
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

4-2005

Web Service Semantics - WSDL-S Web Service Semantics - WSDL-S

Rama Akkiraju

Joel Farrell

John A. Miller
Wright State University - Main Campus

Meenakshi Nagarajan
Wright State University - Main Campus

Amit P. Sheth
Wright State University - Main Campus, amit@sc.edu

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., & Verma, K. (2005). Web Service Semantics -
WSDL-S. .
https://corescholar.libraries.wright.edu/knoesis/69

This Report is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Authors Authors
Rama Akkiraju, Joel Farrell, John A. Miller, Meenakshi Nagarajan, Amit P. Sheth, and Kunal Verma

This report is available at CORE Scholar: https://corescholar.libraries.wright.edu/knoesis/69

https://corescholar.libraries.wright.edu/knoesis/69

 Page 1 of 42

Web Service Semantics - WSDL-S

Technical Note
Version 1.0
April, 2005
Authors (alphabetically):
Rama Akkiraju, IBM Research
Joel Farrell, IBM Software Group
John Miller, LSDIS Lab, University of Georgia
Meenakshi Nagarajan, LSDIS Lab, University of Georgia
Marc-Thomas Schmidt, IBM Software Group
Amit Sheth, LSDIS Lab, University of Georgia
Kunal Verma, LSDIS Lab, University of Georgia

Copyright Notice

Copyright© 2005 International Business Machines Corporation and University of Georgia. All
rights reserved.

IBM and the University of Georgia (collectively, the "Authors") hereby grant you permission
to copy and display the Web Service Semantic s – WSDL-S Technical Note, in any medium
without fee or royalty, provided that you include the following on ALL copies of the Web
Services Semantic Annotations – WSDL-S Technical Note, or portions thereof, that you
make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the Web Service Semantic s – WSDL-S Technical
Note.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT GRANT,
EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY OTHER INTELLECTUAL PROPERTY
THEY OWN OR CONTROL.

WEB SERVICE SEMANTICS – WSDL-S TECHNICAL NOTE IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF WEB
SERVICE SEMANTICS – WSDL-S TECHNICAL NOTE ARE SUITABLE FOR ANY PURPOSE; NOR
THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION
OF THE WEB SERVICE SEMANTICS – WSDL-S TECHNICAL NOTE.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,

 Page 2 of 42

written prior permission. Title to copyright in Web Service Semantic s – WSDL-S Technical
Note will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
The current WSDL standard operates at the syntactic level and lacks the semantic
expressivity needed to represent the requirements and capabilities of Web Services.
Semantics can improve software reuse and discovery, significantly facilitate composition of
Web services and enable integrating legacy applications as part of business process
integration. The Web Service Semantic s technical note defines a mechanism to associate
semantic annotations with Web services that are described using Web Service Description
Language (WSDL). It is conceptually based on, but a significant refinement in details of, the
original WSDL-S proposal [WSDL-S] from the LSDIS laboratory at the University of Georgia.
In this proposal, we assume that formal semantic models relevant to the services already
exist. In our approach, these models are maintained outside of WSDL documents and are
referenced from the WSDL document via WSDL extensibility elements. The type of semantic
information that would be useful in describing a Web Service encompass the concepts
defined by the semantic Web community in OWL-S [OWL-S] and other efforts [METEOR-S,
WSMO]. The semantic information specified in this document includes definitions of the
precondition, input, output and effects of Web service operations. This approach offers
multiple advantages over OWL-S. First, users can describe, in an upwardly compatible way,
both the semantics and operation level details in WSDL- a language that the developer
community is familiar with. Secondly, by externalizing the semantic domain models, we
take an agnostic approach to ontology representation languages. This allows Web service
developers to annotate their Web services with their choice of ontology language (such as
UML or OWL) unlike in OWL-S. This is significant because the ability to reuse existing
domain models expressed in modeling languages like UML can greatly alleviate the need to
separately model semantics. Finally, it is relatively easy to update the existing tooling
around WSDL specification to accommodate our incremental approach.

Status
This is a technical note provided for discussion purposes and to elicit feedback on
approaches to adding semantics to Web services descriptions.

Table of Contents
Web Service Semantics - WSDL-S... 1

1. Introduction ... 3
2. Requirements for Web Service Semantics.. 6
3. An Example .. 7
4. Using the Extensibility Elements of WSDL .. 11
5. WSDL 1.1 Support ... 23
6. References... 23
7. Appendix A: Specifying Schema mapping Using XSLT 25
8. Appendix B: Specifying Schema mapping using XQuery 28
9. Appendix C: Purchase Order Ontology... 31

 Page 3 of 42

10. Appendix D: Mapping Choices.. 33

1. Introduction

As the set of available Web Services expands, it becomes increasingly important to have
automated tools to help identify services that match a requester's requirements. Finding
suitable Web services depends on the facilities available for service providers to describe the
capabilities of their services and for service requesters to describe their requirements in an
unambiguous and ideally, machine-interpretable form. Adding semantics to represent the
requirements and capabilities of Web services is essential for achieving this unambiguity
and machine-interpretability. Benefits of using semantics can make them pervasive in the
complete lifecycle of Web services. During development, the service provider can explicate
the intended semantics by annotating the appropriate parts of the Web service with
concepts from a richer semantic model. Since semantic models provide agreement on the
meaning and intended use of terms, and may provide formal and informal definitions of the
entities, there will be less ambiguity in the intended semantics of the provider. During
discovery, the service requestor can describe the service requirements using terms from the
semantic model. Reasoning techniques can be used to find the semantic similarity between
the service description and the request. During composition, the functional aspect of the
annotations can be used to aggregate the functionality of multiple services to create useful
service compositions. More importantly, semantics can make it possible to specify mappings
between data exchanged through XML-based SOAP messages, which would be extremely
difficult to do with syntactic representation offered by the current standards. During
invocation, mappings can be used for data transformations. Therefore, once represented,
semantics can be leveraged by tools to automate service discovery, mediation, composition
and monitoring. Current WS-* standards operate at the syntactic level and lack semantic
representation capabilities. This poses an impediment to developing tools to assist humans
and/or support semi-automatic process and application integration. In this technical note,
we address this problem by applying the work of the semantic Web community to the Web
services standards.

The World Wide Web Consortium (W3C) Web services architecture [W3CWSA] defines two
aspects of the full description of a Web service. The first is the syntactic functional
description as represented by WSDL. The second is described as the semantics of the
service and is not covered by a specification. In practice, the semantic description is either
missing or informally documented. By examining the WSDL description of a service, we
cannot unambiguously determine what the service does. We can see the syntax of its
inputs and outputs, but we do not know what these mean or what changes to the
environment the service makes. We do not know the meaning of the parameters nor the
terms referenced in payload documents. Indeed, two services can have the same syntactic
definition but perform significantly different functions. Similarly, two syntactically dissimilar
services can perform the same function.

Semantic markup of Web Services has been proposed as an approach to address the above
issues. Example proposals include initiatives, projects and languages such as WSMO
[WSMO], METEOR-S [METEOR-S], OWL-S [OWL-S] and SWSA/SWSL [SWSA, SWSL]. While
the semantic expressivity is rich and flexible in OWL-S, arguably the most visible research

 Page 4 of 42

approach to date, it defines a new way to describe Web services and suffers from some
important limitations. First, is not aligned with the existing Web services standards. For
example, while the grounding model in OWL-S uses WSDL bindings, the OWL-S profile
model duplicates the descriptions embodied in the rest of WSDL. Second, it assumes that
everyone uses OWL for representing ontologies which may not always be the case. To
overcome these limitations, we propose a new approach in this document. The same
observations apply to the rest of the proposals identified above.

The approach described in this technical note is an evolutionary and compatible upgrade of
the existing Web services standards, and more specifically Web service descriptions. It is a
revision of the WSDL-S proposal [WSDL-S] from the METEOR-S group at the University of
Georgia. In this approach, we augment the expressivity of WSDL with semantics by
employing concepts analogous to those in OWL-S while being agnostic to the semantic
representation language. In this document, we only refer to the OWL-S profile model
(component of OWL-S that describes functionality of Web services) , the OWL-S process
model (component of OWL-S that describes the interaction protocol of a Web services)
compares with BPEL4WS and is not discussed here. The advantage of this evolutionary
approach to adding semantics to WSDL is multi-fold. First, users can, in an upwardly
compatible way, describe both the semantics and operation level details in WSDL- a
language that the developer community is familiar with. Second, by externalizing the
semantic domain models, we take an agnostic approach to ontology representation
languages. This allows Web service developers to annotate their Web services with their
choice of ontology language (such as UML or OWL). This is significant since the ability to
reuse existing domain models expressed in modeling languages like UML can greatly
alleviate the need to separately model semantics. Moreover, this approach realizes the need
for the existence of multiples ontologies, either from the same or different domains to
annotate a single Web service and provides a mechanism to do so. Finally, it is relatively
easy to update the existing tooling around WSDL specification to accommodate our
incremental approach. While it is noted that the theoretical underpinnings of OWL-S in
description logic makes it a richer language for representing semantics, we believe that
extending the industry standards such as WSDL to include semantics is a more practical
approach for adoption. Moreover, by externalizing the semantic domain models in our
proposal, we still allow for richer representations of domain concepts and relationships in
languages such as OWL and UML, thereby bringing together the best of both worlds.

1.1 Terminology

We provide basic definitions for the terminology we use in this technical note.

Semantics - Semantics in this context refers to the meaning of objects or information.

Semantic Model - A semantic model captures the terms and concepts used to describe
and represent an area of knowledge or some part of the world, including a software system.
A semantic model usually includes concepts in the domain of interest, relationships among
them, their properties, and their values. Usually this is described as an ontology that
embodies agreement

 Page 5 of 42

Semantic Annotation - A semantic annotation is additional information in a document
that defines the semantics of a part of that document. In this technical note, the semantic
annotations are additional information elements in a WSDL document. They define
semantics by referring to a part of a semantic model that describes the semantics of the
part of the document being annotated.

Input Semantics - Input semantics is the meaning of input parameters as defined by some
semantic model.

Output Semantics - Output semantics is the meaning of output parameters as defined by
some semantic model.

Precondition - A precondition is a set of semantic statements (or expressions represented
using the concepts in a semantic model) that are required to be true before an operation
can be successfully invoked.

