
Web Service Selection in Virtual Communities

Aldo de Moor, Willem-Jan van den Heuvel

Infolab, Department of Information Systems and Management

Tilburg University, The Netherlands

ademoor/wjheuvel@uvt.nl

Abstract

Virtual communities increasingly make use of

standard Internet-enabled web services to support

their collaborative activities. Such web services need

to offer the right amount of functionality to meet
community requirements. However, both requirements

and enabling services are continuously in flux. A

critical challenge therefore is that the community can

efficiently ensure that web service changes are both

technically feasible and socially acceptable.
In this paper, we outline a selection approach for

virtual communities that takes into account both the

feasibility and the acceptability of web services. To this

purpose, we adopt a semiotic view on the selection

process, showing that for the adequate selection of web

services three subprocesses are required: (1) syntactic
discovery, (2) semantic matching, and (3) pragmatic

interpretation. We then present a meta-model of web

service selection support that is grounded in this view.

This model can be used to detect gaps in web service

selection support. This knowledge is essential for the

construction of better selection support methodologies.
We apply the meta-model to analyze a case on a

courseware development community.

1. Introduction

With the rise of the Internet, virtual communities

are gaining importance as a new business model for

virtual collaboration, as demonstrated by the

proliferation of trading and education communities. In

an increasingly networked society, with ever more

need for global, and flexible ways of professional

interactions, virtual communities are natural candidates

to fill collaborative gaps in traditional, hierarchical

organizations. With the advent of more user-friendly

and powerful web applications, business is also

discovering the power of virtual communities. For

example, virtual communities of consumption are

affiliative groups whose online interactions are based

upon shared enthusiasm for, and knowledge of, a

specific consumption activity or related group of

activities [1], e.g., the James Bond Yahoo

Community
1
. Such communities allow consumers to

critically evaluate products and companies to gather

valuable data on product characteristics from loyal

customers.

What is a virtual community? Communities are not

just aggregates of people, temporarily interacting. A

community has been defined as a group of people who

share social interactions, social ties, and a common

'space' [1]; as a social network of relationships that

provide sociability support, information, and a sense of

belonging [2], and as a set of relationships where

people interact socially for mutual benefit [3]. The key

seems to be strong and lasting interactions that bind

community members and that take place in some form

of common space. A virtual community differs from

other communities only in that its common space is

cyberspace. Virtual communities therefore describe the

union between individuals or organizations who share

common values and interests using electronic media to

communicate within a shared semantic space on a

regular basis [4].

In virtual communities, the common space is

provided by a suite of collaborative and

communicative functionalities, ranging from simple

mailers to advanced web applications [5,6]. This

functionality mostly consists of standard tools or

components, so that information systems development

becomes more a process of functionality selection than

building whole new systems from scratch [7]. This

standard functionality increasingly comes in the form

of web services. Simply stated, web services constitute

reusable and reasonably fine-grained software

components, which can be invoked through the

Internet. A characteristic of web services that is of

particular interest is that they are self-describing,

1
http://groups.yahoo.com/group/theclubofjamesbond/

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

which means that they contain metadata that advertise

their functionality. Web services are everywhere on the

Internet. Prominent examples like the Microsoft

MSN.NET web services of Mappoint, password

service, chat service, and its NetMeeting video-

conferencing service, the Yahoo Chat service, and,

ADG’s discussion web services are only the very tip of

the web services iceberg.

Web services are particularly interesting for virtual

communities, as they allow non-technical community

members to combine them in new value-adding

applications. For example, a chat web service of

supplier X, and a document sharing web service from

supplier Y could be aggregated in a new, “higher-

order” web service for cooperative report writing.

Other examples of often used web services in

communities include file management systems and

discussion boards. Many web services provide partially

overlapping functionality, offering many shared and

some unique functionalities. Selecting from the

plethora of web services, given the complex nature and

rapid evolution of the information needs and available

technologies of a typical virtual community, is

therefore a daunting process. Given that this change

process is so costly, many essential changes to the

socio-technical system of a virtual community often do

not happen, therefore inhibiting natural community

evolution.

Finding ways to catalyze the selection process is

thus very important for virtual communities to remain

viable. The selection of which web services to use is

not trivial, as there is an incredible variety of design

choices in communities of practice, and their

requirements even vary within particular stages of their

lifecycle [8]. To address these issues, a new paradigm

is emerging: that of community-centred development

[5]. Two key objectives of community-centered

development are that sociability and usability are

achieved: sociability entails that social policies are

developed that are in line with the community’s

purpose and understandable and acceptable to its

members; usability should ensure that the

implementing technologies support rapid learning, high

skill retention, and low error rates. To achieve these

objectives, the development process of community

information systems should be participatory and

evolutionary. This means that community members are

to play an active role in the whole process from

requirements elicitation to implementation.

