
Web Service Composition Approaches:
From Industrial Standards to Formal Methods

Maurice ter Beek Antonio Bucchiarone Stefania Gnesi
Istituto di Scienza e Tecnologie dell’Informazione, Via G. Moruzzi 1, 56124 Pisa, Italy

Email: {maurice.terbeek,antonio.bucchiarone,stefania.gnesi}@isti.cnr.it

Abstract— Composition of web services is much studied to sup-
port business-to-business and enterprise application integration
in e-Commerce. Current web service composition approaches
range from practical languages aspiring to become standards
(like BPEL, WS-CDL, OWL-S and WSMO) to theoretical models
(like automata, Petri nets and process algebras). In this paper we
compare these approaches w.r.t. a selected set of characteristics
(like trust, security and performance) and we advocate the use
of formal models, and their tool support, to increase one’s
confidence in web service compositions. This paper can assist web
service composition designers and developers to deliver lasting
solutions, in concordance with the technology’s critical needs.

I. INTRODUCTION

Web services (WSs) are interacting computer applications
running on different platforms, managed by different organiza-
tions. Current research studies how to specify them (in a for-
mal and expressive enough language), how to (automatically)
compose them, how to discover them (on the Internet) and how
to ensure their correctness. We focus on WS composition.

Several organizations are developing languages for WS
composition, the most important ones are Business Process
Execution Language for Web Services BPEL [1] and the Web
Services Choreography Description Language WS-CDL [2].
Many of these languages however have only a limited ability to
support automatic WS composition, mostly due to the absence
of semantic representations of the WSs available on the Inter-
net. In response to these limitations several solutions, among
which the Web Ontology Language for Web Services OWL-
S [3] and the Web Service Modeling Ontology WSMO [4],
were proposed by the Semantic Web community and others.

In this paper we first describe and compare these approaches
to WS composition w.r.t. a selected set of main characteristics
to assess their quality. We then survey the increasing use of
formal methods (mainly state-action models like automata and
Petri nets or process models like the π-calculus) and tools to
formally specify, compose and verify WS composition, and
compare also these w.r.t. the set of characteristics. Finally, we
discuss the expected advantage of using formal methods—in
particular their tool support—to perform appropriate mathe-
matical analyses to increase confidence in WS compositions.
Our aim is to provide a reference for WS composition design-
ers and developers willing to use formal methods and tools.

II. WS COMPOSITION APPROACHES

A main feature of WSs is the reuse mechanism to build
new applications, which often need to be defined out of finer-

grained subtasks that are likely available as WSs. Composition
rules describe how to compose coherent global services. In
particular, they specify the order in which, and the conditions
under which, WSs may be invoked. We distinguish syntactic
(XML-based) and semantic (ontology-based) WS composition.

A. Syntactic WS Composition

In the field of syntactic WS composition there are currently
two main approaches. The first approach, referred to as WS
orchestration, combines available WSs by adding a central
coordinator (the orchestrator) that is responsible for invoking
and combining the single subactivities. The second approach,
referred to as WS choreography, instead does not assume a
central coordinator but rather defines complex tasks via the
definition of the conversation that should be undertaken by
each participant; the overall activity is then achieved as the
composition of peer-to-peer interactions among the collabo-
rating WSs. While several proposals exist for orchestration
languages, the most important one being BPEL, choreography
languages are still in a preliminary stage of definition.

BPEL4WS: this XML-based language was designed to
enable the coordination and composition of a set of WSs. It is
based on the Web Services Description Language WSDL [5],
which is basically an interface description language for WS
providers. BPEL is a behavioral extension of WSDL using a
workflow-based approach. It expresses relationships between
multiple invocations by means of control and data flow links
and it employs a distributed concurrent computation model
with variables. A main construct to model the flow of WSs
is a process, which is a net-based concurrent description con-
necting activities that send/receive messages to/from external
WS providers. Each WS provider can be seen as a port
of a particular port type, which has an appropriate WSDL
description. A partner link specifies which activity is linked
to a particular WS provider of the port.

