angle. An elegant solution for similarity or dis-
tance ratings in an n-dimensional vector space is to calculate multidimensional
angles between the elements. In this approach, it is not the absolute position
of two points (p, q) in space and the Euclidean distance between them, but the
cosine of the angle between two vectors reaching from the origin to (p, q). It is
calculated by the following formula:

cos (p, q) = p · q
‖p‖ · ‖q‖ =

∑n
i=1 piqi√∑n

i=1 p2
i
∑n

i=1 q2
i

,

where n is the number of overall dimensions.
One of the advantages of this method is that the vectors are already normal-

ized. Therefore, a document’s length does not influence the distance measure.
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In the previous example the vectors produce the same angle and are therefore
considered to be close to each other.

In terms of performance, this approach also produces better results. When
taking a sample vector space with 104 dimensions, it can be assumed that
a single document does not incorporate all different dimensions. Therefore,
dimensional reduction can be applied while computing angles for two vectors.
In this particular case, a dimension is only considered when it is present in
both vectors. Otherwise, it would drop out of the equation anyway. The results
show the saved computing time for a single vector query.

This approach also provides the possibility of producing every angle for a
single dimension in the same iteration by storing denominators and reusing
them for other elements as shown in Platzer and Dustdar [2005]. With this
method, the expense of producing the distance matrix can be reduced to O(n),
which is an acceptable but still improvable growth rate. For high-performance
search engines where results are created on the fly, this leaves just two options.

—All distances are processed in advance and recalculated as soon as a new
entry is added to the vector space. This results in a huge amount of processing
time for adding elements. Furthermore it strongly affects the distribution
capabilities of the whole approach.

—Clusters are built for results of a search query only. That limits the amount
of elements to a reasonable size and also improves visibility of the result.

In our implementation the latter solution is preferable because of its distri-
bution capabilities. With the limited size of the repository, the runtime overhead
is tolerable.

3.2 Cluster Algorithm

For the final cluster algorithm, quite a large range of possibilities exists but it
is out of scope of this article to discuss all of the advantages and disadvantages.

In general, partitioning and hierarchical methods can be distinguished. De-
pending on the underlying data structure, various different algorithms to create
clusters in data clouds exist. The k-means method is among the most popular of
them [la Torre and Kanade 2006] and therefore was our first choice for our ap-
plication. Structurally, k-means is a partitional cluster method. The algorithm
assigns each point in the data cloud to the cluster whose center is nearest. The
center is simply the average of all points in the cluster. For multiple dimensions
that means that each coordinate is the arithmetic mean of this dimension for
all points belonging to this cluster. The original k-means algorithm as proposed
by MacQueen [1967] consists of the following steps.

(1) Choose the number of clusters k.
(2) Randomly generate k clusters and determine the cluster centers, or directly

generate k random points as cluster centers.
(3) Assign each point in the data cloud to the nearest cluster center.
(4) Shift the new cluster centers according to the added points.
(5) Repeat Steps 3 and 4 until some convergence criterion is met.
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With some minor adoptations and performance optimizations, this algorithm
is widely used to generate clusters for all different kinds of quantified data.
For our purpose there are two drawbacks. First, the number of clusters has to
be predefined. Unfortunately there is no way to estimate how many items of
the original search result are strongly related to each other. Therefore a rule
of thumb—like the elbow criterion for example—would have to be applied to
appraise the number of clusters that make sense in the final result. The second
drawback of this method is that it does not yield the same result with each
run, since the resulting clusters depend on the initial random assignments. For
these reasons we decided to use a very similar but hierarchical method with
an agglomerative approach for our problem. Unlike the k-means method, each
element is considered as a single cluster at startup. With each iteration, new
clusters are built, and contained elements are grouped to the new layout before
the algorithm is restarted. Just like the k-means algorithm, all elements are
finally distributed to a cluster with the only difference being that the number
is denoted by the iteration step and not defined at the start. For a better vi-
sualization however, a hierarchical method with a centroid fusion algorithm
is preferable to the partitional approach. It performs well for the fusion pro-
cess and is limited in the necessary iteration steps. The algorithm is applied as
follows.

(1) Search for the pair in the distance matrix with the minimum distance
dmin(a, b).

(2) Create a new distance matrix where distances between clusters are calcu-
lated by their mean value d (ā, b̄).

(3) Save the distances and cluster partitions for later visualization.
(4) Proceed with Step 1 until the matrix is of size n = 1, which means that only

one cluster remains.