Furthermore, it should be a continuous process of

refinement and extension, instead of a one-time

waterfall-type development project. Methodological

support that takes into account these complex

community constraints is required for software design

in the form of selection and tailoring of functionality

components [5].

In this paper, we investigate in-depth the web

services selection process. Currently, most service

selection takes place in an ad hoc fashion. The

objective of this paper is to allow virtual communities

to construct information systems out of web services

that are better tailored to their specific requirements.

To this purpose, in Sect. 2, we first chart the role of

virtual communities in an application domain

increasingly dominated by web services: courseware

development. In Sect. 3, we adopt a semiotic view on

the web service selection process, arguing that it

should consist of a syntactic discovery process, a

semantic matching process, as well as a pragmatic

interpretation process of web service functionalities.

Sect. 4 introduces a meta-model for web service

selection support and applies it to provide an

alternative scenario for the service selection support of

the courseware development case of Sect. 2. We end

the paper with conclusions in Sect. 5.

2. Courseware Development Communities

E-learning is going to be one of the main

applications of the Internet [9]. Proper software to

support the complex didactic and administrative

processes is crucial for its success. Even though e-

learning is still in its infancy, the market is already

saturated with software packages that aim to provide

full support for all electronic course needs
2
. However,

such large, atomic applications do not match the

unique, complex, and evolving needs of educators.

An approach that much better suits their way of

courseware development are web service

methodologies, in which tailored applications are

constructed out of many small web-components of

functionality [10]. Such modular courseware is

inherently flexible and allows educators to create

integrated learning environments that are tuned to

particular courses and groups of students [11].

A very important factor in successful courseware

development are the stakeholders to be involved and

the way they interact in communities. Well-organized

communities may include any subset of potential

beneficiaries pooling their “collective expertise”, such

as courseware developers, courseware publishers,

learning resource managers, lecturers, teachers,

students and distance learners [11,12]. Most of these

communities are at least partially virtual, as they often

have a global and cross-organizational membership.

2
E.g. http://www.edutools.info/course/compare/all.jsp

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

 Courseware development communities to a large

extent are driven by the didactic needs of educators and

students. For web-based courses to be as effective as

traditional courses, collaborative learning strategies

need to be implemented in which relatively small

classes or groups are actively mentored by their

instructor [13]. Thus, educators and students need to be

core members of such communities.

Educators and software developers are also

mutually dependent: the educators have good insight in

what subtle didactic requirements need to be satisfied,

the developers know about developing, packaging, and

making available the components that match those

needs. In the emerging educational component market,

educators and software developers must have a shared

communication language to discuss component

requirements [10], which can be developed by

collaborating in a community.

Apart from these direct stakeholders, there are the

actors who deal with the underlying business models of

courseware digital rights management. On the one

hand, many informal open source communities have

sprung up, often existing of lecturers offering

'homegrown' components and interested in furthering

higher-quality education. Advantages of such open

courseware are, for instance, that it is more easily

corrected by global peer assessment, more material is

reused, teachers are more easily able to get peer

recognition and feedback, and universities can gain

better teaching reputations [14]. On the other hand,

there is an increasing number of commercial course

aggregators. In between, there are mixed-motives

online consortia of universities. No matter how

commercial the objectives, though, courseware vendors

must be sensitive to social and communicative aspects

of teaching for the communities to be successful [12].

Thus, university administrators and software vendors

need to play a role in extended courseware

development communities as well. Furthermore, web

service applications often introduce serious security

problems in an organization [15], requiring, for

example, the approval of a system administrator.

Summarizing, many stakeholders are to be involved

in courseware development communities. They have to

adhere to many different and subtle norms, related to

didactic, usability, rights management and security

issues. Without taking into account these norms in the

web service selection process, it is bound to fail. To

ensure that these norms are not violated, human

interpretation of proposed service selections is

essential. In the next section, we will conceptualize the

selection process in such a way that providing

systematic support for dealing with such community

issues can be more effectively implemented.

Before analyzing the selection process, we first

illustrate the rationale of proper support for the web

service selection process by descibing a typical

courseware web service selection process in which

methodological selection support is not yet present. To

this purpose, Sect. 2.1 describes a case that illustrates

how ad hoc courseware development currently often

takes place.

2.1. Case: Web Service Selection for Making

Group Assignments

One of the authors teaches a course on Quality of

Information Systems. The course lasts 13 weeks. The

2002 course counted about 80 students, divided into

groups of four. Each week, there was a lecture and an

assignment. The lecture took place in a classroom, the

logistics of the assignment were handled electronically

via the Blackboard CourseInfo 4.0 system
3
.

