
Web Services in Building Automation: Mapping KNX to oBIX
Matthias Neugschwandtner, Georg Neugschwandtner, and Wolfgang Kastner

Abstract— Web services are a key technology for enabling
interoperable machine-to-machine interaction over a network.
They also lend themselves excellently to the integration of
automation and IT systems. This paper discusses oBIX, a new
standard for representing and accessing building automation
(BA) data via Web services. It is shown how access to a BA
system that follows the KNX protocol standard can be faithfully
represented by way of oBIX entities. A prototype implementation
of such a gateway is presented. The extensible nature of the
oBIX data model is leveraged by using it to express the required
KNX–oBIX mapping information as well. This approach allows
a particularly clear and efficient gateway design.

I. INTRODUCTION

IN a typical present-day building automation system, build-
ing services are provided by domain specific autonomous

subsystems (e.g., heating, ventilation, and air conditioning;
lighting and blinds; security; and fire safety). A building man-
agement system (BMS) provides global management functions
such as integrated visualization, high level control, or unified
handling of technical alarms. For this purpose, the subsystems
must expose their functionality in a way suitable for interaction
with the BMS.

Obviously it is desirable that subsystems expose datapoints
in a common, preferably open format. At present, OPC [9] is
very popular for this purpose in both process and building au-
tomation. However, OPC is restricted to Windows platforms in
its classic design incarnation. Web Services (WS) technology
allows a solution without this drawback.

Using this technology, self-contained software applications
running on disparate platforms and operating systems can
collaborate over the Internet as well as corporate intranets.
Web Services are totally platform independent – they can be
implemented using any programming language and run on
any hardware platform or operating system. This maximizes
interoperability and greatly improves the reusability of the
services they provide. Central to Web services are the use
of XML for data representation and a standardized resource
access protocol (typically SOAP or plain HTTP).

Web Services follow a modular concept. This allows the
use of off-the-shelf standards for transmission, eventing, dis-
covery, security and many more. Web Services are also the
most popular way to implement service oriented architectures
(SOA). Web Services in such an architecture are built to be
self-contained and loosely coupled. This means that they can
be flexibly arranged into complex applications. So, WS that
provide interoperable access to datapoints as a first step lay
an excellent foundation for high-level business services (e.g.,

M. Neugschwandtner, G. Neugschwandtner, and W. Kastner ({mneug, gn,
k}@auto.tuwien.ac.at) are with the Automation Systems Group, Institute of
Computer Aided Automation, Vienna University of Technology; Treitlstrasse
1-3, 1040 Vienna, Austria.

load management) to be created. The application of SOA and
WS to automation systems is discussed in detail in [5].

A drawback of Web Services is the additional overhead
introduced by the use of XML encoded messages, especially if
small amounts of data are transmitted frequently. In addition,
receiving events from the server requires the client to either
poll periodically or implement an entire WS server itself (when
following the WS-Eventing standard). At the field level, where
fast response and resource efficiency are crucial, this would
be a considerable disadvantage. However, at the management
level this is less an issue.

II. THE OBIX STANDARD

The commitment to use WS technology determines low-
level aspects of data representation and transmission. Still,
the application domain remains to be modelled. Today, three
standards hold particular promises for bringing the world
of WS to BA. First, the forthcoming OPC UA (Unified
Architecture) is based on WS. Second, BACnet was extended
in this regard (BACnet/WS: Building Automation and Control
Network – Web Services) [1]. Third, the oBIX (Open Building
Information Exchange) initiative (hosted by OASIS) added a
challenger to these established standards [7]. All three provide
historical data access and event and alarm management besides
a point abstraction. Both the BACnet/WS and oBIX standards,
which have been developed with special regard to building
automation, are freely available to the general public. oBIX is
of particular interest due to its extensible data model.

A. Data model

oBIX provides a flexible object model to describe the data
and operations available on the server. In oBIX everything is
an object: objects are also used to describe data types (classes)
and operations (method signatures). The flexibility of oBIX is
based on the possibility to custom define any kind of object.
Both subtyping (is-a) and composition (has-a) are supported.

oBIX follows what is called a RESTful approach (“Repre-
sentational State Transfer”), a resource centric architectural
style for Web Services. Central concepts of the RESTful
approach are resources that share a uniform interface and a
highly restricted set of operations on these resources. This ap-
proach mimics the World Wide Web where only the commands
GET, PUT and POST are used to access countless resources.

