
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/intelligent

Web Services from an Agent Perspective

Terry R. Payne

Vol. 23, No. 2

March/April 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

12 1541-1672/08/$25.00 © 2008 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Web Services
from an Agent Perspective

Terry R. Payne, University of Southampton

into multiagent systems has provided formal proofs or

proof-of-concept demonstrators (such as example sys-

tems or prototypes). It has provided only limited, prag-

matic support (systems, software, and tools) for the user

community.
Research into web services, in contrast, has focused on

the user community, resulting in a pragmatic, bottom-up

enabling technology that readily facilitates the robust con-

struction of service-oriented systems. Much of the focus of

web services research has been on developing declarative

descriptions that application developers can share and that

their tools can use to construct and develop large-scale

distributed software.

Despite these differing approaches, the inherent com-

ponent-based structure underlying both agents and web

services raises questions about how exactly they differ and

whether they can coexist.1

How agents differ from web services
The concept of an agent is integral to both the Semantic

Web and web services.2 According to the W3C Web Ser-

vices Architecture note,

A Web Service is an abstract notion that must be imple-
mented by a concrete agent. The agent is the concrete piece

of software or hardware that sends and receives messages,
while the service is the resource characterized by the abstract
set of functionality that is provided.3

So, we can think of a web service as an abstract notion or

task that a variety of providers can instantiate and offer.

The note later argues that an agent is a computational

resource that can act as a proxy for those entities (human,

organizational) that own the service. However, the note as-

cribes no further mental notions to agents other than that

they can exchange messages. So, rather than compare a web

service to an agent, maybe it’s better to compare it to an

agent’s functionality or capability in a multiagent system.

Unfortunately, the analogy isn’t that simple. Web services

have traditionally been transient and stateless processes

that exist only during service execution. In addition, these

services are instantiated to perform a specific task (thus fa-

cilitating scalable, concurrent service provision, similar to

the provisioning of web pages from a web server). An agent,

however, is often persistent and resource bound, providing

only a single service to its peers at any given time.

In “Brain Meets Brawn: Why Grid and Agents Need

Each Other,” Ian Foster, Nicholas Jennings, and Carl Kes-

selman propose a clearer separation between the notion

of an agent and a web (or Grid) service.4 They argue that

the evolution of Grid services focused on the pragmatic

development of technologies, standards, and engines that

can realize distributed, usable service environments. To

deploy reliable, distributed, and ubiquitous platforms that

support Grid computing (and likewise web services), the

Grid community emphasized the agreement and adoption

of standards and policies, and, more recently, has empha-

sized shared ontologies. This contrasts with multiagent-

systems research, which has focused on developing prin-

cipled, formal mechanisms for distributed problem solving

at the knowledge level5 in terms of what tasks or goals the

multiagent community should tackle and which agents

should solve the tasks.

While web services research has focused on develop-

ing standards for well-defined and declarative interfaces,

workflows, and protocols, there’s been little focus on

the mechanisms that help the service perform the task.

Although the multiagent-system community has devel-

oped theories about each communication act’s inten-

tion, it has placed less emphasis on defining well-defined

A g e n t s

Multiagent systems evolved from a need for knowl-

edge-aware, distributed, problem-solving mecha-

nisms. These systems are formally grounded using theo-

retical approaches, including those that assume mentalistic

notions (see the sidebar). As a result, much of this research

Intelligent agents are often criticized as representing technol-
ogy that is actively pursued in research labs but that rarely ap-
pears in deployed applications. In fact, many of the underlying
technologies of intelligent agents have migrated into mainstream
applications, at which point they’re no longer referred to as
agents. This department will revisit the evolution and application
of intelligent agents and consider how they’re shaping emergent
technologies or becoming embedded within applications. I plan
to look at the pros and cons of intelligent agents, relating them
to other technologies and exploring successful deployments in
the real world. — Terry. R. Payne

Editor’s Introduction

Editor: Terry R. Payne

University of Southampton

trp@ecs.soton.ac.uk

MARCH/APRIL 2008 www.computer.org/intelligent 13

machinery to pragmatically support agent

communication.

Differentiating between agents and

web services is thus problematic, because

you could argue that you can implement

agents using web service technology or

build adaptive, intelligent mechanisms into

a web service’s design. Researchers have

proposed many definitions for agents; un-

fortunately, there’s always some example

that, despite strictly satisfying the defini-

tion, isn’t an agent “in spirit.” Here, I iden-

tify some of the fundamental differences

between agents and web services—thus

offering some insight into the synergies of

using both—by discussing Jennings’ five

characteristics of an agent.5

Agents are problem solvers

Agents are clearly identifiable problem-

solving entities with well-defined boundar-

ies and interfaces.

The approaches used to engineer agents

and web services are fundamentally differ-

ent. Typically, when designing web ser-

vices, engineers define the goals as clearly

articulated workflows and formally vali-

dated protocols, grounded using well-formed

calculi and logical formalisms. Web service

architects have invested significant effort

into defining data types and data structures,

creating mechanisms for routing, securing

and addressing messages, and developing

tools for constructing, advertising, discover-

ing, and subsequently using services.