Immediately after the lecture, the assignment was

made available to the students. Every week, a number

of groups had to make the assignments. These groups

submitted their versions of the assignment to the

teaching assistant at the end of the week. Once all

assignments were in, the TA made them available to all

students, together with a standard answer sheet. Then,

other student groups used these standard answers to

review the submitted assignments. Any remaining

questions were posted on the course discussion forum,

to be answered by the lecturer.

How did the web service selection process take

place for the class of 2002? At the moment, decisions

on which courseware to use are entirely the lecturer's.

The university computer centre heavily promotes the

use of CourseInfo (currenly Blackboard Learning

System v6). Although CourseInfo does allow for

customized functionality to be added through APIs, not

much on-site development of these components takes

place yet. A lecturer is thus practically forced to make

use of the standard web services functionality enabled

by CourseInfo. These functionalities are organized in

modules and include the following:

• generic: send e-mail, discussion board, virtual

chat, student roster

• course information management:

announcements, course information, course

documents, and assignments.

• group pages: discussion board, virtual chat, and

file transfer.

One of the main activities to be supported by the

functionalities, is the making of group assignments.

3
 http://www.blackboard.com/

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

This activity is subdivided into four sub-activities: (1)

collecting information, (2) group discussion and

collaboration, (3) submitting the results, and (4)

feedback from peers.

To support these activities, a mix of the various

CourseInfo functionalities has been used until recently:

for example, file management mainly took place using

the individual and group drop boxes, group discussion

was supported by the asynchronous discussion board

and synchronous virtual chat modules, and for

asynchronous communication amongst students the e-

mail functionality of the package was often used.

Contrary to previous years, however, this year a

student evaluation of the usefulness of the various

components for the group assignment activity was

done. Student groups had to score the importance of

the various subactivities, the importance of a particular

module for enabling a subactivity, and the efficacy of a

module in doing so. Participation by students was high,

and resulted in detailed responses. Some interesting

lessons were learnt from the aggregated results, as

summarized by the software manager of the university

computer centre, who analyzed the results:

• Especially the basic functionalities of

CourseInfo (file transfer, announcements, and

send e-mail) were considered important by

students.

• File-transfer, however, is not implemented well,

an alternative will be sought by the computer

centre. The e-mail functionality provided by

CourseInfo is only very basic, other mail

functionality such as Outlook, Eudora, or P-

Mail is better suited, but not integrated in the

platform.

• The student roster and virtual chat components

were not considered important at all by

students. Explanations are, respectively, that

there is already an electronic study guide with

better functionality, and that MSN is much

preferred as chat functionality.

• It would be most welcome if applications like

CourseInfo and MSN would be open in that

they support better integration of functionality

modules, however, this is not likely to happen

soon.

• Open source courseware could be a valuable

addition. However, given that the university has

made a large investment in Blackboard licenses

and training, a major transition will not take

place in the near future. Still, experimenting

with specific components in order to allow a

possible (partial) migration in the future is

promoted.

Lessons Learnt

Several limitations preventing the current web

service selection process from being optimal can be

discovered in this case:

• The functionality from which currently to

choose is very limited in scope and restricted. It

is not modular at all in that new components

from other providers cannot easily be included

nor can results between components be

exchanged. Also, it is not clear what other

components are available, as for an individual

educator with a non-technical background it is

hard to know where to look.

• Once components have been selected as likely

candidates, it is not easy to see how they can be

investigated on their functional properties. For

example, what functionality is included in a

discussion board component? Currently, the

easiest way to find out, is by actually installing

the component and testing it. Such an approach

is still feasible in a limited, restricted

environment like CourseInfo. The moment that

large repositories of educational components are

going to be available, however, such an

approach is no longer feasible.

• Although many stakeholders should have a

legitimate say in which services can best be

selected, currently the privilege - and burden - is

left solely to the lecturer, who mostly involves

the other stakeholders in a rather ad hoc fashion.

Furthermore, it is very hard to decide on which

components are useful to the community of

users, and according to which criteria. It is clear

that stakeholders must be involved in making

the assessments, not just at the main software

package level, but also in the choice of

individual components of functionality.

Complex issues, such as integration, licensing,

usability, and security need to be taken into

consideration by the relevant stakeholders in the

community. Furthermore, many of these

assessments to a large extent depend on tacit

knowledge that cannot be formalized, but

should instead be provided by the right human

stakeholders when appropriate [16].