To give a better understanding of the algorithm involved, we provide an example
with a matrix of size 5, including all necessary steps for the matrix reduction.
The algorithm starts to build the initial matrix by querying all relations to item
A. If a relation exists, it is entered into the matrix with its corresponding value,
and zero otherwise. A sample initial matrix is shown in Table I(a). Issuing a
query with the vector of item A for example would result in a rating of 0.8
for item E, 0.55 for item D, and so forth. Each element is processed this way
until the necessary elements are entered into the compressed matrix. Then
the matrix is decompressed, to ease the following iteration steps. To do so, the
main diagonal has to be filled with the element that represents the strongest
relation (in this case 1). All other values can simply be mirrored due to the
bijective nature of the document relations.

The algorithm is processed in the specified order. The highlighted element
is the minimum distance in the current reduction step, and therefore deter-
mines which elements will be combined for the next step. Higher values mean
a smaller distance or put differently, higher similarity, because they represent
the cosine of the angle between two vectors. The values on the main diago-
nal are not considered here. Furthermore, this value denotes the coefficient
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Table I. Matrix Reduction Example

(a) Compressed initial Matrix
A B C D E

A — 0.3 0.5 0.55 0.8
B — — 0.7 0.6 0.85
C — — — 0.9 0.4
D — — — - 0.1
E — — — — —

(b) Decompressed initial Matrix
A B C D E

A 1 0.3 0.5 0.55 0.8
B 0.3 1 0.7 0.6 0.85
C 0.5 0.7 1 0.9 0.4
D 0.55 0.6 0.9 1 0.1
E 0.8 0.85 0.4 0.1 1

(c) Reduction step 1 (4 Elements)
A B CD E

A 1 0.3 0.525 0.8
B 0.3 1 0.65 0.85

CD 0.525 0.65 1 0.25
E 0.8 0.85 0.25 1

(d) Reduction step 2 (3 Elements)
A BE CD

A 1 0.55 0.525
BE 0.55 1 0.45
CD 0.525 0.45 1

(e) Reduction step 3(2 Elements)
ABE CD

ABE 1 0.4875
CD 0.4875 1

(f) Termination step
ABCDE

ABCDE 1

that enables the visualization of the cluster. In each reduction step, the new
matrix is shrunk by one element and the new matrix elements are calculated
as an arithmetic mean value until the matrix reaches its trivial state of two
remaining elements, as shown in Table I(e), where the last distance is shown
and the matrix reaches the termination state I(f). The last remaining value,
which is 0.4875 in this case, denotes the distance between the centers of the
two remaining clusters before they are fused. An agglomerative algorithm al-
ways processes the whole data cloud until one single cluster remains. How the
reduction steps are used can be decided later.

3.3 Results

In the result phase, the clusters can either be visualized in an elbow-diagram
or as a dendrogram. The advantage with already normalized values is that
they are always in a range [0, 1]. Additionally, the distance matrix gives a
good idea of the different steps the algorithm went through. With all distances
calculated this example, it is finally possible to visualize the cluster distances
in such a dendrogram. Figure 1 shows the strong relation of the items C,D and
B,E. Although the layout might suggest otherwise, the dendrogram is not to
be mistaken for a hierarchical organization, because the cluster elements are
equal. It merely describes the distances of the produced clusters.

With this example it also becomes clearer why it is so difficult to use prede-
fined numbers of clusters or a preset termination target. With the clusters set to
two for example, the result would just show the elements C,D and A,B,E as part
of a cluster but not how strongly they are related to each other. Furthermore,
when setting a termination distance of 0.75, the algorithm would end up with
just one cluster which contains all elements. By looking at the dendrogram,
however, it immediately becomes clear which elements are tightly grouped.
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Fig. 1. Dendrogram visualization.

In the next section, we give an explanation of how to implement this rather
theoretical approach in a Web-based search engine.

4. IMPLEMENTATION

To evaluate the efficiency and usability of the proposed approach, we embed-
ded an implementation into our Web-based search engine. A discussion of the
performance measures and scalability issues based upon that implementation
forms the main element of this section.

We decided to implement our prototype with a Web-based interface that re-
quires no additional features or installations to run it and test the underlying
functionality. The Web page is publicly available and part of the already estab-
lished WSDL search engine, V-USE.2 The environment of this implementation
is provided by the VitaLab3 laboratory at our institute. This infrastructure is
designed to allow deployment of a multitude of services on the lab machines,
which enables an easy integration of research prototypes and the necessary
applications to evaluate them. Supporting various kinds of frameworks like
ASP.NET on IIS, Apache, Axis and the like, this environment gives the freedom
to choose the best solution to implement a particular research prototype. Each
of the integrated machines encompasses 2 Dual Core Intel Xeon CPU’s with
3.2 GHz, 1GBit network interface, 2 GB of main memory and 10krpm RAID 1
HDs. The machine where V-USE is deployed runs on Microsoft Windows Server
2003 Enterprise Edition with Service Pack 1.

We utilized a decoupled development of the search engine and the application
for the user interface. Because of this structure, it is possible to plug in the
clustering functionality at two different points.