WS-CDL: this XML-based specification language is tar-
geted at composing interoperable, long-running, peer-to-peer
collaborations between WS participants with different roles,
as defined by a choreography description. Its most important
element is the INTERACTION activity. An interaction describes
an information exchange between parties, with a focus on
the receiver. It consists of three main parts, corresponding to
the participants involved, the information being exchanged
and the channel over which to exchange the information.
Exception handling and compensations are supported through



so-called exception and finalizer work units. Messages that
are exchanged between participants are modeled with variables
and tokens, whose type can be specified in XML schema or in
WSDL. Channels are used to specify how and where message
exchanges can take place. Synchronization among activities
can be achieved via a work unit, which defines the guard
condition that must be fulfilled in order to continue an activity.

Contrary to BPEL, WS-CDL describes a global view of
the observable behavior of message exchanges of all WSs,
intended for abstract process specification (independent of the
platform or programming language used to implement the
WSs). WS-CDL thus complements languages like BPEL, in
which such behavior is defined from the viewpoint of one WS.

B. Semantic WS Composition

Current WS technologies address only the syntactic aspects
of WSs and thus provide a set of rigid WSs that cannot adapt
to a changing environment without human intervention. The
vision underlying semantic WSs [6] is to describe the various
aspects of WSs by using explicit, machine-understandable
semantics, and as such automate all stages of the WS lifecycle.

The Semantic Web [7] provides a process-level description
of WSs which, in addition to functional information, models
the pre- and postconditions of processes so that the evolution
of the domain can be logically inferred. It relies on ontologies
to formalize the domain concepts that are shared among WSs.
The Internet is seen as a globally linked database in which
web pages are marked with semantic annotations. Given this
infrastructure, powerful applications can be written that use
the annotations and suitable inference engines to automatically
discover, execute, compose and interoperate WSs. These great
potential benefits have led to major research activity, both in
industry and academia, with aiming to realize semantic WSs.

We consider two main initiatives. OWL-S [8] is an effort to
define an ontology for the semantic markup of WSs, intended
to enable the automation of WS discovery, invocation, compo-
sition, interoperation and execution monitoring by providing
appropriate semantic descriptions of WSs. The WS Modeling
Ontology WSMO [4] is an effort to create an ontology to
describe various aspects related to semantic WSs, aiming to
solve the integration problem. Both initiatives have as goal to
provide a standard for the semantic description of WSs.

OWL-S: defines a WS ontology with four main elements.
The SERVICE concept serves as an organizational point of
reference for declaring WSs. Every WS is declared by creating
an SERVICE instance. It links the remaining three elements
of a WS through properties like PRESENTS, DESCRIBEDBY
and SUPPORTS. The SERVICE PROFILE describes what a WS
does at a high level, describing its functionality and non-
functional properties, which is used to locate WSs based on
their semantic description. Both the WSs offered by a provider
and the WSs desired by a requester are described. The service
model describes how a WS achieves its functionality, including
a detailed description of its constituent processes (if any) as a
process model. The service grounding, finally, describes how
to use a WS (i.e. how clients can actually invoke it).

WSMO: defines a model to describe semantic WSs, based
on the conceptual design set up in the WS Modeling Frame-
work WSMF [9]. The latter distinguishes four elements:
ontologies, WSs, goals and mediators. WSMO inherits these
elements and further refines and extends them as follows.
Ontologies are a key element, since they provide (domain-
specific) terminologies to describe the other elements. They
moreover link machine and human terminologies by formal
semantics. WSs use the standard web-based protocols to ex-
change and combine data in new ways. They are described
from three different perspectives: non-functional properties,
functionality and behavior. Goals specify the objectives of
a client when consulting a WS, i.e. the functionalities a
WS should provide from the user perspective. Mediators,
finally, aim to overcome the mismatches appearing between
the different elements constituting a WSMO description. Their
existence allows one to link possibly heterogeneous resources.

In addition to these core elements, WSMO introduces a
set of core non-functional properties that are defined globally
and that can be used by all its modeling elements. WSMO
is furthermore accompanied by a formal language, the WS
Modeling Language WSML [4], which allows one to write
annotations of WSs according to the conceptual model, and
by an execution environment WSMX [10] for the dynamic
discovery, selection, mediation, and invocation of WSs.