To ensure adequate community involvement in the

selection process, in which the many stakeholders play

their legitimate roles to the full, more sophisticated

web service selection support should be provided. In

the next section, we first model this process in greater

detail, before looking at how to conceptualize selection

support methods in Sect. 4.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

3. The Web Service Selection Process

Web services can be loosely defined as self-

describing, interoperable and reusable business

components that can be published, orchestrated and

invoked through the Internet, even when they reside

behind a company’s firewall [17]. Web services

constitute both design- and runtime, platform-agnostic

distributed enterprise building blocks that can be

dynamically composed into higher-order assemblies

that support (inter- or intra-) organizational business

transactions.

Web services-based information systems

development is no longer grounded in the waterfall

paradigm, in which custom-built systems are analyzed,

designed, and implemented from scratch, often by

outside consultants, and new versions are kept to a

minimum, as such an approach is very disruptive to the

organization [18]. Instead, more organic and

continuous systems development approaches are

required to support and control the design,

implementation and maintenance activities during the

web service lifecycle.

3.1. Web Services-Based Information Systems

Development

To clarify the role of web service selection in the

overall systems development process, we show its

place in the Web services-based IS Development

Paradigm, widely adopted in one form or another in the

field:

Web Service Selection

In the first stage, web services are generally selected

from a repository system or marketplace on the basis of

its interface description, basically comprising a list of

provided methods, and several non-functional

properties such as the geographical location of the

service provider, performance, its price, and so on.

Web service selection can be performed from two

perspectives: bottom-up and top-down. Top-down

selection of web services starts from the business

processes, e.g., setting up a course, and then identifies

those services whose capabilities and quality aspects

conform best. The bottom-up perspective, on the other

hand, starts from the available web services, and tries

to select those that fit best. In practice, both selection

approaches are often combined

This phase can, for instance, be supported with the

Universal Description, Discovery and Integration

(UDDI) standard that provides rules for building

service directories and facilitates top-down querying

capabilities [19].

Web Service Adaptation

Many existing approaches for developing web

service-based applications assume that services can be

reused as is. However, it is unlikely that one is able to

identify services with a perfect match. In practice,

available web services typically only partially match

with all requirements, so some adaptations need to be

made. Technologies for transforming XML documents,

such as the Extensible Stylesheet Language

Transformations (XSLT) standard, provide

mechanisms to tailor generic into customized web

services.

Web Service Combination

Once services have been adapted so that they

comply with new requirements, they can be combined,

or 'wired'. Actually, the real added value of the

paradigm lies in its ability to allow loosely-coupled

services to be dynamically orchestrated into new

constellations, possibly offered by different

organizations. For example, a travel plan service can

be developed by combining several elementary

services such as hotel reservation, ticket booking, car

rental, sightseeing package, etc., based on their service

description.

Some standards for parts of the web service

selection, adaptation and combination processes have

been emerging. Examples in the area of web service

composition are UDDI, BPEL4WS, XLST and BTP.

However, if present at all, these standards are still to a

large extent error-prone, cumbersome, restricted, and

inflexible, and do not interrelate, so that rigorous web

services-based IS development methodologies are still

far away. As a first step on the way to more systematic

Web services-based IS development, we define, in

Sect.4, a meta-model with which to assess selection

support quality. The basis of this meta-model is a

semiotic perspective on web service selection.

3.2. A Semiotic Perspective on Web Service

Selection

Our focus in this paper is on web service selection,

the first stage of web services-based IS development.

We focus on this crucial first stage, as it provides the

basic building blocks for IS construction. Web service

selection that can deal with the problems highlighted in

the previous section comprises three subsequent

activities: discovery, matching and interpretation. First,

potential service resources need to be discovered by

quick-scanning their “fingerprint”. From these, the

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

services that are potentially relevant need to be

identified by matching the discovered services in some

meaningful way with the service request. This implies

that community stakeholders are to link web service

technologies to their requirements expressed in terms

of their own community ontology. Finally, the shortlist

of services found in this matching process needs to be

interpreted on their usefulness by relevant stakeholders

of the community. Essential is that these human

interpreters, unlike computers, are able to take into

account all kinds of non-formalizable considerations.

To analyze and design ways to support these

subprocesses, we adopt a semiotic view on the

selection process. This view consists of three

complementary perspectives: (1) a syntactic (structure)

view, (2) a semantic (structure-based meaning) view

and (3) a pragmatic (context-based meaning) view

[20]. In our opinion, the first two stages can be

automated, at least to a large extent. The pragmatic

view, however, cannot, as tacit knowledge embodied in

committed human beings can, nor should, always be

completely explicitly represented. In this paper, we

equate the discovery process with the syntactic view on

selection, matching with the semantic view, and

interpretation with the pragmatic view. Of course, in

practice, discovery has semantic and pragmatic aspects

as well, just like interpretation activities can benefit

from syntactic and semantic support. Future

refinements could make more subtle connections

between selection subprocesses and semiotic

perspectives. However, the main focus of each

selection subprocess is on the respective semiotic

views with which we associate them here. For the

purpose of making quick scans of methodological

support, the current mappings suffice, therefore. By

adding a semiotic view to selection processes, results

from the vast literature on semiotic theory and

analytical techniques can be added to investigate to

what extent a selection method is complete and sound.

