
Delft University of Technology
Software Engineering Research Group

Technical Report Series

WebDSL: A Case Study in
Domain-Specific Language Engineering

Eelco Visser

Report TUD-SERG-2008-023

SERG

TUD-SERG-2008-023

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

E. Visser. WebDSL: A Case Study in Domain-Specific Language Engineering. In R. Lämmel, J. Saraiva,
and J. Visser, editors, Generative and Transformational Techniques in Software Engineering (GTTSE 2007),
Lecture Notes in Computer Science. Springer, 2008. Tutorial for International Summer School GTTSE
2007

@InProceedings{Vis08,
author = {Eelco Visser},
title = {{WebDSL}: {A} Case Study in Domain-Specific Language

Engineering},
booktitle = {Generative and Transformational Techniques in

Software Engineering (GTTSE 2007)},
publisher = {Springer},
year = 2008,
editor = {R. Lammel and J. Saraiva and J. Visser},
series = {Lecture Notes in Computer Science}

}

This technical report subsumes TUD-SERG-2007-017

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

WebDSL: A Case Study in
Domain-Specific Language Engineering

Eelco Visser

Software Engineering Research Group
Delft University of Technology

visser@acm.org

Abstract. The goal of domain-specific languages (DSLs) is to increase
the productivity of software engineers by abstracting from low-level boil-
erplate code. Introduction of DSLs in the software development process
requires a smooth workflow for the production of DSLs themselves. This
requires technology for designing and implementing DSLs, but also a
methodology for using that technology. That is, a collection of guidelines,
design patterns, and reusable DSL components that show developers how
to tackle common language design and implementation issues. This paper
presents a case study in domain-specific language engineering. It reports
on a project in which the author designed and built WebDSL, a DSL
for web applications with a rich data model, using several DSLs for DSL
engineering: SDF for syntax definition and Stratego/XT for code gener-
ation. The paper follows the stages in the development of the DSL. The
contributions of the paper are three-fold. (1) A tutorial in the application
of the specific SDF and Stratego/XT technology for building DSLs. (2) A
description of an incremental DSL development process. (3) A domain-
specific language for web-applications with rich data models. The paper
concludes with a survey of related approaches.

1 Introduction

Abstraction is the key to progress in software engineering. By encapsulating
knowledge about low level operations in higher-level abstractions, software de-
velopers can think in terms of the higher-level concepts and save the effort of
composing the lower-level operations. By stacking layers of abstraction, devel-
opers can avoid reinventing the wheel in each and every project. That is, after
working for a while with the abstractions at level n, patterns emerge which give
rise to new abstractions at level n + 1.

Conventional abstraction mechanisms of general purpose programming lan-
guages such as methods and classes, are no longer sufficient for creating new
abstraction layers [32, 82]. While libraries and frameworks are good at encap-
sulating functionality, the language which developers need to use to reach that
functionality, i.e. the application programmers interface (API), is often awk-
ward. That is, utterances take the form of (complex combinations of) method
calls. In some cases, an API provides support for a more appropriate language,

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 1

but then utterances take the form of string literals that are passed to library
calls (e.g. SQL queries) and which are not checked syntactically, let alone se-
mantically, by the host language. Application programs using such frameworks
typically consist of large amounts of boilerplate code, that is, instantiations of
a set of typical usage patterns, which is needed to cover the variation points
of the framework. Furthermore, there is often a considerable distance between
the conceptual functionality of an application and its encoding in the program
code, leading to disproportionate efforts required to make small changes. The
general-purpose host language of the framework has no knowledge of its appli-
cation domain, and cannot assist the developer with for instance verification or
optimization.

In recent years, a number of approaches, including model-driven architec-
ture [76], generative programming [33, 32], model-driven engineering [61, 82],
model-driven software development [87], software factories [51, 30], domain-specific
modeling [60], intentional software [84], and language oriented programming [36],
have been proposed that aim at introducing new meta-abstraction mechanisms
to software development. That is, mechanisms that enable the creation of new
layers of abstraction.

Domain-Specific Languages Common to all these approaches is the encap-
sulation of design and implementation knowledge from a particular application
or technical domain. The commonalities of the domain are implemented directly
in a conventional programming language or indirectly in code generation tem-
plates, while the variability is configurable by the application developer through
some configuration interface. This interface can take the form of a wizard for
simple domains, or full fledged languages for domains with more complex vari-
ability [32]. Depending on the approach, such languages are called modeling lan-
guages, domain-specific languages, or even domain-specific modeling languages.

In this paper the term domain-specific language is used with the following
definition:

A domain-specific language (DSL) is a high-level software implementa-
tion language that supports concepts and abstractions that are related
to a particular (application) domain.

Lets examine the elements of this definition:
A DSL is a language, that is, a collection of sentences in a textual or visual

notation with a formally defined syntax and semantics. The structure of the sen-
tences of the language should be defined by means of a grammar or meta-model,
and the semantics should be defined by means of an abstract mathematical se-
mantics, or by means of a translation to another language with a well understood
semantics. Thus, the properties and behavior of a DSL program or model should
be predictable.

A DSL is high-level in the sense that it abstracts from low-level implemen-
tation details, and possibly from particularities of the implementation platform.
High-level is a matter of perspective, though. Algol was introduced as a language

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

2 TUD-SERG-2008-023

for the specification of algorithms [8] and was high-level with respect to assem-
bly language. Now we consider the Algol-like languages such as C and Java as
low-level implementation languages.

A DSL should support software implementation. This does not require that
a DSL be a procedural language, like many familiar programming languages.
Indeed, declarative DSLs are preferable. However, DSLs should contribute in
the creation of components of executable software systems. There are many
examples of declarative languages that specify computations. For example, a
context-free grammar does not consist of instructions to be executed (‘directly’)
by a computer. Rather it is a declarative definition of the sentences of a language.
Yet a grammar may also be used to generate an executable parser for that
language.

Finally, the concepts and abstractions of a DSL are related to a particular
domain. This entails that a DSL does not attempt to address all types of com-
putational problems, or not even large classes of such problems. This allows the
language to be very expressive for problems that fall in the domain and com-
pletely useless for other problems. For problems that are on the edge of the
domain (as perceived by the DSL designer), the language may not be adequate.
This gray area typically leads to pressure for the DSL to grow beyond its (orig-
inal) domain. What makes a suitable domain cannot be determined in general;
the closest we can get is maybe the circular definition that a domain is a coherent
area of (software) knowledge that can be captured in a DSL.

The success of a DSL is measured in terms of the improvement of the software
development process it enables. First, it is important that the DSL is actually
effective in its intended domain, that is, applications that are considered to
fit the domain should be expressible with the DSL1. This can be expressed as
the completeness of the DSL or its coverage of the domain. Next, building an
application with a DSL should take substantially less effort than with other
means. An approximation of this metric, is the number of DSL lines of code
(LOC) that is needed for an application compared to what would be needed
with conventional programming techniques. An expressive DSL requires few lines
of code. There is a natural tension between coverage and expressivity. Non-
functional requirements are just as important as functional requirements. In
addition to providing the required functionality, a system should be efficient,
safe, secure, and robust, to the extent required. Finally, first-time development
of applications may be cheap, but systems usually have a long life span. The
question then is how well the DSL supports maintenance and how flexible it is in
supporting new requirements. Van Deursen and Klint [98] discuss maintainability
factors of DSLs.

History Domain-specific languages pre-date the recent modeling approaches
mentioned above by decades. The name of the programming language for sci-
entific computing fortran, developed by Backus in the late 1950s, is an ab-
1 ‘Application’ can be read either as a complete software system or as a component of

a software system; DSLs do typically not address all aspects of a software system.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 3

breviation of ’formula translation’ [7]. The language borrowed notation from
mathematics so that programmers could write mathematical formulas directly,
instead of encoding these in low-level stack and register operations, resulting
in a dramatic improvement of programmer productivity. The 1970s Structured
Query Language (SQL) [24] provided special notation for querying databases
based on Codd’s [27] relational database model. So called little languages [12]
prospered in the Unix environment. Languages such as LEX (lexical analysis),
YACC (parsing), PIC (for drawing pictures), and Make (for software building)
were developed in the 1970s and 1980s. Another strand in the history are the
so called fourth generation languages supported by application generators [91],
which were supposed to follow-up the third generation general purpose lan-
guages. There are several surveys of domain-specific languages, including [86,
85, 98, 99, 73].

Textual vs Visual One aspect of the recent modeling approaches that could be
perceived as novel is the preference for visual (graphical) languages in many ap-
proaches. For example, model-driven architecture and its derivatives are largely
based on the use of UML diagrams to model aspects of software systems. Using
UML profiles, the general purpose UML can be used for domain-specific mod-
eling. MetaCase [60] and the Visual Studio DSL Tools [30] provide support for
defining domain-specific diagram notations. There is no fundamental difference
in expressivity between visual and textual languages. The essence of a language
is that it defines structures to which meaning is assigned. Viewing and creating
these structures can be achieved with a variety of tools, where various represen-
tations are interchangeable. On the one hand, visual diagrams can be trivially
represented using text, for instance by taking an XML rendering of the internal
structure. On the other hand, textual models can be trivially represented ‘visu-
ally’ by displaying the tree or graph structure resulting from parsing followed by
static semantic analysis. Of course, there are non-trivial visualizations of textual
models that may provide an alternative view. Some notations are more appro-
priate for particular applications than others. However, most (successful) DSLs
created to date are textual, so text should not be easily discarded as a medium.
Another factor is the impact on tools required for viewing and creating models.