(1) The vector space itself is handled in the backend. The advantage of this loca-
tion is simply a better debugging capability and improved performance. The
performance gain is a result of the centralized structure of the search en-
gine. Processing n queries for a n-Element Cluster means the same amount
of Web service invocations as, if handled by the front-end application. Fur-
thermore, the execution time for each single query, as well as the overall
times, can easily be extracted in this way by simply logging them to the
Java runtime environment.

2http://vuse.de.vu/.
3http://www.vitalab.tuwien.ac.at/
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Fig. 2. System Architecture with cluster plugin.

(2) The frontend on the other hand has one big advantage. The original vector
space engine is designed to allow repositories to be split into several smaller
repositories while queries can still be executed upon them as if on one sin-
gle repository. The already implemented method for runtime weighting and
normalization is able to map invalid vectors from spaces with different di-
mensional layout from any vector space. The benefit gained is the ability to
split repositories in several sub-repositories whenever the performance is
not satisfactory, and still keep the dimensional structure and relations in-
tact. For the clustering approach, it would therefore make sense to execute
the queries to fill the cluster matrix at the client side where the distributed
spaces are joined in the first place. Nevertheless, it was decided to imple-
ment the prototype with the method mentioned first, because distribution
capabilities are not issues for development.

As a result, the clustering functionality is realized as an extension of the
original Web service and can be seen as a plug-in for the vector space engine
itself. The system layout, as depicted in Figure 2, shows the general architec-
ture including the cluster plug-in as it is implemented in the back-end-based
approach. With this structure, a completed request causes the following order
of events.

(1) A request to the Web service endpoint reaches the axis servlet. Whether the
request was sent by the front-end or another vector space implementation
is not important at this point.

(2) Depending on the request signature, the vector space Factory decides
whether to instantiate the persistent or volatile version of the search
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engine. The volatile engine is blanked every time the tomcat servlet engine
is restarted, because the vector matrix is implemented with hash tables.
In the persistent version, this limitation does not apply naturally. Instead,
the constructor makes sure that the requested database structure is valid.
If not all tables exist, they are created on the fly, thus providing an empty
vector space on startup.

(3) For a normal query, the query generator decides whether to directly access
the local hash tables, or create the corresponding SQL statements to fetch
the same data from the database. It is important to remember that those
queries effectively implement a dimensional reduction of the original query
vector. This means that even for vector spaces with a large dimensional
count, the processed data can be kept low. Search queries normally do not
exceed a size of 10 words, and therefore dimensions. Documents that do
not contain any of the query words at all, are automatically omitted and,
therefore do not cost any processing time. This advantage does not apply
to the cluster engine because when building the matrix, every element of
the original vector must be taken into account, which results in large query
vectors of 100 and more dimensions. Furthermore, it is almost certain that
every document keeps at least one of the vector elements, and therefore,
will also produce a query rating. The actual numbers are discussed in the
next subsection.

(4) After the query is executed, the result generator takes over and either
produces a sorted list of results that can be handed to the Web service
dispatcher, or fill the matrix of the cluster engine.

(5) The cluster engine decompresses the matrix, and reduces it step by step
until the cluster algorithm is successfully finished.

(6) The Web service dispatcher can now deliver the results to the caller and
free all used resources.

This scenario describes how the back-end reacts to a request and executes
the corresponding operations. A more precise evaluation of the involved time
frames and the delay caused by the cluster algorithm, can be created by utilizing
the prototype implementation with the Web interface [Platzer 2007].

5. EVALUATION

An exact and significant evaluation of prototypes and implementations for Web
service technology is always a very challenging undertaking. Partially because
the usefulness of a new method is hard to prove in a prototype, but basically
because of a lack of sufficient real-world services. A restricted number of de-
scriptions for actually working services is not a big issue for fundamental im-
plementations that deal with services at a functional level. For search engines
and metadata related research though, this fact produces enormous problems.
Repositories with around 1000 distinct services are often too small to pose a
real problem for the involved algorithms. The only possibilities left are to either
produce copies of already existing services, or create dummy services with no
actual implementation to simulate larger repositories [Magdalenic et al. 2006].
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In either case, the drawbacks are quite obvious: either duplicate entries and
therefore insufficient search capabilities, or biased results because of the gen-
eration algorithms to produce the services. In most cases, the best method is to
base an evaluation on a real repository and assess performance and scalability
capabilities by extrapolation.

5.1 Prototype Execution

As mentioned earlier, the file base is a critical issue for the numerical evaluation
of such an approach. The repository we use for testing purposes contains a set
of 275 distinct WSDL files from different sources. Some of them were extracted
by querying UDDI registries and a cross-reference download of contained keys.
The big disadvantage with UDDI was that WSDL descriptions had no des-
ignated position but could be stored in various ways. This fact made an auto-
mated extraction quite difficult. Furthermore, the biggest UDDI registries from
Microsoft [Microsoft 2005] and IBM [IBM 2005] were shut down some time ago.
Therefore, UDDI is no longer an option for gathering public service descriptions.