A first significant difference between the above initiatives is
that OWL-S does not separate what the user wants from what
the WS provides. The service profile of a WS (such as its
name, a human-readable description and contact information)
is not explicitly based on standard metadata specification.
WSMO recommends the use of widely-accepted vocabularies
(like the Dublin Core [11]). Another difference is that non-
functional properties can be expressed in any WSMO element,
whereas in OWL-S this is restricted to the service profile.
Furthermore, in OWL-S the service model does not clearly
distinguish between choreography and orchestration; it is not
based on any formal model, even if some work on defining the
formal semantics of OWL-S processes has been done. OWL-S
defines only one service model per WS, so there is only one
way to interact with the WS. In WSMO, on the other hand,
choreography and orchestration are specified in the interface
of a WS description. A choreography describes the external
visible behavior of the WS and an orchestration describes
how other WSs are composed in order to achieve the required
functionality of the WS. Since it is expected that there could
be more than one way to interact with a particular WS, WSMO
allows the definition of multiple interfaces for a single WS.
To facilitate linkage of heterogeneous resources between one
another, various kinds of mediation are required. Therefore
WSMO explicitly defines mediators in the conceptual model.
OWL-S does not explicitly do so: the underlying infrastructure
is assumed to handle this. To summarize, OWL-S is more
mature in certain aspects (like choreography), whereas WSMO
provides a more complete conceptual model because it ad-
dresses aspects like goals and mediators.



III. SELECTION OF WS COMPOSITION CHARACTERISTICS

In this section we describe the set of characteristics w.r.t.
which we compare the above approaches to WS composition
and the formal approaches below. We believe that any WS
composition approach should aim to support these charac-
teristics, without pretending these to be all characteristics of
importance. Our choice is based on related proposals [4], [11],
[12] and in particular on the Ontology [13] developed in the
EU project SENSORIA in which we are involved.

A. Connectivity

Reliable connectivity is needed to reason about WS interac-
tions before composition, in order to guarantee the continuity
of WS delivery after composition. Measures of interest include

Reliability: the ability to deliver responses continuously in
time (service reliability) and the ability to correctly deliver
messages between two endpoints (message reliability).

Accessibility: the percentage of responses per WS request.
Exception handling/Compensations: what happens in case

of an error and how to undo the already completed activities.
In particular the latter two measures are receiving a lot of

attention nowadays. WSs often make use of external WSs (not
owned and thus not under control) and hence one must take
into account that these external WSs can unexpectedly fail
(not respond or worse). Since WSs are usually long-running
processes that may take hours or weeks to complete, the ability
to manage compensations of WS invocations is critical.

B. Correctness

The composition of WSs may lead to large and complex
systems of concurrently executing WSs. An important aspect
of such systems is the correctness of their (temporal) behavior.

Safety/Liveness: safety properties are assertions that some
bad event never happens in the course of a computation, while
liveness properties assert that some event does eventually
happen. By verifying such properties, one obtains measures
of correctness of (the composition of) WSs.

Security/Trust: the ability of a (compositon of) WSs to
provide proper authentication, authorization, confidentiality
and data encryption. This requires the means to validate
the credentials of a WS client, to grant, deny and revoke
access to WSs and to protect certain sensitive information or
functionality of WSs. A key property of trust is the assurance
that a WS (composition) will perform as expected despite
possible environmental disruptions, human and operator errors,
hostile attacks and design and implementation errors.

The behavioral properties a WS should satisfy are usually
defined by a specification that precisely documents the desired
behavior. Formal methods then provide rigorous mathematical
means to guarantee a system’s conformance to a specification.

C. Quality of Services (QoS)

There are several issues that determine the quality of WSs.
Accuracy: the error rate of a WS, measured as the number

of errors generated by a WS in a certain time interval.

Availability: the probability that a WS is available at any
given time, measured as the percentage of time a WS is
available over an extended period of time.

Performance: the success rate of WS requests, measured
as response time, throughput and latency. Response time is
the guaranteed maximum time needed to complete a request,
throughput is the number of completed requests over a period
of time and latency is the time a WS needs to process a request.

IV. COMPARING STANDARDIZATION APPROACHES

Ideally, any approach to WS composition should satisfy the
set of characteristics we compiled in the previous section. In
this section we compare the approaches of Section II w.r.t.
these characteristics. The outcome is summarized in Figure 1.

