
M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 73–87, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Web Services Discovery and Constraints Composition*

Debmalya Biswas

IRISA-INRIA, Campus Universitaire de Beaulieu,
35042 Rennes, France
dbiswas@irisa.fr

Abstract. The most promising feature of the Web services platform is its ability
to form new (composite) services by combining the capabilities of already
existing (component) services. The existing services may themselves be com-
posite leading to a hierarchical composition. In this work, we focus on the dis-
covery aspect. We generalize the characteristics of a service, which need to be
considered for successful execution of the service, as constraints. We present a
predicate logic model to specify the corresponding constraints. Further, com-
posite services are also published in a registry and available for discovery (hier-
archical composition). Towards this end, we show how the constraints of a
composite service can be derived from the constraints of its component services
in a consistent manner. Finally, we present an incremental matchmaking algo-
rithm which allows bounded inconsistency.

Keywords: Web Services, Composition, Discovery, Constraints, Matchmaking.

1 Introduction

Web services, also known in a broader context as Service Oriented Architecture
(SOA) based applications, are based on the assumption that the functionality provided
by an enterprise (provider) are exposed as services. The World Wide Web Consor-
tium (W3C) defines Web Services as “a software application identified by a URI,
whose interfaces and bindings are capable of being defined, described, and discovered
as XML artifacts. A Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols”. The
most promising aspect of the Web services platform is the composability aspect, that
is, its ability to form new services (hereafter, referred to as composite services) by
combining the capabilities of already existing services (hereafter, referred to as com-
ponent services). The existing services may themselves be composite leading to a
hierarchical composition. The services which do not depend on any other services for
their execution are referred to as primitive services.

There are mainly two approaches to composing a service: dynamic and static. In
the dynamic approach [1], given a complex user request, the system comes up with a
plan to fulfill the request depending on the capabilities of available Web services at
run-time. In the static approach [2], given a set of Web services, composite services
are defined manually at design-time combining their capabilities. In this paper, we

* This work is supported by the ANR DOCFLOW and CREATE ACTIVEDOC projects.

74 D. Biswas

consider a mix [3] of the two approaches where the composite services are defined
statically, but the matchmaking with providers is performed dynamically depending
on the user request. The above approach is typical of a group of organizations col-
laborating to provide recurring general services, usually, requested by users. Thus, we
assume that the organizations (providers) agree on some of the compositional aspects,
such as, ontology used to describe their services, underlying state transition model,
logging format, etc.

As mentioned earlier, the main focus of this paper is on the discovery aspect for
Web services composition. The current industry standard, Universal Description,
Discovery and Integration (UDDI) [4], only supports classification (keyword) based-
search and does not capture the semantics of Web services functionality. To overcome
this, work has already been initiated towards a semantic description specification for
Web services, especially, the Web Ontology Language for Services (OWL-S) [5]
specification. The OWL-S specification allows a service to be specified in terms of its
IOPE: Inputs, Outputs (required input and expected output values of the service pa-
rameters, respectively), Pre-conditions (the state of the world as it should be before
execution), and Effects (the state of the world as it would be after execution). We
generalize the above as constraints, that is, characteristics of a service which need to
be considered for successful execution of the service. For example, let us consider a
house painting contractor C whose services can be reserved online (via credit card).
Given this, the fact that the user requires a valid credit card is a pre-condition; and the
fact that the user’s house will be painted along with the painting charges deducted
from his/her account, are the effects. In addition, we also need to consider any limita-
tions of C during the actual execution phase, e.g., the fact that C works only on week-
days (and not on weekends). The above restriction might be a problem if the user
would like to get the work done during weekends. In general, pre-conditions refer to
the conditions required to initiate an execution and effects reflect the expected condi-
tions after the execution terminates. Constraints attempt to capture the conditions
necessary for the entire execution lifecycle (initiate-terminate).