For example, in the field of pragmatics, much work has

been done on criteria for proper collaborative, goal-

oriented conversations such as needed in community IS

specification [21]. Vice versa, by classifying a

selection method by its semiotic properties, it becomes

clearer which (discovery, matching, or interpretation)

stage of the selection process it can best support.

Next, we give a few illustrative examples of

approaches and methods supporting the various

selection subprocesses. Other examples could have

been chosen. Their point is, however, to indicate the

kind of semiotic differences that can be observed in

practice in selection support.

3.2.1. Service Discovery: Syntactic Selection

Syntactic discovery of web services is concerned

with retrieving web service interfaces on the basis of

surface-level syntactic interface descriptions. The

syntactic description of service capabilities typically

includes the service name, its input parameters types,

and the result types. Syntactic discovery deals with

comparing the typed artifacts in a target specification,

e.g., input parameter of a service port, with those of

available ("source") resources without any regard of

the actual meaning of the labels (e.g. parameter names)

that are used. This implies that the quality of syntactic

discovery of web services is largely determined by the

syntactic richness of the service representation

language in which the service is described.

Example of Syntactic Selection Support

Assume that a lecturer needs functionality to

support discussions with her students. Therefore,

firstly the interface of the Discussion software

component needs to be known. This interface could be

specified (in WDSL) as follows:

Interface Component Discussion {
 void initialize_discussion{Int
discuss_id, Int teacher_id, Int
student_id, Int nr_of_allowed
connections, String Topic};
 void terminate_discussion{Int
discuss_id, Int teacher_id};

};

Subsequently, the available repositories can be

searched for services that conform to this interface.

3.2.2. Service Matching: Semantic Selection

Syntactic discovery is based on the assumption that

service suppliers all use the same dictionary. This

might be true for simple vertical domains, with a

limited number of participants and highly standardized

vocabulary, for example, in the form of a service

resource catalogue. Not so, however, in more complex

and volatile domains with thousands of participants

and components. For making more sophisticated

matches of required and enabled component

functionalities, discovery is thus not sufficient.

We claim that, in practice, syntactic discovery is

particularly effective to find service repositories or

collections. Once these initial resources have been

discovered, however, more refined, semantic

approaches are needed for finding potentially relevant

components. For example, the Semantic Web

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

community aims to increase the semantic power of the

Web so that more meaningful queries can be answered.

Semantic Web technologies like XML enable the

structured description of meta-information of web

elements, such as services. On top of that, the Resource

Description Framework (RDF) allows for the

development of lightweight ontology systems to

support the exchange of knowledge on the Web
4
.

Using such semantic enrichments, approaches are

being developed that allow for more precise service

matching than possible with syntax-only methods.

Lately, several initiatives have started to leverage the

notion of web services by enriching their signature

with semantic information, e.g., by using a dedicated

ontological markup language such as DAML. This

enhancement brings automatic semantic selection and

composition of web services one step closer.

Example of Semantic Selection Support

One way of semantic matching is provided by the

BALES methodology [22]. Within the context of

BALES, a shared interpretation of a domain, hence

ontology, serves as the basic armature around which

service descriptions can be compared. We have

selected the WordNet ontology [23] as the common

ontological framework for BALES, but in principle,

other ontologies could have been used here. This web-

based ontology is equipped with a massive semantic

web that is freely available on the market for

experimentation, focuses on meanings of terms rather

than forms, and incorporates a taxonomy comprising

synonym sets, hyponymy/hypernymy, and so on, thus

allowing for rich service meaning descriptions to be

composed.

The activity of semantic matching comprises the

following two tasks:

1. Linking Terminology to WordNet.

In the first task, the terminology used in service

specifications is linked to semantically meaningful

terms in WordNet. In other words, the descriptors,

which are deployed in (WSDL) interfaces of services,

are connected to similar terms in the common ontology

(hence WordNet). In case no matching descriptors are

available, new concepts need to be created and linked

to the existing ontology using synsets, hypernyms and

homonyms. E.g. the entity Discussion_manager
is added to WordNet as a concept (ID900000002)

which in turn is a hyponym of concept (106945718)

(manager).

4
 http://www.w3.org/RDF

2. Calculating the Semantic Distance between

Specifications.