Effect - An effect is a set of semantic statements (or expressions represented using the
concepts in a semantic model) that must be true after an operation completes execution
after being invoked. Different effects can be true depending on whether the operation
completed successfully or unsuccessfully.

1.2 Information Model
The WSDL [WSDL] document forms the anchor point for Web services description. Building
on the descriptive capability of WSDL, we provide a mechanism to annotate the capabilities
and requirements of Web services with semantic concepts referenced from a semantic
model. To do this, we provide mechanisms to annotate the service and its inputs, outputs
and operations. Additionally, we provide mechanisms to specify and annotate preconditions
and effects of Web Services. These preconditions and effects together with the semantic
annotations of inputs and outputs can enable automation of the process of service
discovery.

Figure 1. Externalized representation and association of semantics to WSDL elements

Figure 1 shows how semantic annotations are associated with various elements of a WSDL
document (including inputs, outputs and functional aspects like operations, preconditions

Types
ComplexType

Element1
Annotation

Element2
Annotation

Interface
Operation

Precondition
Annotation

Effect
Annotation

WSDL Domain Model

Types
ComplexType

Element1
Annotation

Element2
Annotation

Interface
Operation

Precondition
Annotation

Effect
Annotation

WSDL Domain Model

 Page 6 of 42

and effects) by referencing the semantic concepts in an external domain semantic model.
The domain model can consist of one or more ontologies.

1.3 Notational Conventions
The keywords [keywords] "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in RFC2119 [RFC2119].

1.4 Namespaces
The XML namespace names [XMLNamespace] URIs [URIs] defined by this technical note is
as follows:

Prefix Namespace name

wssem http://www.ibm.com/xmlns/WebServices/WSSemantics

2. Requirements for Web Service Semantics
We recommend that certain principles guide any work to define a framework for Web
services semantics. Our work is guided by the following principles.

 Build on existing Web Services standards: The Web services standards are fast
becoming a preferred technology for application integration because of the promise of
their interoperability. Companies are making investments in integration projects based
on Web Services. Therefore, we believe that any approach to adding semantics to Web
Services should be specified in an upwardly compatible manner so as to not disrupt the
existing install-base of Web Services.

 The mechanism for annotating Web services with semantics should be independent of
the semantic representation language: There are a number of potential languages for
representing semantics such as OWL [OWL], WSMO [WSMO], and UML [UML]. Each
language offers different levels of semantic expressivity and developer support. Our
position is that it is not necessary to tie the Web services standards to a particular
semantic representation language. This is consistent with the approach prescribed by
Sivashanmugam et al in their work [SVS03]. By keeping the semantic annotation
mechanism separate from the representation of the semantic descriptions, the approach
offers flexibility to developer community to select their favorite semantic representation
language. In the next section, we will show a way such independence can be achieved.

 The mechanism for annotating Web services with semantics should allow the association
of multiple annotations written in different semantic representation languages: As
mentioned earlier, there are many potential semantic representation languages. Service
providers may choose to annotate their services in multiple semantic representation
languages to be discovered by multiple discovery engines. Therefore, we believe that the

 Page 7 of 42

mechanism for annotating Web Services with semantics should allow multiple
annotations to be associated with Web Services.

 Support semantic annotation of Web Services whose data types are described in XML
schema: A common practice in Web services-based integration is to reuse interfaces
that are described in XML. The definition of business documents using XML schema is a
wide-spread and successful practice. XML schemas will be an important data definition
format for the foreseeable future. We believe that the semantic annotation of service
inputs and outputs should support the annotation of XML schemas. WSDL 2.0 supports
the use of other type systems in addition to XML Schema, so constructs in semantic
models, such as classes in OWL [OWL] ontologies, could be used to define the Web
service input and output data types. But an approach that does not address XML
schema-based types will not be able exploit exiting assets or allow the gradual upgrade
of deployed WSDL documents to include semantics.

 Provide support for rich mapping mechanisms between Web Service schema types and
ontologies: Given our position on the importance of annotating XML schemas in Web
service descriptions, attention should be given to the problem of how to map XML
schema complex types to ontological concepts. Again, an agnostic approach to the
selection of schema mapping languages is called for. For example, if the domain model
is represented in OWL, the mapping between WSDL XSD elements and OWL concepts
can be represented in any language of user’s choice such as: RDF, OWL, XSLT, XQuery
or any other arbitrary language as long as the chosen language is fully qualified with its
own namespace.

3. An Example
We first present an example WSDL document that is annotated with semantic information to
give the reader a preview of what is explained in the rest of the document. The semantic
annotations are explained in section 4 with specific examples drawn from this example.

In this sample, we present a simple purchase order service. The inputs and outputs of
ProcessPurchaseOrder service are annotated with semantics, two new elements namely
preconditions and effects are introduced as extensibility elements to the operation construct
in WSDL, and an extensibility element called category is added to the interface construct.
The semantic concepts and their relationships are modeled in an OWL ontology –
PurchaseOrder.owl (presented in Appendix C).

PurchaseOrder.wsdl is given below.

<definitions name="PurchaseOrder"
 targetNamespace="http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/"
 xmlns="http://www.w3.org/2004/08/wsdl”

xmlns:tns="http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”
xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics "

 Page 8 of 42

xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<types>
 <xs:import namespace=" http://www.ibm.com/xmlns/WebServices/WSSemantics"

schemaLocation= "WSSemantics.xsd />
 <xs:import namespace=" http://www.ourdemos.com/purchaseorder/"

schemaLocation= "POBilling.xsd />
 <xs:import namespace=" http://www.ourdemos.com/purchaseorder/"

schemaLocation= "POItem.xsd />
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace=" http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/"

 xmlns="http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/">
<!—Semantic annotations for these complex types are given in their respective type

 definitions>
<xs:complexType name="processPurchaseOrderRequest">

 <xs:all>
<xs:element name="billingInfo" type="xsd1:POBilling"/>
<xs:element name="orderItem" type="xsd1:POItem"/>

 </xs:all>
 </xs:complexType>

<!—Semantic annotation is added directly to non-leaf element />
<xs:element name= "processPurchaseOrderResponse" type="xs:string

wssem:modelReference="POOntology#OrderConfirmation"/>
</xs:schema>

</types>
<interface name="PurchaseOrder">

<!—Category is added as an extensible element of an interface>
<wssem:category name= “Electronics” taxonomyURI=”http://www.naics.com/”

 taxonomyCode=”443112” />
 <operation name="processPurchaseOrder” pattern=wsdl:in-out>
 <input messageLabel = ”processPurchaseOrderRequest"
 element="tns:processPurchaseOrderRequest"/>
 <output messageLabel ="processPurchaseOrderResponse"
 element="processPurchaseOrderResponse"/>

<!—Precondition and effect are added as exte nsible elements on an operation>
<wssem:precondition name="ExistingAcctPrecond"

wssem:modelReference="POOntology#AccountExists">
<wssem:effect name="ItemReservedEffect"

wssem:modelReference="POOntology#ItemReserved"/>
</operation>

</interface>
</definitions>

In this WSDL document, the input processPurchaseOrderRequest includes complex child
elements. The definition of semantic annotations for these complex types is done at the
level of leaf elements in complex types in this example. Leaf level mappings are discussed
later in detail. In this technical note, an alternate way to annotate complex types is also
proposed. This approach associates schema mapping functions at the level of complex
types. Schema mapping functions represented in XSLT and XQuery are discussed in detail in
Appendices A and B respectively. Native support for OWL types (as supported in WSDL 2.0)
is also possible within our framework. Details for OWL type support are available in an
earlier version of this work [WSDL-S]. The XSD definitions of all the extensions defined in
this document are shown in the next section.

WSSemantics.xsd is given below.

 Page 9 of 42

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/xmlns/stdwip/Web-services/WS-Semantics"
 xmlns:wssem="http://www.ibm.com/xmlns/stdwip/Web-services/WSSemantics"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<attribute name="modelReference" type="anyURI" use="optional"/>

<attribute name=”schemaMapping” type=”anyURI” use=”optional”/>

<element name=”category” maxOccurs="unbounded">
<complexType>
<complexContent>

<extension base=”wsdl:documented”>
<attribute name="categoryname" type="NCName" use="required"”/>
<attribute name="taxonomyURI" type="anyURI" use="required"”/>
<attribute name="taxonomyValue" type="String" use="optional"/>
<attribute name="taxonomyCode" type="integer" use="optional"/>

</extension>
</complexContent>

</complexType>
</element>

<element name = "precondition">
<complexType>

<complexContent
<restriction base="anyType">

<xsd:attribute name=”name” type=”string” />
<attribute name="modelReference" type="anyURI" />
<attribute name="expression" type="string" />

</restriction>
</complexContent>

</complexType>
</element>

<element name="effect">
<complexType>

<complexContent
<restriction base="anyType">

<xsd:attribute name=”name” type=”string” />
<attribute name="modelReference" type="anyURI" />
<attribute name="expression" type="string" />

</restriction>
</complexContent>

</complexType>
</element>

</schema>

This schema is referenced in the definition of the xmlns:wssem namespace definition. The
following three XML schema documents define the input and output documents for the
service.
POItem.xsd. which defines the properties of an item in a purchase order, is given below.

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"

 Page 10 of 42

 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”

xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics"
 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<import location="WSSemantics.xsd"
namespace=" http://www.ibm.com/xmlns/WebServices/WSSemantics"/>

 <complexType name="POItem" >
 <all>
 <element name="dueDate" nillable="true" type="dateTime"

wssem:modelReference=”POOntology#DueDate”/>
 <element name="qty" type="float" wssem:modelReference=”#POOntology#Quantity”/>
 <element name="EANCode" nillable="true" type="string"

wssem:modelReference=”POOntology#ItemCode”/>
 <element name="itemDesc" nillable="true" type="string"

wssem:modelReference=”POOntology#ItemDesc” />
 </all>
 </complexType>
</schema>

POBilling.xsd, which defines the billing information in a purchase order, is given below. In
POBilling.xsd, the elements of POBilling complex type namely shipToAddress and
billToAddress are of type POAddress which is a complexType in itself. Therefore, the
specification of semantic annotations for these contained complex types are deferred to the
corresponding xsds – in this case POAddress.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns=http://www.w3.org/2001/XMLSchema

xmlns:xsd1=http://www.ourdemos.com/purchaseorder/
xmlns:POOntology=">

 <include schemaLocation="POAddress.xsd"/>
<include schemaLocation="Account.xsd"/>

 <complexType name="POBilling" Billing>
 <all>
 <element name="shipToAddress" nillable="true" type="xsd1:POAddress"/>
 <element name="billToAddress" nillable="true" type="xsd1:POAddress"/>
 <element name="accountID" nillable="true" type="xsd1:string"

wssem:modelReference=”POOntology#AccountID/>
 </all>
 </complexType>
</schema>

POAddress.xsd, which defines an address in a purchase order, is given below.