A significant contribution of this paper is the aspect of constraint composition and
its impact on service discovery. This aspect has been mostly overlooked till now as,
according to most specifications, the description of a composite service resembles that
of a primitive service externally (or at an abstract level). However, determining the
description of a complex composite service, by itself, is non-trivial. Given their inher-
ent non-determinism (allowed by the “choice” operators within a composition
schema), it is impossible to statically determine the subset of component services
which would be invoked at run-time. The above implies the difficulty in selecting the
component services, whose constraints should be considered, while defining the con-
straints of the composite service. Basically, the constraints of a composite service
should be consistent with the constraints of its component services. In this paper, we
take the bottom-up approach and discuss how the constraints of a composite service
can be consistently derived from the constraints of its component services. Towards
this end, we consider four approaches: optimistic, pessimistic, probabilistic and rela-
tive. Finally, we discuss how matchmaking can be performed based on the constraints
model. Current matchmaking algorithms focus on “exact” matches (or the most opti-
mum match). They do not consider the scenario where a match does not exist. We try

 Web Services Discovery and Constraints Composition 75

to overcome the above by allowing inconsistencies during the matchmaking process
(does not have to be an exact match) up to a “bounded” limit.

Before proceeding, we would like to mention that the work in this paper is part of
ongoing work to provide a lightweight discovery mechanism for ActiveXML
(AXML) [6] systems. AXML systems provide an elegant way to combine the power
of XML, Web services and Peer to Peer (P2P) paradigms by allowing (active) Web
service calls to be embedded in XML documents. An AXML system consists of the
following main components:

− AXML documents: XML documents with embedded Web service calls. The em-
bedded services may be AXML services (defined below) or generic Web services.

− AXML Services: Web services defined as queries/updates over AXML documents.
An AXML service is also exposed as a regular Web service (with a WSDL de-
scription file).

− AXML peers: Nodes where the AXML documents and services are hosted.

Currently, the provider for an embedded service call is hard coded in the AXML
document. The objective is to let AXML systems also benefit from the additional
flexibility offered by dynamic selection (among the available AXML peers). As
obvious, this can be achieved by replacing the hard coding with a query to select the
provider at run-time. Given this, we needed a mechanism for discovery in an envi-
ronment, which is more homogeneous as compared to dynamic Web services com-
positions (and allows us to assume the presence of a shared ontology, state transition
model, etc.). As the proposed concepts are valid for Web services compositions in
general, we present them in a Web services context (in the sequel); and only mention
their usage with respect to AXML to show their practical relevance.

The rest of the paper is organized as follows: Section 2 deals with the constraints as-
pect in detail, starting with a predicate logic specification of constraints (sub-section 2.1)
followed by the constraints composition model (sub-section 2.2). The incremental
matchmaking algorithm is presented in section 3. Sections 4 and 5 discuss related works
and conclude the paper, respectively.

2 Constraints

As mentioned earlier, constraints refer to the characteristics of a service which need to
be considered for a successful execution of the service. Before proceeding, we would
like to discuss some heuristics to decide if a characteristic should (or should not) be
considered as a constraint. If we consider constraints as limitations, then the fact that
an Airline ABC cannot provide booking for a particular date is also a limitation (and
hence, a constraint). However, we do not expect such characteristics to be expressed
as constraints as they keep changing frequently. Similarly, we do not expect charac-
teristics which depend on internal business rules (sensitive or confidential informa-
tion) to be exposed as constraints. Thus, what should (or should not) be expressed as
constraints is very much context-specific, and we simply consider constraints as a
level of filtering during the discovery process.

76 D. Biswas

2.1 Constraint Specification

Constraints are specified as first order predicates associated with the service defini-
tions. For example, the fact that an airline ABC provides vegetarian meals and has
facilities for handicapped people on only some of its flights (to selected destinations)
can be represented as follows:

flight(Airlines,X,Y):-
veg_meals(Airlines,Destination_List), member(X,Destination_List),
hnd_facilities(Airlines,Destination_List), member(Y,Destination_List).

veg_meals(‘ABC’,[‘Paris’,‘Rennes’]).
hnd_facilities(‘ABC’,[‘Paris’,‘Grenoble’]).

In the above snippet, ‘member(X,Y)’ is a system defined predicate which holds if
X is an element of the set Y. Now, let us consider “related” constraints or scenarios
where there exists a relationship among the constraints. By default, the above exam-
ple assumes an AND relation among the constraints (both veg_meals and
hnd_facilities predicates have to be satisfied). The operators studied in literature for
the composition of logic programs are: AND, OR, ONE-OR-MORE, ZERO-OR-
MORE and any nesting of the above. We only consider the operators AND, OR and
any level of nesting of both to keep the framework simple (ONE-OR-MORE and
ZERO-OR-MORE can be expressed in terms of OR). An example of an OR relation
among the constraints is as follows: Airline ABC allows airport lounge access at in-
termediate stopovers only if the passenger holds a business class ticket or is a member
of their frequent flier programme. The above scenario can be represented as follows:

lounge_access(Airlines,X):-
ticket_type(‘ABC’,X,’Business’).

lounge_access(Airlines,Y):-
frequent_flier(Airlines,FF_List), member(Y,FF_List).