After the construct descriptors have been linked to

WordNet, a similarity measurement is calculated to

express the semantic correspondence between two

service specifications. This matching algorithm not

only takes into account the distance of descriptors of a

target and source web service specification, but also

the structure of the specification by introducing

weights for each pair of descriptors that is compared.

The details of these calculations are complex, and are

not relevant for the purpose of this paper. What is

important, is that such calculations can be used to, if

needed in very elaborate ways, precisely select

potentially relevant components from a potentially

huge repository, using sets of formal criteria that may

differ for each community.

3.2.3. Service Interpretation: Pragmatic Selection

Despite its obvious importance, the Semantic Web

still has major problems in a community context, as

specialized communities of practice continuously use

web services in novel ways. Resulting problems

concern service description, service discovery and

location, and interactions of services when composed,

among other things. To deal with these problems, a

pragmatic approach is required. The syntactic

(structure) and semantic (structure-based meaning)

levels of analysis are still needed, but also the

users’context-dependent needs should be taken into

account in the sense that service description, discovery,

and invocation are tied to the context of the intended

compositions [20].

Returning to our research problem of web service

selection in virtual communities: how to ensure that the

selection process is pragmatic? Given that a formal

functional match is performed at the semantic level,

what does pragmatic selection mean? What makes up

the community context in the pragmatic selection

process? We claim that this is a process of

interpretation, in which the relevant stakeholders

assess matched services on a wide range of quality of

service considerations, assessments that cannot be

automated, but require human expertise, skills, and

diplomacy, as demonstrated by, for example, the

indispensable roles of students and computer centre

representative in final decisions on the applicability of

CourseInfo modules

However, community intentions are much harder to

capture than those of individual users. For example,

users can be interviewed in a prototyping session by

the implementor, or simply be asked which interface

they prefer. Of course, these specifications may still be

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

distorted and not capture the essence of the problem,

but at least they are individual distortions that can be

traced back to a particular person who is then capable

of reframing her requirements. Not so in a community,

virtual, or otherwise. Communities are typified by the

bonds between members, the shared interests, and

norms [24]. Changes to the socio-technical system can

have far-reaching consequences for the efficacy of

community operations.

One major problem specific to pragmatic

community information systems development, and thus

also to service interpretation, is who to involve in the

development process [21]. It is not sufficient to have a

software engineer make a model of the community,

select some web services, and, automatically, an

information system has been created. First of all,

change processes are subtle and continuous. Much tacit

knowledge is needed to interpret the need for changes

in the socio-technical system, and to produce the actual

specifications. It is therefore essential that it is known

when and exactly in what role community members are

to take part in the specification process of their

requirements and web services used, so that the

sociability of the community information system can

be ensured [5].

Norms, defining acceptable behaviour, are a key

element in any community. They define which

workflow and evolutionary behaviour may, must, or

may not be performed by which actors [21]. Online

communities use norms of behaviour (or policies) to

guide the interactions of members, for example in the

form of tacit assumptions, rituals, protocols, rules, and

laws [5,24]. Norms are powerful regulatory constructs

in communities, especially where people are not

governed by traditional organizational hierarchies, as is

true for complex knowledge creating online networks.

Thus, for modelling pragmatic selection support,

change norms can be used to define the governance of

the community IS, amongst other things by letting

communities clearly define who is to be involved in

their selection processes.

Example of Pragmatic Selection Support

In a courseware development community case, a

student may notify the community that a particular tool

for group discussion, such as Virtual Chat, is not

efficient. The decisions about whether and how to

select a new tool are to be made by, for instance, the

lecturer for assessment of workflow impact, and the

computer centre representative for technical and

security considerations. Thus, key at the pragmatic

level of the selection process is that enough context is

provided that legitimate selections of web services can

be made by the relevant members of the community.

We call this the problem of guaranteeing the legitimacy

of specification changes, meaning that they must be

both meaningful and acceptable. This problem is

addressed within the RENISYS methodology [21,25].

RENISYS is a legitimate user-driven approach for

community information system specification. Its main

components are a set of ontologies to model the

structure, operations, and evolutionary processes of

socio-technical system of the community; a mechanism

for defining and using composition norms, which

define who is to be involved in which particular stage

of what particular type of change to the socio-technical

system; and a conversation module to support

discussions about proposed specification changes.