The second source we used was the public Web service registry from
xmethods.4 Other than UDDI registries, xmethods provides a multitude of pos-
sibilities for accessing the underlying services, reaching from standard Web
pages to RSS feeds and even a Web service interface to query the database.
Additionally, the functionality for populating Web services with a set of input
parameters is provided. This way, the services can be tested for their availability
directly from the Web site.

With this repository, the vector space engine can be populated and readied
for a cluster analysis. To produce demonstrable results, we chose two different
queries for the initial search. One aims to find the description of the popular
Amazon Web service. The corresponding query string is “Amazon web service”.
The other tries to find a service for verifying credit card numbers. Here the
query is “Credit card verification.”

Both of the initial searches took 16 milliseconds to finish upon the 275-
Element repository, using the persistent vector space engine. Looking at the
queries one will see that both of them encompass three dimensions. Starting
from this point, the files “wsCreditVerify.wsdl” and “AmazonWebService.wsdl”
were the best and most desired results found by the search engine. After com-
pleting the search, the clustering functionality is available for each result by
clicking the “cluster” button for the selected result element. Completing this
initial search as quickly as possible is an important matter for the search en-
gine. Otherwise the Web page would respond slowly, which is a very limiting
fact for such a facility. The most important steps when processing the query are
as follows.

(1) The query word is taken and normalized by the same algorithm that filters
the WSDL files. With the first string, the result is “amazon web service.”
This normalization filters spaces, eliminates alphanumeric signs or cuts
spaces where they are not needed.

4http://www.xmethods.org/
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(2) Now the result can be put into a vector. To do so, a weight has to be applied
for each element. Balanced search is achieved with a weight of 1 for each
dimension. So the final vector is (1,1,1) with (amazon,web,service) as the
corresponding terms. It is also possible to weight terms otherwise, based
on linguistic resources for example.

(3) In the next step, all remote repositories are queried for their statistics with
the given vector as input. This is technically like an ordinary query with
the difference that results don’t have to be sorted, which saves computing
time. Also it can happen simultaneously on each remote host.

(4) All statistics are merged and finally each vector space can be queried with
the vector and the accumulated statistics. The results are again merged
according to their relevance and displayed afterwards. When processing
local vectors only, Step 3 can be omitted. This example produces a relevance
rating of 0.953 for the amazon query on the local repository.

To proceed with the clustering, the next step in the execution chain is to
recreate the original vector of the initial root Element. The Amazon Web service
will serve as an example. Here, the WSDL description file responds with 210
dimensions/keywords in the vector space. The high dimensionality means the
query that has to be executed on the vector space for the matrix creation will
cause a significantly larger load than a normal search query.

The settings of the cluster engine are such, that the initial matrix is of size
15 × 15. This value can freely be chosen in the Web application. It defines, how
many results of the query with the root element are taken into the matrix.
It’s important to remember, that the queries are executed the same way an
ordinary query gets processed. Therefore, the matrix is filled with elements
from the whole repository. It also means, the same number of queries has to be
executed to fill the matrix. The number was chosen because it provides a fair
tradeoff between good performance and a meaningful result. The 15 elements
that build the matrix of the Amazon-Cluster took an average of 165.5 ms, plus
an additional 65 ms for the sorting algorithm of the result. Compared to the
16 ms of the initial query, the impact of the dimensional reduction algorithm
becomes clear. That means, a matrix of size 15 takes about 3.5 seconds to fill.
This time does not directly depend on the size of the underlying repository
but on the speed of the executed queries. Therefore, with a growing size of the
desired elements comprised by the final cluster, the time to fill the matrix grows
linearly, independent of the repository size.

After the cluster matrix is filled, the cluster algorithm itself can proceed in
its execution and reduce the initial matrix step by step until it is of size 1. The
matrix reduction for a 15-element matrix takes a constant time and finishes in
approximately 150 ms on the test machine. The result of the overall procedure
is a list of n elements and the clusters they belong to. The processing steps are
exactly as described in Section 3.

(1) The vector resulting from the initial search is used as a normal query. The
best 15 results are the elements of the compressed matrix. Alternatively,
it is also possible to use the original result of the query and fill the matrix
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Table II. Document Names

Document Number Service Name

0 AmazonWebServices
1 ECOWS WS sample
2 GoogleSearch
3 GoogleSearch(2)
4 google search service
5 GoogleSearch(1)
6 Exchanges
7 xExchanges
8 ElmarSearchServices
9 ws4lsql
10 WolframSearch2
11 InsiderTransactionInfo
12 JetFoldersService
13 xHoldings
14 ZacksCompany

with these elements. Doing so would result in a matrix that encompasses
a thinned space population, because only elements of the result are consid-
ered. For the time being, the formally complete method with a whole vector
is used. The other possibility is discussed later.