We briefly consider the following qualifiers which may be specified in conjunction
with the constraints:

− Validity period: Period until when the constraints are valid. The validity period
qualifier can be used to optimize matchmaking. Basically, there is no need to re-
peat the entire matchmaking process for each and every request. Once a service
provider is found suitable, it remains so till the validity period of at least one of its
“relevant” constraints expires.

− Commitment: The commitment of a provider towards providing a specific service
(levels of commitment [7]). For example, a provider may be willing to accept the
responsibility of providing its advertised services under any circumstance; or that it
is capable of providing the services, but not willing to accept responsibility if
something goes wrong.

− Non-functional: Qualifiers related to non-functional aspects, such as, transactions,
security, monitoring (performance), etc. From a transactional point of view, we need
to know the protocols supported for concurrency control (e.g., 2PL), atomic commit
(e.g., 2PC), and the following attributes required for recovery: idempotent (the ef-
fect of executing a service once is the same as executing it more than once), com-
pensatable (its effects can be semantically canceled), pivot (non-compensatable).

 Web Services Discovery and Constraints Composition 77

From a security perspective, it is important to know the protocols supported for
message exchange (e.g., X.509), and if any part of the interaction or service descrip-
tion needs to be kept confidential. The relevant qualifiers, from a monitoring point
of view, would be the time interval between successive snapshots of the system
state, snapshot format, etc. It is obviously possible to have qualifiers which overlap
between the aspects, e.g., it may be required to specify if part of the monitored data
(snapshot) cannot be exposed due to security issues.

2.2 Constraints Composition

2.2.1 Broker
The composite provider aggregates services offered by different providers and pro-
vides a unique interface to them (without any modification to the functionality of the
services, as such). In other words, the composite provider acts as a broker for the
aggregated set of services [8]. The accumulated services may have different function-
alities or the same functionality with different constraints (as shown by the following
example scenario). Scenario: Provider XYZ composing the flight services offered by
Airlines ABC and DEF.

Airlines ABC:
flight(Airlines,X):-
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List).
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]).

Airlines DEF:
flight(Airlines,X):-
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List).
hnd_facilities(‘DEF’,[‘Rennes’,‘Paris’]).

Composite provider XYZ:
flight(Airlines,X):-
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List),
 Airlines:= ‘XYZ’.
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]).
flight(Airlines,X):-
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List),
 Airlines:= ‘XYZ’.
hnd_facilities(‘DEF’,[‘Rennes’,‘Paris’]).

The addition of the clauses Airlines:= ‘XYZ’ in the above code snippet ensures
that the binding returned to the outside world is provider XYZ while the provider
XYZ internally delegates the actual processing to the providers ABC/DEF. Another
point highlighted by the above example is that composition may lead to relaxation of
constraints, e.g., the composite provider XYZ can offer flights with facilities for
handicapped people to more destinations (Marseilles, Grenoble, Rennes and Paris)
than offered by either of the component providers ABC (Marseilles, Grenoble)/DEF
(Rennes, Paris).

78 D. Biswas

2.2.2 Mediator
Two or more services offered by (the same or) different providers are composed to
form a new composite service with some additional logic (if required) [8]. We assume
that the composition schema is specified using some conversation language, e.g.,
Business Process Execution Language for Web Services (BPEL) [2], OWL-S Service
Model [5], etc. We show how the constraints of component services, composed in
sequence or parallel, can be composed. Given an Airline ABC with facilities for
handicapped people on its flights to selected destinations,

flight(Airlines,X):-
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List).
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]).

and a transport company DEF which has facilities for handicapped people on its
local bus networks in selected cities,

bus(Transport_C,X):-
hnd_facilities(Transport_C,Cities_List), member(X, Cities_List).

hnd_facilities(‘DEF’,[‘Marseilles’,‘Rennes’]).

the constraints of the composite service provider Travel Agent XYZ can be defined
as follows:

flight_bus(Agent,X):-
sequence(_flight(Agent1,X),_bus(Agent2,X)),
Agent:= XYZ.

_flight(Airlines,X):-
hnd_facilities(Airlines,Destination_List), member(X,Destination_List).

hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]).
_bus(Transport_C,X):-

hnd_facilities(Transport_C,Cities_List), member(X, Cities_List).
hnd_facilities(‘DEF’,[‘Marseilles’,‘Rennes’]).