±

Syntax-based Semantics-based

BPEL WS-CDL OWL-S WSMO

+

+

+

±
−

+

+

+

−

+ +

±
− +

− −
+ +

+

Characteristics

Connectivity

Correctness

QoS

Compensations

Exception handling

Fig. 1. Comparing standardization approaches to WS composition.

A. Connectivity

All industrial approaches offer connectivity although the
WSs themselves, at the lowest level, are modeled differently.

As said before, in BPEL the result of a WS composition is a
process, its constituting WSs are partners, message exchanges
are activities and a process interacts with external partner
WSs through a WSDL interface. BPEL has several element
groups that support reliability, like INVOKE and RECEIVE for
synchronous and asynchronous calls, SEQUENCE and FLOW
for sequential and parallel execution and SWITCH for logic
control. In WS-CDL, the lowest level actions performed
within a choreography are described by basic activities like
INTERACTION, SEND and RECEIVE for the reliable exchange
of information between the participants and PARTICIPATE to
indicate a participant’s role. OWL-S distinguishes the process
types ATOMIC, SIMPLE and COMPOSITE, while constituent
processes are specified using flow-control constructs like SE-
QUENCE, SPLIT and ITERATE. In WSMO, mediators can be
used on the protocol level to communicate in a reliable way
between WSs and on the process level to combine WSs.

Regarding exception handling, BPEL has a mechanism to
catch and handle faults, similar to common programming
languages like Java. We recall that in WS-CDL exception
handling is supported through the exception and finalizer work
units. WS-CDL handles a lot of errors (i.e. interaction failures,
protocol, timeout errors, application failures, etc.) using the
EXCEPTION BLOCK of a choreography [2]. WSMO explicitly
models the error information of a WS in the INTERFACE
description of the WS specification. OWL-S does not consider
these details directly, but errors can be captured by using con-
ditional outputs. This characterization of errors is not explicit,



as the definition of a conditional output does not necessarily
imply that one of the possible outputs is an error [14].

Regarding compensations, WS-CDL uses the exception and
finalizer work units. In BPEL, one may define a compensation
handler to enable compensation activities if actions cannot be
explicitly undone. OWL-S cannot be used to describe compen-
sation operations. In fact, a goal of the OWL-S specification
is “the ability to find out where in the process the request is
and whether any unanticipated glitches have appeared” [15].
In WSMO, finally, when an invoked WS fails, the WS that
invoked it may implement a strategy for compensation.

B. Correctness

Neither of the industrial approaches offer any direct support
for the verification of WS compositions at design time, to
evaluate in this way its correctness. In the next section we will
see that this is the main issue where formal methods come into
play. For instance, there are many attempts to formally capture
and analyze the (temporal) behavior of BPEL [16]–[23].

C. QoS

The management of QoS when composing WSs requires
a careful consideration of the QoS characteristics of the
constituent WSs. BPEL and WS-CDL do not directly sup-
port the specification of most QoS measures. To enable the
specification and monitoring of QoS aspects like accuracy,
availability and performance, various approaches have been
developed. Examples include IBM’s Web Service Level Agree-
ment framework WSLA [24] and HP’s Open View Internet
Services product. The latter describes a theoretic QoS param-
eter specification model and introduces SLAs for WSs in the
form of WSML. In OWL-S and WSMO, on the other hand,
QoS measures like accuracy and availability are specified as
service parameters in the WS description definition, but the
specification of metrics and guarantees is missing. Moreover,
there is no way to specify functional relations between metrics
and therefore quality-aware WS discovery is not feasible.

V. FORMAL METHODS FOR WS COMPOSITION

WSs are typically designed to interact with other WSs to
form larger applications. From a software engineering point of
view, the construction of new WSs by composing existing WSs
raises exciting perspectives, which can significantly impact the
way future industrial applications will be developed. It also
raises a number of challenges, however, one of them being
the one of guaranteeing the correct interaction of independent,
communicating software pieces. Due to the message-passing
nature of WS interaction, many subtle errors might occur
when several of them are put together (unreceived messages,
deadlocks, incompatible behaviors, etc.). These problems are
well known and recurrent in distributed applications, but they
become even more critical in the world of WSs that is ruled
by the long-term vision of “WSs used by WSs”, rather than
by humans, and in which interactions should—ideally—be as
transparent and automatic as possible.