(2) A query with the vector of each element in the matrix must be processed to
fill the matrix for all other elements.

(3) The result is decompressed to a 15×15 matrix. To do so, the main diagonal
is filled with 1. All other elements are mirrored.

(4) In each step, just as in Table I, the biggest element (or smallest distance)
except the main diagonal, is searched. These elements are combined. The
distance is memorized and shown in the output as the cluster coefficient for
each step.

(5) The elements in the previous step are combined by shrinking the matrix
by one dimension. All elements in the corresponding line and column are
fused to represent the average angle of both elements. Now the previous
step is repeated until the matrix is of size 1.

To correctly read Figure 4, Table II shows all elements of the initial matrix
in a numbered order. After combining two elements however, say elements 2
and 6, the new element 2 is already a combination of 2 and 6 (26) and element 6
is deleted, while all successive elements move forward by one. Therefore, after
Step 1, the elements no longer match the numbers of the cluster coefficients.
They rather entitle the line and column of the reduction matrix. The similarity
values of the clusters after each reduction step can be visualized in a graphical
representation.

Figure 3 shows how close the combined elements were after each reduction
step that was carried out. This graphic shows a complete cluster analysis, with
no termination before the last cluster is built. It shows very tight relations
between the first four combinations of the amazon cluster and the first three of
the credit card service. Medium distances of 0.4–0.7 can be seen as moderately

ACM Transactions on Internet Technology, Vol. 9, No. 3, Article 11, Publication date: July 2009.



Web Service Clustering using Multidimensional Angles • 11:17

Fig. 3. Cluster similarity diagram.

Fig. 4. Dendrogram for “Amazon.wsdl.”

relevant, while those below are of low significance. Alternatively, it is possible
to define a termination point either by setting a maximum distance a cluster
may reach or a maximum number of clusters that should be built. When using a
maximum distance, all elements in a more or less tight cluster are considered to
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be strongly related to each other, while the individual distances are not viewed
with special concern. This makes it quite easy visualize cluster results, because
individual distance values don’t have to be displayed. On the other hand, the
result looses a lot of its value when omitting these elements. The decision as to
which method to use, or if a complete analysis is preferable to one with an early
termination, depends purely on how the result should be presented to the user.

In this case, we decided to use the complete result and visualize it by using
a dendrogram. See Figure 4 for an example of the Amazon-Cluster with 15
elements.

When examining the graphic, these four tightly clustered elements can be
identified. First is a very tight cluster of Amazon and “ECOWS WS sample,”
which essentially is a copy of the Amazon WSDL file. This file was injected
to ensure that the cluster algorithm puts them in the same cluster with the
minimum distance. The next cluster (3 and 4) consists of variations of the Google
Web service. Services 2 to 5 are various versions of the same description either
gathered from different sources or being different versions, changed by the
provider. This cluster is later joined by element 2 at a distance of about 0.4. The
first moderately tight cluster is built by “xExchanges” and “Exchanges,” both
services to query worldwide exchange rates, joined by “InsiderTransactionInfo,”
also a service for the financial sector.

To summarize, the traditional search methods and information retrieval
techniques combined with the proposed clustering approach, can enhance the
discovery process of Web services. In this particular test case, a search engine
like Google produces a close cluster because both Amazon and Google comprise
similar functionality like search and query execution. Other elements, such as
the one from the financial sector, are not strongly related to Amazon directly, but
their close relation to each other is recognized by the algorithm. From a usabil-
ity point of view, there are still two possibilities left that have to be considered.

There are essentially two ways to create the initial matrix.

(1) The method used in the example is to execute a query, then select one of the
results and do a subsequent query with this vector as the search element.
The best n matches are then used to produce the initial matrix.

(2) Another possibility would be to use the result of the initial query to populate
the matrix elements without an additional query process. The difference
would be that all elements contained in the matrix are directly related to
the query string. On the other hand, it would also mean that resulting
clusters are not complete, but may actually comprise additional elements.

Both methods are theoretically possible and sound. It is simply a matter of
user preference which to actually use. Formally, the former method is the only
correct one. The latter can be seen as a tweak that can be applied in a productive
environment if required.

5.2 Performance

As mentioned in the earlier sections, it is quite difficult to measure performance
without a decent set of elements in the repository. Therefore, the performance
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Table III. Performance Comparison

Repository Size [Files]
Performance Element 274 549 1096
Cross-query average [ms/element] 167.2 278.1 580.3
Sort time [ms/element] 62 140 282
Keyword retrieval time [ms] 16 15 18
Original query time [ms] 31 53 92
Matrix reduction time [ms] 110 110 110
Overall time for size 15 Matrix [ms] 3750 6112 12322

evaluation is based on an extrapolation of existing elements to demonstrate
scalability issues. Furthermore, it has to be kept in mind, that the presented
implementation is still a research prototype where the time to optimize perfor-
mance is limited. The matrix generation process for example, was accelerated to
40% of the original time by introducing proper database indexes and adjusting
the queries accordingly. There are still further possibilities, but those enhance-
ments would not be essential for the approach itself. The actual numbers are
shown in Table III.