The same is true for oBIX services: only three network
request types are defined at the WS level. The first two of
them are read (applicable to any object) and write (for
writable objects). For operations beyond basic “get” and “set,”
custom operations can be defined on the oBIX level, just as
any other custom object. For invoking these operations a third
base network request type invoke is provided. In addition

87



to SOAP, its RESTful approach also allows oBIX to easily
support a plain HTTP protocol binding, needing nothing more
than HTTP GET, PUT and POST.

Naming in oBIX is realized via two different, complemen-
tary concepts. First, every object can have a “name.” It is used
to identify a sub object within a composite object (for example,
consider an object with two string members or two operations
– their name tells them from each other). Second, every object
can be assigned a URI (an “href”). This is necessary whenever
an object is to be referenced from the outside. To apply any
network request (read, write, or invoke) to an object, this
reference is required. No higher-level semantics are associated
with the URI namespace.

B. Predefined objects
The root object specifies a number of mandatory attributes

like an object’s name, which are inherited by all other ob-
jects. Like in every data model, various object types to hold
primitive values are defined. These are Booleans, integer and
floating point numbers, enumerations, strings, points in time
and time spans. oBIX base object types also cover a number
of universally applicable concepts: lists and feeds (containers
with either static content or event queue semantics), errors,
references to other objects, and operations. Custom classes
can be derived from any object type. Multiple inheritance is
supported. Every custom-built class can be handled by any
oBIX client. oBIX provides a very flexible SI-based system
for describing engineering units that is also based on objects.
Furthermore, the oBIX standard library defines special purpose
classes encapsulating server functionality.

The Lobby object has a well-known location on the server
and serves as its entry point. Besides providing information
about the server through the About object, it offers services
to reduce protocol overhead. First, it provides a special batch
operation which accepts an entire batch of requests at once.
Second, clients can register objects with the watch service.
Every time the client later polls this watch, the server will
return a feed of events (value changes) which have happened
since the last poll operation. This also ensures that no value
changes are lost, independent of the polling cycle.

Points are classes which are used to flag primitive values
as coming from the automation system. Read only points
are effectively an empty class (acting merely as a semantic
marker); writable points additionally specify an operation for
altering the corresponding value.

Historical trends can be represented via the oBIX History
Record, which groups a point value and a time stamp. The
History object consists of a list of history records and methods
to query them. Query filters can be specified and extended to
a rollup calculation for, e.g., average values.

Eventually, oBIX defines a normalized model to query,
watch and acknowledge alarms. An oBIX server supplies feeds
of alarm objects. Every time the server detects that the value of
an object meets a predefined alarm condition, an alarm object
is added to the feed. This object contains a timestamp and
points to its source. Alarms can be stateful (i.e., the point in
time when the source returned to normal is recorded) and they
can record if (and by whom) the alarm was acknowledged.

C. XML representation

Base object types are directly mapped to individual XML
elements. For example, if an object is an integer or is derived
from an integer, it is rendered as <int/>. Any other objects,
which are not derived from a base object type, are all rendered
using the standard <obj/> element. In this case, the “is”-
attribute specifies the class of an object.

A similar distinction exists regarding how the attributes of
an object are rendered. Base attributes, e.g., the name, are
mapped to XML attributes – called “facets.” Any individually
added attributes are represented as sub objects nested within
the opening and closing tags of their parent object.

Methods are, on the one hand, the normal network request
types on the WS level – any object can be read, written, or in
case of an operation, invoked. On the other hand, operations
added on the oBIX level are again represented as sub objects.

Sub objects can be included in their full XML representation
or via a reference. Whether composition by containment or
reference is to be used has to be determined when designing
the class hierarchy. For example, an oBIX alarm object is
encoded as:

<obj name="somealarm" is="obix:Alarm">
<ref name="source" href="/myhouse/somewhere"/>
<abstime name="timestamp"

val="2006-10-12_12:11:02"/>
</obj>

The object referenced by the “is” attribute is called a
“contract.” It acts like a template for the referencing object. All
sub objects of this reference object are inherited by default.
Still, the referencing object can override these values (sub-
objects). So this object referenced by the “is” attribute defines
a class (in the sense of object orientation).