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”
 xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics "

 Page 11 of 42

 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder1.owl">

<import location="WSSemantics.xsd"
namespace=" http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>

 <complexType name="POAddress">
 <all>

<element name="recipientInstName" type="string"
wssem:modelReference=”POOntology#Receiver”/>

<element name="streetAddr1" type="string"
wssem:modelReference=”POOntology#StreetAddress”/>

 <element name="streetAdd2" type="string"
wssem:modelReference=”POOntology#StreetAddress”/>

 <element name="city" type="string" wssem:modelReference=”POOntology#City“/>
 <element name="zipCode" type="string"

wssem:modelReference=”POOntology#PostalCode”/>
 <element name="state" type="string" wssem:modelReference=”POOntology#State”/>
 <element name="country" type="string"

wssem:modelReference=”POOntology#Country”/>
 </all>
 </complexType>
</schema>

4. Using the Extensibility Elements of WSDL
In this section we describe how semantic annotations are added to WSDL document
elements.

Conceptually, WSDL 2.0 has the following constructs to represent service descriptions:
interface, operation, message, binding, service and endpoint [WSDL 2 Diff]. Of these, the
first three, namely interface, operation and message constructs deal with the abstract
definition of a service while the remaining three given by binding, service and endpoint
constructs deal with service implementation. In this technical note, we focus on
semantically annotating the abstract definition of a service to enable dynamic discovery,
composition and invocation of services (it is important to note that semantic annotations
would be of use in service implementations as well. For example, if a message exchange
protocol A is compatible with another protocol B, such information could be represented in
domain models and made use of during invocation. However, we do not address the
annotation of service imp lementation at this time. Service level annotations are in part
addressed by WS-Policy). We provide URI reference mechanisms via extensibility elements
to the interface, operation and message constructs to point to the semantic annotations
defined in the domain models for services.

A quick summary of the extensibility elements provided in this technical note are given
below:

 an extension element, namely modelReference, to handle one-to-one mapping of
schema elements to the concepts in a semantic model

 an extension attribute, namely schemaMapping, which is added to XSD
complextypes and elements, for associating the schema elements of a Web service

 Page 12 of 42

with semantic models, such as ontologies to handle many-one and one-many
mappings.

 two new elements, namely precondition and effect, which are specified as child
elements of the operation element. Preconditions and effects are primarily used in
service discovery, and are not necessarily required to invoke a given service (in this
technical note, we defer the detailed representation of preconditions and effects,
which could include a combination of complex expressions, to the underlying
semantic domain representation models or ontologies) and

 an extension attribute on interface element, namely category. It consists of service
categorization information that could be used when publishing a service in a Web
Services registry such as UDDI. Semantic categorization of UDDI registries using
ontologies was proposed in [SVS04, MWSDI]

Annotating input and output elements
In this section, we describe how to annotate the input and output elements of a WSDL
document. In the purchase order example, the processPurchaseOrder operation had one
input and one output. The input is represented by the element
processPurchaseOrderRequest which is given by xsd:complexType
processPurchaseOrderRequest. The output is represented by the element
processPurchaseOrderResponse. A WSDL operation is shown below.

 <interface name="PurchaseOrder">
 <operation name="processPurchaseOrder” pattern=wsdl:in-out>
 <input messageLabel = ”processPurchaseOrderRequest"
element="tns:processPurchaseOrderRequest"/>
 <output messageLabel ="processPurchaseOrderResponse"
element="processPurchaseOrderResponse"/>
 <!—Precondition and effect are added as extensible elements on an operation>
 <wssem:precondition name="ExistingAcctPrecond”

wssem:modelReference="POOntology#AccountExists">
 <wssem:effect name="ItemReservedEffect"

wssem:modelReference="POOntology#ItemReserved"/>
 </operation>
 </interface>

The schema that shows the input and output message definitions is given below.
<types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace=" http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/"
 xmlns="http://www.ourdemos.com/purchaseorder/wsdl/PurchaseOrder/">

<!—Semantic annotations for these complex types are given in their respective type
 definitions>

<xs:complexType name="processPurchaseOrderRequest">
 <xs:all>

<xs:element name="billingInfo" type="xs:POBilling"/>
<xs:element name="orderItem" type="xs:POItem"/>

 </xs:all>
 </xs:complexType>

<!—Semantic annotation is added directly to this leaf element />
<xs:element name= "processPurchaseOrderResponse" type="xs:string

wssem:modelReference="POOntology#OrderConfirmation"/>
</xs:schema>

 Page 13 of 42

</types>

In this example, the input is a complex type while the output is a simple type. To annotate
simple types we use the extensibility of xsd:element. An excerpt from XML Schema for
xsd:element is shown below. It indicates that an element can be extended with ‘any
attributes with non-schema namespace’. We use wssem namespace with modelReference
attribute to associate annotations to element.

<element
 ….
id = ID
maxOccurs = (nonNegativeInteger | unbounded) : 1
minOccurs = nonNegativeInteger : 1
name = NCName
……
type = QName
{any attributes with non-schema namespace . . .}>
Content: (annotation?, ((simpleType | complexType)?, (unique | key | keyref)*))

</element>

Annotating Complex Types
Complex types can be annotated in multiple ways. We propose two alternate schemes for
annotating complex types:

 Bottom Level Annotation: Annotating at leaf element level
 Top Level Annotation : Annotating at complex type level

In the bottom level annotation, all the leaf elements in a complex type can be annotated.
The advantage of this approach is that it is simple. It assumes that there is a corresponding
concept in the domain model which maps to each leaf element. In cases where there is no
corresponding concept, then its semantic annotation can be left unspecified. The
disadvantage of this approach is that it assumes there is one-to-one correspondence
between the schema elements and the concepts in the domain model. When the
associations are one-to-many or many-to-one specifying associations at each leaf element
may not be possible. In top level annotation, complex types themselves are annotated with
the semantic concept. The advantage of this approach is that it allows for the specification
of complex mappings between the elements contained in complex types and the concepts
defined in domain models. The disadvantage of this approach is that it tends to be complex.
In this technical note, we accommodate both types of annotations. Below, we describe
mechanisms for both approaches.

Bottom Level Annotation: Annotating leaf elements in a complex type
In some cases, the elements of a complex type will correspond in a one-to-one fashion with
the concepts in a domain model. To accommodate this case, a simple and direct method is
provided. We support this by adding a wssem:modelReference attribute to the relevant
schema element or attribute definition. We allow for multiple annotations to be associated
with an element. The schema for associating a modelReference attribute is:

<attribute name="modelReference" type="anyURI" use=”optional”/>

 Page 14 of 42

An example of annotating the leaf nodes of complex type with wssem:modelReference
attribute is shown below.
<complexType name="POItem">
 <all>
 <element name="dueDate" type="dateTime"

wssem:modelReference=”POOntology#DueDate"/>
 <element name="quantity" type="float"

wssem:modelReference ="POOntology#Quantity"/>
 <element name="EANCode" type="string"

wssem:modelReference ="POOntology#ItemCode"/>
 <element name="itemDesc" type="string"

wssem:modelReference ="POOntology#ItemDesc"/>
 </all>
 </complexType>

Top Level Annotation: Annotating a complex type using schema mapping function
A Complex type can have a semantic annotation via wssem:modelReference attribute. This
attribute can point to the corresponding high level concept in an ontology. This high level
semantic annotation on a complex type can be used during discovery to make a preliminary
determination on whether two structures that are to be matched are semantically related.
For example, a complex type ‘chip’ in a xsd schema can have a semantic annotation
‘Microprocessor Chip’ from the ontology. This can provide the required context for a schema
element during discovery of services. For instance, a discovery service could mistake a ‘chip’
to mean a chip in a gambling domain but having a semantic annotation can help clarify the
context. The annotation ‘Microprocess Chip’ would be part of electronics domain ontology
and the related properties such as electrical properties of a microprocessor etc. help set the
context for discovery. At this point in the technical note, this wssem:modelReference
attribute on a complex type does not specify semantic annotations for any elements within a
complex type. Semantic annotations for elements contained within a complextype would
have to specified using wssem:schemaMapping attribute (explained below). The schema for
associating a modelReference attribute is:

<attribute name="modelReference" type="anyURI" use=”optional”/>

To capture the semantics for the elements within a complex type, we present a schema
mapping function that can be associated with a complex type. The schema for associating a
schemaMapping function is:

<attribute name="schemaMapping" type="anyURI" use=”optional”/>

An excerpt from XML Schema for a complex type is shown below. It indicates that complex
types can be extended with ‘any attributes with non-schema namespace’. We use wssem
namespace with schemaMapping attribute to associate annotations to complex types.

<complexType
abstract = boolean : false
block = (#all | List of (extension | restriction))
final = (#all | List of (extension | restriction))

 Page 15 of 42

id = ID
mixed = boolean : false
name = NCName
{any attributes with non-schema namespace . . .}>
Content: (annotation?, (simpleContent | complexContent | ((group | all | choice | sequence)?,

((attribute | attributeGroup)*, anyAttribute?))))
</complexType>

Just like the way we are agnostic the choice of the domain modeling language, we are also
agnostic to the choice of schema mapping language. Our approach provides a mechanism to
associate zero or more schema mapping functions with a complex type without any
restrictions on the choice of the schema mapping language. The following excerpt from
purchase order example shows how XSLT can be used as a schema mapping language to
specify associations between XSD elements and OWL concepts. Detailed examples showing
mapping using XSLT and XQuery are shown in Appendices A and B respectively.

For mapping XML entities with OWL concepts we support both the alternatives given below:
1. XML complexTypes are mapped to OWL classes
2. XML elements are mapped to OWL properties

In POBilling.xsd, the complexType POBilling corresponds directly to the OWL concept Billing
(Appendix C). Hence the modelReference attribute is used to associate it (POBilling) to the
OWL concept Billing.