Systematic Development Rather than a preference for visual languages, more
significant in recent approaches is the emphasis — with support from industry
(e.g. Microsoft) and standardization organizations (e.g. OMG) — on the system-
atic development and deployment of DSLs in the software development process.
While the DSLs and 4GLs of the past were mostly designed as one-off projects
by a domain stakeholder or tool vendor, DSLs should not just be used dur-
ing the software development process, but the construction of DSLs should also
become part of that process. Where developers (or communities of developers
across organizations) see profitable opportunities for linguistic abstraction, new
DSLs should be developed. Rather than language design artistry, this requires a
solid engineering discipline, which requires an effective collection of techniques

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

4 TUD-SERG-2008-023

and methods for developing domain-specific languages. In their survey of DSL
development methods, Mernik et al. [73] describe patterns for decision, analysis,
design, and implementation of DSLs. They conclude that most existing work fo-
cuses on supporting the implementation of DSLs, but fails to provide support, be
it methodological or technological, for earlier phases in the DSL life cycle. Thus,
a challenge for a software engineering discipline in which DSLs play a central
role is a systematic and reproducible DSL development methodology. As for the
use of DSLs, important criteria for the effectiveness of such a methodology are
the effort it takes to develop new DSLs and their subsequent maintainability.

In previous work I have focused on the creation of language implementa-
tion technology, that is, a set of DSLs and associated tools for the development
and deployment of language processing tools. The SDF syntax definition for-
malism [53, 101], the Stratego/XT program transformation language and tool
set [103, 17, 19], and the Nix deployment system [39, 37] provide technology for
defining languages and the tools needed for their operation. Publications result-
ing from this research typically present innovations in the technology, illustrated
by means of case studies. This paper for a change does not present technological
innovations in meta technology, but rather an application of that technology in
domain-specific language engineering, with an attempt at exploring the design
space of DSL development methodology.

WebDSL This paper presents a case study in domain-specific language engi-
neering. The paper tracks the design and implementation of WebDSL, a DSL
for web applications with a rich data model. The DSL is implemented using
Stratego/XT and targets high-level Java frameworks for web engineering. The
contributions of this paper are

– A tutorial on DSL design, contributing to the larger goal of building a
methodology for the design and implementation of domain-specific languages.
This includes an incremental (agile) approach to analysis, design, and im-
plementation, and the illustration of best practices in language design, such
as the use of a core language and the introduction of syntactic abstractions
to introduce higher-level abstractions.

– A tutorial on the application of Stratego/XT to building (textual) domain-
specific languages, illustrating the utility of techniques such as term rewrit-
ing, concrete object syntax, and dynamic rewrite rules.

– The introduction of WebDSL, a domain-specific language for the implemen-
tation of web applications with a rich data model.

The next section describes the development process and introduces the setup of
sections 3 to 9, which discuss the stages in the development of WebDSL. Sections
10 to 12 evaluate the resulting WebDSL language and its development process,
also with respect to related work.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 5

2 Process Definition and Domain Analysis

According to the DSL development patterns of Mernik et al. [73], the DSL life
cycle consists of (1) a decision phase in which the decision whether or not to build
a DSL is taken, (2) an analysis phase in which the application domain is analyzed,
(3) a design phase in which the architecture and language are designed, and
finally, (4) an implementation phase in which the DSL and supporting run-time
system are constructed. We can add (5) a deployment phase, in which DSLs and
the applications constructed with them are used, and (6) a maintenance phase in
which the DSL is updated to reflect new requirements. In this paper, I propose
an incremental, iterative, and technology-driven approach to DSL development
in which analysis, design, and implementation are combined in the spirit of
agile software development [11]. Deployment and maintenance are left for future
work. In this section, I describe and motivate this process model and relate it to
the patterns of Mernik et al. [73]. The bulk of the paper will then consist of a
description of the iterations in the design of WebDSL.

2.1 When to Develop a DSL?

The development of a DSL starts with the decision to develop one in the first
place. Libraries and frameworks form a good alternative for developing a DSL.
Many aspects of application development can be captured very well in libraries.
When a domain is so fresh that there is little knowledge about it, it does not
make sense to start developing a DSL. First the regular software engineering
process should be applied in order to determine the basic concepts of the field,
develop a code base supported with libraries, etc. When there is sufficient insight
in the domain and the conventional programming techniques fail to provide the
right abstractions, there may be a case for developing a DSL. So, what were the
deciding factors for developing WebDSL?

The direct (personal) inspiration for developing WebDSL are wiki systems
such as MediaWiki used for wikipedia, and more concretely TWiki used for
program-transformation.org and other web sites maintained by the author. Wikis
enable a community — the entire web population or the members of an organiza-
tion — to contribute to the content of a site using a browser as editor. However,
the data model for that content is poor, requiring all structured information to
be encoded in the text of a page. This lack of structure entails that querying
data and data validation depend on text operations. The initial goal of WebDSL
is to combine the flexible, online editing of content as provided by wikis with a
rich data model that allows presentation of and access to the underlying data in
a variety of ways.

The scope of WebDSL is interactive dynamic web applications with a rich
application-specific data model. That is, web applications with a database for
data storage and a user interface providing several views on the data in the
database, but also the possibility to modify those data via the browser. An
additional assumption is that the data model is static, i.e. it is designed during
development and cannot be changed online.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

6 TUD-SERG-2008-023

The engineering of web applications is a fairly mature field. There is an
abundance of libraries and frameworks supporting the construction of web ap-
plications. The state-of-the art for the construction of robust industrial strength
web applications are the Java and C# web engineering platforms. Based on the
portability of Java and the availability of infrastructure for generation of Java
in Stratego/XT, I have decided to restrict my attention to this platform for this
case study. While current frameworks provide good support for the basic me-
chanics of web applications — such as handling requests, parsing form data, and
producing XHTML — there is a strong case for the development of a DSL for
this domain; several of the decision patterns of Mernik et al. [73] apply to the
domain of web applications.

Task Automation Compared to the CGI programming of early web applications,
a mature web engineering platform takes care of low-level concerns. For exam-
ple, Java servlets deal with the mechanics of receiving requests from and sending
replies to clients. Java Server Faces (JSF) deal with the construction of web pages
and with the analysis of form data received from the client. Despite such facili-
ties, web programming often requires a substantial amount of boilerplate code;
many Java classes or XML files that are very similar, yet not exactly the same
either. Conventional abstraction mechanisms are not sufficient for abstracting
over such patterns. Thus, one case for a web DSL is programming-task automa-
tion, i.e. preventing the developer from having to write and maintain boilerplate
code.

Notation The current platform provides an amalgam of often verbose languages
addressing different concerns, which are not integrated. For example, the Java-
JPA-JSF-Seam platform is a combination of XHTML extended with JSF compo-
nents and EL expressions (Java-like expressions embedded in XML attributes),
Java with annotations for declaration of object-relational mapping and depen-
dency injection, and SQL queries ‘embedded’ in Java programs in the form of
string literals. A concise and consistent notation, that linguistically integrates
the various aspects of web application construction would lighten development
and maintenance. Note that linguistic integration does not necessarily mean a
loss of separation of concerns, but rather that different concerns can be expressed
in the same language.

Verification Another consequence of the lack of integration of web application
technologies is the lack of static verification of implementations. Components
linked via dependency injection are only checked at run-time or deployment-time.
Queries embedded in strings are not checked syntactically or for compatibility
with the data model until run-time. References in EL expressions in XHTML files
are only checked at run-time. These issues clearly illustrate that the abstraction
limits of GPLs have been reached; the static typechecking of Java programs does
not find these problems. A static verification phase, which would be enabled by
an integrated language would avoid the tedious debugging process that these
problems cause.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 7

GUI Construction The user interface portion of a web application is typically
defined by means of a template mechanism. JSP-style templates consist of plain
text with anti-quotations in which fragments of Java code are used to insert
‘dynamic’ content derived from data objects. The framework has no knowledge
of the structure of the HTML code generated by the template, so it is very easy
to generate non well-formed documents. Java Server Faces templates are more
advanced in that they define the complete document by means of a structured
XML document, which is parsed at deployment-time. XHTML is generated by
rendering this structure. Insertion of content from data object is achieved by
means of ‘EL expressions’ in XML attributes. Still, templates are very verbose
and concerned with low-level details. Furthermore, the EL expressions are only
parsed and checked at run-time.

Analysis and Optimization There are also opportunities for domain-specific anal-
ysis and optimization. For example, optimization of database queries in the style
of Wiedermann and Cook [108] might be useful in improving the performance
of applications without resorting to manual tuning of generated queries. These
concerns are not (yet) addressed in WebDSL.

2.2 Domain Analysis

Domain analysis is concerned with the analysis of the basic properties and re-
quirements of the problem domain. For example, a first analysis of the domain
would inform us that the development of a web application involves a data model,
an object-relational mapping, a user interface, data input and output methods,
data validation, page flow, and access control. Additionally, it may involve file
upload, sending and receiving email, versioning of data, internationalization, and
higher-level concerns such as work-flow. A more thorough analysis studies each
of the concerns of a domain in more detail, and establishes terminology and
requirements, which are then input for the design of a DSL.

Deductive The traditional development process for domain-specific languages
follows a top-down or deductive track and starts with an exhaustive domain
analysis phase, e.g. [29, 98, 73]. The advantage of this approach is a thorough
analysis. The risk of such a deductive (top-down) approach is that the result
is a language that is difficult to implement. Furthermore, a process developing
an all encompassing DSL for a domain runs the usual risks of top-down design,
such as over design, late understanding of requirements, leading to discovery of
design and implementation problems late in the process.