To ensure the acceptability of specification changes

to the socio-technical system, in this case concerning

the selection of web services, the selection of the

relevant user group is key. In [25], we discuss in

detail how to do this. Essential is that the specification

process is seen as change process of socio-technical

knowledge definitions, to be guided by composition

norms defined by the community itself. To find out

which users to legitimately involve in the initiation,

execution, and evaluation of a particular change

process (the compositions), a set of applicable

composition norms is calculated for each user and

composition. For each of these sets, a resultant deontic

effect can be calculated (the details of which are

outside the scope of this paper), prescribing whether a

user may, must, or may not be involved in the

composition. For example,

der (DCN_APPL(Jane, Exec_Select_Type(Discussion))

= Req

means that user Jane (who may play several roles,

like educator, developer, etc. in the community) is

required (= must) participate in the actual selection of

discussion services. Using the ontologies of service

types, it can be precisely determined, based on the

community’s own composition norms, which users

when to involve in a particular service selection. A

powerful feature of RENISYS is that norms can be

defined at different levels of specificity. For example,

an informal, egalitarian community may have only one,

very generic norm, saying that all members are to be

involved in all stages of all selection processes. In

more realistic situations, some selection processes will

be defined at a very generic level, while others may be

defined at great level of detail. Thus, in RENISYS

only (and all) relevant users are included, the criteria

for relevance of course defined by the community itself

in their own composition norms. The legitimacy of

web service selections can thus be increased

considerably.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

4. A Meta-Model of Web Service Selection

 Support

We have defined the web service selection process

to consist of three subsequent steps: syntactic

discovery, semantic matching, and pragmatic

interpretation of the proposed services. The syntactic

step serves to select those services from a repository

system, that have high structural resemblance with a

target specification in terms of their interface.

Semantic matching builds on top of syntactic discovery

of services and aims at retrieving specifications with a

high overlap in terms of the ontological terminology

that has been adopted in a particular community.

Lastly, pragmatic interpretation places the results from

the syntactic discovery and semantic matching in

context by allowing relevant members of the

community to assess their usefulness. In order to

facilitate the making of a quick scan of how well the

web service selection process is supported, we have

summarized our approach in a meta-model of web

service selection support. The meta-model connects

each semiotic view to a selection subprocess.

Furthermore, we make a distinction between notation

and method at each level. This because many efforts

focus on terminology development (e.g. DAML), but

not on the method with which to provide better support

for the selection process.

To illustrate, we apply the meta-model to the ad hoc

courseware development case of Sect. 2. We can see

that there is support for the syntactic level, but

notation-wise only: in order to select services, the

syntactic labels of the CourseInfo modules have been

used. There is virtually no support for the semantic

level for both notation and method. At the pragmatic

level, no specific notation was used, but students and

computer center representative were involved in an

assessment of how well the CourseInfo modules

allowed the making of group assignments, so there was

some method.

In Fig.1, we apply the meta-model again, but this

time not to represent the average, ad hoc, courseware

development situation, but the way state-of-the-art web

service selection support would look like. This would

include syntactic notations such as UDDI, BPEL, and

WSDL (for an extensive treatment of these

technologies, we refer to [19,26]. A semantic matching

(including syntactic discovery) method could be

provided by BALES, which has only a thin selection

ontology, but much attention for the methodological

approach in which matching is to take place. The same

goes for RENISYS, which has only a basic domain

ontology and attention for semantic definitions of

Figure 1. Applying the metamodel to state-of-
the-art selection methods

workflows, but focuses its attention on providing a

comprehensive and sound pragmatic method. Still, we

can see in the picture that all these methods are

isolated: notations and methods are not connected,

terminology nor process-wise. Future state of the art

support methods for web service selection would

therefore show much more coverage of – and

interconnections between – the various notation and

method cells. For example, if BALES and RENISYS

would share a (partial) ontology, semantic matching

could be automatically done on ontological terms

defined as relevant in RENISYS conversations for

specification.

5. Conclusions

Web service selection constitutes a critical stage in

web services-based IS development. From a semiotic

point of view, it encompasses a syntactic service

discovery stage, a semantic service matching stage, and

a pragmatic service interpretation stage. In this article,

we have introduced a meta-model of web services

selection support for quickly charting how well this

complex process is supported, notation and method-

wise. Most service selection processes currently are ad

hoc, as demonstrated by our typical case of courseware

development communities. To increase the efficacy of

community IS development, more systematic support

is essential. Our - still rudimentary - meta-model

allows the quality of provided selection support to be

analyzed.

Another important contribution of this paper is the

focus on the pragmatic selection of web services. In

this paper, we have only hinted at the complexities of

the roles that norms play in the selection process. Very

subtle norms often exist, defining permitted, required,

or forbidden behaviour between many different

stakeholders. Norms can be generic and apply to many

different interactions, or specific, and apply to only

few stakeholders in a few situations. Norms can

interact and conflict, leading to complex resultant

Semiotic View Selection Process

Pragmatic Interpretation

Semantic Matching

Syntactic Discovery

Notation Method

UDDI BPEL WSDL

BALES

RENISYS

DAML

BALES

RENISYS

BALES

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9

deontic effects. Communities of different types may

require completely different norms for apparently

similar selection processes.