Objects can fulfill multiple contracts (resulting in multiple
inheritance). Finally, contracts can also be empty and merely
describe semantics of an object – a prominent example being
the (read-only) oBIX Point. In many aspects, contracts are
similar to Java Interfaces.

An example contract describing a generic model of a
furnace (a furnace template or “class”):

<obj href="def:furnace">
<bool name="burnerOn"/>
<real name="curTemp" is="obix:Point"/>
<real name="setTemp" val="50.0"

is="obix:WriteablePoint"/>
</obj>

Note the use of point contracts (the WriteablePoint contract
adds a write operation) and that a default value is specified
for the second. An object following this contract:

<obj name="furnace" href="myhouse/heating/furnace"
is="def:furnace">

<bool name="burnerOn" val="true"/>
<real name="curTemp" val="45.3"/>

</obj>

This would be an instance of the furnace class (an actual
furnace). It inherits the default value of 50 for the set tem-
perature. By specifying the curTemp sub object itself, any
possibly inherited default value is overridden. However, the
point contract for this attribute is still inherited. To allow
access by an oBIX client, an href is specified.

88



III. REPRESENTING KNX IN OBIX

Our mapping of the KNX system to oBIX data model and
services shall allow a plain oBIX client to pull data from
a KNX installation (e.g. monitor a room temperature) and
influence the process (e.g. switch off all lights). The mapping
shall provide the means to build up a remote management
station to control, monitor and change parameters of the KNX
installation. Thus, it shall fulfill the first (access to operating
information by enterprise applications software) and, to some
extent, second (enabling unified management workstations
regardless of the control system in use) of the application
classes described for XML and WS in [4].

To this end, a mapping of datapoint types and the services
for process and management communication is required. Also,
a suitable form of discovery of the mapped datapoints must
be supported. Generally, the mapping should leverage native
oBIX language element semantics. For example, incoming
events from the KNX system should be represented by an
oBIX feed rather than a simple value object.

A. KNX interworking overview

KNX [6] is an established home and building automation
system (building on the legacy of its predecessor EIB). Like
most distributed automation systems, it uses functional blocks
to model system functionality.

Functional blocks (FBs) are logical parts of a device,
representing a function of this device. For example, an FB
“push button” could describe part of a switch and an FB “light
switching actuator” part of an eight fold power relay. FBs do
never span more than one device.

FBs are associated with a set of datapoints (DP), which act
as communication endpoints providing access to the functions
of a block. Their syntax and semantics are well-defined for
a particular FB type. For example, a “dimming actuator
standard” FP provides the DP “switch on off” that can be
used to turn the light on and off.

In KNX, DPs can either be realized as group objects
(GOs) or interface object properties (IOPs). GOs are endpoints
for KNX group communication relationships, which use a
content-addressing scheme to provide producer-consumer style
multicasts. Process data, i.e., communication between sensors,
actuators, and controllers, are exclusively exchanged via group
communication. With KNX group communication, data can
either be transmitted in a spontaneous push-style using only
write-request messages, or in a request-based pull-style using
read-request and read-response messages. The mode of com-
munication is determined at system setup time depending on
whether the semantics of the GO are stateful or stateless. IOPs
are solely used for management data transmission (parameters,
configuration and diagnostic data). They are individually ad-
dressed via the physical address of the device, object index
and property key. Reading and writing IOPs follows a simple
client-server (pull-style) communication pattern.

The syntax and partial semantics of a datapoint value (GO
as well as IOP) are specified in the datapoint type (DPT). For
example, the DP “switch on off” accepts values conforming
to the DPT “boolean switch.” A DPT describes the bit-level

encoding as well as aspects such as valid range, state labels
(for Boolean values) or units. It does not describe how changes
of the DP’s value relate to other DPs or physical inputs and
outputs (this is specified in the FB definition).

B. DPT mapping

As a necessary prerequisite to interact with the KNX
installation, the means for representing data in a KNX system
– the DPs – have to be made available on the server. First, the
information carrying part of the DP has to be mapped, that is,
the object types. The data types used within the KNX system
are defined in the DPTs.