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1=http://www.ourdemos.com/purchaseorder/
 xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics "
 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

 <include schemaLocation="POAddress.xsd"/>
 <include schemaLocation="Account.xsd"/>
 <complexType name="POBilling" wssem:modelReference=”POOntology#Billing”>
 <all>
 <element name="shipToAddress" type="xsd1:POAddress" />
 <element name="billToAddress" type="xsd1:POAddress" />
 <element name="accountID" type="xsd1:string />"
 </all>
 </complexType>
</schema>

In POAddress.xsd, the complexType POAddress does not map directly to the OWL concept in
the ontology. Hence, the schemaMapping attribute is used to point to an XSLT
transformation.

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”

 Page 16 of 42

 xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics "
 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<import location="WSSemantics.xsd" namespace="
http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>

 <complexType name="POAddress"
wssem:schemaMapping=”http://www.ibm.com/schemaMapping/POAddress.xsl”>

 <all>
<element name="recipientInstName" type="string" />
<element name="streetAddr1" type="string" />

 <element name="streetAdd2" type="string" />
<element name="city" type="string" />

 <element name="state" type="string" />
<element name="zipCode" type="string" />
<element name="country" type="string" />

 </all>
 </complexType>
</schema>

The schema mapping used by POAddress.xsd, POAddress.xsl is shown below.

POAddress.xsl

<?xml version='1.0' ?>
<xsl:transform version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<xsl:template match="/">
<Address rdf:ID="Address1">

 <has_Receiver rdf:datatype="xs:string">
<xsl:value-of select="POAddress/recepientInstName"/>
<has_StreetAddress rdf:datatype="xs:string">
<xsl:value-of select="concat(POAddress/streetAddr1,POAddress/streetAddr2)"/>
</has_StreetAddress >
<has_City rdf:datatype="xs:string">
<xsl:value-of select="POAddress/city"/>
</has_City>
<has_State rdf:datatype="xs:string">
<xsl:value-of select="POAddress/state"/>
</has_State>
<has_ZipCode rdf:datatype="xs:string">
<xsl:value-of select="POAddress/zipCode"/>
</has_ZipCode>
<has_Country rdf:datatype="xs:string">
<xsl:value-of select="POAddress/country"/>
</has_Country>

</Address>
</xsl:template>

</xsl:transform>
The use of wssem:modelReference at the leaf level and wssem:schemaMapping at the
complex type level is mutually exclusive within an XML schema complex type. In essence, if
a schema mapping is given for the same complex type, it overrides the individual
modelReferences specified at the leaf elements.

 Page 17 of 42

We summarize our approach to annotating complex types below.
1. A complex type can have an optional semantic annotation via

wssem:modelReference. The primary purpose of this is to enable a quick/rough
match during discovery without going into the details of the structure.

2. The elements within a complex type can have semantic annotations specified in one
of two ways.

a. Via wssem:modelReference at each leaf element contained in a complex type
and/or

b. Via wssem:schemaMapping attribute at the complex type that specifies
complex mappings between the elements contained in a complex type and
the concepts in an external domain model/ontology

We suggest the following rules to resolve any potential conflicts.
1. If ws:schemaMapping is specified for a complex type and wssem:modelReference is

used at each leaf element level within the complex type, then the schemaMapping
overrides the leaf element level modelReferences.

2. The semantic annotation given at the complex type using ws:modelReference applies
only to the complex type itself – no inferences can be made about the semantic
annotations for elements within a complex type even if the semantic concept
specified at the complex type potentially has seemingly corresponding concepts to
elements in the complex type. To specify annotations for elements within a complex
type, either wssem:modelReference has to be used at the leaf elements of a complex
type or ws:schemaMapping has to be used to specify semantic annotation for
multiple elements at once.

3. If there is a complex type contained within a complextype, then a combination of
wssem:modelReference and wssem:schemaMapping can be used. For example,
POBilling.xsd has two complex elements shipToAddress and billToAddress each of
type POAddress and an accountID element of type string. In such a case, accountID
element can have a wssem:modelReference to directly point to a semantic concept in
the ontology while the semantic annotations for shipToAddress and billToAddress can
be specified once at the level of POAddress complex type.

In this section, we have provided a mechanism for associating annotations with the
wsdl:input and wsdl:output elements in a WSDL document. In the next section, we explain
how a wsdl:operation can be extended to accommodate preconditions and effects.

4.2 Preconditions

A precondition defines a set of assertions that must be met before a Web service operation
can be invoked. They can specify requirements that must be met, such as “must have an
existing account with this company,” or restrictions, such as, “Only US customers can be
served”. Preconditions are specified as child elements of the operation for which the
precondition is defined. The schema for a precondition is shown below.

<xsd:element name=precondition>
 <xsd:complexType>

 Page 18 of 42

<xsd:complexContent
<xsd:restriction base="xsd:anyType">

<xsd:attribute name=”name” type=”xsd:string” />
<xsd:attribute name="modelReference" type="xsd:anyURI" />
<xsd:attribute name="expression" type="xsd:string" />

</xsd:restriction>
</xsd:complexContent>

 </xsd:complexType>
</xsd:element>

The precondition element is defined as follows:
/precondition

This element specifies the semantic annotation for the parent operation.
/precondition/@name

The name attribute specifies an identifier unique within the set of preconditions in
the WSDL document.

/precondition/@modelReference
The modelReference attribute specifies the URI of the part of a semantic model that
describes the precondition. The modelReference attribute and the expression
attribute are mutually exclusive.

/precondition/@expression
This is an expression defining the precondition. The format of the expression is
defined by the semantic representation language used to express the semantic
model. The modelReference attribute and the expression attribute are mutually
exclusive.

<interface name="PurchaseOrder">
<operation name="processPurchaseOrder” pattern=wsdl:in-out>
 <input messageLabel = ”processPurchaseOrderRequest"
 element="tns:processPurchaseOrderRequest"/>
 <output messageLabel ="processPurchaseOrderResponse"
 element="processPurchaseOrderResponse"/>

<!—Precondition and effect are added as extensible elements on an operation>
<wssem:precondition name="ExistingAcctPrecond"

wssem:modelReference="POOntology#AccountExists">
<wssem:effect name="ItemReservedEffect"

wssem:modelReference="POOntology#ItemReserved"/>
</operation>

</interface>

Preconditions and effects are specified as child elements of the operation element. Each
operation may have at most one precondition and as many effects as possible. We allow for
at most one precondition to keep the specification simple. We believe that complex or
conditional preconditions should be expressed in the domain/semantic model. For example,
in OWL, a set of preconditions (effects) may be defined via logical expressions to facilitate
operations such as ‘and’, ‘or’, ‘xor’, etc. in evaluating these expressions. In this technical
note, we assume that the underlying (semantic) representation language supports capturing
such multiple preconditions into a single high-level precondition that can be referenced at
the operation element level within a WSDL specification.

 Page 19 of 42

Developing markup languages for representing preconditions and effects is an area of active
research. Different communities are working on this. For example, semantic Web
community is working on Semantic Web Rule Language (SWRL) [SWRL] and the modeling
community is working on Object Constraint Language (OCL) [OCL] etc. While we recognize
the importance of preconditions and effects in this document and provides hooks for
accommodating them while describing Web Services, we believe that it is still very early to
use them in production systems. Much more research and more concrete examples are
required to help better understand matching and evaluation of preconditions and effects
while (semi) automatically matching Web Services descriptions. We defer such a discussion
to a later revision of this document.

The schema for a request-response operation with optional preconditions and effects is
shown below.

<group name="request-response-operation">
 <sequence>
 <element ref="wsdl:input"/>
 <element ref="wsdl:output"/>
 <element ref="wsdl:fault" minOccurs="0" maxOccurs="unbounded"/>
 <element ref=”wssem:precondition” minOccurs="0" maxOccurs="1"”/>

<element ref=”wssem:effect” minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </group>

The grammar for a request-response operation with optional preconditions and effects is
shown below.

<wsdl:operation name="nmtoken" parameterOrder="nmtokens">
<wsdl:input name="nmtoken"? message="anyURI"/>

 <wsdl:output name="nmtoken"? message="anyURI"/>
<wssem:precondition name=”nmtoken”? [modelReference=”anyURI”/> |

expression=”string”]?
<wssem:effect name=”nmtoken”? [modelReference=”anyURI”/> | expression=”string”]*

 <wsdl:fault name="nmtoken" message="anyURI" modelReference=”anyURI” />*
</wsdl:operation>

4.3 Effects
An effect defines the result of invoking an operation. It can simply state that the output is
returned or it can make statements about what changes in the state are expected to occur
upon invocation of the service. For example, “the new account balance will be available” or
“the credit card account will be debited.”

<xsd:element name=”effect”>
 <xsd:complexType>

<xsd:complexContent
<xsd:restriction base="xsd:anyType">

<xsd:attribute name=”name” type=”xsd:string” />

 Page 20 of 42

<xsd:attribute name="modelReference" type="xsd:anyURI" />
<xsd:attribute name="expression" type="xsd:string" />

</xsd:restriction>
</xsd:complexContent>

 </xsd:complexType>
</xsd:element>

The effect element is a child of the operation element or the fault element. The effect
element is defined as follows:
/effect

This element specifies the semantic annotation of the effect that applies to the
parent operation.

/precondition/@name
The name attribute specifies an identifier unique within the set of effects in the
WSDL document.

/effect/@modelReference
The modelReference attribute specifies the URI of the part of a semantic model that
describes the effect. The modelReference attribute and the expression attribute are
mutually exclusive.

/effect/@expression
This is an expression defining the effect. The format of the expression is defined by
the semantic representation language used to express the semantic model. The
modelReference attribute and the expression attribute are mutually exclusive.

An effect can be associated with a fault. For example, an effect of ‘credit card not processed’
might occur when a fault ‘InvalidCreditCardError’ occurs. The fault effect is attached to the
operation’s child fault element via a modelReference attribute.

Note: Please see the note in Preconditions section (3.3) to see how to use the ‘annotation’
eleme nt in operation to capture effects if you are using an older version of WSDL schema
where operation does not support extensibility elements.

