
WEBCARD: A JAVA CARD WEB SERVER

Jim Rees and Peter Honeyman

Center for Information Technology Integration

University of Michigan

Ann Arbor

http:/ /smarty.citi.umich.edu/

Abstract Webcard is a Java application that implements a TCP /IP stack and

HTTP server and runs on a Schlumberger Cyberflex Access smartca.rd.

In this report, we describe the architecture and implementation of Web

card and the constraints and assumptions that influenced its design.

Complete sources for the application and its supporting environment

are available.

Keywords: Smart card, Internet, World Wide Web

1. INTRODUCTION

Smartcards have numerous properties that make them useful in a se

curity infrastructure:

• smartcards are tamper-resistant

• smartcards export a restricted API that limits access to content

and functionality

• this API includes generic cryptographic functionality.

In combination with these influences, the inherent mobility and con

venient form factor of smartcards suggests deployment in application

domains that offer secure, personalized services; consequently, smartcard

specifications are dictated by an international standard. Consequently,

they are deployed worldwide in a variety of infrastructures and applica

tions.

Consider, for example, a health card application, in which personal

medical information is stored securely on a smartcard. Health care con

sumers maintain strict physical security of their personal data by storing

the health card in their wallets. However, when it comes time to use the

http://dx.doi.org/10.1007/978-0-387-35528-3_22

198 IFIP CARDIS 2000

information, the health card must be accessed by a proprietary applica

tion provided by the card manufacturer or system integrator. So while

the health care consumer maintains the security of her personal infor

mation, she does not really control it, and is not even able to examine

it.

We suggest an alternative. Providing access to confidential information

through web protocols can preserve the security and availability of crit

ical, confidential information when it is needed, but has two additional

benefits:

• the information can be retrieved without special applications, i.e.,

by any web browser; and

• the information can be accessed remotely

The former benefit provides true control over personal data, while the

latter dovetails with telemedicine applications, so that the health care

consumer need not be physically present in the clinical setting.

The predominance of Internet protocols governing network commu

nication cries for integration of smartcards with Internet technologies.

The success of the Internet is due to worldwide acceptance of strict stan

dards on packet formats and concomitant semantics. The first step to

ward smartcard integration with Internet technologies is the development

of a compliant Internet communication stack on a smartcard. In this pa

per, we describe a prototype implementation of IP, TCP, and HTTP on

a commercial smartcard, Schlumberger's Cyberflex Access Java Card.

The rest of this paper is organized as follows. First, we describe the en

vironment in which this research was performed. Next, we discuss nam

ing and addressing issues that arise when integrating smartcards with

the Internet. The next section describes our implementation in detaiL

We conclude with a section that discusses the results and describes our

plans for further development.

2. DEVELOPMENT ENVIRONMENT

The Program for Smartcard Technology at the University of Michi

gan's Center for Information Technology Integration (CITI) is a research

partnership with Schlumberger's Austin Product Center. The Program

is actively engaged in research projects that enhance and extend theca

pabilities of smartcards. Among CITI's goals in the Program, two stand

out:

• innovative computer security applications of smartcards, and

• new models of interaction with smartcards.

Webcard: a Java Card Web Server 199

To these ends, we developed Webcard, a web server that is entirely

contained in a commercial, off-the-shelf smartcard.

Webcard accomplishes both of CITI's objectives in the categories of

research stated above. Webcard takes advantage of the inherent security

properties of smartcards, such as tamper resistance and a programming

interface appropriate for security applications. In contrast to the arcane,

operating system dependent applications characteristic of the smartcard

industry, Webcard offers a radically new mode of interacting with smart

cards, one that is enabled by any Internet-capable web browser.

3. LOCATION DEPENDENCE

Internet services are bound to Internet addresses, which are them

selves tightly woven to the Internet routing infrastructure. The very mo

bility and security of smartcards complicates the challenge of making

rendezvous between arbitrary clients and smartcard-based servers.

Preserving security suggests an end-to-end approach so that interme

diate systems along the network path merely forward datagrams. This

limits the security considerations to the client and server protocols and

applications.