A major problem of the approaches we met in the previous
section, namely the lack of software tools to verify the
correctness of WS compositions, is at the same time the
main advantage of most formal methods. In particular, formal
methods and tools can be used to decide:

• Whether WSs are in some precise sense equivalent;
• Whether WSs satisfy certain desirable properties.

If one should discover that the composition of WSs does not
match an abstract specification of what is desired, or that
a main property is violated, this can be of help to correct
a design or to diagnose bugs in a service. Recently several
formal methods, most of them with a semantics based on
transition systems (e.g. automata, Petri nets, process algebras),
have been used to guarantee correct WS compositions.

Below we first present a selective overview of the use of
well-known languages and models by the formal methods
community to define the types of WS composition discussed
in Section II. Subsequently we indicate which of these ap-
proaches have been used to formalize the WS composition
characteristics selected in Section III.

A. Automata

Automata or labeled transition systems are a well-known
model underlying formal system specifications. The intuitive
way in which automata can model system behavior has lead
to several automata-based specification models, like (variants
of) I/O automata [25], timed automata [26] and team au-
tomata [27]. Their formal basis allows automatic tool support
and—as a result—automata-based models are more and more
used to formally describe, compose, and verify (compositions
of) WSs. Below follow some exemplary approaches.

In [16] the authors introduce a framework to analyze and
verify properties of WS compositions of BPEL processes com-
municating via asynchronous XML messages. This framework
first translates the BPEL processes to a particular type of au-
tomata whose every transition is equipped with a guard in the
form of an XPath [28] expression, after which these guarded
automata are translated into Promela, the input language of the
model checker SPIN [29]. Finally, SPIN can be used to verify
whether WS compositions satisfy certain LTL properties. The
authors are currently investigating to extend the framework to
other WS specification languages like OWL-S. Also in [30]
automata are used to translate BPEL processes to Promela.

In [17] a case study shows how descriptions of WSs written
in BPEL/WS-CDL can be automatically translated to timed
automata and subsequently be verified by the model checker
UPPAAL [31]. In [18] the authors provide an encoding of
BPEL processes into WS timed state transition systems, a
formalism that is closely related to timed automata, and dis-
cuss a framework in which timed properties (both qualitative
and quantitative) expressed in the duration calculus [32] can
be model checked. In [33] a framework to automatically
verify systems modelled in Orc is proposed. To this aim, the
authors define a formal timed-automata semantics for Orc [34]
expressions, which conforms to Orc’s operational semantics.
UPPAAL can then be used to model check Orc models.



B. Petri Nets

Petri nets are a framework to model concurrent sys-
tems [35]. Their main attraction is the natural way of iden-
tifying basic aspects of concurrent systems, both mathemat-
ically and conceptually. This has contributed greatly to the
development of a rich theory of concurrent systems based on
Petri nets. Their ease of conceptual modeling (largely due to
an easy-to-understand graphical notation) has moreover made
Petri nets the model of choice in many applications.

In fact, Petri nets are very popular in BPM-related fields due
to the many process control flows they can capture [36]. In
particular, the dead-path-elimination technique that is used in
BPEL to bypass activities whose preconditions are not met,
can be readily modeled in Petri nets. In [19] it is shown
how to map all BPEL control-flow constructs into labeled
Petri nets (thus including control flows for exception handling
and compensations). This output can subsequently be used
to verify BPEL processes by means of the open-source tools
BPEL2PNML and WofBPEL (including reachability analysis).
We now give some examples of such approaches.

In [37] the authors define the semantics of a relevant subset
of DAML-S (now OWL-S) in terms of a first-order logic,
namely the situation calculus [38]. Based on this semantics
they describe WS compositions in a Petri-net-based formalism,
complete with an operational semantics. They discuss the
implementation of a tool to describe and automatically verify
composition of WSs. In [39] the authors introduce a Petri-
net-based algebra to compose WSs, based on control flows,
and show how to use it for performance analysis. In [20]
a Petri-net-based design and verification framework for WS
composition is proposed, which can be used to visualize,
create and verify existing BPEL processes. The authors still
need to develop a graphical interface, with a Petri-net view
and a BPEL view, to assist the creation of WS compositions.
In [40] a Petri-net-based architectural description language,
in which WS-oriented systems can be modeled and analyzed
in an automatic way, is introduced and a small case study is
presented. In order to deal with real-life applications and to
eliminate manual translation errors, the authors are currently
developing an automatic translation engine from WSDL to
their language. In [21] a complete and formal Petri-net seman-
tics for BPEL is presented, thus including exception handling
and compensations. Furthermore, the authors present their
BPEL2PN parser which can automatically transform BPEL
processes into Petri nets. As a result, a variety of Petri-net
verification tools are applicable to automatically analyze BPEL
processes. Yet another framework for modeling and analyzing
BPEL processes by means of Petri nets is presented in [22].
In [41] Orc is translated into colored Petri nets, which is a
generalization of Petri nets that can deal with recursion and
data handling. The authors extend their framework in [42] to
deal with QoS aspects in a sound way.