A KNX DPT specifies the data type of a value (format and
encoding, e.g. two’s complement, or IEEE float) as well as
the dimension (range and engineering unit). The data type
is mapped to oBIX value object types – e.g., a DPT B1
is directly mapped to a <bool/> element. For complex
data types, object containment is used. Table I shows some
correspondences:

TABLE I
MAPPING OF THE DATAPOINT TYPES

Datapoint type oBIX object
Boolean value (DPT B1) <bool/>

unsigned value <int/>
float value <real/>

bit <int max="1"/>
(single) ASCII/ISO 8859-1 char <str/>

ASCII/ISO 8859-1 string <str/>
Control Dimming <obj href="knx:DPT B1U3">

(DPT B1U3, complex type) <bool/>
<int max="7"/>

</obj>

The dimension is represented via an additional contract that
adds range and unit information by using the means available
in oBIX (e.g., the min/max facets or the oBIX unit system).
In most cases, this amounts to adding application semantics
and human readable names (the displayName facet):

<obj href="knx:DPT_Control_Dimming" is="knx:DPT_B1U3">
<bool name="B1" displayName="brightness"

range="knx:range/incDec"/>
<int name="U3" displayName="stepcode"/>

</obj>

<list href="knx:range/incDec" is="obix:Range">
<obj name="true" displayName="increase"/>
<obj name="false" displayName="decrease"/>

</list>

C. Communication services mapping

Having found a suitable oBIX representation of the DPTs,
the ways and means to interact with a DP remain to be
mapped. In KNX, process communication happens via group
communication only. A process data DP can never be ad-
dressed individually. Therefore, a Group Communication End-
point (GCE) class is introduced to enable communication with
GOs. A GCE represents a server-side facility for data exchange
via one particular group address (roughly comparable to a

89



Spontaneous transmission

No oBIX Point semantics

Request based transmission

Data type sub objects with Point semantics

Point
GCE

value: DPT

Command
GCE

transmit(DPT dp)

Event Feed
GCE

values: feed of DPT

Group Communication
Endpoint

description: str
groupAddress: GroupAddress

Fig. 1. Group communication endpoint mapping

UDP socket).1 An interaction with a GCE always effects
the exchange of a single DP value via the KNX network.
But, depending on the mode of communication associated
with that group address, different types of interaction make
sense. Therefore, the GCE is subclassed to represent the proper
operations (Fig. 1).

The first case to support is request based transmission with
the oBIX server as data sink. In this case, the associated GO
has state semantics. This means the server can always retrieve
the current value from the network. This maps perfectly to the
semantics associated with oBIX Points, hence the name Point
GCE was chosen. An example could be a current lux value
obtained from a sensor. Request based transmission with the
server as data source makes no sense for a management station
and thus does not require a representation in our mapping.

Since the oBIX Point contract can only be assigned to
primitive value types, the server must care to promote it to
the sub objects of a Point GCE instance in case this instance
references a complex DPT. When the oBIX client chooses to
retrieve one of the sub objects of such a Point, the server
retrieves the entire complex DP value from the KNX side.
Since state semantics are implied, this is not a problem.

The second case is spontaneous transmission. In this case,
the associated GOs have event semantics. Two subclasses exist
corresponding to the role of the server. If the server acts as
data sink, the Event Feed GCE buffers incoming events using
an oBIX feed object. Since the server cannot actively retrieve
the current value of anything from the network, the Event Feed
GCE does not have Point semantics. An example would be a
motion sensor sending a trigger event. If the server acts as the
data source, the Command GCE contract provides a transmit
operation (e.g., to send an “increase brightness” command to
a dimmer).

One case remains to be discussed. KNX allows every
combination of communication modes for a group object,
placing the decision on what is appropriate in this respect
in the hands of the project engineer. This includes group
objects that can act both as data source with state semantics
and sink, corresponding to the oBIX Writeable Point. Their

1This is different from a KNX GO, which can be associated with one group
address for outgoing plus multiple group addresses for incoming messages.
The name “GCE” was deliberately chosen over “GO” to make this difference
visible.