4.4 Service Categorization
The purpose of annotating services is to enable dynamic discovery of services. This is
possible when services are published, catalogued and annotated with semantics. In this
technical note, so far, we focused on how to annotate services. We now present a
mechanism to add categorization information to services which could be used while
publishing services in registries such as UDDI. This aids in service discovery by narrowing
the range of candidate services. The categorization can be used as input when the service is
published in a UDDI registry or it can constitute the effective categorization when the
service is made available via Web Services Inspection Language [WSIL] or some other
solution-specific means. Service categorization is also aimed at supporting specialized
taxonomies of middleware or utility services such as mediators. Our objective in this
technical note is to ensure that there is basic and high-level categorization information
about a service and leave the details of actual categorization system and maintenance of
taxonomies, classifications, etc, to the underlying service registries. As has been noted

 Page 21 of 42

earlier, this concept of associating service categorization information is borrowed from OWL-
S but here it is adapted to work within the parameters of WSDL specification.

We model a service category using the extensibility elements on a WSDL interface element.
This assumes that all operations in the interface of a given WSDL document belong to the
same category. The schema for the service categorization element is given below.

<element name=”category” maxOccurs="unbounded">
<complexType>

<complexContent
<extension base=”wsdl:interface”>

<attribute name=”categoyname” type=”NCName” use=”required”/>
<attribute name=”taxonomyURI” type=”anyURI” use=”required”/>

 <attribute name="taxonomyValue" type="String" use="optional"/>
 <attribute name="taxonomyCode" type="integer" use="optional"/>

 </complexContent>
 </complexType>
</element>

/category/@categoryName
The name of the category within a taxonomy.

/category/@taxonomyURI
A URI reference to the taxonomy definition. It is generally the URL where the
taxonomy can be obtained.

/category/@taxonomyValue
The value associated with a category in the taxonomy.

/category/@taxonomyCode
The code associated with a category in the taxonomy.

Multiple category elements can be used to specify that the service falls into multiple
categories. A category element specifies one categorization. For example, the following
categorization references the NAICS taxonomy and specifies that the services falls into the
443112 - Electronics category.

<wssem:category name= “Electronics” taxonomyURI=”http://www.naics.com/” taxonomyCode=”
443112” />

4.5 Interpreting Semantic Annotations

Input
An annotation on an element or complex type is considered to be an input semantic
annotation if the message is referenced by an element attribute of an input element. The
semantic annotation is associated with the operation defined by the parent element of this
input element. If the message is referenced by multiple operations, the semantic annotation
applies to each. If the annotation is applied to a complex type that is referenced by multiple
messages from multiple messages, the semantic annotation applies each operation that
references any of those messages for input.

 Page 22 of 42

Output
An annotation on an element or complex type is considered to be an output semantic
annotation if the message is referenced by an element attribute of an output element. The
semantic annotation is associated with the operation defined by the parent element of this
output element. If the message is referenced by multiple operations, the semantic
annotation applies to each. If the annotation is applied to a complex type that is referenced
by multiple messages from multiple messages, the semantic annotation applies each
operation that references any of those messages for output.

Precondition
A precondition annotation referenced from an operation element applies to that operation.

Effect
An effect annotation referenced from an operation element applies to that operation. An
effect annotation on a fault applies to the operation for which the fault is defined.

4.6 Publishing Web Services with Semantics in UDDI
This section is non-prescriptive and is provided to describe how this technical note relates to
Web services publication and discovery.

Finding suitable Web Services depends on the quality of the search facilities available for
service requesters. Web services registries can play an important role in describing the
available services and providing these search facilities for finding suitable services. As an
industry-backed registry for Web Services, UDDI plays a central role in helping requesters
find suitable services. Unfortunately, the current search functions in UDDI are limited in
their support for making automatic service selection decisions. Its keyword and category
based search facilities are insufficient for selecting suitable services for a given requirement.
As of version 3.0, UDDI does not capture the relationships between entities in its directory
and therefore is not capable of making use of the semantic information to infer relationships
during search. Moreover, UDDI currently does not facilitate matching at the service
capability level. Ways to address these limitations are being discussed in the context of
upcoming versions of UDDI specifications.
One topic under discussion is the use of OWL ontologies to represent UDDI taxonomies,
thereby enabling semantic matching at the category level. The semantic annotations defined
in this document both complement and extend such an approach. The semantic annotations
enhance the functional description so that while the classification can effectively narrow the
set of possible matches, the WSDL annotations can allow specific functional matching and
enable the discovery of composite services.

UDDI already specifies how to publish WSDL files to the registry. Semantically annotated
WSDL files can be published in similar fashion. A specific approach to performing such
semantic matching in UDDI is presented in [Semantic Matching in UDDI; SVSM03].

4.7 Future Extensions
OWL-S prescribes a notion of conditional outputs and conditional effects. We are currently
assessing methods for representing these concepts.

 Page 23 of 42

5. WSDL 1.1 Support

The mechanism for semantic annotation described in this specification can also be applied to
WSDL 1.1 conformant Web services descriptions. All the XML attributes and elements
defined in this specification apply without modification to the WSDL 1.1 descriptions.
However, in some cases they are applied to different elements in the WSDL document
structure.
Input and Output

Schema mapping of XML Schema types is the same. In addition, a schemaMapping or
modelReference attribute may be added to a part element (under a message element) to
specify an input or output annotation that applies to the entire message part. These
elements are part of the portType structure in WSDL1.1 which generally corresponds to the
WSDL2.0 interface structure.

Preconditions and Effects

The precondition and effect attributes are child attributes of the operation element in a
porttype. Operation is an extensible element in schema http://schemas.xmlsoap.org/wsdl/.
However, if you are using an older version of XML schema for WSDL, then an operation of a
portType is not extensible. Therefore, we recommend using the documentation element on
an operation to capture the semantics of preconditions and effects. That is shown below.

 <portType name="PurchaseOrder">
 <operation name="processPurchaseOrder" parameterOrder="billingInfo orderItem">

<documentation>
<wssem:precondition name="PreExistingAcctPrecond"

wssem:modelReference="POOntology#AccountExists">
<wssem:effect name="ItemReservedEffect"

wssem:modelReference="POOntology#ItemReserved"/>
</documentation>
<input message="tns:processPurchaseOrderRequest"

name="processPurchaseOrderRequest"/>
<output message="tns:processPurchaseOrderResponse"

name="processPurchaseOrderResponse"/>
 </operation>
 </portType>

Faults

In WSDL 1.1, faults are specified as messages that are generated when a particular
condition arises. Annotations for fault messages are done as any other output message.

6. References

[keywords]

 Page 24 of 42

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997, http://www.ietf.org/rfc/rfc2119.txt

[METEOR-S]
METEOR-S: Semantic Web Services and Processes,
http://lsdis.cs.uga.edu/Projects/METEOR-S/

[OWL]
OWL Web Ontology Language Overview, http:w3.org/TR/owl-features/

[OWL-S]
Web Ontology Language for Web Services, http://www.daml.org/services

[Semantic Matching in UDDI]
“External Matching in UDDI” J. Colgrave, R. Akkiraju, R. Goodwin 2004. In the
proceedings of IEEE International Conference on Web Services (ICWS) July 2004. San
Diego. USA.

[SOAP]
SOAP Version 1.2 Part 1: Messaging Framework, http://www.w3.org/TR/2003/REC-
soap12-part1-20030624/

[SVSM03]
Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding Semantics to Web Services
Standards, Proceedings of the 1st International Conference on Web Services (ICWS'03),
Las Vegas, Nevada (June 2003) pp. 395-401.

[SWSA]
 Semantic Web Services Initiative Architecture Committee (SWSA),

http://www.daml.org/services/swsa/
[SWSL]
 Semantic Web Services Language (SWSL) Committee.
http://www.daml.org/services/swsl/

[SVS04]
 K. Sivashanmugam, K. Verma, A. P. Sheth, Discovery of Web Services in a Federated
 Registry Environment, Proceedings of IEEE Second International Conference on Web

Services, June, 2004, pp. 270-278
[URI]

T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998,
http://www.ietf.org/rfc/rfc2396.txt

[MWSDI]
K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J. Miller,
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology and Management, Special

 Issue on Universal Global Integration, Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic
Publishers.

[Web Services Semantics]
Web Services Semantics: A View of Semantics in Services Oriented Architecture.
WebServicesSemanticsWhitePaper.htm

[WSDL]
W3C Note, Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[WSDL2]
W3C Working Draft, Services Description Language (WSDL) Version 2.0 Part 1: Core
Language specification, http://www.w3.org/TR/2004/WD-wsdl20-20040803/

 Page 25 of 42

[WSDL2 Diff]
What’s new in WSDL 2.0 http://Webservices.xml.com/lpt/a/ws/2004/05/19/wsdl2.html

[WSDL-S]
WSDL-S: Adding semantics to WSDL – White paper,
http://lsdis.cs.uga.edu/projects/WSDL-S/wsdl-s.pdf

[WSIL]
Web Services Inspection Language (WS-Inspection). Nov. 2001. http://www-
106.ibm.com/developerworks/Webservices/library/ws-wsilspec.html

[W3CWSA]
W3C Note, Web Services Architecture, http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/

[WSMO]
Web Service Modeling Ontology, http://www.wsmo.org/

[XMI]
OMG, XML Metadata Interchange Specification 2.0,
http://www.omg.org/docs/formal/03-05-02.pdf

[UML]
OMG, Unified Modeling language (UML) Version 1.5,
http://www.omg.org/technology/documents/formal/uml.htm

[XPath]
XML Linking Language (XLink) Version 1.0, http://www.w3.org/TR/2001/REC-xlink-
20010627/

[XMLNamespace]
W3C Recommendation, Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-
names-19990114

[XML]
Extensible Markup Language (XML) 1.0 (Second Edition), http://www.w3.org/TR/REC-
xml

[XMLSchema1]
W3C Recommendation, XML Schema Part 1: Structures,
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

[XMLSchema2]
W3C Recommendation, XML Schema Part 2: Datatypes,
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[SWRL]
W3C Member Submission, May 21, 2004, SWRL: A Semantic Web Rule Language Combining
OWL and RuleML, http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

[OCL]
OMG, UML 2.0 OCL Specification, http://www.omg.org/docs/ptc/03-10-14.pdf

7. Appendix A: Specifying Schema mapping Using XSLT
In this section, we show how XSLT can be used to represent the schema mapping between
XSD and OWL elements.

POAddress.xsd is given below.