C. Process Algebras

Like Petri nets, process algebras (PAs) are precise and well-
studied formalisms that allow the automatic verification of

certain behavioral properties. They come with a rich theory on
bisimulation analysis, i.e. to establish whether two processes
have equivalent behaviors. Such analyses are useful to estab-
lish whether one WS can substitute another WS in a composi-
tion or to verify the redundancy of a WS. The π-calculus [43]
is a PA that has inspired modern WS composition languages
like BPEL. As with Petri nets, the rationale behind using the
π-calculus to describe processes lies in the advantages that a
formal model with a rich theory provides for the automatic
verification of properties of the behavior of models expressed
in such a model. From a compositional perspective, the π-
calculus offers constructs to compose activities in terms of
sequential, parallel, and conditional execution, combinations
of which can lead to compositions of arbitrary complexity.
We now give some examples of process-algebraic approaches
to specify and verify WS compositions.

In [44] the authors advocate the use of PAs to describe,
compose and verify WSs, with a particular focus on their
interactions. Therefore they present a case study that uses
CCS [45] to specify and compose WSs as processes, and
the Concurrency Workbench [46] to validate properties like
correct WS composition. To be of use in real-life applications
one needs to use more advanced calculi than CCS (e.g. the π-
calculus) in order to consider also issues like the exchange of
data during WS interactions and dynamic WS compositions.
In fact, in [23] a two-way mapping is defined between BPEL
and the more expressive PA LOTOS [47]. An advantage of
the translation is the inclusion of compensations and exception
handling, thus permitting the verification of temporal proper-
ties with the CADP [48] model-checking toolbox.

D. Comparison w.r.t. WS Composition Characteristics

In Figure 2 we compare the formal methods surveyed so
far according to their ability to deal with the characteristics of
Section III. The entries correspond directly to the articles in
which example uses of the respective formal method can be
found that satisify the specific characteristic under scrutiny.

Semantic models

Connectivity [16, 17] [23, 44]

Exception handling/
Compensations [18, 30] [19, 21, 36, 41] [23]

Correctness [16, 17, 18, 30, 33] [20, 21, 22, 37, 39] [23, 44]

QoS [19, 37, 42] [23, 44][16, 18, 33]

[20, 21, 37, 39, 40, 41]

Characteristics Automata Petri nets Process algebras

Fig. 2. Comparing standardization approaches to WS composition.

We see that not many of the formal methods we consider
deal with connectivity in a satisfactory way, even though
a growing lot of them deal with exception handling and
compensations. As said before, their solid mathematical basis
does make formal methods very well suitable to verify the (be-
havioral) correctness properties under consideration. In fact,
most of the considered formal methods have the advantage
that they are accompanied by tools that allow one to simulate
and verify the behavior of one’s model at design time, thus
enabling the detection and correction of errors as early as
possible. As such, these formal approaches can be used to



increase the correctness of (compositions of) WSs. It should
be noted that in industry various tools are being developed to
support the specification and composition of WSs. Examples
include IBM’s WebSphere Choreographer [49] and Oracle’s
BPEL Process Manager [50]. For verification, however, formal
methods are the means to use. Finally, also QoS issues like
performance (analysis) are rather well supported by formal
methods, again largely due to their solid mathematical basis
and by means of their tool support. Obviously, some quanti-
tative information from the actual use of WSs is needed for
proper performance analyses.