In contrast, the agent view assumes that

agents can employ a variety of interaction

methods—from simple, client-server interac-

tions to rich social interactions—to flexibly

achieve their goals. Such interactions gener-

ally occur through knowledge-level mes-

sages in a declarative language such as the

Knowledge Query Manipulation Language

or the Foundation for Intelligent Physical

Agents’ Agent Communication Language.

Thus, there is an emphasis on reasoning

about received messages, and other (partial)

knowledge gleaned from the environment,

to determine what actions to take.

Likewise, knowledge about available

peers and their capabilities and motivations

is essential in dynamically determining

how to solve problems at runtime. So, in-

stead of simply performing a task, an agent

can decompose a problem into its constitu-

ent tasks and elect whether to perform or

delegate tasks or coordinate with other

available agents to solve the overall prob-

lem or goal. This decomposition is done

dynamically, rather than being prescribed,

and thus can better adapt to changing con-

texts and environments.

They’re proactive

Agents are capable of exhibiting flex-

ible problem-solving behavior in pursuit of

their design objectives—being both reac-

tive (able to respond in a timely fashion to

changes that occur in their environment)

and proactive (able to opportunistically

adopt goals and take the initiative).

Agents are inherently communicative

and socially aware. They respond to both

changes in their environment and messages

from peers as a result of internally sched-

uled tasks. Such triggers can motivate their

intention to achieve some goal, resulting in

proactive behavior as necessary.

Web services, however, are typically

transient processes whose instantiation and

existence is triggered when the web server

receives a message. An advantage of this

“factory-based” instantiation of processes

for each service invocation means that pro-

viders can offer potentially huge numbers

of concurrent service instances in response

to simultaneous service requests. Although

a web service might initiate communication

with another web service when executing its

task, this is still reactive because it’s part of

the prescribed actions triggered by the origi-

nal instantiating message. Although you

could build proactivity into a web service,

this would ultimately introduce many no-

tions of agency into the web service design.

They’re goal oriented

Agents are designed to fulfill a specific

role—they have particular objectives to

achieve.

Typically, a web service exists to per-

form a specific task, such as offering value-

added functionality to support B2C or

providing e-business functionality to third

parties. Companies such as eBay and Ama-

zon.com offer access to their core technolo-

gies through web services, either to facili-

tate third-party trading or to offer access to

their resources.

Agent behavior is motivated by more ab-

stract, mentalistic notions, such as knowl-

edge, intention, belief, and obligation.

Typically, an agent is designed to maximize

some utility through rational behavior. So,

when electing to perform a task, an agent

can attempt to determine the utility gain

in performing this action, on the basis of

a possible reward or some perceived ad-

vantage (taking into account any costs in-

curred). If an agent doesn’t perceive some

gain, it might not perform the task, whereas

a web service receiving the equivalent re-

quest will generally perform the task.

They’re context aware

Agents are situated (embedded) in a

The notion of agency originally emerged from the field
of artificial intelligence—specifically, to help support and
coordinate distributed AI problems. Although you might
consider many of the characteristics discussed in the main
article to be weak notions of agency,1 stronger, or mental-
istic, notions often ascribed to humans have been used to
characterize an agent. Such notions reflect those used in
human cognition or communication,2 such as agents hav-
ing beliefs about the world or certain desires or aims, or
agents performing intended actions to progress toward a
goal. Other notions, such as obligations—formed through
communication with other agents or in response to societal

norms—might also affect an agent’s actions. These notions
might sound somewhat anthropomorphic, but they repre-
sent programming abstractions intended to facilitate a more
intelligent and deliberative approach to decision making.

References
 1. M. Wooldridge and N.R. Jennings, “Intelligent Agents: Theory

and Practice,” The Knowledge Eng. Rev., vol. 10, no. 2, 1995,

pp. 115–152.

 2. Y. Shoham, “Agent-Oriented Programming,” Artificial Intelli-

gence, vol. 60, no. 1, 1993, pp. 51–92.

Agency and Mentalistic Notions

14 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

particular environment over which they

have partial control and observability—

they receive inputs related to the state of

their environment through sensors and they

act on the environment through effectors.

This characteristic is often ascribed to

hardware agents (such as robots) but can

equally apply to software agents. However,

such sensors can provide only partial knowl-

edge of the environment. Furthermore,

in dynamic environments with numerous

agents, this knowledge can become stale.

Agents also have only partial control of

their environment, so they need to be able to

assess their context (so that they can react ac-

cordingly). This often necessitates collabora-

tion between peers to achieve desired changes

(or acquire desired knowledge) beyond their

sphere of influence. Agents that are aware

of their environment also have knowledge

of new agents, which they can use to solve

future problems. However, the ability to ob-

serve and interrogate peers can yield a more

sophisticated environmental model, which

questions whether agents can be trusted to

achieve a task or whether they have a reputa-

tion of cheating or defaulting on contracts.