 Page 26 of 42

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”
 xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics "
 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<import location="WSSemantics.xsd" namespace="
http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>

 <complexType name="POAddress"
wssem:schemaMapping=”http://www.ibm.com/schemaMapping/POAddress.xsl#input-

doc=doc(“POAddress.xml”)”>
 <all>

<element name="recipientInstName" type="string" />
<element name="streetAddr1" type="string" />

 <element name="streetAdd2" type="string" />
<element name="city" type="string" />

 <element name="state" type="string" />
<element name="zipCode" type="string" />
<element name="country" type="string" />

 </all>
</complexType>

</schema>

The schema mapping used by POAddress.xsd, POAddress.xsl is shown below
POAddress.xsl

<?xml version='1.0' ?>
<xsl:transform version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:Address="http://www.ibm.com/schemaMapping/POAddress.xsl"
xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<xsl:template match="/">
<POOntology:Address rdf:ID="Address1">

<POOntology:has_Receiver rdf:datatype="xs:string">
<xsl:value-of select="POAddress/recepientInstName"/>
</POOntology:has_Receiver>
<POOntology:has_StreetAddress rdf:datatype="xs:string">
<xsl:value-of select="concat(POAddress/streetAddr1,POAddress/streetAddr2)"/>
</POOntology:has_StreetAddress >
<POOntology:has_City rdf:datatype="xs:string">
<xsl:value-of select="POAddress/city"/>
</POOntology:has_City>
<POOntology:has_State rdf:datatype="xs:string">
<xsl:value-of select="POAddress/state"/>
</POOntology:has_State>
<POOntology:has_Country rdf:datatype="xs:string">
<xsl:value-of select="POAddress/country"/>
</POOntology:has_Country>
<POOntology:has_ZipCode rdf:datatype="xs:string">
<xsl:value-of select="POAddress/zipCode"/>
</POOntology:has_ZipCode>

 </POOntology:Address>

 Page 27 of 42

 </xsl:template>
</xsl:transform>

POItem.xsd is given below

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”

xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics"
 xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<import location="WSSemantics.xsd"
namespace="http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>
<complexType name="POItem"
wssem:schemaMapping=”http://www.ibm.com/schemaMapping/POItem.xsl#input-
doc=doc(“POItem.xml”)”>
 <all>
 <element name="dueDate" type="dateTime" />

<element name="quantity" type="float" />
 <element name="EANCode" type="string" />
 <element name="itemDesc" type="string" />

</all>
</complexType>
</schema>

The POItem schema is also updated to include semantic references. The schema mapping
used by POItem.xsd, POItem.xsl is shown below.

POItem.xsl

<?xml version='1.0' ?>
<xsl:transform version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
xmlns:Item="http://www.ibm.com/schemaMapping/POItem.xsl"
xmlns:POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl">
<xsl:template match="/">

<POOntology:Item rdf:ID="Item1">
<POOntology:has_dueDate rdf:datatype="xs:dateTime">
<xsl:value-of select="POItem/dueDate"/>
</POOntology:has_dueDate >
<POOntology:has_quantity rdf:datatype="xs:float">
<xsl:value-of select="POItem/quantity"/>
</POOntology:has_quantity>
<POOntology:has_EANCode rdf:datatype="xs:string">
<xsl:value-of select="POItem/EANCode"/>
</POOntology:has_EANCode >
<POOntology:has_itemDesc rdf:datatype="xs:string">
<xsl:value-of select="POItem/itemDesc"/>
</POOntology:has_itemDesc>
</POOntology:Item>

</xsl:template>
</xsl:transform>

 Page 28 of 42

8. Appendix B: Specifying Schema mapping using XQuery

This appendix shows examples of how mappings between XSD schema elements and
concepts in domain model can be specified using XQuery. The mappings written as XQuery
functions are organized as modules to enable reusability. Once specified, we show how
these mappings can be invoked using an XQuery.
We show the mapping for POAddress.xsd in this section.

POAddress.xsd is given below.

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”
 xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics ">

<import location="WSSemantics.xsd" namespace="
http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>

 <complexType name="POAddress"
wssem:schemaMapping=”http://www.ibm.com/schemaMapping/POAddress.xq#input-

doc=doc(“POAddress.xml”)”>
 <all>

<element name="streetAddr1" type="string" />
 <element name="streetAdd2" type="string" />
 <element name="poBox" type="string" />
 <element name="city" type="string" />

<element name="zipCode" type="string" />
<element name="state" type="string" />

 <element name="country" type="string" />
 <element name="recipientInstName" type="string" />

 </all>
 </complexType>
</schema>

POAddress.xsd defines an address in a purchase order. It contains a
wssem:schemaMapping attribute that points to a schema mapping that shows how the
elements of the POAddress complex type are defined by concepts in a semantic model. This
mapping defines the meaning of the information carried in the XML element.
The schema mapping used by POAddress.xsd, POAddress.xq is shown below.
POAddress.xq

xquery version "1.0";
declare namespace Address = "http://www.ibm.com/schemaMapping/POAddress.xq";
declare namespace xs = "http://www.w3.org/2001/XMLSchema" ;
declare namespace POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl" ;
declare namespace owl="http://www.w3.org/2002/07/owl#";
declare namespace rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#";
for $a in doc("POAddress.xml")/POAddress
return

 Page 29 of 42

<POOntology:Address rdf:ID="Address1">
<POOntology:has_StreetAddress rdf:datatype="xs:string">

{ fn:concat($a/streetAddr1 , " ", $a/streetAddr2) }
</POOntology:has_StreetAddress>
<POOntology:has_City rdf:datatype="xs:string">

{ fn:string($a/city) }
</POOntology:has_City>
<POOntology:has_State rdf:datatype="xs:string">

{ fn:string($a/state) }
</POOntology:has_State>
<POOntology:has_Country rdf:datatype="xs:string">

{ fn:string($a/country) }
</POOntology:has_Country>
<POOntology:has_POBox rdf:datatype="xs:string">

{ fn:string($a/poBox) }
</POOntology:has_POBox>
<POOntology:has_ZipCode rdf:datatype="xs:string">

{ fn:string($a/zipCode) }
</POOntology:has_ZipCode>
<POOntology:has_Receiver rdf:datatype="xs:string">

{ fn:string($a/recipientInstName) }
</POOntology:has_Receiver>
</POOntology:Address>

Result of the mapping

<POOntology:Address rdf:ID="Address1">
<POOntology:has_StreetAddress rdf:datatype="xs:string">
224 Boyd
</POOntology:has_StreetAddress>
<POOntology:has_City rdf:datatype="xs:string">
Athens
</POOntology:has_City>
<POOntology:has_State rdf:datatype="xs:string">
Georgia
</POOntology:has_State>
<POOntology:has_Country rdf:datatype="xs:string">
US
</POOntology:has_Country>
<POOntology:has_POBox rdf:datatype="xs:string">
897656
</POOntology:has_POBox>
<POOntology:has_ZipCode rdf:datatype="xs:string">
30602
</POOntology:has_ZipCode>
<POOntology:has_Receiver rdf:datatype="xs:string">
XYZ
</POOntology:has_Receiver>
</POOntology:Address>

POItem.xsd is given below

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="qualified"
 elementFormDefault="unqualified"
 targetNamespace="http://www.ourdemos.com/purchaseorder/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1=”http://www.ourdemos.com/purchaseorder/”

 Page 30 of 42

xmlns:wssem="http://www.ibm.com/xmlns/WebServices/WSSemantics">

<import location="WSSemantics.xsd" namespace="
http://www.ibm.com/xmlns/WebServices/WSSemantics/"/>

 <complexType name="POItem"
wssem:schemaMapping=”http://www.ibm.com/schemaMapping/POItem.xq#input-

doc=doc(“POItem.xml”)”>
 <all>
 <element name="dueDate" type="dateTime" />
 <element name="quantity" type="float" />
 <element name="EANCode" type="string" />
 <element name="itemDesc" type="string" />
 </all>
 </complexType>
</schema>

The POItem schema is also updated to include semantic references. The schema mapping
used by POItem.xsd, POItem.xq is shown below.
POItem.xq

xquery version "1.0";
declare namespace Item = "http://www.ibm.com/schemaMapping/POItem.xq";
declare namespace xs = "http://www.w3.org/2001/XMLSchema" ;
declare namespace POOntology="http://www.ibm.com/ontologies/PurchaseOrder.owl" ;
declare namespace owl="http://www.w3.org/2002/07/owl#";
declare namespace rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#";
for $a in doc("POItem.xml")/POItem
return

< POOntology:Item rdf:ID="Item1">
< POOntology:has_quantity rdf:datatype="xs:float">

{ fn:string($a/quantity) }
</ POOntology:has_quantity>
< POOntology:has_dueDate rdf:datatype="xs:dateTime">

{ fn:string($a/dueDate) }
</ POOntology:has_dueDate>
< POOntology:has_EANCode rdf:datatype="xs:string">

{ fn:string($a/EANCode) }
</ POOntology:has_EANCode>
< POOntology:has_itemDesc rdf:datatype="xs:string">

{ fn:string($a/itemDesc) }
</ POOntology:has_itemDesc>
</ POOntology:Item>

Result of the mapping

<POOntology:Item rdf:ID="Item1">
<POOntology:has_quantity rdf:datatype="xs:float">
5.0
</POOntology:has_quantity>
<POOntology:has_dueDate rdf:datatype="xs:dateTime">
2001-11-19T00:00:00.00000
</POOntology:has_dueDate>
<POOntology:has_EANCode rdf:datatype="xs:string">
A6253SAW

 Page 31 of 42

</POOntology:has_EANCode>
<POOntology:has_itemDesc rdf:datatype="xs:string">
Belkin Wireless Router
</POOntology:has_itemDesc>
</POOntology:Item>

9. Appendix C: Purchase Order Ontology

PurchaseOrder.owl

<?xml version="1.0"?>

<rdf:RDF

 xmlns="http://www.ibm.com/ontologies/PurchaseOrder.owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="http://www.ibm.com/ontologies/PurchaseOrder.owl">

<owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="ItemDesc"/>

 <owl:Class rdf:ID="Item"/>

 <owl:Class rdf:ID="DueDate"/>

 <owl:Class rdf:ID="PreCondition"/>

 <owl:Class rdf:ID="PostalCode"/>

 <owl:Class rdf:ID="City"/>

 <owl:Class rdf:ID="Billing"/>

 <owl:Class rdf:ID="AccountExists">

 <rdfs:subClassOf rdf:resource="#PreCondition"/>

 </owl:Class>

 <owl:Class rdf:ID="Country"/>

 <owl:Class rdf:ID="Account"/>

 <owl:Class rdf:ID="Quantity"/>

 <owl:Class rdf:ID="Address"/>

 <owl:Class rdf:ID="Effect"/>

 <owl:Class rdf:ID="OrderConfirmation"/>

 <owl:Class rdf:ID="StreetAddress"/>

 <owl:Class rdf:ID="State"/>

 <owl:Class rdf:ID="ItemReserved">

 <rdfs:subClassOf rdf:resource="#Effect"/>

 </owl:Class>

 <owl:Class rdf:ID="Receiver"/>

 <owl:Class rdf:ID="ItemCode"/>

 <owl:Class rdf:ID="ZipCode">

 Page 32 of 42

 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 <rdfs:subClassOf rdf:resource="#PostalCode"/>

 </owl:Class>

 <owl:Class rdf:ID="EanCode">

 <rdfs:subClassOf rdf:resource="#ItemCode"/>

 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="has_billingAddress">

 <rdfs:range rdf:resource="#Billing"/>

 <rdfs:domain rdf:resource="#Billing"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_account">

 <rdfs:domain rdf:resource="#Billing"/>

 <rdfs:range rdf:resource="#Account"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_shippingAddress">

 <rdfs:range rdf:resource="#Address"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Billing"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="has_StreetAddress">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_City">

 <rdfs:domain rdf:resource="#Address"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_AccountID">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Account"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_State">

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Address"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_itemDesc">

 Page 33 of 42

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Item"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_Quantity">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Item"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="has_POBox">

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:FunctionalProperty rdf:ID="has_ZipCode">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_Country">

 <rdfs:domain rdf:resource="#Address"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_Receiver">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Address"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_DueDate">

 <rdfs:domain rdf:resource="#Item"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="has_EANCode">

 <rdfs:domain rdf:resource="#Item"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

</rdf:RDF>

10. Appendix D: Mapping Choices

 Page 34 of 42

The focus of research in Semantic Web services has been on using ontologies for Web
service discovery and composition [SVSM03, WSMO, OWL-S]. It is useful to use ontologies,
as they provide semantic normalization between service requests and advertisements, for
higher level tasks like finding an appropriate service (discovery) or composing services to
aggregate their functionalities. However, during execution of such compositions, just
semantic annotations are not enough to automatically map the data (inputs and outputs) of
these services. For a valid interaction, the mappings must also be specified as annotations.

There has been significant work in the database area during 1980s and early 1990s on
recognizing the need for data interoperability. There have been numerous efforts in schema
mapping/merging/transformations, semantic heterogeneity, and use of ontology and
description logics for schematic and semantic integration (e.g., see the discussion in [S04]).
This was followed by substantial work on schema matching and mapping as part of the
Model Management initiative [BM]. There is ongoing work in the above areas especially in
the context of the new Web Service technologies and Semantic Web languages (XML,
RDF/RDFS, OWL) [POSV04, KS03, SM01, DMDH02, N04, FB02, HG05].

Conceptually, data interoperability can be divided into two parts – schema matching and
schema/data mapping. The words matching and mapping have often been used
interchangeably in the literature. The rest of this appendix follows the definition given below
for schema matching and mapping. Schema matching is the process of finding semantic
correspondences between elements of two schemas and mapping deals with the physical
representation of the matches established by schema matching and rules for transforming
elements of one schema to that of other. In the next two sections, we seek to briefly
describe the major advances in this field, as well as to point out where the approach
suggested in this specification stands in this space.

Schema matching:

Research in schema matching seeks to provide automated support to the process of finding
semantic matches between two schemas. This process is made harder due to
heterogeneities at the following levels [CKSTD04, SK93, S99]:

Syntactic heterogeneity - differences in the language used for representing the
elements
Structural heterogeneity - differences in the types, structures of the elements
Model / Representational heterogeneity – differences in the underlying models
(database, ontologies) or their representations (relational, object-oriented, RDF,
OWL)
Semantic heterogeneity - where the same real world entity is represented using
different terms or vice-versa

Approaches to schema matching can be broadly classified as approaches that exploit either
just schema information [MWJ99, MZ98*, PSU98, CDD01, MBR01] or schema and instance
level information [LC94, DDH01, MHH00]. The implementation of such approaches can be
classified as being either rule based [MZ98a, MZ98b, MWJ99, MBR01, MGR02] or learner
based techniques [WCL00, DDH01, DLDHD04, NHTHM02, BM01a, BM01b, OTSV04]. The
complementary nature of these different approaches has instigated a number of applications

 Page 35 of 42

[DLDHD04, DR02, EJX01, RDM04, MHHYHFP01] to use a combination of techniques
depending on the nature of the domain or application under consideration. Comprehensive
surveys of automatic schema matching approaches are presented in [RB01, DH04].

Much of the work described above is based on homogeneous models (database schemas,
ontologies etc) used to represent schemas with the heterogeneity at the syntax, structure
or semantic level. Web services are autonomous applications, whose data (inputs/outputs)
are defined using XML schema. For interoperation with other Web services, their data
elements should be mapped to existing domain models, which are typically represented
using OWL, RDF/S or UML. Any attempt at automatically matching Web service schemas to
OWL, RDF/S or UML models leads to the problem of heterogeneous models. Transforming
from a less expressive model to a more expressive model would usually require humans to
supply additional semantics, while transformation in the other direction can be lossy at best.
Current work in the area of model management [M04, M05] has focused on developing a
generic infrastructure that abstracts operations on models (i.e., schemas) and mappings
between models as high level operations which are generic and independent of the data
model and application of interest. In the area of Web services, [POSV04] addresses the
expressiveness difference between OWL concepts and XML elements by normalizing both
the representation to a common graph format.

In this specification, we do not deal with automated schema matching and generation of
mappings, but assume that the user provides the mappings that are referenced by the
schemaMapping attribute.

Schema/Data Mapping:

Mapping is the process of representing the matches found as mapping expressions, required
to make the mappings operational. Some of the past approaches to representing mappings
have been:

Queries or views using SQL, XSL, XQUERY: global-as-view (GAV) and local as-view
(LAV) [CGL01].

Mapping tables: [KAM03] specifying the dependencies between entities of two
schemas using a ‘mapping-table’, an extensionally defined table of value
correspondences.

Bridging axioms in first order logic: [MBDH02], OntoMerge [DMQ03]. The
correspondence between two ontologies is expressed as a set of bridging axioms
relating classes and properties of the two ontologies.

Instances in an ontology of mappings: MAFRA [MMSV02], [CM03]. Use ontologies to
define the structure of specific mappings and the transformation functions to transfer
instances from one ontology to another.

Languages like Datalog, F-Logic, DLR, Well-founded Object Language suggested by
Davison et al. [DKB95], C-OWL [BGHSS02], KIF, LOOM

Frameworks like [SK93] that illustrate the notion of capturing the semantic proximity
between objects by means of abstractions and [LA86] that illustrate the concept of

 Page 36 of 42

semantic and dynamic attributes, capturing four types of mapping/translation
techniques ranging from syntactic, table, functional and program based mappings.

This specification does not specify a single mapping language to use. However, as domain
models like UML, OWL and XSD are represented in XML, the examples in the document
represent mappings either as transformations using XSLT or queries using XQuery. Using
these mappings from xml schema elements to concepts in a domain model, it is possible to
map instances of Web service schemas from one representation to another. We also
recognize that the process of capturing mappings can be complicated by heterogeneities at
various levels and that XQuery / XSLT might not be suited for all cases. Also, our approach
supports the use of languages such as RDF/S and OWL for specifying mappings since it is
agnostic to the mapping language used for specifying the mappings.

Table1 illustrates the schema/data conflicts that most mapping representation languages
are capable of handling and how instances of one schema can be mapped to instances of
another using a common ontology.

Schema/Data
Conflicts

Description/ Example Nature of mapping
function

Data Representation

conflict

Different data types / representations

Ontology

StudentID(4 digit integer)
WS1 WS2

StudentID (4 digit integer) StudentID(9 digit integer)

The mapping function f2 will
largely depend on
application / domain
requirements.

*Note: While mapping in
the direction of f2 can be
well defined, f2-1 can not.

Data Scaling conflict

Representations using different units and measures

Ontology

Weight (in pounds)

WS1 WS2

Weight (in pounds) Weights (in kilograms)

The mapping function f2 or
its inverse f2-1 can be
automatically generated
using a look up table and
are well defined.

Data Precision conflict Represented using different precisions

Ontology

Grades (A,B,C,D,E,F)

WS1 WS2

Marks (1-100) Grades (A,B,C,D,E,F)

The mapping function f1 will
largely depend on
application requirements.

Example: A (81-100); B
(61-80); C (41-60); D (21-
40); E (1-20)

1:1 f1 f2

1:1 f1
f2

f2f1

 Page 37 of 42

Schema Isomorphism
conflict

Schema of similar elements have different number of attributes

Ontology

Person (Name, ID#, Phone)

WS1 WS2

Person(Name, SSN, Person(Name, SSN,
Home Phone, Work Phone) Phone)

The mapping function f1 will
largely depend on
application requirements. f1
may be defined as

1. Home Phone (WS1) ->
Phone(Ontology) or

2. Work Phone (WS2) ->
Phone(Ontology)

Note: While mapping in the
direction of f1 can be well
defined, f1-1 can not.

Generalization conflict Representation at different levels of generalization

Ontology

 Graduate (ID, Name, Major)

WS1 WS2

Grad-Student(ID, Name, Major) Student(ID, Name,

 Major, Type)

While the Type information
in the mapping function f2
can be ignored while
mapping to the ontology
instance, f2-1 is not well
defined and will depend on
the value in the Type
attribute of Student
instance.

Aggregation conflict Aggregation of source entities to a target entity

Ontology

Address(StreetAddress, City, State, Country, ZipCode)

WS1 WS2

Address(StreetAddress, Address(StrAdd1, StrAdd2,

City, State, Country, City, State, Country,

ZipCode) ZipCode)

The mapping function f2 =
concat (StrAdd1 , StrAdd2)
-> StreetAddress can be
defined whereas the
mapping in the other
direction f2-1 is not precise.