Device

description: str
physicalAddress: int
functionalBlocks: list of FB

Functional Block

description: str
iop: list of IOP
go: list of GroupObject

Group Object

Lobby

about: ref
batch: op
watchService: ref
house: list of Device

IOP

Fig. 2. Discovery: management view

use is discouraged by the KNX standard due to protocol
related side effects which are complex to handle. Also, an
oBIX client can choose to update only part of a complex
DPT, which further obscures semantics. As a matter of fact,
however, KNX device manufacturers do not always follow this
recommendation. Thus, the Writeable Point GCE is optional
in our solution to be available if the setup of the KNX system
requires it.

Management communication is effected via interface object
properties and point-to-point (“physical”) addressing. Mapping
this communication mode is straightforward as long as read
and write access to single properties is all that is required
(in contrast to, e.g., program downloads, which require a
complex access sequence). For this purpose, an IOP object is
introduced which holds the required addressing information.
The access types of an IOP are simply read-only and read-
write. This perfectly corresponds with the oBIX Point and
Writable Point concept, resulting in the two subclasses “Point
IOP” and “Writeable Point IOP”.

D. Discovery

With DPTs, GCEs and IOPs specified, the means to interact
with KNX devices are available. Still, a client needs to dis-
cover which entities are present on the oBIX server. The server
could easily provide a flat list. However, this is obviously
not an optimal solution; a hierarchical structure is desirable.
Since oBIX does not provide predefined structure elements,
these shall be custom defined. Discovery builds on the fact
that in oBIX objects are composed from other objects. All
objects, which can be reached from the Lobby, either directly
or through other objects, by way of containment or reference,
are discoverable. The structure of KNX systems leads to two
approaches for discovery: device or group address centric.

The probably most obvious possibility is to map the KNX
system structure to the oBIX object model in a device oriented
way. In such an approach, the system functionality is perceived
as a collection of devices and functional blocks. The FBs are
necessarily organized per network device because a FB does
not span more than one device. An oBIX client enters via
the Lobby and receives a list of devices with their associated
functional blocks. These functional blocks in turn consist of
IOPs and group objects (Fig. 2).

This view is useful to access parameters and diagnostic data,
which is why we call it the “management view.” However, it is
not useful for controlling the process, because process com-
munication exclusively uses group communication in KNX.

90



watchService: ref
house: list of FE

Functional Entity

description: str
gce: list of GCE
subFE: list of FunctionalEntity

Group Communication
Endpoint

description: str
address: GroupAddress

Lobby

about: ref
batch: op

Fig. 3. Discovery: process view

Group communication can affect any number of devices,
and due to the producer-consumer style of communication
these cannot be trivially enumerated, either. Thus, the “group
objects” in Fig. 2 can be used for information only, showing
which group addresses are associated with a particular DP.
The oBIX server could of course easily provide these group
addresses in the form of GCEs. However, this is useless
without information about which function will be effected by
interacting with such a GCE.

Therefore, a discovery scheme for process communication
must focus on functions rather than individual devices. Some-
one who wants to switch on the light in a room typically
enters the room and flips the switch. Being able to use
the same procedure in the oBIX representation would be
desirable: entering the house via the lobby, selecting the room
(a functional entity, FE) on a list and flipping a virtual switch
in this room (by invoking a function). Focusing on functions in
KNX means focusing on group addresses. In our mapping, the
means for interacting with groups of KNX devices are GCEs.
To bring them in some order, we use a sort of directory tree.
From the Lobby, the client sees FEs such as “west wing” or
the “HVAC” system. These FEs can be composed of GCEs –
or again FEs, such as rooms for example (Fig. 3). A roughly
similar concept is found in BACnet/WS, where a similar
hierarchy is used to organize system data, as well as in the
FGAG extension to KNX [3].

Note that, keeping with the oBIX specification, we do
not regulate the namespace of the href URIs in order to
structure the GCEs (and rather leave this to the individual
server implementations). What is the benefit of introducing
FE objects? At first glance, it would probably appear more
convenient if one were able to access the light in the cafete-
ria via “mybuilding.org/obix/cafeteria/ceiling light” or similar.
However, to obtain a list of GCEs related to the cafeteria,
one cannot simply retrieve the object with the URI “mybuild-
ing.org/obix/cafeteria” as one would do to obtain a directory
listing in a file system. The server will not return anything
unless an object with this particular href has been registered.
Obviously, some kind of directory object is needed. Actually,
the FE object is precisely that: it contains a list of GCEs (the
“files”) and a list of FEs (the “subdirectories”). Also, it should
be kept in mind that we are dealing with machine-to-machine
communication and human users will seldom be exposed to
the URI string.