Inductive Rather than designing a complete DSL before implementation, this
paper follows an inductive approach by incrementally introducing abstractions
that allow one to capture a set of common programming patterns in software
development for a particular domain. This should enable a quick turn-around
time for the development of such abstractions. Since the abstractions are based

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

8 TUD-SERG-2008-023

on concrete programming patterns, there are no problems with implementing
them.

Technology-driven Rather than designing a DSL based on an analysis of the
domain in the abstract, the approach is technology-driven, i.e. considers best
practices in the implementation of systems in the domain. This is similar to
architecture-centric model-driven software development [87] or designing DSLs
based on a program family [28]. After the initial determination of the scope of
the domain, domain analysis then is concerned with exploring the technology
that is available, and analyzing how it is typically used.

Selecting a specific technology helps in keeping a DSL design project grounded;
there is a specific reference architecture to target in code generation. However,
a risk with this approach is that the abstractions developed are too much tied
to the particularities of the target technology. In domains such as web appli-
cations there are many virtual machines. Each combination of implementation
languages, libraries, and frameworks defines a virtual machine to target in soft-
ware development. Each enterprise system/application may require a different
virtual machine. This is similar to the situation in embedded systems, where the
peculiarities of different hardware architectures have to be dealt with. Thus, a
consideration for the quality of the resulting DSL is the amount of leakage from
the (concrete) target technology into the abstractions of the DSL; how easy is
it to port the DSL to other virtual machines?

Iterative Developing the DSL in iterations can mitigate the risk of failure. In-
stead of a big project that produces a functional DSL in the end, an iterative
process produces useful DSLs for sub-domains early on. This can be achieved by
extending the coverage of the domain incrementally. First the domain concerns
addressed can be gradually extended. For example, the WebDSL project starts
with a data model DSL, addressing user interface issues only later in the project.
Next, the coverage within each concern does not have to be complete from the
start either. The WebDSL coverage of user interface components is modest at
first, concentrating on the basic architecture, rather than covering all possible
fancy features. This approach has the advantage that DSLs for relevant areas
of the domain are available early and can start to be used in development. The
feedback from applying the DSL under development can be very valuable for
evaluating the design of abstractions and improving them. Considering the col-
lection of patterns will hopefully lead to a deeper insight in how to make even
better abstractions for the application domain.

2.3 Outline

The rest of this paper discusses the iterations in the design and implementation
of WebDSL. These iterations are centered around three important DSL design
patterns: finding programming patterns, designing a core language, and building
syntactic abstractions on top of the core language.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 9

Programming Patterns The first step in developing a new DSL is to explore
the technology for building systems in the domain to find common program-
ming patterns. That is, program fragments that occur frequently with slight
variations. This exploration can take the form of inspecting legacy code, but
preferably the technical literature and reference implementations. These typi-
cally present ideal programming patterns, as opposed to legacy code exposed
to design erosion. The idea then is to capture the variability in the patterns by
an appropriately designed abstraction. The commonality in the patterns is cap-
tured in code templates used in the generator that translates the abstractions
to target code.

In Sections 3 to 5 we explore the domain of web applications built with
Java/JSF/JPA/Seam and the techniques for implementing a DSL for this do-
main. Section 3 starts with looking at programming patterns for the implemen-
tation of data models using the Java Persistency API (JPA). A simple DSL for
declaration of JPA entities is then developed, introducing the techniques for its
implementation, including syntax definition and term rewriting in Stratego/XT2.
Section 4 develops a generator for deriving from a data model declaration, stan-
dardized pages for viewing and editing objects. In Section 5 the coverage of the
data model DSL is increased in various directions.

Core Language The abstractions that result from finding programming pat-
terns tend to be coarse grained and capture large chunks of code. In order to
implement a variation on the functionality captured in the generator templates,
complete new templates need to be developed. The templates for generating view
and edit pages developed in Section 4 are very specific to these interaction pat-
terns. Extending this approach to include other, more sophisticated, interaction
patterns would lead to a lot of code duplication within the generator. To increase
the coverage of the DSL it is a good idea to find the essential abstractions un-
derlying the larger templates and develop a core language that supports freely
mixing these abstractions. In Section 6 a core language for web user interfaces
is developed that covers page flow, data views, and user interface composition.
In Section 7 the core language is extended with typechecking, data input, and
queries.

Abstraction Mechanisms A good core language ensures an adequate coverage
of the domain. However, this may come at a loss of abstraction. Core language
constructs are typically relatively low-level, which leads to frequently occurring
patterns combining particular constructs. To capture such patterns and provide
high-level abstractions to DSL programmers we need abstraction mechanisms.

Some of these patterns can be captured in templates or modules in a library
of common components. In Section 8 WebDSL is extended with abstraction

2 While the concepts underlying Stratego/XT are explained (to the extent necessary
for the tutorial), the details of operating Stratego/XT are not. To get acquainted
with the tools the reader should consult the Stratego/XT tutorial and manual [18].

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

10 TUD-SERG-2008-023

mechanisms for web developers. Template definitions allow developers to create
reusable page elements. Modules support the division of an application into
reusable files.

Other patterns require reflection over types or other properties of program
elements, which may not be so easily defined using the abstraction facilities of
the language. Advanced reflection and analysis mechanisms carry a run-time
cost and considerably increase the complexity of the language. Such patterns
are typically more easily defined using linguistic abstraction, i.e. the extension
of the language with syntactic abstractions, which are implemented by means of
transformations to the core language — as opposed to transformations to the
target language. Building layers of abstractions on top of a core language is a key
feature of software development with DSLs; new abstractions are defined rela-
tively easily, by reusing the implementation knowledge captured in the generator
for the core language. Section 9 illustrates this process by defining a number of
syntactic abstractions for data input and output.

3 Programming Patterns: Data Model

The first step in the process of designing a DSL is to consider common pro-
gramming patterns in the application domain. We will turn these patterns into
templates, i.e. program fragments with holes. The holes in these templates can
be filled with values to realize different instantiations of the programming pat-
tern. Since the configuration data needed to fill the holes is typically an order
of magnitude smaller than the programming patterns they denote, a radical de-
crease in programming effort is obtained. That is, when exactly these patterns
are needed, of course. With some thought the configuration data can be turned
into a proper domain-specific language. Instead of doing a ‘big design up front’
to consider all aspects a DSL for web applications should cover and the language
constructs we would need for that, we develop the DSL in iterations. We start
with relatively large patterns, i.e., complete classes.

3.1 Platform Architecture

As argued before, we take a particular technology stack as basis for our WebDSL.
That is, this technology stack will be the platform on which code generated from
DSL models will run. That way we have a concrete implementation platform
when considering design and implementation issues and it provides a concrete
code base to consider when searching for programming patterns. Hopefully, we
will arrive at a design of abstractions that transcend this particular technology.

In this work we use the Seam architecture for web applications. That is,
applications consist of three layers or tiers. The presentation layer is concerned
with producing web pages and interpreting events generated by the user. For
this layer we use JavaServer Faces (JSF) [72]. The persistence layer is concerned
with storing data in the database and retrieval of data from the database. This

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 11

layer really consists of two parts. The database proper is a separate service im-
plemented by a relational database. In the implementation of a web application,
however, we approach the database via an object-relational mapping (ORM)
framework, which takes care of the communication with the database and trans-
lates relational data into objects that can be used naturally in an object-oriented
setting. Thus, after defining a proper mapping between objects and database
tables, we need no longer worry about the database side. Finally, to connect
the JSF pages defining the user-interface with the objects obtained from the
database we use EJB3 session beans [56, 74].

While it used to be customary for these types of frameworks to require a
large portion of an application to be implemented in XML configuration files,
this trend has been reversed in the Seam architecture. Most of the configura-
tion is now expressed as annotations in Java classes building on the concept of
dependency injection [46]. A little XML configuration remains, for instance, to
define where the database is to be found. This configuration is mostly static and
will not be a concern in this paper.

In this section, we start with considering entity beans, i.e. Java classes that
implement persistent objects. We will build a generator for such classes, starting
with a syntax definition for a data model language up to the rewriting rules
defining Java code generation. As such, this section serves as an introduction to
these techniques. In the next section we then consider the generation of basic
web pages for viewing and editing the content of persisted objects.

3.2 Programming Patterns for Persistence

The Java Persistence API (JPA) [90] is a standard proposed by Sun for object-
relational mapping (ORM) for Java. The API is independent of vendor-specific
ORM frameworks such as Hibernate; these frameworks are expected to imple-
ment JPA, which, Hibernate 3 indeed does [10]. While earlier versions of Hi-
bernate used XML configuration files to define the mapping between database
schemas and Java classes, the JPA approach is to express these mappings using
Java 5 annotations in Java classes. Objects to be persisted in a database are rep-
resented using ‘plain old Java objects (POJOs)’. Classes are mapped to database
tables and properties (fields with getters and setters) are mapped to database
columns. We will now inspect the ingredients of such classes as candidates for
code generation.

Entity Class An entity class is a Java class annotated with the @Entity an-
notation and with an empty constructor, which guarantees that the persistence
framework can always create new objects.

@Entity

public class Publication {

public Publication () { }

// properties

}

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

12 TUD-SERG-2008-023

An entity class is mapped to a database table with the same name. If desired,
an alternative name for the table can be specified, but we will not be concerned
with that (for the time being at least). In general, for many of the patterns we
consider here there are alternatives that have (subtly) different semantics. For
now, we consider ‘vanilla’ patterns. Later, if and when the need arises we can
introduce more variability.