To achieve end-to-end communication, each smartcard must be inde

pendently addressable, i.e., each smartcard must have its own Internet

address. One option, the one we have chosen, is to assign a fixed IP ad

dress to each smartcard. The choice of address dictates the path of IP

packets directed to the card's address. While this severely limits mobil

ity, we find it useful in our prototype implementation as a quick way to

test out ideas unrelated to network routing.

Another option is to assign an address dynamically to each smartcard

as it enters the Internet infrastructure, e.g., with RARP [Finlayson et al.,

1984] or DHCP [Droms, 1997]. Dynamic DNS server updates [Vixie et al.,

1997] can provide fixed domain names for smartcards, solving the service

rendezvous problem. However, this depends on the availability of secure,

dynamic DNS servers.

4. TECHNICAL DETAILS

Webcard is a web server running on a Schlumberger Cyberflex Access

Java Card [Schlumberger, Inc., 1998]. The card is programmed by the

manufacturer to implement a Java virtual machine (JVM), recognizing

the bytecodes of a sizable subset of the Java programming language.

Specifically, Cyberflex implements the Java Card 2.0 specification [Sun

Microsystems, 1997]. Java Card is intended to support multiple applica

tions on a single card, as described in ISO 7816-4 [International Organi-

200 IFIP CARD IS 2000

zation for Standardization, 1995b] and EMV 96 [Europay International

S.A. et a!., 1998]. Webcard is written as a single Java Card application

(variously called an applet or cardlet).

The Cyberflex Access card has 16 KB of EEPROM and about 1.2

Kbytes of RAM. These limited resources make it very difficult to imple

ment a full, standards-compliant version of TCP /IP [Postel, 1981a, Pos

tel, 1981b]. While that is our ultimate goal, we must also accommodate

the size limitations imposed by current smartcards; we find it useful and

interesting to see how much we can accomplish in as little space as pos

sible.

As a first step toward implementing a standards compliant TCP /IP

stack, we elected to implement a minimal, functional server. Our main

"robustness" criterion is to produce a server that responds to valid inputs

and does not crash when presented with invalid inputs. We depend on

the TCP peer to assure reliable operation.

HTTP [Berners-Lee et a!., 1996], TCP, and IP specify many require

ments, many of which are rarely or never used in practice. For our proto

type implementation, we elected to elide those specifications that are not

required in normal operation. To determine which parts of the protocol

are actually used, we captured tcpdump traces of HTTP transactions

from several different clients against an existing server. In these traces,

we observed several properties that helped simplify our implementation:

• all HTTP requests fit in a single packet, so no assembly is required

• many IP header fields are unused, e.g., TOS, ID, Frag, options

• urgent data and TCP options are never used

• RST is never encountered in normal operation

• PUSH is always set on server data packets

• the client never closes connections; the server always closes the

connection

• client data always elicits a server response, so piggybacking client

data acks on server data suffices.

• content files are small, so the receive window never fills

4.1. ONE CONNECTION AT A TIME

The Webcard server is simplified by making the assumption that only

one connection is active at any time. This allows the server to preserve

state for a single connection until a new request comes in. This also

Webcard: a Java Card Web Server 201

eliminates the need to time out defunct connections and to respond to

most state change requests. However, most web browsers run requests in

parallel, so the server must not return pages with inline content such as

images.
It should not be difficult to relax this restriction. The only connection

state kept by the Webcard is the file name; TCP state, which is re

membered but never used; and TCP port, to enforce the one connection

restriction. Connections can be discarded in LRU order as new connec

tion requests arrive, eliminating the need for a timer, which is unavailable

on the Cyberflex Access platform.

4.2. HTTP CONSIDERATIONS

The server speaks a subset of the HTTP 1.0 protocol, which is simpler

and easier to implement than HTTP 1.1 or later. Earlier versions of

HTTP, such as HTTP 0.9, are unable to communicate with Webcard,

but these clients are now very rare. Modern web clients implement HTTP

1.1 or later, which are required to be backward compatible with HTTP

1.0.

Each request is handled as an individual TCP connection. The HTTP

status line, "HTTP /1.0 200 OK," and the HTTP headers are stored in

the files being served, so the server itself does not generate any headers

or send any data other than what is in the file.

An HTTP 1.0 GET request consists of the string "GET," followed

by one space character, followed by a server-relative URL. (Webcard

does not support any other methods, such as HEAD, POST, or PUT.)