VI. CONCLUSION

While there exist several papers that compare and analyze
WS composition languages [51], [52], these comparisons are
conducted almost at the micro level, focusing on specific
language structures and control patterns. We instead provide
a general overview: Seven exemplary approaches to WS com-
position are compared against a set of characteristics that any
approach should aim to support to facilitate WS composition.

The main problems with most practical approaches to WS
composition are the verification of (behavioral) correctness
of WS compositions and the (quantitative) analysis of QoS
aspects. We hope to have convinced the reader that this
is where formal methods can be of use. Due to the solid
theoretical basis of all the formal methods considered in this
paper, the tool support that comes with them allows one to
simulate and verify the behavior of one’s model at design time,
thus enabling the detection and correction of errors as early as
possible and in any case before implementation. Consequently,
these approaches help increase the correctness of WSs.

ACKNOWLEDGMENT

The presented research was supported by the Italian project
TOCAI.IT and by the EU project SENSORIA.

Antonio Bucchiarone is also supported by the IMT Graduate
School of Lucca, Piazza S. Ponziano 6, 55100 Lucca, Italy.

REFERENCES

[1] BPEL 1.1. [Online]. Available: ibm.com/developerworks/library/ws-bpel
[2] N. Kavantzas, D. Burdett, and G. Ritzinger. (2004) WSCDL v1.0. [On-

line]. Available: http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
[3] A. Ankolekar et al., “DAML-S: Web Service Description for the

Semantic Web,” in Proc. ISWC’02, ser. LNCS, vol. 2342. Springer,
2002, pp. 348–363.

[4] WSMO working group. [Online]. Available: http://www.wsmo.org
[5] WSDL v1.1. (2001). [Online]. Available: http://www.w3.org/TR/wsdl
[6] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web Services,”

IEEE Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.
[7] W3C. Semantic Web. [Online]. Available: http://www.w3.org/sw/
[8] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language

Overview. [Online]. Available: http://www.w3.org/TR/owl-features/
[9] D. Fensel and C. Bussler, “The Web Service Modeling Framework

WSMF,” Electr. Commerce Res. Apps., vol. 1, no. 2, pp. 113–137, 2002.
[10] WSMX working group. [Online]. Available: http://www.wsmx.org
[11] S. Weibel et al. (1998) Dublin Core Metadata for Resource Discovery.

IETF 2413. [Online]. Available: http://www.ietf.org/rfc/rfc2413.txt
[12] WSs Architecture. [Online]. Available: http://www.w3.org/TR/ws-arch/
[13] Sensoria, “Prototype language for service modelling: ontology for SOAs

presented through structured natural language (deliverable 1.1a),” 2006.
[14] L. Zhang and M. Jeckle, “Conceptual Comparison of WSMO and OWL-

S,” in ECOWS’04, ser. LNCS, vol. 3250. Springer, 2004, pp. 254–269.

[15] D. Biswas, “Compensation in the World of Web Services Composition,”
in Proc. SWSWPC’04, ser. LNCS, vol. 3387. Springer, 2004, pp. 69–80.

[16] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPEL Web
Services,” in Proc. WWW’04. ACM Press, 2004, pp. 621–630.

[17] G. Dı́az et al., “Automatic Translation of WS-CDL Choreographies to
Timed Automata,” in Proc. WS-FM’05, ser. LNCS, vol. 3670. Springer,
2005, pp. 230–242.

[18] R. Kazmiakin, P. Pandya, and M. Pistore, “Timed Modelling and Analy-
sis in Web Service Compositions,” in ARES. IEEE, 2006, pp. 840–846.

[19] C. Ouyang et al., “Formal Semantics and Analysis of Control Flow in
WS-BPEL,” BPM Center, Tech. Rep. BPM-05-15, 2005.

[20] X. Yi and K. Kochut, “A CP-nets-based Design and Verification Frame-
work for Web Services Composition,” in [53], 2004, pp. 756–760.

[21] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri Nets,”
in Proc. BPM’05, ser. LNCS, vol. 3649. Springer, 2005, pp. 220–235.

[22] A. Martens, “Analyzing Web Service Based Business Processes,” in
Proc. FASE’05, ser. LNCS, vol. 3442. Springer, 2005, pp. 19–33.

[23] A. Ferrara, “Web Services: a Process Algebra Approach,” in Proc.
ICSOC’04. ACM Press, 2004, pp. 242–251.