The point to note in the above code snippet is the flight_bus predicate representing
the newly formed composite service. Also, the original predicates of the primitive
services are prefixed with _ to indicate that those services are no longer available
(exposed) for direct invocation. The above scenario highlights the restrictive nature of
constraint composition. For example, the newly composed service flight_bus can
provide both flight and bus booking with facilities for handicapped people to fewer
destinations (Marseilles) as compared to the destinations covered by the component
services separately: flight (Marseilles, Grenoble) and bus (Marseilles, Rennes).
Finally, we discuss the usage of the sequence predicate (in the above code snippet).
For a group of constraints, the sequence relationship implies that all the constraints in
the group need to hold (analogous to AND), however, they do not need to hold simul-
taneously, and it is sufficient if they hold in the specified sequence. For example, let
us assume that the premium (constraint) of an insurance policy is €€ 10,000, payable
over a period of 10 years. The above constraint is, in reality, equivalent to a sequence
of €€ 1000 payments each year (the user does not have to pay €€ 10,000 upfront). The
sequential relationship among the constraints can be derived from the ordering of

 Web Services Discovery and Constraints Composition 79

their respective services in the composition schema. Note that we do not consider the
“parallel” relationship explicitly as it is equivalent to AND.

2.2.3 Mediator with Non-determinism
Till now, we have only considered deterministic operators in the composition schema,
that is, sequential and parallel composition. With non-deterministic operators, the
situation is slightly more complicated. Some of the component services, composed via
non-deterministic operators, may never be invoked during an execution instance. As
such, we need some logic to determine if the constraints of a component service
should (or should not) be considered while defining the constraints of the composite
service. For example, let us consider the e-shopping scenario illustrated in Fig. 1.
There are two non-deterministic operators (choices) in the composition schema:
Check Credit and Delivery Mode. The choice “Delivery Mode” indicates that the user
can either pick-up the order directly from the store or have it shipped to his/her ad-
dress. Given this, shipping is a non-deterministic choice and may not be invoked
during the actual execution. As such, the question arises “if the constraints of the
shipping service, that is, the fact that it can only ship to certain countries, be projected
as constraints of the composite e-shopping service (or not)”. Note that even compo-
nent services composed using deterministic operators (Payment and Shipping) are not
guaranteed to be invoked if they are preceded by a choice. We consider some
approaches to overcome the above issue:

− Optimistic: Consider the constraints of only those services, which are guaranteed to
be invoked in any execution, while defining the constraints of the composite ser-
vice. The set of such services (hereafter, referred to as the strong set) can be deter-
mined by computing all the possible execution paths and selecting services which
occur in all the paths. For example, with reference to the e-shopping scenario in
Fig. 1, the strong set = {Browse, Order}. We call this approach optimistic as it as-
sumes that the services in the strong set are sufficient to represent the constraints of
the composite service. The concept of a strong set is analogous to the notion of
strong unstable predicates [9] or predicates which will “definitely” hold [10] in lit-
erature. Strong unstable predicates are true if and only if the predicate is true for all
total orders. For example, strong unstable predicates can be used to check if there
was a point in the execution of a commit protocol when all the processes were
ready to commit. Intuitively, strong unstable predicates allow us to verify that a de-
sirable state will always occur.

− Pessimistic: In this approach, we take the pessimistic view and consider the con-
straints of all those services which are in at least one of the possible execution
paths (while defining the constraints of the composite service). We refer to such a
set of component services as the weak set. Note that the weak set would consist of
all the component services if there are no “unreachable” services in the composi-
tion schema. Again, with reference to the e-shopping scenario in Fig. 1, the weak
set = {Browse, Order, Cancel Order & Notify Customer, Arrange for Pick-up,
Payment, Shipping}. We refer to this approach as pessimistic as it considers the
constraints of those services also which may not even be invoked during the actual
execution. The corresponding notion in literature is weak unstable predicates [11]
or predicates which will “possibly” occur [10]. A weak unstable predicate is true if

80 D. Biswas

and only if there exists a total order in which the predicate is true. For example,
weak unstable predicates can be used to verify if a distributed mutual exclusion
algorithm allows more than one process to be in the critical region simultaneously.
Intuitively, weak unstable predicates can be used to check if an undesirable state
will ever occur.