For now, URLs are assumed to be three characters, with the last two

characters being the file name. (ISO 7816-4 file names are two bytes.)

When the server receives a request, it selects the requested file. It does

not store any other state that reflects the identity of the requested file.

This implies that only a single HTTP connection can be active at any

time, as described above.

4.3. TCP IMPLEMENTATION

The server has no configuration information. The network connection

is point-to-point, so all incoming packets are assumed to be addressed

to the server. The TCP stack simply swaps the source and destination

addresses when it constructs a reply packet. No subnet or routing infor
mation is required.

Webcard discards any packets not addressed to the HTTP port (TCP

port 80). TCP options are ignored.

202 IFIP CARD IS 2000

The TCP stack never retransmits. This eliminates the need for timers,

which are unavailable anyway, and for keeping track of (most) TCP state.
We assume the TCP peer retransmits when necessary. In practice, pack
ets are rarely dropped.

The Webcard TCP state machine has three states, LISTEN, ESTAB

LISHED, and FIN-WAIT-1, instead of the usual eleven. It is incapable

of initiating a connection, thus does not have the corresponding SYN

SENT state. It also does not have a CLOSED state. Other TCP states

are also eliminated, due to our special requirements and assumptions.

The state machine responds to four types of packets: SYN, data, FIN,

and ACK. A SYN elicits a SYN ACK reply and transitions to ESTAB
LISHED, without waiting for the peer to ACK the SYN. We assume

that the SYN ACK will not be dropped and will eventually arrive. This
assumption is benign: if SYN ACK does get dropped, the peer will re

transmit the SYN, allowing connection establishment to proceed.

HTTP 1.0 allows only one line of text to be sent to the server; follow

ing our restrictions to HTTP 1.0 described above, any packet with data

is assumed to be a complete HTTP GET request. Webcard URLs are

exactly three bytes. We assume that the seven bytes in a GET URL re

quest arrive in a single, unfragmented TCP segment. The server extracts

the URL from this request and selects the given file in the ISO 7816-4

file system. If the file does not exist, the server selects a file named "nf'',

which contains a "404 Not Found" error message. The data packet elicits
an ACK of the client's sequence number.

A FIN elicits an ACK and transitions the TCP state machine to LIS

TEN. HTTP clients always wait for the server to close the connection,

so there is no CLOSE-WAIT or LAST-ACK state. If the client does try

to close the connection prematurely, it will wait in vain for FIN from

the Webcard and will be stuck in FIN-WAIT-2 indefinitely. Most TCP

clients eventually recover from this.
An ACK with no data attached elicits data from the currently selected

file. There is no windowing - data is sent when the ACK for the previous

segment arrives. Webcard sequence numbers always start at zero, so the

client's ACK number gives the offset into the file.
Webcard does not check the client's checksum and ignores the offered

window; this is benign as the card never sends more than one unacked

segment of 248 bytes. The PUSH flag, urgent flag and pointer, and RST
packets are all ignored. Outgoing packets always offer a small fixed win

dow. The actual size of this window is unimportant - we assume the

client will never want to send more than 17 bytes.

Webcard: a Java Card Web Server 203

4.4. IP IMPLEMENTATION

Incoming packets are assumed to contain no IP options. It would not

be difficult to process options, but in practice IP options are never used.

The IP header checksum must be computed with 16 bit arithmetic be

cause the card does not implement 32 bit arithmetic operations. The

checksum routine is simplified by observing that an IP header is never

long enough to overflow a 16 bit sum.
The MRU (incoming MTU) is limited by the ISO interface to slightly

less than 256 bytes. Webcard does not implement IP reassembly, because

the only important incoming information is the URL, which fits in the

first 17 bytes.

4.5. CARDLET DETAILS

Cyberftex extends Java Card in a number of ways. Cyberftex cardlets

contain a main method in addition to the Java Card methods. This allows

them to support standalone programs. Webcard does not depend on this

feature.

A cardlet must have at least three methods, ''install," "select," and

"process." The install method is invoked once at the time the card is

initialized. It creates and initializes the objects needed by the applet.

The select method is invoked at the time the cardlet is selected, usually

via the "select" application protocol data unit (or APDU). A cardlet can

be set as the default for the card, in which case that cardlet is implicitly

selected whenever the card is used.