The measures were taken with the same query used in all of the previous
examples, with the query string being “amazon web service.” For the cluster
creation, the matrix size is set to 15 elements.

The cross-query time is used to execute a query that fills one line of the initial
matrix and is an average of all 15 queries. It can be seen, that it grows linearly
each time the repository size doubles. Directly related to it, is the time used to
execute the whole cluster algorithm. This proves that the theoretical assump-
tion that one could execute a cluster algorithm with less than O(n2) effort is
correct. However, a linear growth is not the best result for the cluster algorithm.
When looking at the original query time in the table, the impact of the dimen-
sional reduction becomes obvious. Instead of doubling the time to process a
query, the necessary time barely triples for a repository of four times its original
size. And there is still room for further enhancements in this direction, by opti-
mizing the generated database queries for instance. At the moment, the query
generator is optimized for normal search queries, because the search engine is
still the main focus. Because of the heightened possibility of term occurrences
in a cluster query, new ways to reduce the query time for whole vectors have
to be found. The times for retrieving the keywords of a single vector remain
more or less constant because they can be handled in a simple query. Small
fluctuations in the exact values are caused by the java timestamp functionality
which is limited in its precision and varying speed in the database connection.

Another performance-relevant issue is the persistence mode to which the
search engine is set. The volatile form performs much better. Here the queries
are not executed on a database but directly on the memory-based hash tables.
Nevertheless, this does not affect scalability issues. The measurements and
estimations of effort presented in this chapter basically still apply. The change
merely effects the concrete execution times. That means, when using the volatile
form of the search engine, queries are executed much faster but the grow rate
for the computation expense is the same as for the database.
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Fig. 5. Performance gain with split repositories.

An important aspect of this research is implied by the general structure of
the search engine itself. As already mentioned in the previous chapters of this
article, the search engine is designed to work on distributed repositories. That
means queries can be processed on the local repository with a single request, or
on a compound repository that acts like a large one, consisting of several parts.
Because the steps needed to fill the cluster matrix are nothing more than large
queries, it is possible to process them the same way as an ordinary distributed
query. To do so, the cluster processing has to be moved to the front-end, because
this is where the final result list is generated. Our implementation uses the
server-side method because it is easier to debug and implement, but as soon as
the query processor is optimized for the clustering requests, we will also provide
a client-side version for the cluster engine, which is able to take advantage
of the original distribution capabilities. As a result, it would be possible to
define a maximum time a search or cluster request can take before it has to be
split in two separate repositories [Platzer and Dustdar 2005]. The split parts
could then be processed in parallel, which increases scalability and of course
performance. When looking at the values from our server-side evaluation in
Table III it becomes obvious that the cross-query time acts as a bottleneck for the
whole approach. In Figure 5 we visualized the performance gain for the cross-
query times when the distribution capabilities are enabled. The partitioning
was such that repositories are split once they reach 500 elements. Then an
empty vector space is created and all elements are evenly distributed. The
resulting federation is connected via a Web service. The queries for the matrix
generation were run on the federation, which produces the result in a fraction
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of the original time because of the parallel processing capabilities. A small
overhead of 11 ms in the processing time occurs because of the additional effort
to merge the results once they return from each peer. This method of speeding
up the whole process allows one to define an upper bound for the execution time
of both the original queries and the cluster algorithm as a whole.

In a nutshell, the performance of our implemented approach lives up to the
expectations and the original concept. At the same time, there is still the pos-
sibility for performance enhancements and tweaks, especially where database
access and query generation are concerned.

6. RELATED WORK

Search and search-related aspects of Web services are highly investigated fields
throughout the service oriented community. In most cases, Web service discov-
ery is the driving force behind the research. The reason is simply that this
particular area still raises some very interesting issues that need to be ad-
dressed. Service discovery in ad hoc networks that are based on Web services
[Friedman 2002] for instance, has to deal with some very special problems re-
garding information propagation and centralization. It is basically the same
problem that arises with all P2P networks. The highly fluctuating nature of
such designs would cause there to be a single point of failure so they would
have to encompass a feature to suitably propagate service information. Ordi-
nary methods for service discovery, like UDDI registries most certainly fail in
such environments because they are not adaptable enough. Furthermore, they
lack the very important feature of joining service repositories, which is neces-
sary for federations of Web services. This particular issue was addressed by
Sivashanmugam et al. [2004], for example. Here, the authors specifically dealt
with this problem and developed a discovery mechanism that allows a user to
find services in a federated service environment. The system is called MWSDI
and relies on a decentralized structure without a central component. The gen-
eral layout of our discovery approach allows a setup that is independent of the
underlying structure. It can work in centralized environments as part of an
ordinary services registry. At the same time it is possible to deploy the search
engine in a federated environment as part of an ad hoc network.