Identity Entities should have an identity as primary key. This identity can be
any value that is a unique property of the object. The annotation @Id is used to
indicate the property that represents the identity. However, the advice is to use
an identity that is not directly linked to the logic of the object, but rather to
use a synthetic identity, for which the database can generate unique values [10].
This then takes the following pattern:

@Id @GeneratedValue

private Long id;

public Long getId() { return id; }

private void setId(Long id) { this.id = id; }

Properties The values of an object are represented by properties, class member
fields with getters and setters. Such properties are mapped to columns in the
database table for the enclosing class.

private String title;

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

Entity Associations No annotations are needed for properties with simple
types. However, properties referring to other entities, or to collections of entities,
require annotations. The following property defines an association to another
entity:

@ManyToOne

private Person author = new Person();

public Person getAuthor() { return author; }

public void setAuthor(Person author) { this.author = author; }

The @ManyToOne annotation states that many Publications may be authored
by a single Person. Alternatively, we could use a @OneToOne annotation to model
that only one Publication can be authored by a Person, which implies owner-
ship of the object at the other end of the association.

3.3 A Data Model DSL

Entity classes with JPA annotations are conceptually simple enough. However,
there is quite a bit of boilerplate involved. First of all, the setters and getters are
completely redundant, and also the annotations can be become fairly complex.
However, the essence of an entity class is simple, i.e., a class name, and a list

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 13

of properties, i.e., (name, type) pairs. This information can be easily defined in
a structure of the form A{ prop* } with A a name (identifier) and prop* a list
of properties of the form x : t, i.e., a pair of a field name x and a type t. For
example, the following entity declarations

entity Publication {

title : String

author : Person

year : Int

abstract : String

pdf : String

}

entity Person {

fullname : String

email : String

homepage : String

}

define the entities Publication and Person, which in Java take up easily 100
lines of code.

The collection of data used in a (web) application is often called the domain
model of that application. While this is perfectly valid terminology it tends to
give rise to confusion when considering domain-specific languages, where the
domain is the space of all applications. Therefore, in this paper, we stick to the
term data model for the data in a web application.

3.4 Building a Generator

In the rest of this section we will examine how to build a generator for the simple
data modeling language sketched above. A generator typically consists of three
main parts, a parser, which reads in the model, the code generator proper, which
transforms an abstract syntax representation of the model to a representation of
the target program, and a pretty-printer, which formats the target program and
writes it to a text file. Thus, we need the following ingredients. A definition of
the concrete syntax of the DSL, for which we use the syntax definition formalism
SDF2. A parser that reads model files and produces an abstract representation.
A definition of that abstract representation. A transformation to the abstract
representation of the Java program to be generated, for which we use term
rewrite rules. And finally, a definition of a pretty-printer.

3.5 Syntax Definition

For syntax definition we use the syntax definition formalism SDF2 [101]. SDF2
integrates the definition of the lexical and context-free syntax. Furthermore, it
is a modular formalism, which makes it easy to divide a language definition
into reusable modules, but more importantly, it makes it possible to combine
definitions for different languages. This is the basis for rewriting with concrete
syntax and language embedding; we will see examples of this later on.

The syntax of the basic domain modeling language sketched above is defined
by the following module DataModel. The module defines the lexical syntax of
identifiers (Id), integer constants (Int), string constants (String)3, whitespace
3 Integer and string constants are not used in this version of the language.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

14 TUD-SERG-2008-023

and comments (LAYOUT). Next the context-free syntax of models, entities, prop-
erties, and sorts is defined. Note that SDF productions have the non-terminal
being defined on the right of the -> and the body on the left-hand side.

module DataModel

exports

sorts Id Int String Definition Entity Property Sort

lexical syntax

[a-zA-Z][a-zA-Z0-9_]* -> Id

[0-9]+ -> Int

"\"" ~[\"\n]* "\"" -> String

[\ \t\n\r] -> LAYOUT

"//" ~[\n\r]* [\n\r] -> LAYOUT

context-free syntax

Definition* -> Model {cons("Model")}

Entity -> Definition

"entity" Id "{" Property* "}" -> Entity {cons("Entity")}

Id ":" Sort -> Property {cons("Property")}

Id -> Sort {cons("SimpleSort")}

Abstract Syntax An SDF syntax definition defines the concrete syntax of
strings in a language. For transformations we want an abstract representation,
i.e. the tree structure underlying the grammar. This structure can be expressed
concisely by means of an algebraic signature, which defines the constructors of
abstract syntax trees. Such a signature can be derived automatically from a syn-
tax definition (using sdf2rtg and rtg2sig). Each context-free production gives
rise to a constructor definition using the name declared in the cons attribute
of the production as constructor name, and the non-literal sorts as input ar-
guments. Thus, for the DataModel language defined above, the abstract syntax
definition is the following:

signature

constructors

Model : List(Definition) -> Model

: Entity -> Definition

Entity : Id * List(Property) -> Entity

Property : Id * Sort -> Property

SimpleSort : Id -> Sort

: String -> Id

Signatures describe well-formed terms. Terms are isomorphic with structures of
the following form:

t := c(t1, ..., tn)

That is, a term is an application of a constructor c to zero or more terms ti. In
practice, the syntax is a bit richer, i.e., terms are defined as

t := s | i | f | c(t1, ..., tn) | [t1, ..., tn] | (t1, ..., tn)

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 15

including special notation for string (s), integer (i), and float (f) constants, and
for lists ([]), and tuples (()). A well-formed term according to a signature is
defined according to the following rules. (1) If t1, ..., tn are well-formed terms of
sorts s1, ..., sn, respectively, and c : s1 ∗ ... ∗ sn → s0 is a constructor declaration
in the signature, then c(t1, ..., tn) is a well-formed term of sort s0. (2) If t1, ...,
tn are well-formed terms of sort s, then [t1, ..., tn] is a well-formed term of sort
List(s). (3) If t1, ..., tn are well-formed terms of sorts s1, ..., sn, respectively,
then (t1, ..., tn) is a well-formed term of sort (s1, ..., sn).

Parsing A parser reads a textual representation of a model, checks it against
the syntax definition of the language, and builds an abstract syntax represen-
tation of the underlying structure of the model text. Parse tables for driving
the sglr parser can be generated automatically from a syntax definition (using
sdf2table). The sglr parser produces an abstract syntax representation in the
Annotated Term (ATerm) Format [96], as illustrated by the following parse of a
data model:

entity Person {

fullname : String

email : String

homepage : String

}

⇒

Entity("Person",

[Property("fullname", SimpleSort("String"))

, Property("email", SimpleSort("String"))

, Property("homepage", SimpleSort("String"))

]

)

3.6 Code Generation by Rewriting

Programs in the target language can also be represented as terms. For example,
Figure 1 shows the abstract representation of the basic form of an entity class
(as produced by the parse-java tool, which is based on an SDF definition of the
syntax of Java 5). This entails that code generation can be expressed as a term-
to-term transformation. Pretty-printing of the resulting term then produces the
program text. The advantage of generating terms over the direct generation of
text is that (a) the structure can be checked for syntactic and type consistency,
(b) a pretty-printer can ensure a consistent layout of the generated program
text, and (c) further transformations can be applied to the generated code. For
example, in the next section we will see that an interface can be derived from
the generated code of a class.

Term rewriting Term rewriting is a formalism for describing term transfor-
mations [6]. A rewrite rule p1 -> p2 defines that a term matching the term
pattern p1 can be replaced with an instantiation of the term pattern p2. A term
pattern is a term with variables. In standard term rewriting, rewrite rules are
applied exhaustively until a normal form is obtained. Term rewriting engines em-
ploy a built-in rewriting strategy to determine the order in which subterms are
rewritten. Stratego [105, 20] is a transformation language based on term rewrit-
ing. Rewrite rules are named and can be conditional, i.e., of the form l : p1

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

16 TUD-SERG-2008-023

@Entity

public class Publication {

public Publication () { }

}

⇓
ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id("Publication")

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id("Publication"),[],None()),

ConstrBody(None(), []))

])

)

Fig. 1. Abstract syntax for a Java class.

-> p2 where s, with l the name and s the condition. Stratego extends basic
term rewriting by providing programmable rewriting strategies that allow the
developer to determine the order in which rules are applied. The rewrite rule
in Figure 2 defines the transformation of an Entity term in the data model
language to the basic Java class pattern that we saw above. Note that the rule
generalizes over the particular class by using instead of the name "Publication",
a variable x for the class and the constructor. Thus, the rule generates for an
arbitrary Entity x, a class x.

In Stratego, a rewrite rule is a special case of a rewriting strategy [105]. A
strategy is an algorithm that transforms a term into another term, or fails. A
strategy definition can invoke rewrite rules and other strategies by name. Strate-
gies can be parametrized with strategies and terms, supporting the definition of
reusable strategies.

entity-to-class :

Entity(x, prop*) ->

ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id(x)

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id(x),[],None()),

ConstrBody(None(), []))

])

)

Fig. 2. Term rewrite rule.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 17

Concrete Syntax The entity-to-class rewrite rule defines a template for
code generation. However, the term notation, despite its advantages for code
generation as noted above, is not quite as easy to read as the corresponding
program text. Therefore, Stratego supports the definition of rewrite rules using
the concrete syntax of the subject language [102]. For example, the following
rule is the concrete syntax equivalent of the rule in Figure 2:

entity-to-class :

|[entity x_Class { prop* }]| ->

|[@Entity

public class x_Class {

public x_Class () { }

}]|

Note that the identifier x_Class is recognized by the Stratego parser as a meta-
variable, i.e. a pattern variable in the rule.