The process method does all the work. When an APDU is sent to

the card, that APDU is passed to the process method of the currently

selected cardlet. IP packets are sent to the Webcard encapsulated in an
APDU that gets passed to the process method.

On reset, the default loader waits for an incoming APDU and passes
it to the Webcard cardlet. If the APDU is an IP packet (INS=OxFE),

the cardlet processes the APDU; otherwise the cardlet passes the APDU
back to the default loader.

The Webcard cardlet extracts the data length, destination port, and
several other fields from the IP and TCP headers, then enters the TCP
state machine. It then constructs a reply packet if needed, optionally

attaches outgoing data to it, computes TCP and IP checksums, and

sends the reply packet as outgoing 7816 data.

At several points in this process the cardlet calls apdu.waitExtension()

to send a 7816 no-op to the card terminal. This prevents the terminal
from timing out while the card is processing.

204 IFIP CARDIS 2000

The Webcard cardlet depends on the CyberflexFile class to access con

tent files. To run the cardlet on a generic Java Card 2.1 platform, access

to persistent objects would have to be added to the cardlet. This would

complicate card management (see next section), but would improve the

name space for Webcard URLs.

The Webcard cardlet is about 1200 bytes of Java bytecode, leaving

about 14 Kbytes of space for web content.

4.6. CARD MANAGEMENT

Content is loaded onto the Webcard using SCFS (Itoi et al., 1999],

CITI's extension to the UNIX operating system, which mounts any ISO

7816-4 smartcard file system into the UNIX file system name space. Con

tent is managed on the card with UNIX commands such as mv, cp, emacs,

etc.

Cardlets can be written in any Java development environment; we

tend to use standard UNIX editors and Sun Microsystem's JDK (Sun Mi

crosystems, 1998] for compiling into bytecode. A Cyberflex-specific tool

called MakeSolo converts the class file into a cardlet ready for download

ing with another tool from the Cyberflex development kit.

4.7. HOST INTERFACE

The Cyberflex Access card includes an ISO 7816-3 (International Or

ganization for Standardization, 1997] interface. We use this framing pro

tocol instead of implementing a more conventional serial protocol such

as SLIP or PPP.

A daemon running on OpenBSD attaches a tunneling network inter

face to the Webcard IP address and reads from the endpoint of the tun

nel, typically / dev jtunO. The daemon encapsulates IP packets in 7816

APDUs, with no additional headers or processing, and writes them to

the card reader serial port. The daemon processes IP packets emanating

from the card by stripping the APDU header and writing the payload to

the tunnel endpoint.

The maximum size of an APDU is 256 bytes. The tunnel daemon does

not implement IP fragmentation, and truncates any packet too big to fit

in an APDU.

Each incoming packet results in at most one reply packet. Cyberflex

Access supports 7816-3 T=O protocol, so the reply packet is retrieved by

the daemon with a "get response" APDU.

Routing packets to the Web card requires external advertisement of the

existence of the tunnel. At CITI, we assign the Webcard an otherwise

unused IP address from the local subnet's address space and install a

Webcard: a Java Card Web Server 205

static route on our upstream router. On the host to which the card

reader is attached, we configure with the following commands:

configure the tunnel

ifconfig tunO 141.211.169.2 smarty.citi.umich.edu

route through the tunnel

route add smarty 141.211.169.2

start the tunnel daemon

ip7816d 141.211.169.2

4.8. PHYSICAL CHARACTERISTICS

The physical dimensions of Web card, dictated by the Cyberflex Access

platform, correspond to ISO 7810 ID-1: 85.6 x 54 x .76 mm. [International

Organization for Standardization, 1995a]. Of this, roughly 10 x 12 mm

is chip carrier. The chip itself is less than 25 square mm. in size.

5. DISCUSSION

Webcard performance is less than spectacular: approximately 130 bytes

per second. We believe this can be accounted for in the main by code

path through the JVM. First-byte latency, from the point of view of the

tunnel host, is 2.6 sec. We plan to address performance issues when we

are satisfied with functionality.