Web services are similarly limited with

respect to their scope of observable facts

and to the actions they can perform to ma-

nipulate and affect the environment. How-

ever, because web services are typically

reactive, the knowledge they process is typ-

ically only what the developer considered

necessary at design time. This eliminates

the possibility of exploiting opportunistic

knowledge.

They’re autonomous

Agents are autonomous—they have con-

trol both over their internal state and over

their own behavior.

Autonomy is a defining agent charac-

teristic and a consequence of the charac-

teristics previously listed. For example, by

defining a desired, overall behavior as a

utility maximization function, agents can

acquire information about their environ-

ment and either proactively perform tasks

or collaborate with others on (joint) tasks.

Thus, they can dynamically respond and

adapt to a changing environment.

Agents can also be self-aware. By ac-

quiring and retaining knowledge over time,

they can learn about alternate strategies and

solutions to problems that yield more op-

timal solutions (at least as far as the agent

is concerned). An agent can evolve its own

behaviors without direction from its owner

or user.

Web services are rarely autonomous, un-

less the notion of autonomy is included in

the service design, which typically involves

constructing stateful and persistent services.

Researchers are beginning to explore these

notions of autonomy and autonomic behav-

ior for web services, but so far they have

primarily used notions of agency to achieve

autonomy.6

Blurring these differences
Web service technology primarily pro-

vides a distributed-object definition and

invocation framework that lets developers

publish and access the code enclosed in a

web service container. This code could em-

ploy the notions of agency to solve simple

tasks or provide component functionality to

support complex e-business machinery. By

providing persistence, autonomy, and iden-

tity to web services, the distinction between

agents and web services becomes increas-

ingly blurred.

Yet the web services community hasn’t

paid much attention to the notion of auton-

omy. Many systems assume prior knowl-

edge of the resources found in the environ-

ment or consider the environment from a

single consumer’s viewpoint. This assump-

tion emerges from research focusing on

solving a specific problem in a controlled

scenario, without considering the full im-

plications of resources existing in complex,

evolving environments where there might

be competition for resources. The “fac-

tory” mechanisms that web servers use to

create service instances somewhat allevi-

ate the problem of concurrent access to

services by creating new service instances

on demand.

However, such techniques aren’t feasible

in resource-bound environments, where

the available processing power is limited

or where services support physical equip-

ment. Conflicts can occur when demand

exceeds supply or when multiple parties

generate and enact workflows without

forming a commitment or contract. This

can lead to a failure of services (owing to

prior provisioning by another consumer)

or a delay in service execution. So, autono-

mous mechanisms must support collabo-

ration or cooperation or must refine ser-

vice planning or provisioning at runtime

(rather than assume human involvement at

design time).

The Internet’s size and diversity provide

a rich, valuable, and dynamic knowledge

source for both agents and web services to

exploit. However, this diversity and hetero-

geneity keeps such components from pos-

sessing prior, up-to-date knowledge about

the availability of services and of informa-

tion sources. It also keeps them from shar-

ing reliable data models outside highly re-

strictive bounds. Many approaches’ implicit

assumption of a closed-world environment

renders the Web effectively incomprehen-

sible to all but the most carefully crafted,

highly specialized, and diligently managed

applications. Efforts such as the Semantic

Web are beginning to address this limita-

tion by exploiting and adopting logical

mechanisms and knowledge-engineering

theory to facilitate machine-processible ar-

ticulation (and inference) of data as usable,

accessible knowledge.

References
 1. M. Huhns, “Agents as Web Services,”

IEEE Internet Computing, vol. 6, no. 4,
2002, pp. 93–95.

 2. J. Hendler, “Agents and the Semantic
Web,” IEEE Intelligent Systems, vol. 16,
no. 2, 2001, pp. 30–37.

 3. Web Services Architecture note, W3C, 11
Feb. 2004, www.w3.org/TR/ws-arch.

 4. I. Foster, N. Jennings, and C. Kesselman,
“Brain Meets Brawn: Why Grid and Agents
Need Each Other,” Proc. 3rd Joint Conf.

Autonomous Agents and Multi-Agent Sys-

tems (AAMAS 04), ACM Press, 2004, pp.
8–15.

 5. N.R. Jennings, “An Agent-Based Approach
for Building Complex Software Systems,”
Comm. ACM, vol. 44, no. 4, 2001, pp. 35–41.

 6. E.M. Maximilien and M.P. Singh, “Toward
Autonomic Web Services Trust and Selec-
tion,” Proc. 2nd Int’l Conf. Service Ori-

ented Computing (ICSOC 04), ACM Press,
2004, pp. 212–221.

 7. M. Wooldridge, An Introduction to Multi-

agent Systems, John Wiley & Sons, 2002.

Terry R. Payne is a lecturer in the Uni-
versity of Southampton’s School of Elec-
tronics and Computer Science. Contact
him at trp@ecs.soton.ac.uk.