IV. SERVER IMPLEMENTATION

The server implementation is intended as a proof of concept
and thus has several limitations. Currently, only the process

KNX network

Object broker

Calimero NG UserEngineer

oBIX objects
Frontend

XML

(method
calls)

Frontend
XML

(HTTP)

Group addresses
DP values

KNXnet/IP
Tunneling client
DPT encoding
Message buffer Filter engine

(permission based 
degradation)

Backend
XML

oBIX
server

HTTP
server

oBIX
client

Configuration
tool

KNXnet /IP
router

KNXnet/IP
router

Static
project
data

oBIX objects

Fig. 4. oBIX server implementation

view and GCEs (i.e., the necessary means for group commu-
nication) are implemented. The mapping of DPTs is limited
to the most popular types, e.g., DPT B1 to turn on a light
via a switching actuator and DPT U8 to set the power level
of a dimming actuator. oBIX object access is restricted to
basic services. Batching, alarms and histories are not available.
Configuration data has to be supplied manually.

The server uses the plain HTTP oBIX protocol binding. It is
operational, and its full source code is available.2 Although the
code is not optimized for performance, first evaluation results
show that the server (running on a standard office-class PC)
can easily deliver and accept messages with the maximum rate
available on the KNX twisted pair medium.

A. Design

The implementation uses Java and is based on existing open
source software projects – the oBIX toolkit, version 0.12.0
[8] and the Calimero library, version 1.3 [2]. Calimero is
used for network access via KNXnet/IP Tunnelling and DPT
transcoding. Since incoming frames from the KNX network
cannot be pushed to the oBIX client, they must be buffered
until the client polls. Calimero was extended to provide the
necessary functionality (“Calimero Next Generation”). Cur-
rently, the buffer only holds a single message. The server
design is shown in Fig. 4.

The data base holds static information about the KNX
installation. It uses the same object model as is used for
communication with the oBIX client. This is possible thanks
to the extensible oBIX data model and allows a very clean
and straightforward server design. Of course, attributes such
as KNX group addresses contained in a GCE are of no interest
for oBIX clients and thus are masked out using the filter engine
when answering a client request.

The data base is implemented as text file holding the XML
representation of the oBIX objects. Information about the
datapoints in the KNX system, their communication modes
and addressing information as well as friendly names have to
be provided during the configuration phase. While this has to
be done by manually editing the XML file for the time being,
the design intends to provide a (possibly graphical) tool, which
interacts with the data base by way of the object broker.

2http://www.auto.tuwien.ac.at/˜mneug/knx2obix src.tar.gz

91



The database also holds some server configuration data. Up
to now, this includes queue depth and caching information for
the event feed and read only GCEs. Eventually, access control
lists may also be stored in the objects.

The HTTP server implements the oBIX HTTP protocol
binding. It is responsible for handling HTTP requests (PUT,
GET, POST + data) issued by the oBIX client. It invokes the
appropriate methods (getObject, writeObject and invokeOper-
ation) on the oBIX server component, passing the URI (href)
and XML stream it received from the client. It also handles
user authentication and informs the oBIX server module about
the user name associated with every request. For GET and
POST operations, the XML stream returned by the oBIX
server is passed back to the client.

The oBIX server module (not to be confused with the
entire oBIX server application) operates on the level of oBIX
network requests. It translates between oBIX XML streams
and their Java object representations. To actually execute the
requests (e.g., retrieve a GCE with a particular URI), it invokes
the appropriate methods of the object broker.

Any XML streams returned to the caller (the HTTP server)
are filtered according to the authorization level associated
with the user name specified. Also, unauthorized requests are
denied. For this purpose, the oBIX server component maintains
a user database. The actual XML filtering is done by a separate
component, the filter engine.