− Probabilistic: Another option would be to consider the most frequently invoked
component services (or the component services in the most frequently used execu-
tion path) as the representative set of the composite service. Such a set can be
determined statically from the execution logs or dynamically with the help of some
mathematical model (such as, Markov Decision Processes [12]) to assign prob-
abilities to the component services based on previous executions. Again, with ref-
erence to the e-shopping scenario in Fig. 1, a probable set of most frequently used
component services would be {Browse, Order, Arrange for Pick-up}. While this
option appears the most attractive at first sight, developing and solving a Mark-
ovian model is non-trivial for a complex composition schema (especially, if it
involves a lot of choices).

Fig. 1. An e-shopping scenario

The trade-off between the various options (discussed till now) can be summarized as
follows: (a) Optimistic: A successful initial match does not guarantee a successful exe-
cution (as the constraints of all the component services are not considered initially, it
might not be feasible to find a provider for one of the component services at a later
stage). Thus, the cost to consider for this case is in terms of failed contractual agree-
ments or simply the loss of user faith. (b) Pessimistic: “Pseudo” constraints may lead to
the corresponding composite service becoming ineligible for (an otherwise successful
match with) a user request. (c) Probabilistic: For this approach, the cost is in terms of
the complexity in finding the adequate probabilities and distribution functions to define
the probabilistic model. While the above approaches can be considered as extremes;
next, we consider an intermediate, but more practical, approach to determine the
representative set of component services (of a composite service).

Choose Delivery Mode

Success

Fail

Browse Order Check
Credit

Cancel Order &
Notify Customer

Delivery
Mode

Payment Arrange for
Pick-up

Shipping

 Web Services Discovery and Constraints Composition 81

Relative: In this approach, we consider an incremental construction of the set of com-
ponent services whose constraints need to be considered (while defining the constraints
of the composite service). Basically, we start with the strong set and keep on adding the
“related” services as execution progresses. We define related services as follows:

Related services: Let X and Y be component services of a composition schema CS.
Given this, X and Y are related if and only if the occurrence of X in an execution path
P of CS implies the occurrence of Y in P.

Intuitively, if a component service X of CS is executed then all the component ser-
vices till the next choice in CS will definitely be executed. For example, with refer-
ence to the e-shopping scenario in Fig. 1, services Payment and Shipping are related.
As mentioned earlier, the execution of both Payment and Shipping are not guaranteed.
However, if Payment is executed, then Shipping is also guaranteed to be executed.
The above definition of related services can also be extended to non-invocation of a
component service X as follows:

Related services (extended): Let X and Y be component services of a composition
schema CS. Given this, X and Y are related if and only if the (non-) occurrence of X
in an execution path P of CS implies the (non-) occurrence of Y in P.

Intuitively, if a component service X of CS is not executed then all the component
services till the next merge in CS will also not be executed – Fig. 2. The extension is
useful if we consider matching for more than one composite service simultaneously
(not considered here). Given this, prior knowledge that a component service will not
be invoked during a particular execution instance allows better scheduling of the
providers among instances.

Fig. 2. Related services (based on non-occurrence)

Till now, we have only considered component services related by functional de-
pendencies (as specified by the composition schema). Other relationships between
component services can also be (statically) determined based on the application or
domain semantics. For example, with reference to an e-shopping scenario, the choice
of €€ as the currency unit implies the (future) need for a shipping provider capable of
delivering within countries of the European Union (EU).

AXML application scenario. We discuss an implementation of the “related” approach
in the context of query evaluation by AXML systems. Given a query q on an AXML
document d, the system returns the subset of nodes of d which satisfy the query crite-
rion. There are two possible modes for query evaluation: lazy and eager. Of the two,
lazy evaluation is the preferred mode and implies that only those services are invoked
whose results are required for evaluating the query. Now, a query q on a document d
may require invoking some of the embedded services in d. The invocation results are

 Merge X …

Related to X (non-occurrence)

82 D. Biswas

Fig. 3. Sample AXML document ATPList.xml

inserted as children of the embedded service node (modifying d). For example, let us
consider the AXML document ATPList.xml in Fig. 3. The document ATPList.xml
contains two embedded services “getPoints” and “getGrandSlamsWonbyYear”. Now,
let us consider the following query:

Query A:
<action type = “query”>
 <location>Select p/citizenship, p/grandslamswon from p in ATPList//player

where p/name/lastname = Federer;</location>
</action>

Lazy evaluation of the above query would result in the invocation of the embedded
service “getGrandSlamsWonbyYear” (and not “getPoints”). However, if the query
were defined as follows:

 Web Services Discovery and Constraints Composition 83

Query B:
<action type = “query”>
 <location>Select p/citizenship, p/points from p in ATPList//player where

p/name/lastname = Federer;</location>
</action>

Lazy evaluation of query B would result in the invocation of the embedded service
call “getPoints” (and not “getGrandSlamsWonbyYear”).