Table1: Possible schematic / data conflicts between xml input/output messages

*Although the mapping function is well defined in one direction, from the WSDL element to the Ontology concept,
it is not well defined in the reverse direction. Although converting a 5 digit StudentID to a 9 digit StudentID is
conceivable through use of a look up table, the transformation not a well defined function in itself.
Legend: We use WS1, WS2 to denote Web Services 1 and 2 and f1 and f2 to denote mapping functions from the
WSDL elements to the ontology.

f2f1

1:1 f1 f2

f21:1 f1

 Page 38 of 42

In addition to mapping representation languages, another area of focus has been the task of
automating the process of generating mappings. Generating mapping expressions are
essential in enabling semantic integration applications like query processing, data
integration or exchange of xml messages between Web services. Semi-automating the
process of elaborating matches has been discussed in [MHHYHFP01, MBR01, DR02].

Summary:

Although the loosely coupled nature of Web services has reduced a lot of heterogeneity
between interoperating systems at the syntax level, issues of semantic and
model/representational heterogeneity are even more complex than before and remain to be
addressed adequately. Semantically annotating WSDL elements partly addresses this issue
by dissolving the ambiguities in their schemas, structures and syntaxes, to aid in service
discovery and composition. That however, does not suffice to achieve complete
interoperability that is critical for service invocation or process execution. It is for these
reasons that we recognize the value add that schema/data mapping brings to the Web
service descriptions. This appendix has therefore been an attempt to point the reader to
existing work in the areas of schema matching and schema/data mapping, recognize issues
that need to be addressed in the context of Web services, and briefly characterize the space
of solutions to this matching and mapping challenge. The technical note chose to use the
point in this space that seemed most practical to us at this time.

References to Appendix D:
[BGHSS02]Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., and Stuckenschmidt,
H., “C-OWL: Contextualizing Ontologies", Proceedings of the Second International Semantic
Web Conference, 2003, pp.164—179.

[CDD01] Castano S, De AntonellisV, De Capitani diVemercati S (2001) Global viewing of
heterogeneous data sources. IEEE Trans Data Knowl Eng 13(2):277–297

[CGL01] D. Calvanese, G. Giacomo, and M. Lenzerini. Ontology of integration and
integration of ontologies. In Description Logic Workshop (DL 2001), pages
10–19, 2001.

[CKSTD04] V. Christophides, I. Koffina, G. Serfiotis, V. Tannen, A. Deutsch, Integrating XML
Data Sources using RDF/S Schemas: The ICS-FORTH Semantic Web Integration Middleware
(SWIM), Dagstuhl Seminar (2004): Semantic Interoperability and Integration

[CM03] M. Crub´ezy and M. A. Musen. Ontologies in support of problem solving. In S. Staab
and R. Studer, editors, Handbook on Ontologies, pages 321–342. Sringer,
2003.

[BM01a] J. Berlin, A. Motro: Autoplex, Automated Discovery of Content for Virtual
Databases: CoopIS 2001,108-122

 Page 39 of 42

[BM01b] Jacob Berlin and Amihai Motro: Database Schema Matching Using Machine
Learning with Feature Selection, November 2001, ISE-TR-01-06.

[DDH01] AnHai Doan, Pedro Domingos, Alon Y. Halevy, Reconciling Schemas of Disparate
Data Sources: A Machine-Learning Approach: (2001) SIGMOD Conference

[DH04] Doan A, Halevy A., Semantic Integration Research in the Database Community: A
Brief Survey: SIGMOD Record, 33(1):138-140, 2004. A related version appeared in AI
Magazine, Spring 2004.

[DLDHD04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Halevy, Domingos P,
iMAP: Discovering Complex Semantic Matches between Database Schemas: Proceedings of
the 2004 ACM SIGMOD International Conference on Management of Data (pp. 383-394),
2004. Paris, France: ACM Press.

[DKB95] S.B. Davidson, A. Kosky, and P. Buneman, Semantics of Database
Transformations: Semantics in Databases 1995: 55-91

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, Alon Y. Halevy, Learning to
map between ontologies on the semantic web: WWW 2002: 662-673

[DMQ03] D. Dou, D. McDermott, and P. Qi, Ontology translation on the semantic web: In
International Conference on Ontologies, Databases and Applications of Semantics, 2003.

[DR02] Hong Hai Do, Erhard Rahm, COMA - A System for Flexible Combination of Schema
Matching Approaches: VLDB 2002: 610-621 (2002)

[EJX01] D. Embley, D. Jackman, L. Xu, Multifaceted Exploitation of Metadata for Attribute
Match Discovery in Information Integration: WIIW 2001

[FB02] D. Fensel, C.Bussler : The Web Service Modeling Framework WSMF. In:
Electronic Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science
B.V., Summer 2002

[HG05] Farshad Hakimpour and Andreas Geppert: Resolution of Semantic
Heterogeneity in Database Schema Integration Using Formal Ontologies, Information
Technology and Management 2005

[KAM03] Anastasios Kementsietsidis, Marcelo Arenas, Renée J. Miller: Mapping Data in
Peer-to-Peer Systems: Semantics and Algorithmic Issues. SIGMOD Conference 2003: 325-
336

[KS03] Y.Kalfoglou, M.Schorlemmer, Ontology mapping: the state of the art: The
Knowledge Engineering Review 18(1):1--31, January 2003

 Page 40 of 42

[LA86] Witold Litwin, Abdelaziz Abdellatif: Multi-database Interoperability. IEEE Computer
19(12): 10-18 (1986).

[M04] S. Melnik, Generic Model Management: Concepts and Algorithms, Ph.D. Dissertation:
University of Leipzig, Springer LNCS 2967, 2004

[M05] Sergey Melnik, Model Management: First Steps and Beyond:German Database
Conference (BTW) 2005 (invited paper)

[MBDH02] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, and Alon Halevy,
Representing and Reasoning about Mappings between Domain Models, The Eighteenth
National Conference on Artificial Intelligence (AAAI'2002), Edmonton, Canada

[MBR01] Madhavan, Jayant;Bernstein, Philip A.;Rahm, Erhard, Generic Schema Matching
with Cupid: Proc. 27th Int. Conf. on Very Large Data Bases (VLDB 2001)

[MGR02] Melnik, S., Garcia-Molina, H., Rahm, E. Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching: In: Proc. 18th ICDE, San Jose,
CA (2002)

[MHH00] Miller RJ, Haas L, Hern’andez MA, Schema mapping as query discovery: In Proc
26th International Conference On Very Large Data Bases (2000)

[MHHYHFP01] Renee J. Miller, Mauricio A. Hernandez, Laura M. Haas, Lingling Yan, C. T.
Howard Ho, Ronald Fagin, and Lucian Popa, The Clio project: managing heterogeneity:
SIGMOD Rec., 30(1):78--83, 2001.

[MMSV02] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - a mapping framework for
distributed ontologies. In 13th European Conference on Knowledge Engineering and
Knowledge Management EKAW, Madrid, Spain, 2002.

[MWJ99] Prasenjit Mitra, Gio Wiederhold, Jan Jannink, Semi-automatic Integration of
Knowledge Sources: Proceedings of Fusion '99, Sunnyvale, USA, July 1999, Pages:572-581.

[MZ98a] Milo and Zohar, TranScm System:1998

[MZ98b] T. Milo, S. Zohar, Using Schema Matching to Simplify Heterogeneous Data
Translation: VLDB 98, August 1998.

[NHTHM02] Felix Naumann, Ching-Tien Ho, Xuqing Tian, Laura Haas, and Nimrod Megiddo,
Attribute classification using feature analysis: In Proc. of the Int'l Conf. on Data Eng., San
Jose, CA, 2002.

 Page 41 of 42

[N04] Natalya Fridman Noy, Semantic Integration: A Survey Of Ontology-Based
Approaches: SIGMOD Record 33(4): 65-70 (2004)

[OTSV04] Nicole Oldham, Christopher Thomas, Amit P. Sheth, Kunal Verma, METEOR-S
Web Service Annotation Framework with Machine Learning Classification: SWSWPC 2004:
137-146

[OWL-S] Web Ontology Language for Web Services, http://www.daml.org/services

[POSV04] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, Kunal Verma, Meteor-s web
service annotation framework: WWW 2004: 553-562

[PSU98] Palopoli L, Sacca D, Ursino D (1998) Semi-automatic, semanticdisc overy of
properties from database schemas. In: Proc Int. Database Engineering and Applications
Symp. (IDEAS), IEEE Comput, pp. 244–253

[RB01] Rahm, E., and P. A. Bernstein, A Survey of Approaches to Automatic Schema
Matching: VLDB Journal 10, 4 (Dec. 2001),

[RDM04] E. Rahm, H. Do, S. Massmann, Matching large XML schemas: SIGMOD Record
2004

[S03] A. Sheth, Semantic Web Process Lifecycle: Role of Semantics in Annotation,
Discovery, Composition and Orchestration, Invited Talk, WWW 2003 Workshop on E-
Services and the Semantic Web, Budapest, Hungary, May 20, 2003. Abstract Slides: pdf
powerpoint-show htm

[S04] A. Sheth, Early work in database research on schema mapping/merging/
transformation, semantic heterogeneity, and use of ontology and description logics for
schematic and semantic integration, discussion at the Dagstuhl Seminar on Semantic
Interoperability and Integration, September 2004,
http://www.dagstuhl.de/files/Proceedings/04/04391/04391.SWM2.Other.htm

[S99] A. Sheth, Changing Focus on Interoperability in Information Systems: From System,
Syntax, Structure to Semantics: in Interoperating Geographic Information Systems. M. F.
Goodchild, M. J. Egenhofer, R. Fegeas, and C. A. Kottman (eds.), Kluwer, Academic
Publishers, 1999, pp. 5-30.

[SK93] A. Sheth and V. Kashyap, So Far (Schematically) yet So Close (Semantically):
Proceedings of the DS-5 Conference on Semantics of Interoperable Database Systems,
Lorne, Australia, Elsvier Publishers, November 1992; Elsevier North Holland, Amsterdam
1993.

 Page 42 of 42

[SM01] G. Stumme and A. M¨adche. FCA-Merge: Bottom-up merging of ontologies. In 7th
Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages 225–230, Seattle, WA,2001.

[SVSM03] Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth, John A. Miller, Adding
Semantics to Web Services Standards: ICWS 2003: 395-401

[WCL00] W.Li, C. Clifton, S.Y. Liu, Database Integration Using Neural Networks:
Implementation and Experiences: Knowledge and Information Systems 2: 1, 2000

[WSMO] http://www.wsmo.org/

	Web Service Semantics - WSDL-S
	Repository Citation
	Authors

	Web Services Semantic Annotations 1.0 Final.doc