While rewrite rules using concrete syntax have the readability of textual
templates, they have all the properties of term rewrite rules. The code fragment
is parsed using the proper syntax definition for the language concerned and thus
syntax errors in the fragment are noticed at compile-time of the generator. The
transformation produces a term and not text; in fact, the rule is equivalent to
the rule using terms in Figure 2. And thus the advantages of term rewriting
discussed above hold also for rewriting with concrete syntax.

3.7 Pretty-printing

Pretty-printing is the inverse of parsing, i.e. the conversion of an abstract syntax
tree (in term representation) to a, hopefully readable, program text. While this
can be done with any programmatic method that prints strings, it is useful to
abstract from the details of formatting program texts by employing a specialized
library. The GPP library [35] supports formatting through the Box language,
which provides constructs for positioning text blocks. For pretty-printing Java
and XML, the Stratego/XT tool set provides custom built mappings to Box.
For producing a pretty-printer for a new DSL that is still under development it
is most convenient to use a pretty-printer generator (ppgen), which produces a
pretty-print table with mappings from abstract syntax tree constructors to Box
expressions. The following is a pretty-print table for our DataModel language:

[

Entity -- V[V is=2[KW["entity"] H[_1 KW["{"]] _2] KW["}"]],

Entity.2:iter-star -- _1,

Property -- H[_1 KW[":"] _2],

SimpleSort -- _1

]

Here V stands for vertical composition, H stands for horizontal composition,
and KW stands for keyword. While a pretty-printer generator can produce a cor-
rect pretty-printer (such that parse(pp(parse(prog))) = parse(prog)), it is not
possible to automatically generate pretty-printers that generate a pretty result

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

18 TUD-SERG-2008-023

(although heuristics may help). So it is usually necessary to tune the pretty print
rules.

3.8 Generating Entity Classes

Now that we have seen the techniques to build the components of a generator we
can concentrate on the rules for implementing the DataModel language. Basically,
the idea is to take the program patterns that we found during the analysis of
the solution domain, and turn them into transformation rules, by factoring out
the application-specific identifiers. Thus, an entity declaration is mapped to an
entity class as follows:

entity-to-class :

|[entity x_Class { prop* }]| ->

|[@Entity public class x_Class {

public x_Class () { }

@Id @GeneratedValue private Long id;

public Long getId() { return id; }

private void setId(Long id) { this.id = id; }

~*cbds

}]|

where cbds := <mapconcat(property-to-gettersetter(|x_Class))> prop*

Since an entity class always has an identity (at least for now), we include
it directly in the generated class. Furthermore, we include, through the anti-
quotation ~*, a list of class body declarations cbds, which are obtained by map-
ping the properties of the entity declaration with property-to-gettersetter.
Here mapconcat is a strategy that applies its argument strategy to each element
of a list, concatenating the lists resulting from each application.

Value Types The mapping for value type properties simply produces a private
field with a public getter and setter.

property-to-gettersetter(|x_Class) :

|[x_prop : s]| ->

|[private t x_prop;

public t get#x_prop() { return title; }

public void set#x_prop(t x) { this.x = x; }]|

where t := <builtin-java-type> s

This requires a bit of name mangling, i.e. from the name of the property, the
names of the getter and setter are derived. This is achieved using an extension
of Java for name composition. The # operator combines two identifiers into one,
observing Java naming conventions, i.e. capitalizing the first letter of all but the
first identifier. Note that the name of the enclosing class (x Class) is passed to
the rule as a term parameter. Stratego distinguishes between strategy and term
parameters of a rule or strategy by means of the |; the (possibly empty) list of
parameters before the | are strategies, the ones after the | are terms.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 19

The fact that the property is for a value type is determined using the strat-
egy builtin-java-type, which defines a mapping for the built-in types of the
DataModel language to types in Java that implement them. For example, the
String type is defined as follows:

builtin-java-type :

SimpleSort("String") -> type|[java.lang.String]|

Reference Types Properties with a reference to another type are translated
to a private field with getters and setters with the @ManyToOne annotation. For
the time being, we interpret such an association as a non-exclusive reference.

property-to-gettersetter(|x_Class) :

|[x_prop : s]| ->

|[@ManyToOne

private t x_prop;

public t get#x_prop() { return x_prop; }

public void set#x_prop(t x_prop) { this.x_prop = x_prop; }]|

where t := <defined-java-type> s

Propagating Declared Entities The previous rule decides that the property
is an association to a reference type using the strategy defined-java-type,
which maps entities declared in the data model to the Java types that imple-
ment them. Since the collection of these entity types depends on the data model,
the defined-java-type mapping is defined at run-time during the transforma-
tion as a dynamic rewrite rule [20]. That is, before generating code for the entity
declarations, the following declare-entity strategy is applied to each declara-
tion:

declare-entity =

?Entity(x_Class, prop*)

; rules(

defined-java-type :

SimpleSort(x_Class) -> type|[x_Class]|

)

This strategy first matches (?p with p a term pattern) an entity declaration
and then defines a rule defined-java-type, which inherits from the match the
binding to the variable x_Class. Thus, for each declared entity a corresponding
mapping is defined. As a result, the property-to-gettersetter rule fails when
it is applied to a property with an association to a non-existing type (and an
error message might be generated to notify the user). In general, dynamic rewrite
rules are used to add new rewrite rules at run-time to the transformation system.
A dynamic rule inherits variable bindings from its definition context, which is
typically used to propagate context-sensitive information.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

20 TUD-SERG-2008-023

3.9 Composing a Code Generator

Using the ingredients discussed above, the basic version of the code generator
for WebDSL is defined as the following Stratego strategy:

webdsl-generator =

xtc-io-wrap(webdsl-options,

parse-webdsl

; alltd(declare-entity)

; collect(entity-to-class)

; output-generated-files

)

The strategy invokes xtc-io-wrap, a library strategy for handling command-line
options to control input, output, and other aspects of a transformation tool. The
argument of xtc-io-wrap is a sequence of strategy applications (s1;s2 is the
sequential composition of two strategies). parse-webdsl parses the input model
using a parse table generated from the syntax definition, producing its abstract
syntax representation. The alltd strategy is a generic traversal, which is used
here to find all entity declarations and generate the defined-java-type map-
ping for each. The generic collect strategy is then used to create a set of Java
entity classes, one for each entity declaration. Finally, the output-generated-
files strategy uses a Java pretty-printer to map a class to a program text and
write it to a file with the name of the class and put it in a directory corresponding
to the package of the class.

4 Programming Patterns: View/Edit Pages

The next step towards full fledged web applications is to create pages for viewing
and editing objects in our DataModel language. That is, from a data model
generate a basic user interface for creating, retrieving, updating and deleting
(CRUD) objects. For example, consider the following data model of Persons
with Addresses, and Users.

entity Person {

fullname : String

email : String

homepage : String

photo : String

address : Address

user : User

}

entity Address {

street : String

city : String

phone : String

}

entity User {

username : String

password : String

person : Person

}

For such a data model we want to generate view and edit pages as displayed in
Figures 3 and 4. Implementing this simple user interface requires an understand-
ing of the target architecture. Figure 5 sketches the architecture of a JSF/Seam
application for the editPerson page in Figure 4. The /editPerson.seam client
view of the page on the far left of Figure 5 is a plain web page implemented in

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 21

Fig. 3. person page Fig. 4. editPerson page

HTML, possibly with some JavaScript code for effects and cascading style sheets
for styling. The rendered version of this code is what is shown in Figure 4. The
HTML is rendered on the server side from the JavaServer Faces (JSF) com-
ponent model [72] defined in the editPerson.xhtml file. In addition to regular
HTML layout elements, the JSF model has components that interact with a ses-
sion bean. The EditPersonBean session bean retrieves data for the JSF model
from the database (and from session and other contexts). For this purpose the
session bean obtains an EntityManager object through which it approaches the
database, with which it synchronizes objects such as Person p. When the input
field at the client side gets a new value and the form is submitted by a push of
the Save button, the value of the input field is assigned to the field pointed at
by the expression of the h:inputText component (by calling the corresponding
setter method). Subsequently, the save() action method of the session bean,
which is specified in the action attribute of the h:commandButton correspond-
ing to the Save button, is called. This method then invokes the entity manager
to update the database.

Fig. 5. Sketch of JSF/Seam architecture.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

22 TUD-SERG-2008-023

<html ...> ... <body>

<h:form>

<table>

<tr><td> <h:outputText value="Fullname"/> </td>

<td> <h:inputText value="#{editPerson.person.fullname}"/>

</td> </tr>

<tr><td><h:commandButton value="Save" action="#{editPerson.save()}"/>

</td> <td></td></tr>

</table>

</h:form>

</body> </html>

Fig. 6. editPage.xhtml with JSF components.

Thus, to implement a view/edit interface for data objects, the generator must
produce for each page a JSF XHTML document that defines the layout of the
user interface and the data used in its elements, and a Seam session bean that
manages the objects referred to in the JSF document.