Thus, given a q and d, (at a high level) the following three step process is used for
query evaluation:

1. Determine the set of relevant embedded services in d to evaluate q.
2. Invoke them and insert their results in d (leading to a modified d).
3. Apply steps 1 and 2 iteratively on the modified d, till step 1 cannot find any rele-

vant calls to evaluate q.

Step 3 is necessary because of the following reasons: (a) The result of a service in-
vocation maybe another service. (b) The invocation results may affect the document d
in such a way that formerly non-relevant embedded services become relevant after a
certain stage. For more details on the above AXML query evaluation aspects, the
interested reader is referred to [13].

To summarize, it is not feasible to statically determine the set of services, which
would be invoked during an execution instance (depends on the query and corre-
sponding invocation results). However, for each iteration, we can at least consider the
constraints of the relevant (“related”) embedded services determined by step 1 to-
gether for discovery.

3 Matchmaking

3.1 Basic Matchmaking

Here, we consider incremental matchmaking, that is, the provider for a service is
selected as and when it needs to be executed. For a (composite) service X, let P(X)
denote the constraints associated with X. Given this, the required matching for X can
be accomplished by posing P(X) as a goal against the providers’ constraints. A logic
program execution engine specifies not only if a goal can be satisfied but also all the
possible bindings for the unbounded variables in the goal. The bindings correspond to
the providers capable of executing X. In case of multiple possible bindings (multiple
providers capable of executing the same service), the providers are ranked using some
user defined preference criteria or the user may be consulted directly to select the
most optimum amongst them.

3.2 Approximate Matchmaking

Now, let us consider the scenario where the matchmaking is unsuccessful, that is,
there does not exist a set of providers capable of executing a set of component
services. Given this, it makes sense to allow some inconsistency while selecting a

84 D. Biswas

provider. Note that inconsistency is often allowed by real-life systems, e.g., flight
reservation system allow flights to be overbooked, but only up to a limited number of
seats. Thus, the key here is “bounded” inconsistency. Basically, for a given set of
component services SC = {ASC1, ASC2, …, ASCn}, the selected provider for one of the
component services ASCx does not have to be a perfect match as long as their accumu-
lated inconsistency is within a specified limit. Again (in the presence of non-
determinism), the given set SC of component services implies that all the services in
SC will be executed if at least one of the services in SC is executed (related services).
Note that the inconsistency induced by a component service ASCx may also have a
counter effect on (reduce) the inconsistency induced by another component service
ASCy. We use the composition schema CS in Fig. 4 as a running example to illustrate
our intuition behind the steps. X enclosed by a rectangle denotes a component service
X of CS. Services can be invoked in sequence (D, E) or in parallel (B, C). As before,
ovals represent choices.

A

B

C

D

F

E

G

Fig. 4. Sample composition schema CS

For each set of component services SC = {ASC1, ASC2, …, ASCn} considered for
matchmaking, perform the following:

1. Determine the common qualifiers: A qualifier qSC is common for SC if a pair of
constraints of services ASCx and ASCy, respectively, are based on qSC. For example,
if component services D and E need to be completed within 3 and 4 days, respec-
tively; then D and E have constraints based on the common qualifier time. Studies
[14] have shown that most constraints in real-life scenarios are based on the quali-
fiers: price, quantity or time.

2. For each qSC, define a temporary variable CqSC (to keep track of the inconsistency
with respect to qSC). Initially, CqSC = 0.

3. For each ASCx and a common qualifier qSC: Let vqSCx denote the constraint value of
ASCx with respect to qSC. For example, vtD = 3 denotes the completion time con-
straint value of D. Delete the constraint of ASCx, based on qSC, from the goal.