Other work focuses not on the principle structure of the service infrastruc-
ture, but on the quality of the search result itself. Almost every registry ever
built encompasses some sort of search facility to pick up contained services. In
most cases the search functionality is implemented by a full text search on the
underlying database. In other words, searching those repositories is not always
concerned as particularly important, let alone a convenient and more power-
ful way to relate search results and repository content. Those topics seem to
have gained attention only in recent years. In Caverlee et al. [2004], a search
engine named BASIL is introduced that tries to relate Web services by us-
ing bias-based techniques. Here, the repositories are supposed to encompass
only data-intensive services like searching for DNA sequences. The similarity
measure is based on the exchanged documents and is therefore a personalized
type of search approach. Some of the techniques used are similar to the work
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presented in Platzer and Dustdar [2005] with the difference that the weighting
is not performed at runtime, but in advance. Furthermore, the approaches work
on different repository structures.

Dong et al. [2004] describe a clustering-based search approach for Web ser-
vices, which is implemented in their search engine, Woogle. Their search ap-
proach consists of two main phases: first, the user issues a query at the search
engine by specifying a set of keywords. The search engine returns a list of Web
services that match that query. Second, their tool extracts a set of semantic
concepts using natural language descriptions that have to be provided by the
Web service in the repository. To do so, the authors exploit the co-occurrence
of terms in Web service inputs and outputs, of operations to cluster terms
into meaningful concepts by applying an agglomerative clustering algorithm.
This makes it possible to combine the original keywords with the extracted
concepts and compare two services on a keyword and concepts level to im-
prove precision and recall. This approach leads to significantly better results
than a plain keyword-based search. Compared to our approach, this technique
requires a previously built index, before it can take advantage of the addi-
tional information. Although it is possible to work with real-world services as
they exist today, it requires a certain level of preprocessing, thus limiting the
scalability.

In Abramowicz et al. [2007], the authors propose an architecture for Web
services filtering and clustering. The service filtering mechanism is based on
user and application profiles that are described using OWL-S (Web Ontology
Language for Services). The effectiveness of the filters is based on a clustering
analysis that compares services related clusters. The objectives of this match-
making process are to save execution time and to improve the refinement of the
stored data. Similarly to the previously used method, this technique relies on
the existence of semantically attached Web service descriptions (SAWSDL) to
enable the methodology. We believe this to be a limited approach, at least when
it is seen in today’s environment. SAWSDL is practically not used in available
service descriptions. Furthermore, when requiring semantic information to be
available a priori, the technique of clustering is no longer necessary. A domain-
specific ontology already contains an intrinsic classification system, eliminating
the necessity of achieving the same effect with clustering techniques.

Hess et al. [2004] propose an approach and a tool called ASSAM, which al-
lows developers to create semantic information (metadata) for existing services.
Their approach uses an iterative machine learning algorithm that treats Web
service information such as operations, inputs, and outputs, as a text classifi-
cation problem. The tool learns from training data, that is, existing Web ser-
vices with semantic information. The authors classify services along different
attributes: category (e.g., weather information), domain (e.g., search weather
by ZIP code) and datatype (ZIP code). Additionally, documents and document
parts are used to refer to a WSDL as a whole or to parts of it (e.g., operations,
inputs or outputs). The evaluation shows that a machine learning algorithm
assists developers to create semantic annotations if certain assumptions can be
made. It is the approach most closely related to ours, however the most obvious

ACM Transactions on Internet Technology, Vol. 9, No. 3, Article 11, Publication date: July 2009.



Web Service Clustering using Multidimensional Angles • 11:23

difference is that no training set is required for our method. Such a training set
essentially represents an ontology, even if it may differ in its implementation.
Although we believe that the results produced will be of greater value once
the training is sufficient, our method does not require any human interaction
whatsoever to complete the task.

Some other aspects of service discovery are discussed in Ran [2003]. Here
the authors propose an extension of the current UDDI infrastructure to add
QoS descriptions for a given service. Due to the relative openness of the UDDI
technology, this approach can actually work with existing technologies. On the
other hand, this openness is sometimes seen as one of the major reasons that
UDDI has failed to dominate the public Web service domain. In Benatallah
et al. [2005], a rather formal approach is presented, where semantic annota-
tions are utilized for automated service discovery. Apart from the discovery
issues, the description logic could also be used to formally describe interser-
vice relationships. Those relationships can reach from input/output matching
on a syntactical level, up to QoS descriptions of whole compositions. Yu et al.
[2007] propose a method to select services based on their quality. The selection
algorithm assumes services where QoS parameters are already described and
focuses on optimizing an end-to-end composition with respect to the overall
QoS.