We are participating in an IETF -governed standardization effort to

provide for interoperability among Internet smartcard developers. An

RFC describing IP encapsulation in ISO 7816-3 has been drafted and sub

mitted to the IETF for consideration and development [Guthery et al.,

2000]. Our Webcard implementation complies with the first draft of the

RFC.
We intend to extend the functionality of Webcard in many directions,

but are mostly concerned with providing better HTTP, TCP, and IP

compliance. Our first priority is to address "hosts requirements" such as

ICMP functionality, which proves useful in remotely diagnosing problems

with IP.

With a more functional TCP /IP stack in hand, we plan to investigate

the potential of remote method invocations from host applications. We

are also interested in investigating IPv6 and mobile IP for the flexibility
they offer to the highly mobile computers embedded in smartcards.

6. AVAILABILITY

A Webcard demonstration, which includes the Java source code and an

image of the card, is at http://smarty.citi.umich.edu/. Complete source

206 IFIP CARDIS 2000

code for the cardlet, tunnel daemon, and 1/0 libraries can be found on
CITI's smartcard home page,

http:/ /www.citi.umich.edu/projects/smartcard.

7. ACKNOWLEDGMENTS

We thank Scott Guthery, Tim Jurgensen, and Bertrand du Castel for

valuable advice and suggestions.
This work was partially supported by Schlumberger, Inc.

References

[Berners-Lee et al., 1996] Berners-Lee, T., Fielding, R., and Frystyk, H.

(1996). RFC 1945: Hypertext transfer protocol- HTTP /1.0.

[Drams, 1997] Drams, R. (1997). RFC 2131: Dynamic host configuration
protocol.

[Europay International S.A. et al., 1998] Europay International S.A.,

MasterCard International Inc., and Visa International Service Assoc.

(1998). EMV '96 - Integrated circuit card specification for payment

systems.

[Finlayson et al., 1984] Finlayson, R., Mann, T., J. Mogul, J., and
Theimer, M. (1984). RFC 903: A reverse address resolution proto

col.

[Guthery et al., 2000] Guthery, S., Baudoin, Y., Posegga, J., and Rees,

J. (2000). IP and ARP over ISO 7816-3.

[International Organization for Standardization, 1995a] International

Organization for Standardization (1995a). ISO/IEC 7810: Identifica

tion cards - Physical characteristics.

[International Organization for Standardization, 1995b] International
Organization for Standardization (1995b). ISO/IEC 7816-4: Inte
grated circuit(s) cards with contacts. Part 4: Interindustry commands
for interchange.

[International Organization for Standardization, 1997) International
Organization for Standardization (1997). ISO/IEC 7816-3: Inte
grated circuit(s) cards with contacts. Part 3: Electronic signals and

transmission protocols.

[Itoi et al., 1999] Itoi, N., Honeyman, P., and Rees, J. (1999). SCFS:
A unix filesystem for smartcards. In Proc. USENIX Workshop on

Smartcard Technology, Chicago.

[Postel, 1981a] Postel, J. (1981a). RFC 791: Internet protocol- DARPA
Internet program protocol specification.

Webcard: a Java Card Web Server 207

[Postel, 1981b] Postel, J. (1981b). RFC 793: Transmission control pro

tocol- DARPA Internet program protocol specification.

[Schlumberger, Inc., 1998] Schlumberger, Inc. (1998). Cyberfl.ex access

programmer's guide.

[Sun Microsystems, 1997] Sun Microsystems (1997). Java Card 2.0 pro

gramming concepts.

[Sun Microsystems, 1998] Sun Microsystems (1998). Java Card applet
developer's guide.

[Vixie et al., 1997] Vixie, P., Thomson, S., Rekhter, Y., and Bound, J.

(1997). RFC 2136: Dynamic updates in the domain name system (DNS

UPDATE).

	WEBCARD: A JAVA CARD WEB SERVER
	1. INTRODUCTION
	2. DEVELOPMENT ENVIRONMENT
	3. LOCATION DEPENDENCE
	4. TECHNICAL DETAILS
	4.1. ONE CONNECTION AT A TIME
	4.2. HTTP CONSIDERATIONS
	4.3. TCP IMPLEMENTATION
	4.4. IP IMPLEMENTATION
	4.5. CARDLET DETAILS
	4.6. CARD MANAGEMENT
	4.7. HOST INTERFACE
	4.8. PHYSICAL CHARACTERISTICS

	5. DISCUSSION
	6. AVAILABILITY
	7. ACKNOWLEDGMENTS
	References