4. Perform matchmaking on the reduced goal (as discussed earlier in the previous
sub-section).

5. If the matchmaking (above) is successful: [Note that if matchmaking is unsuccessful
for the reduced goal then it would definitely have been unsuccessful for the original
goal.] Let p(ASCx) denote the provider selected to execute ASCx. For each deleted
constraint of ASCx based on qSC (step 3), get the best possible value vbest_qSCx
of p(ASCx) with respect to qSC and compute CqSC = CqSC + (vqSCx - vbest_qSCx). For

 Web Services Discovery and Constraints Composition 85

example, let us assume that p(D) and p(E) can complete their work in 5 and 1 days,
respectively. Given this, Ct = 0 + (vtD - vbest_tD) + (vtE - vbest_tE) = (3 - 5) + (4 - 1) = 1.

6. The selections as a result of the matchmaking in step 4 are valid if and only if, for
all qSC, CqSC > 0. For example, p(D) and p(E) are valid matches for the component
services D and E, respectively, as Ct > 0.

Note that this matching would not have been possible without the above extension
as p(D) violates (takes 5 days) the completion time constraint (3 days) of D.

AXML application scenario. We consider a replicated architecture where copies of an
AXML document d exist on more than one peer. With respect to each document d, there
exists a primary copy of d (and the rest are referred to as secondary copies). Any up-
dates on d occur on the primary copy of d, and are propagated to the secondary copies in
a lazy fashion. Let us assume that the system guarantees a maximum propagation delay
(of any update to all secondary copies of the affected document) of 1 hour. Given this, a
query of the form “List of hotels in Rennes” can be evaluated on any of the secondary
copies (that is, inconsistency is allowed). However, a query of the form “What is the
current traffic condition on street X?” needs to be evaluated on the primary copy (that is,
no inconsistency) or the system needs to be tuned to lower the maximum propagation
delay guarantee (that is, inconsistency up to a bounded limit).

4 Related Works

The concept of “constraints” has been there for quite some time now, especially, in
the field of Software Engineering as functional and non-functional features associated
with components [15]. While studies [16] have identified their need with respect to
Web services computing, there hasn’t been much work towards trying to integrate
them in a model for Web services composition. [17] and [18] describe preliminary
works towards integrating the notion of constraints with WSDL/SOAP and OWL-S,
respectively. However, their focus is towards trying to represent the operational speci-
fications (e.g., if a service supports the Two Phase Commit protocol, authentication
using X.509, etc.) of a Web service using features/constraints in contrast to our
approach of trying to capture the functional requirements for a successful execution.

[19] allows each activity to be associated with a constraint c, which is composed of
a number of variables ranging over different domains and over which one can express
linear constraints. In [20], Vidyasankar et. al. consider “bridging” the incompatibility
between providers selected (independently) for the component services of a compos-
ite service. In general, the issue of Web services discovery has been studied widely in
literature based on different specification formalisms: Hierarchical Task Planning
(HTN) [1], Situation Calculus [21], π-Calculus [22], etc. However, none of the above
approaches consider composability of the component services’ constraints (which is
essential to reason about the constraints of the composite service). The notion of
bounded inconsistency and its application to matchmaking is also a novel feature of
our work.

86 D. Biswas

5 Conclusion and Future Work

In this work, we focused on the discovery aspect of Web services compositions. To
enable hierarchical composition, it is required to capture and publish the constraints of
the composite services (along with, and in the same manner, as primitive services).
We introduced a constraints based model for Web services description. We showed
how the constraints of a composite service can be derived and described in a consis-
tent manner with respect to the constraints of its component services. We discussed
four approaches: optimistic, pessimistic, probabilistic and relative, to overcome the
composition issues introduced by the inherent non-determinism. Finally, we discussed
matchmaking for the constraints based description model. We showed how the notion
of bounded inconsistency can be exploited to make the matchmaking more efficient.

An obvious extension of the matchmaking algorithm would to consider simultane-
ous matching for more than one composite service. Doing so, leads to some interest-
ing issues like efficient scheduling of the available providers (touched upon briefly in
section 2.2.3). We are already working towards translating the proposed concepts (in
this paper) to compose service descriptions specified in OWL-S. In future, we would
also like to consider the top-down aspect of constraint composition, that is, to define
the constraints of a composite service independently and verifying their consistency
against the constraints of its corresponding component services.

Acknowledgments. I would like to thank Krishnamurthy Vidyasankar, Blaise Genest,
Holger Lausen and the anonymous referees for their helpful suggestions which helped
to improve the paper considerably.