4.1 Generating JSF Pages

Figure 6 illustrates the structure of the JSF XHTML document for the edit
page in Figure 4. Besides common HTML tags, the document uses JSF com-
ponents such as h:form, h:outputText, h:inputText, and h:commandButton.
Such a document can again be generated using rewrite rules transforming entity
declarations to XHTML documents.

entity-to-edit-page :

|[entity x_Class { prop* }]| ->

%><html ...> ... <body><h:form><table>

<%= rows ::* %>

<tr><td>

<h:commandButton value="Save" action="#{<%=editX%>.save()}"/>

</td><td></td></tr>

</table></h:form></body></html><%

where editX := <concat-strings>["edit", x_Class]

; x_obj := <decapitalize-string> x_Class

; rows := <map(row-in-edit-form(|editX, x_obj))> props

This rule generates the overall setup of an edit page from an entity declaration.
Just as was the case with generation of Java code, this rule uses the concrete
syntax of XML in the right-hand side of the rule [15]. (The quotation marks
%> and <% were inspired by template engines such as JSP [100]). The XML
fragment is syntactically checked at compile-time of the generator and the rule
then uses the underlying abstract representation of the fragment. For this syntax
embedding we do not have # operator to create composite identifiers. Instead
names are create by simple string manipulation (concatenation in this case).
Note that the ellipses ... are not part of the formal syntax, but just indicate
that some elements were left out of this paper to save space.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 23

The entity-to-edit-page rule calls row-in-edit-form to generate for each
property a row in the table.

row-in-edit-form(|editX, x_obj) :

prop@|[x_prop : s]| ->

%><tr><td><h:outputText value="<%=x_prop%>"/></td>

<td><%= input %></td></tr><%

where input := <property-to-edit-component(|editX, x_obj)> prop

The left column in the table contains the name of the property, and the right col-
umn an appropriate input component, which is generated by the property-to-
edit-component rule. In the case of the String type a simple inputText com-
ponent is generated.

property-to-edit-component(|editX, x_obj) :

|[x_prop : String]| ->

%><h:inputText value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}"/><%

Other types may require more complex JSF configurations. For instance, an
entity association (such as the user property of Person) requires a way to enter
references to existing entities. The page in Figure 4 uses a drop-down selection
menu for this purpose, which is generated by the following rule:

property-to-edit-component(|editX, x_obj) :

|[x_prop : s]| ->

%> <h:selectOneMenu value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}">

<s:selectItems value="#{<%=editX%>.<%=x_prop%>List}"

var="<%= x %>" label="#{<%= x %>.name}"

noSelectionLabel="" />

<s:convertEntity />

</h:selectOneMenu> <%

where SimpleSort(_) := s; <defined-java-type> s; x := <new>

The h:selectOneMenu JSF component sets the value of editX.x prop to the
object corresponding to the item selected from the editX.x prop#List list. This
list should be provided by the editX session bean with the objects to select from,
which could be a list of all objects of type s.

The generation of a view page is largely similar to the generation of an
edit page, but instead of generating an inputText component, an outputText
component is generated:

property-to-view-component(|editX, x_obj) :

|[x_prop : String]| ->

%><h:outputText value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}"/><%

4.2 Seam Session Beans

As explained above, the JSF components get the data to display from an EJB
session bean. The Seam framework provides an infrastructure for implementing

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

24 TUD-SERG-2008-023

session beans such that the connections to the environment, such as the appli-
cation logger and the entity manager, are made automatically via dependency
injection [46]. To get an idea, here is the session bean class for the editPerson
page:

@Stateful

@Name("editPerson")

public class EditPersonBean implements EditPersonBeanInterface{

@Logger private Log log;

@In private EntityManager em;

@In private FacesMessages facesMessages;

@Destroy @Remove public void destroy() { }

// specific fields and methods

}

EJB3 and Seam use Java 5 annotations to provide application configuration in-
formation within Java classes, instead of the more traditional XML configuration
files. The use of annotations is also an alternative to implementing interfaces;
instead of having to implement a number of methods with a fixed name, fields
and methods can be named as is appropriate for the application, and declared
to play a certain role using annotations.

The @Stateful annotation indicates that this is a stateful session bean,
which means that it can keep state between requests. The @Name annotation
specifies the Seam component name. This is the prefix to object and method
references from JSF documents that we saw in Figure 6. Seam scans class files
at deployment time to link component names to implementing classes, such that
it can create the appropriate objects when these components are referenced from
a JSF instance. The destroy method is indicated as the method to be invoked
when the session bean is @Removed or @Destroyed.

The fields log, em, and facesMessages are annotated for dependency injec-
tion [46]. That is, instead of creating the references for these objects using a
factory, the application context finds these fields based on their annotations and
injects an object implementing the expected interface. In particular, log and
facesMessages are services for sending messages, for system logging, and user
messages, respectively. The em field expects a reference to an EntityManager,
which is the JPA database connection service.

All the above was mostly boilerplate that can be found in any session bean
class. The real meat of a session bean is in the fields and methods specific for
the JSF page (or pages) it supports. In the view/edit scenario we are currently
considering, a view or edit page has a property for the object under consideration.
That is, in the case of the editPerson page, it has a property of type Person:

private Person person;

public void setPerson(Person person) { this.person = person; }

public Person getPerson() { return person; }

Next, a page is called with URL /editPerson.seam?person=x, where x is
the identity of the object being edited. The problem of looking up the value

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 25

of the person parameter in the request object, is also solved by dependency
injection in Seam. That is, the following field definition

@RequestParameter("person") private Long personId;

declares that the value of the @RequestParameter with the name person should
be bound to the field personId, where the string value of the parameter is
automatically converted to a Long value.

To access the object corresponding to the identity passed in as parameter,
the following initialize method is defined:

@Create

public void initialize() {

if (personId == null) {

person = new Person();

} else {

person = em.find(Person.class, personId);

}

}

The method is annotated with @Create to indicate that it should be called upon
creation of the bean (and thus the page). The method uses the entity manager em
to find the object with the given identity. The case that the request parameter
is null occurs when no identity is passed to the request. Handling this case
supports the creation of new objects.

Finally, a push of the Save button on the editPage leads to a call to the
save() method of the bean class, which invokes the entity manager to save the
changes to the object to the database:

public String save() {

em.persist(this.getPerson());

return "/person.seam?person=" + person.getId();

}

The return value of the method is used to determine the page flow after saving,
which is in this case to go to the view page for the object just saved.

4.3 Generating Session Beans

Generating the session beans for view and edit pages comes down to taking the
programming patterns we saw above and generalizing them by taking out the
names related to the entity under consideration and replacing them with holes.
Thus, the following rule sketches the structure of such a generator rule:

entity-to-session-bean :

|[entity x_Class { prop* }]| ->

|[@Stateful @Name("~viewX")

public class x_ViewBean implements x_ViewBeanInterface {

...

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

26 TUD-SERG-2008-023

@Destroy @Remove public void destroy() { }

}]|

where viewX := ...; x_ViewBean := ...; x_ViewBeanInterface := ...

Such rules are very similar to the generation rules we saw in Section 3.

4.4 Deriving Interfaces

A stateful session bean should implement an interface declaring all the methods
that should be callable from JSF pages. Instead of having a separate (set of)
rule(s) that generates the interface from an entity, such an interface can be
generated automatically from the bean class. This is one of the advantages of
generating structured code instead of text. The following strategy and rules
define a (generic) transformation that turns a Java class into an interface with
all the public methods of the class.

create-local-interface(|x_Interface) :

class -> |[@Local public interface x_Interface { ~*methodsdecs }]|

where methodsdecs := <extract-method-signatures> class

extract-method-signatures =

collect(method-dec-to-abstract-method-dec)

method-dec-to-abstract-method-dec :

MethodDecHead(mods, x , t, x_method, args, y) ->

AbstractMethodDec(mods, x, t, x_method, args, y)

where <fetch(?Public())> mods

The name of the interface defined is determined by the parameter x Interface.
The collect(s) strategy is a generic traversal that collects all subterms for
which its parameter strategy s succeeds. In this case the parameter strategy
turns a method declaration header into the declaration of an abstract method,
if the former is a public method.

5 Programming Patterns: Increasing Coverage

In the previous two sections we analyzed basic patterns for persistent data and
view/edit pages in the Seam architecture. We turned these patterns into a simple
DSL for data models and a generator for entity classes and view/edit pages.
The analysis has taught us the basics of the architecture. We can now use this
knowledge to expand the DSL and the generator to cover more sophisticated
web applications; that is, to increase the coverage of our DSL. Surely we should
consider creating custom user interfaces, instead of the rigid view/edit pages that
we saw in the previous section. However, before we consider such an extension,
we first take a look at the coverage that the data model DSL itself provides.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 27

5.1 Strings in Many Flavors

The association types that we saw in the previous sections were either Strings or
references to other defined entities. While strings are useful for storing many (if
not most) values in typical applications, the type name does not provide us with
much information about the nature of those data. By introducing application-
domain specific value types we can generate a lot of functionality ‘for free’. For
example, the following data models for Person and User still use mostly string
valued data, but using alias types the role of those data is declared.

entity Person { entity User {

fullname : String username : String

email : Email password : Secret

homepage : URL person : Person

photo : Image }

address : Address

user : User

}

Thus, the type Email represents email addresses, URL internet addresses, Image
image locations, Text long pieces of text, and Secret passwords. Based on these
types a better tuned user interface can be generated. For example, the following
rules generate different input fields based on the type alias:

property-to-edit-component(|x_component) :

|[x_prop : Text]| ->

%><h:inputTextarea value="#{<%=x_component%>.<%=x_prop%>}"/><%

property-to-edit-component(|x_component) :

|[x_prop : Secret]| ->

%><h:inputSecret value="#{<%=x_component%>.<%=x_prop%>}"/><%

A text-area, providing a large input box, is generated for a property of type Text,
and a password input field, turning typed characters into asterisks, is generated
for a property of type Secret.