[24] WSLA v1.0. [Online]. Available: http://www.research.ibm.com/wsla/
[25] D. Kaynar et al., Theory of Timed I/O Automata. Morgan Claypool, 2006.
[26] R. Alur and D. L. Dill, “A Theory of Timed Automata,” TCS, vol. 126,

no. 2, pp. 183–235, 1994.
[27] M. H. ter Beek et al., “Synchronizations in Team Automata for Group-

ware Systems,” CSCW, vol. 12, no. 1, pp. 21–69, 2003.
[28] J. Clark et al. (1999) XML Path Language XPath v1.0. W3C. [Online].

Available: http://www.w3.org/TR/xpath
[29] G. J. Holzmann, The SPIN Model Checker. Addison Wesley, 2003.
[30] J. A. Fisteus, L. Sánchez Fernández, and C. D. Kloos, “Formal Verifica-

tion of BPEL4WS Business Collaborations,” in Proc. EC-Web’04, ser.
LNCS, vol. 3182. Springer, 2004, pp. 76–85.

[31] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Int.
J. Software Tools for Technology Transfer, vol. 1, pp. 134–152, 1997.

[32] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A Calculus of Durations,”
IPL, vol. 40, no. 5, pp. 269–276, 1991.

[33] J. Dong et al., “Verification of Computation Orchestration via Timed
Automata,” in Proc. ICFEM’06, ser. LNCS, 2006.

[34] W. Cook and J. Misra. Orc—An Orchestration Language v0.5. [Online].
Available: http://www.cs.utexas.edu/users/wcook/projects/orc/

[35] W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basic
Models & II: Applications, ser. LNCS. Springer, 1998, vol. 1491-1492.

[36] B. Kiepusewski, A. ter Hofstede, and W. van der Aalst, “Fundamentals of
Control Flow in Workflows,” Acta Inf., vol. 39, no. 3, pp. 143–209, 2003.

[37] S. Narayanan and S. McIlraith, “Simulation, Verification and Automated
Composition of Web Services,” in WWW’02. ACM, 2002, pp. 77–88.

[38] R. Reiter, Knowledge in Action—Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001.

[39] R. Hamadi and B. Benatallah, “A Petri Net-based Model for Web Ser-
vice Composition,” in ADC’03, ser. CRPIT, vol. 17, 2003, pp. 191–200.

[40] J. Zhang et al., “WS-Net: A Petri-net Based Specification Model for
Web Services,” in [53], 2004, pp. 420–427.

[41] S. Rosario et al., “Net system semantics of Web Service Orchestrations
modeled in Orc,” IRISA, Tech. Rep. 1780, 2006.

[42] ——, “Foundations of web service orchestrations: functional and QoS
aspects,” in Proc. ISOLA’06, 2006.

[43] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes I
& II,” Information and Computation, vol. 100, no. 1, pp. 1–77, 1992.

[44] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing and Reasoning on
Web Services using Process Algebra,” in [53], 2004, pp. 43–50.

[45] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[46] R. Cleaveland, T. Li, and S. Sims. (2000) Concurrency Workbench of the

New Century v1.2. [Online]. Available: http://www.cs.sunysb.edu/∼cwb/
[47] T. Bolognesi and E. Brinksma, “Introduction to the ISO Specification

Language LOTOS,” Computer Networks, vol. 14, pp. 25–59, 1987.
[48] J. Fernandez et al., “CADP: A Protocol Validation and Verification Tool-

box,” in Proc. CAV, ser. LNCS, vol. 1102. Springer, 1996, pp. 437–440.
[49] WebSphere. [Online]. Available: ibm.com/software/info1/websphere
[50] BPEL process manager. [Online]. Available: oracle.com/technology/bpel
[51] J. Mendling and M. Müller, “A Comparison of BPML and BPEL4WS,”

in Proc. 1st Conf. Berliner XML-Tage, 2003, pp. 305–316.
[52] P. Wohed et al., “Pattern-Based Analysis of BPEL4WS,” Queensland

University of Technology, Brisbane, Tech. Rep. FIT-TR-2002-04, 2002.
[53] H. Jain, L. Liu, and L. Zhang, Eds., Proc. ICWS’04. IEEE Press, 2004.