References

1. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: HTN planning for Web service composi-
tion using SHOP2. Web Semantics 1(4), 377–396 (2004)

2. Business Process Execution Language for Web Services (BPELFWS) Specification v1.1.
http://www-128.ibm.com/developerworks/library/ws-bpel/

3. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and Dynamic
Service Composition in eFlow. HP Technical Report, HPL-2000-39 (March 2000)

4. Universal Description, Discovery and Integration (UDDI) Specification.
http://www.uddi.org

5. Web Ontology Language for Services (OWL-S) Specification
http://www.daml.org/services/owl-s/

6. Abiteboul, S., Bonifati, A., Cobena, G., Manolescu, I., Milo, T.: Dynamic XML Docu-
ments with Distribution and Replication. In: proceedings of 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 527–538

7. Singh, M.P., Yolum, P.: Commitment Machines. In: Revised Papers from the 8th Interna-
tional Workshop on Intelligent Agents VIII, pp. 235–247 (2001)

8. Hull, R., Benedikt, M., Christophides, V., Su, J.: Eservices: A look behind the curtain. In:
proceedings of the 22nd ACM Symposium on Principles of Database Systems (PODS), pp.
1–14 (2003)

 Web Services Discovery and Constraints Composition 87

9. Garg, V.K., Waldecker, B.: Detection of Strong Unstable Predicates in Distributed Pro-
grams. IEEE Transactions on Parallel and Distributed Systems, pp. 1323-1333 (Decemder
1996)

10. Cooper, R., Marzullo, K.: Consistent detection of global predicates. ACM SIGPLAN No-
tices 26(12) pp. 163–173

11. Garg, V.K., Waldecker, B.: Detection of Weak Unstable Predicates in Distributed Pro-
grams. IEEE Transactions on Parallel and Distributed Systems, pp. 299–307 (1994)

12. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic Workflow Composition: Using
Markov Decision Processes. Intl. Journal of Web Services Research 2(1), 1–17 (2005)

13. Benjelloun, O.: Active XML: A data centric perspective on Web services. INRIA PhD dis-
sertation, http://www.activexml.net/reports/omar-thesis.ps (2004)

14. Grosof, B., Labrou, Y., Chan, H.: A Declarative Approach to Business Rules in Contracts:
Courteous Logic Programs in XML. In: proceedings of the 1st ACM International Confer-
ence on Electronic Commerce (EC), pp. 68–77 (1999)

15. Chung, L., Nixon, B., Yu, E.: Using Non-Functional Requirements to Systematically Se-
lect Among Alternatives in Architectural Design. In: proc. of the 1st International Work-
shop on Architectures for Software Systems, pp. 31–43 (1995)

16. O’Sullivan, J., Edmond, D., Hofstede, A.: What’s in a Service? Towards Accurate De-
scription of Non-Functional Service Properties. In: the Journal of Distributed and Parallel
Databases, Vol. 12(2/3) (2002)

17. W3C Position Paper. Constraints and capabilities of Web services agents. In: proc. of the
W3C Constraints and Capabilities Workshop, http://www.w3.org/2004/07/12-hh-ccw
(2004)

18. OWL-S Coalition. OWL-S Technology for Representing Constraints and Capabilities of
Web Services. In: proc. of the W3C Constraints and Capabilities Workshop, http://
www.w3.org/2004/08/ws-cc/dmowls-20040904 (2004)

19. Aiello, M., Papzoglou, M., Yang, J., Carman, M., Pistore, M., Serafini, L., Traverso, P.: A
Request Language for Web-Services based on Planning and Constraint Satisfaction. In:
proc. of the 3rd VLDB Workshop on Technologies for E-Services (TES), pp. 76–85 (2002)

20. Vidyasankar, K., Ananthanarayana, V.S.: Binding and Execution of Web Service Compo-
sitions. In: proceedings of 6th International Conference on Web Information Systems En-
gineering (WISE), pp. 258–272 (2005)

21. Narayanan, S., Mcllraith, S.A.: Simulation, Verification and Automated Composition of
Web Services. In: proceedings of the 11th ACM International Conference on the World
Wide Web (WWW), pp. 77–88 (2002)

22. Rao, J., Kungas, P., Matskin, M.: Logic Based Web Services Composition: From Service
Description to Process Model. In: proceedings of the 2nd IEEE International Conference
on Web Services (ICWS), pp. 446–453 (2004)

	Introduction
	Constraints
	Constraint Specification
	Constraints Composition

	Matchmaking
	Basic Matchmaking
	Approximate Matchmaking

	Related Works
	Conclusion and Future Work
	References