The object broker provides a front end to the data base.
It allows to store, retrieve and delete objects by way of their
URI (href), ensuring the persistence of changes via the data
base. For purely static objects (such as FEs for discovery),
nothing more is required. For GCE (and, in future, IOP)
objects, however, “smart” operations are provided that enrich
the static project data with dynamic process data. For example,
when a read operation on a Point GCE object is requested, the
object broker not only retrieves the object corresponding to the
URI from the data base, but accesses the KNX network using
the addressing information contained within the object. The
retrieved current value is stored in the value property of the
GCE object before returning it to the caller.

The filter engine removes information from oBIX objects
which the client is not expected to need (e.g., KNX group
addresses) or provide. This is done to provide a clean interface
as well as for security reasons. oBIX suggests permission
based degradation, which basically means that users can only
see and manipulate the objects they have the permission for.
The filter engine thus removes (sub-)objects which are below
the specified authorization threshold. For all users except
administrators, it will remove the KNX specific data (such as
network addresses). In the current implementation, the filter
engine does not remove anything.

B. KNX message buffering

Calimero NG provides a buffer for process data messages.
The type of buffering required depends on the mode of
communication.

Queueing: Event feed GCEs are polled regularly by the
oBIX client. Every time a message addressed to the group

address associated with the GCE appears on the KNX network,
Calimero NG internally queues this message. When the event
feed GCE is polled by the client, the server fills it with the
values stored in this queue. This type of buffering is not
optional, since the server cannot push spontaneously incoming
messages to the client.

Caching: If the client issues a “read” command on a Point
GCE, the server will by default pass the read request to the
KNX network. Calimero NG can cache the received value
instead and service future client requests from the cache. After
a configurable timeout (or proactively in a certain interval), the
value is again retrieved from the KNX network to refresh the
cache. In addition, it is updated when push-style notifications
are received. For example, consider a sensor that sends its
value both periodically and additionally whenever it changes.
In this case, the refresh timeout can be set to zero (never).
This type of buffering is optional to enhance performance and
reduce KNX network load.

V. OUTLOOK

oBIX is a powerful and flexible tool. In our case, it did not
only allow to represent the constructs on the control network
side seamlessly, but also easily doubled as the back end server
data structure. This allowed an unusually simple server design
and low development time. As another benefit of the XML
format, configuration of the server, both for the management
and the process view, may become a matter of a single XML
transformation in the future. This will be the case once the
ETS (KNX Engineering Tool Software) XML export format
is stable and makes broad use of the standard functional blocks
already defined in the KNX specification.

However, this flexibility necessarily comes at the price
that oBIX is by far not trivial to understand. A thorough
comparison of oBIX with BACnet/WS and OPC UA would
be desirable.

Apart from these implementation specific aspects, the de-
velopment of enterprise-level abstractions (whether using Web
services or not) has to be kept in view. If one was to judge by
the speed of oBIX development up to now, high-level oBIX
abstractions (working title “V2”) could reach draft status soon.
However, such extrapolation is hardly justified, as this is a far
more complex matter than datapoint abstraction.

REFERENCES

[1] ANSI/ASHRAE Addendum c to ANSI/ASHRAE Standard 135-2004, Amer-
ican Society of Heating, Refrigerating and Air-Conditioning Engineers,
Atlanta, 2006.

[2] Calimero — EIBnet/IP Tunnelling (and more) for Java,
http://calimero.sourceforge.net (accessed Jan. 25, 2007).

[3] Cezary Szczegielniak and Markus A. Wischy, “Using FGAG to export
ETS data for Visualization,” Proc. KNX Scientific Conference 2005, 2005.

[4] David Fisher, “XML, Web Services, and the Problems of Enterprise-
Level Data Exchange,” HPAC Engineering, vol. 76, no. 4, pp. 13–14,
April 2004.

[5] Francois Jammes and Harm Smit, “Service-oriented paradigms in indus-
trial automation,” IEEE Transactions on Industrial Informatics, vol. 1,
no. 1, pp. 62–70, Feb. 2005.

[6] KNX Specification, Version 1.1, Konnex Association, Diegem, 2004.
[7] oBIX 1.0 Committee Specification 01, OASIS, 5 Dec. 2006.
[8] oBIX Java Toolkit, http://sf.net/projects/obix (acc. Jan. 25, 2007).
[9] The OPC Foundation, http://www.opcfoundation.org (acc. Apr. 12, 2007).

92