Unlike general clustering problems, as discussed by Andritsos and Tzerpos
[2003] for example, Web service indexes usually deal with a structured data
cloud, which enables an appliance of different and more specialized clustering
methods. This difference also applies to Web page clustering as used by today’s
Web page search engines. In the previously mentioned work, the goal is to
visualize the structure of a software component and therefore even help reverse
engineer it. The algorithms used are highly sophisticated and are targeted to
discover structural dependencies. In our article however, the index structure is
known a priori.

There is plenty of reference material available for the statistical background.
The theoretical foundation for creating this kind of relationship is best de-
scribed with statistical cluster analysis [Eckey et al. 2002]. These methods are
used in various research fields to describe similarities of metric values of all
kinds. The main problem faced here is the high complexity of ordinary meth-
ods. The usually exponential growth rate enormously limits its capabilities
for high dimensional data structures. To cope with this problem, la Torre and
Kanade [2006] introduced a modified cluster algorithm that performs dimen-
sional reduction and clustering at the same time. The method is designed to
increase performance in large vector spaces with 1000 and more dimensions.
Even though the application area is different in this work, some of the ideas are
built on a common ground. As compared with our work, a whole data cloud with
a strong cluster layout has to be processed to categorize the single elements,
while we deal with the issue of finding possible clusters for a particular query.
Furthermore, we apply dimensional reduction before the original cluster algo-
rithm to speed up the matrix generation rather than increase the performance
of the algorithm itself.
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7. CONCLUSIONS

In this article, we presented an approach to create clusters of Web services to
allow Web service consumers to easily find and relate specific services to a given
query. The theoretical basis is formed by statistical methods of cluster analysis
in n-dimensional vector spaces with numerical characteristics. The implemen-
tation shows that the approach is feasible and even exceeds our expectations
in certain respects. The implementation of the cluster engine shows that the
possibilities for the processing power do not end at O(n) expense. It is quite
the opposite. By using the developed method, the query processing speed is the
only limitation for the whole method. By further enhancing the query process
for complete vectors, it is theoretically possible to enhance the cluster speed
even beyond O(n) in the future. In the best case, the growth rate converges to
the same amount as is currently possible for the original search. This assump-
tion is based on the observation that common queries perform better due to the
dimensional reduction that can be applied when retrieving related documents.
A similar method to reduce the query time for the matrix generation has to be
implemented to reduce the processing time. Furthermore, an optimization of
the generated database queries for the specific form of request issued by the
cluster algorithm can further enhance performance. Without altering the query
algorithm though, the gain will be proportional and is, therefore, not considered
with the utmost priority for the future.

One of the conceptual issues worth discussing is the entry point for the cluster
algorithm. In the prototype a query is first issued with the vector of one result
element to fill the cluster matrix. This starting point is selected by the Web
interface.

Alternatively, it is also possible to fill the matrix with the results of the
original query itself. As an effect, the cluster matrix would not represent the n
most related elements compared to one WSDL file but the nearest matches for
the query and their relations to each other. It can be seen as a thinner populated
space where the original result vectors are highlighted. The remaining vectors
are still necessary to build the right vector relations, otherwise a reduced vector
space with n elements for an n-sized matrix could be used. This would certainly
speed up the processing time, but it is not possible without loosing important
term information. Although formally not complete, this cluster might provide a
better understanding of the document relationships, and therefore be of greater
value to the user than a cluster analysis based on a complete vector. This issue
is at least worth investigating and will be part of our future tasks.

Finally, the presented indexing method opens the opportunity to forswitch-
ing from keyword-based indexes to quality-based ones. The current method
ensures the provision of an unbiased representation of the contained services.
The aim of this article is to provide natural language-enabled query process-
ing that will be the preferred method for most cases. In some cases though,
it could be necessary to search for certain quality elements of a service. The
approach presented in this works for both query methods. To extend the capa-
bilities to quality information, the various Quality of Service (QoS) parameters
recognized by the search engine have to be properly defined and evaluated. In
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Rosenberg et al. [2006], we introduced a framework to evaluate such parame-
ters and implemented a prototype capable of automatically invoking previously
unknown services to measure nonfunctional attributes like availability, latency
and so forth, on the TCP level. These values can be used for indexing services
with quality-based vectors. Furthermore, other metadata like location informa-
tion, can be used to further enrich the service vector and therefore leverage the
discovery capability from a purely syntactic to a quality-enabled level.

To summarize, we believe that the work presented in this article is one im-
portant, currently missing, element in the course of design for a usable system
for service discovery and Web service relationship management.
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