5.2 Collections

Another omission so far was that associations had only singular associations.
Often it is useful to have associations with collections of values or entities. Of
course, such collections can be modeled using the basic modeling language. For
example, define

entity PersonList { hd : Person tl : PersonList }

to model lists of Person. However, in the first place this is annoying to define for
every collection, and furthermore, misses the opportunity for attaching standard
functionality to collections. Thus, we introduce a general notion of generic sorts,
borrowing from Java 5 generics the notation X<Y,Z> for a generic sort X with sort

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

28 TUD-SERG-2008-023

parameters Y and Z. For the time being this notation is only used to introduce
collection associations using the generic sorts List and Set. For example, a
Publication with a list of authors and associated to several projects can then
be modeled as follows:

entity Publication {

title : String

authors : List<Person>

year : Int

abstract : Text

projects : Set<Project>

pdf : File

}

Many-to-Many Associations Introduction of collections requires extending
the generation of entity classes. The following rule maps a property with a list
type to a Java property with list type and persistence annotation @ManyToMany,
assuming that objects in the association can be referred to by many objects from
the parent entity:

property-to-property-code(|x_Class) :

|[x_prop : List<y>]| ->

|[@ManyToMany private List<t> x_prop = new ArrayList<t>();]|

Collections also require an extension of the user interface. This will be discussed
later in the paper.

5.3 Refining Associations

Yet another omission in the data modeling language is with regard to the nature
of associations, i.e. whether they are composite aggregations or not. That is, does
the referring entity own the objects at the other end of the association or not?
Since both scenarios may apply, we cannot fix a choice for all applications, but
need to let the developer define it for each association. Thus, we refine properties
to be either value type (e.g. title :: String), composite (e.g. address <>
Address), or reference (e.g. authors -> List<Person>) associations. Figure 7
illustrates the use of special value types, collections, and composite and reference
associations

Based on the association type different code can be generated. For example,
the objects in a composite collection, i.e. one in which the referrer owns the
objects in the collection, are deleted with their owner. In contrast, in the case
of a reference collection, only the references to the objects are deleted when the
referring object is deleted. Furthermore, collections of value types are treated
differently than collections of entities.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 29

entity Publication {

title :: String

authors -> List<Person>

year :: Int

abstract :: Text

projects -> Set<Project>

pdf :: File

}

entity Person {

fullname :: String

email :: Email

homepage :: URL

photo :: Image

address <> Address

user -> User

}

entity Address {

street :: String

city :: String

phone :: String

}

Fig. 7. Data model with composite and reference associations.

Unfolding Associations One particular decision that can be made based on
association type is to unfold composite associations in view and edit pages. This
is what is already done in Figures 3 and 4. In Figure 7 entity Person has a
composite association with Address. Thus, an address is owned by a person.
Therefore, when viewing or editing a person object we can just as well view/edit
the address. The following rule achieves this by unfolding an entity reference,
i.e. instead of including an input field for the entity, the edit rows for that entity
are inserted:

row-in-edit-form(|editY) :

|[x_prop <> s]| ->

%><tr><td><h:outputText value="<%=x_prop%>"/></td><td></td></tr>

<%= row* ::*%><%

where <defined-java-type> s

; prop* := <properties> s

; editYX := <concat-strings>[editY,".",x_prop]

; row* := <map(row-in-edit-form(|editYX))> prop*

As an aside, note how the EL expression passed to the recursive call of
row-in-edit-form is constructed using string concatenation (variable editYX).
This rather suspect style is an artifact of the XML representation for JSF; the
attributes in which EL expressions are represented are just strings without struc-
ture. This can be improved upon by defining a proper syntax of JSF XML by
embedding a syntax of EL expressions.

6 Core Language: Scrap your Boilertemplate

In the previous sections we have developed a data model DSL with fairly sophis-
ticated types and associations. Furthermore, we have developed a generator for
a standard view/edit user interface for objects in the data model. The DSL and
generator in the previous sections are based on the analysis of the programming
patterns for entity classes and for view/edit pages implemented using JSF and
Seam. We factored out the commonality in these programming patterns and
turned them into code generation rules with the data modeling DSL as input.

The boilerplate in the generated code is considerable. For example, for the
entity Publication in Figure 7 the table in Figure 8 contains a breakdown of
the source files generated and their size.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

30 TUD-SERG-2008-023

file LOC
Publication.java 121
EditPublicationBeanInterface.java 56
EditPublicationBean.java 214
ViewPublicationBeanInterface.java 28
ViewPublicationBean.java 117
editPublication.xhtml 181
viewPublication.xhtml 153
total 870

Fig. 8. LOCs generated for Publication.

With 8 lines of model input, the
ratio of generated lines of code to
source lines of code is over 100! Now
the question is what that buys us.
If there was a market for boring
view/edit applications this would
be great, but in practice we want
a much richer application with fine
tuned view and edit pages. If we
would continue on the path taken
here, we could add new sets of gen-
erator rules to generate new types
of pages. For example, we might
want to have pages for searching objects, pages that list all objects of some
type, pages providing selections and summaries, etc. But then we would hit an
interesting barrier: code duplication in the code generator. The very phenomenon
that we were trying to overcome in the first place, code duplication in applica-
tion code, shows up again, but now in the form of target code fragments that
appear in more than one rule (in slightly different forms), sets of generator rule
that are very similar, but generate code for a different type of page, etc. In other
words, this smells like boilerplate templates, or boilertemplates, for short.

The boilertemplate smell is characterized by similar target coding patterns
used in different templates, only large chunks of target code (a complete page
type) considered as a reusable programming pattern, and limited expressivity,
since adding a slightly different pattern (type of page) already requires extending
the generator.

High time for some generator refactoring. The refactoring we are going to use
here is called find an intermediate language also known as scrap your boil-
ertemplate. In order to gain expressivity we need to better cover the variability
in the application domain. While implementing the data model DSL, we have
explored the capabilities of the target platform, so by now we have a better idea
how to implement variations on the view/edit theme by combining the basics
of JSF and EJB in different ways. What we now need is a language that sits
in between the high-level data modeling language and the low-level details of
JSF/Seam and allows us to provide more variability to application developers
while still maintaining an advantage over direct programming.

Frameworks such as JSF provide a large number of features (components) for
composing user interfaces. It would be tempting to expose all these components
to the DSL programmer to allow for maximal expressivity. However, this is not
a good idea for productivity. Rather we would like to provide a small set of basic
combinators for declaring the UI, and relying on different sets of definitions
for their implementation. A good analogue is the complexity of TEX vs the
standardization of LATEX. TEX provides low-level expressivity for typesetting [66].
With it one can do amazingly complex things. However, for common writing of
articles, this complexity is not necessary. LATEX harnesses the power of TEX by

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 31

providing interfaces (APIs) for building documents with a standardized structure
(e.g. \section, \item, etc.) [69]. Using different style files, documents using
this interface can be typeset in very different formats. While one could say that
HTML serves a similar goal, the customization to implement a certain style
requires quite a bit of HTML coding.

entity ResearchGroup {

acronym :: String (name)

fullname :: String

mission :: Text

logo :: Image

members -> Set<Person>

projects -> Set<ResearchProject>

colloquia -> Set<Colloquium>

news -> List<News>

}

Fig. 9. Entity ResearchGroup.

Consider the data model for an en-
tity ResearchGroup in Figure 9. While
a standard edit page is sufficient for
this model, we want to create custom
presentation pages that highlight dif-
ferent elements. We will use this exam-
ple to design a basic language for page
flow and presentation. Then we de-
velop a generator that translates page
definitions to JSF pages and support-
ing Seam session beans.

6.1 Page Flow

The pages in Section 4 had URLs of the form /researchGroup.seam?g=x with
x the identity of the object to be presented. Thus, a page has a name and
arguments, so analogously to function definitions, a natural syntax for page
definitions is:

define page researchGroup(g : ResearchGroup) {

<presentation>

}

The parameter is a variable local to the page definition. The URL to request a
page uses object identities. Within a page definition the parameter variable can
be treated as referring to the corresponding object. Of course, a page definition
can have any number of parameters, including zero.

If a page definition is similar to a function definition, page navigation should
be similar to a function call. Thus, if pers.group refers to a ResearchGroup
object, then researchGroup(pers.group) refers to the researchGroup page
for that object. However, a link in a web page not only requires the destination
of the link, but also a name to display it with. The navigate form

navigate(researchGroup(pers.group)){text(pers.group.acronym)}

combines a page reference with a name for the link. The first argument is a ‘call’
to the appropriate page definition. The second argument is a specification of the
text for the anchor, which can be a literal string, or a string value obtained from
some data object.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

32 TUD-SERG-2008-023

define page researchGroup

(group:ResearchGroup){

section {

header{text(group.fullname)}

section {

header{"Mission"}

outputText(group.mission)

}

section {

header{"Recent Publications"}

list { ... }

}

section {

header{"People"}

list { ... }

}

} }

Fig. 10. View of ResearchGroup object: (a) screenshot, (b) markup

6.2 Content Markup and Layout

Next we are concerned with presenting the data of objects on a page. For in-
stance, a starting page for a research group might be presented as in Figure 10(a).
The layout of such a page is defined using a presentation markup language that
can access the data objects passed as arguments to a page. The elements for com-
position of a presentation are well known from document definition languages
such as LATEX, HTML, and DocBook and do not require much imagination. We
need things such as sections with headers, paragraphs, lists, tables, and text
blocks. Figure 10(b) shows the top-level markup for the view in Figure 10(a).
It has sections with headers, nested sections, lists, and a text block obtained
by taking the Text from group.mission. The intention of these markup con-
structs is that they do not allow any configuration for visual formatting. That
is, section does not have parameters or attributes for declaring the font-size,
text color, or text alignment mode. The markup is purely intended to indicate
the structure of the document. Visual formatting can be realized using cascading
style sheets [106], or some higher level styling language.