In summary, many partial approaches exist,

especially at the syntactic and semantic level, which

are relevant to web service selection in virtual

communities. What has been lacking is an analytical

lens to clarify their exact role in the overal selection

picture. Our purpose was theory construction, not

testing. We did this by clearly describing the problem

of service selection, and grounding the solution in a

theoretically sound semiotic perspective. The resulting

meta-model allows for the systematic identification of

gaps in selection support. We illustrated its validity by

applying it to a realistic case.

In future research, we will focus our attention on the

development of reference models of selection norms

and support methods in different types of educational

and other communities. It would be interesting to see

which norm and support patterns emerge that can are

invariant across communities, and which ones need to

be tailored to a particular subtype of community.

References

[1] Kozinets, R. V. E-Tribalized Marketing?: The Strategic

Implications of Virtual Communities of Consumption,

European Management Journal 17(3), 1999, pp. 252-264.

[2] Wellman, B. Computer Networks as Social Networks,

Science 293, 2001, pp.2031-2034.

[3] Smith, M.. Tools for Navigating Large Social

Cyberspaces, Comm. of the ACM 45(4), 2002, pp. 51-55.

[4] Schubert, P. and M. Ginsburg. Virtual Communities of

Transaction: The Role of Personalization in Electronic

Commerce., Electronic Markets 10(1), 2000, pp. 45-55.

[5] Preece, J. Online Communities : Designing Usability,

Supporting Sociability. John Wiley, Chichester, NY, 2000.

[6] Surman, M. and Wershler-Henry, D. Commonspace:

Beyond Virtual Community, Pearson, 2001.

[7] Sawyer, S. A Market-Based Perspective on Information

Systems Development, Comm. of the ACM 44(11), 2001, pp.

97-102.

[8] Gongla, P. and C. R. Rizzuto. Evolving Communities of

Practice: IBM Global Services Experience, IBM Systems

Journal 40(4), 2001, pp. 842-862.

[9] Friedman, T. Next, It's E-ducation, New York Times, 17

november, 1999.

[10] Roschelle, J. et al. Developing Educational Software

Components, IEEE Computer 32(9), 1999, pp. 2-10.

[11] EPOC Working Group. Towards a Framework for Open

Courseware: The Third Report of the TLTP Working Group

on Open Courseware. Teaching and Learning Technology

Programme, Bristol, 1996.

[12] Werry, C. The Work of Education in the Age of E-

College, First Monday 6(5), 2001.

[13] Hiltz, S. R. Collaborative Learning in Asynchronous

Learning Networks: Building Learning Communities.

WEB98, Orlando, Florida, November 1998.

[14] Newmarch, J. Lessons from Open Source: Intellectual

Property and Courseware., First Monday 6(6), 2001.

[15] Rasmussen, M. IT Trends 2003: Information

Security Standards, Regulations and Legislation. Giga

Information Group, December 18. 2002.

[16] Nonaka, I. and Takeuchi, H. The Knowledge-Creating

Company: How Japanes Companies Create the Dynamics of

Innovation. Oxford University Press, New York, 1995.

[17] Fremantle, P., Weerawarana, S., and Khalaf, R.

Enterprise Services, Comm. of the ACM 45(10), 2002, pp.

77-82.

[18] Brooks, F. P. The Mythical Man-Month : Essays on

Software Engineering. Addison-Wesley, Reading, MA, 1995.

[19] Walsh, A.E. UDDI, SOAP and WSDL, Prentice Hall,

2000

[20] Singh, M. P. The Pragmatic Web, IEEE Internet

Computing 6(3), 2002, pp. 4-5.

[21] de Moor, A. Language/Action Meets Organisational

Semiotics: Situating Conversations with Norms, Information

Systems Frontiers 4(3), 2002, pp. 257-272.

[22] van den Heuvel, W.J. Integrating Modern Business

Applications with Legacy Systems, PhD Thesis, Tilburg

University, June 2002.

[23] Miller, G.A. WordNet: A Lexical Database for English,

Comm. of the ACM 38(11), 1995, pp. 39-41.

[24] Talbott, S. The Future Does not Compute :

Transcending the Machines in our Midst. O'Reilly,

Sebastopol, CA, 1995.

[25] de Moor, A. and M. A. Jeusfeld. Making Workflow

Change Acceptable, Requirements Engineering, 6(2), 2001,

pp. 75-96.

[26] IBM. Business Process Execution Language (BPEL) for

Web Services, Version 1.1, IBM Technical Report, 2003

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10