While the presentation elements above are appropriate for text documents,
web pages often have a more two-dimensional layout. That is, in addition to the
body, which is laid out as a text document, a web page often contains elements
such as a toolbar with drop-down menus, a sidebar with (contextual) links, a
logo, etc. Figure 11 illustrates this by an extension of the ResearchGroup view
page of Figure 10 with a sidebar, menubar with drop-down menus and a logo.

WebDSL takes a simple view at the problem of two-dimensional layout. A
page can be composed of blocks, which can be nested, and which have a name as
in the right-hand side page definition in Figure 11. This definition states that a
page is composed of two main blocks, outersidebar and outerbody, which form
the left and right column in Figure 11. These blocks are further subdivided into

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 33

define page researchGroup

(g : ResearchGroup) {

block("outersidebar"){

block("logo"){ ... }

block("sidebar"){ ... } }

block("outerbody"){

menubar{ ... }

block("body"){

section {

header{text(g.name)}

... } }

}}

Fig. 11. Two-dimensional layout with logos, sidebars, drop-down menus.

logo and sidebar, and menubar and body, respectively. By mapping blocks to
divs in HTML with the block name as CSS class, the layout can be determined
again using CSS.

Other layout problems can be solved in a similar way using CSS. For example,
the sidebar in Figure 11 is simply structured as a list:

block("sidebar"){

list {

listitem { navigate(researchGroup(group)){text(group.acronym)} }

listitem { navigate(groupMembers(group)){"People"} }

listitem { navigate(groupPublications(group)){"Publications"} }

listitem { navigate(groupProjects(group)){"Projects"} list{ ... } }

}

}

Using CSS the default indented and bulleted list item layout can be redefined
to the form of Figure 11 (no indentation, block icon for sub lists, etc.).

Drop-down menus can be defined using a combination of CSS and some
javascript, which can be generated from a declarative description of the menus.
For example, the drop-down menus of Figure 11 are defined using elements such
as menu and menuitem:

menubar{

menu{ menuheader{"People"} menuitem{...} ...}

menu{ menuheader{"Projects"} menuitem{...} ...}

...

}

Thus, using simple structural markup elements without visual configuration,
a good separation of the definition of the structure of a page and its visual layout
using cascading style sheets can be achieved. This approach can be easily ex-
tended to more fancy user interface elements by targetting java-script in addition
to pure HTML. There again the aim should be to keep WebDSL specifications
free of visual layout.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

34 TUD-SERG-2008-023

6.3 Language Constructs

We have now developed a basic idea for a page presentation language with
concepts such as sections, lists, and blocks. The next question is how to define
a language in which we can write these structures. The approach that novice
language designers tend to take is to define a syntactic production for each
markup element. Experience shows that such language definitions become rather
unwieldy and make the language difficult to extend. To add a new markup
construct, the syntax needs to be extended, and thus all operations that operate
on the abstract syntax tree. Lets be clear that a rich syntax is a good idea, but
only where it concerns constructs that are really different. Thus, rather than
introducing a syntactic language construct for each possible markup element,
we use the generic template call syntactic construct (why it is called template
call will become clear later).

Template Call A template call has the following form:

f(e1,...,em) {elem1 ... elemn}

That is, a template call has a name f , a list of expressions e1,...,em and a list of
template elements elem1 ... elemn. Both the expression and element argument
lists are optional.

The name of the call determines the type of markup and is mapped by the
back-end to some appropriate implementation in a target markup language.

The element arguments of a call are nested presentation elements. For exam-
ple, a section has as arguments, among others, headers and paragraphs

section{ header{ ... } par{ ... } par{ ... } }

a list has as elements listitems

list { listitem { ... } ... }

and a table has rows

table { row{ ... } row{ ... } }

The expression arguments of a call can be simple strings, such as the name
of a block:

block("menu") { list { ... } }

However, mostly expressions provide the mechanism to access data from entity
objects. For example, the text element takes a reference to a string value and
displays it:

text(group.name)

Similarly, the navigate element takes page invocation as expression argument
and nested presentation elements to make up the text of the link.

navigate(publication(pub)){text(pub.name)}

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 35

Iteration While the template call element is fairly versatile, it is not sufficient
for everything we need to express. In particular, we need a mechanism for it-
erating over collections of objects or values. This is the role of the for iterator
element, which has the following concrete syntax:

for(x : s in e) {elem∗}
The reason that this construct cannot be expressed using the syntax of a tem-
plate call is the variable which is bound locally in the body of the iterator. The
iterator is typically used to list objects in a collection. For example, the following
fragment of a page involving g of type ResearchGroup, which has a collection
of projects, presents a list of links to the projects in g.

list {

for(p : ResearchProject in g.projects) {

listitem { navigate(researchProject(p)){text(p.acronym)} }

} }

6.4 Mapping Pages to JSF+Seam

In Section 4 we saw how to generate a web application for viewing and editing
objects in a data model using a row-based interface targetting the JSF and Seam
frameworks. We can now use the knowledge of that implementation approach to
define a mapping from the new fine grained presentation elements to JSF+Seam.
Figure 12 illustrates the mapping for a tiny page definition. The mapping from a
page definition to JSF involves creating an XML JSF document with as body the
body of the page definition, mapping presentation elements to JSF components
and HTML, and object access expressions to JSF EL expressions. The mapping
from a page definition to a Seam session bean involves creating the usual boiler-
plate, @RequestParameters with corresponding properties (using property as
an abbreviation to indicate a private field with a getter and a setter), and ap-
propriate statements in the initialization method. In the rest of this section we
consider some of the translation rules.

entity User{ name :: String }

page user(u : User) {

text(u.name)

}

⇒

⇓

<html ...> ...

<body>

<h:outputText

value="#{user.u.name}"/>

</body>

</html>

@Stateful @Name("user")

class UserBean {

@In EntityManager em;

@RequestParameter("u")

private Long uId;

property User u;

@Create

public void initialize() {

u = em.find(User.class,uId);

}

}

Fig. 12. Mapping from page definition (upper left) to session bean (right) and JSF
(lower left).

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

36 TUD-SERG-2008-023

6.5 Generating JSF

The mapping from page elements to JSF is a fairly straightforward set of recur-
sive rules that translate individual elements to corresponding JSF components.
Note that while the syntax of template calls is generic, the mapping is not
generic. First, while the syntax allows to use arbitrary identifiers as template
names, only a (small) subset is actually supported. Second, there are separate
generation rules to define the semantics of different template calls. The essence
of the domain-specific language is in these code generation rules. They store the
knowledge about the target domain that we reuse by writing DSL models. We
consider some representative examples of the mapping to JSF.

Text The rule for text is a base case of the mapping. A text(e) element dis-
plays the string value of the e expression using the outputText JSF component.

elem-to-xhtml :

|[text(e)]| -> %> <h:outputText value="<%=el%>"/> <%

where el := <arg-to-value-string> e

The arg-to-value-string rules translate an expression to a JSF EL expression.

Block The rule for block is an example of a recursive rule definition. Note the
application of the rule elems-to-xhtml in the antiquotation.

elem-to-xhtml :

|[block(str){elem*}]| ->

%><div class="<%= str %>">

<%= <elems-to-xhtml> elem* ::*%>

</div><%

The auxiliary elems-to-xhtml strategy is a map over the elements in a list:

elems-to-xhtml = map(elem-to-xhtml)

Iteration While iteration might seem one of the complicated constructs of
WebDSL, its implementation turns out the be very simple. An iteration such as
the following

list{ for (project : ResearchProject in group.projectsList) {

listitem { text(group.project.acronym) }

}}

is translated to the JSF ui:repeat component, which iterates over the elements
of the collection that is produced by the expression in the value attribute, using
the variable named in the var attribute as index in the collection.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 37

 <ui:repeat var="project"

value="#{researchGroup.group.projectsList}">

 <h:outputText value="#{project.acronym}"

</ui:repeat>

This mapping is defined in the following rule:

elem-to-xhtml :

|[for(x : s in e) { elem1* }]| ->

%><ui:repeat var="<%= x %>" value="<%= el %>">

<%= elem2* ::*%>

</ui:repeat><%

where el := <arg-to-value-string> e

; elem2* := <elems-to-xhtml> elem1*

Navigation The translation of a navigation element is slightly more compli-
cated, since it involves context-sensitive information. As example, consider the
following navigate element:

navigate(viewPerson(prs)){text(prs.name)}

Such a navigation should be translated to the following JSF code:

<s:link view="/person.xhtml">

<f:param name="p" value="#{prs.id}" />

<h:outputText value="#{prs.name}" />

</s:link>

While most of this is straightforward, the complication comes from the parame-
ter. The f:param component defines for a URL parameter the name and value.
However, the name of the parameter (p in the example) is not provided in
the call (person). The following rule solves this by means of the dynamic rule
TemplateArguments:

elem-to-xhtml :

|[navigate(p(e*)){elem1*}]| ->

%><s:link view = "/<%= p %>.xhtml">

<%= <conc>(param*,elem2*) ::*%>

</s:link><%

where <IsPage> p

; farg* := <TemplateArguments> p

; param* := <zip(bind-param)> (farg*, e*)

; elem2* := <elems-to-xhtml> elem1*

In a similar way as declare-entity in Section 3 declares the mapping of de-
clared entities to Java types, for each page definition, dynamic rules are defined
that (1) record the fact that a page with name p is defined (IsPage), and (2) map
the page name to the list of formal parameters of the page (TemplateArguments).
Then, creating the list of f:params is just a matter of zipping together the list of
formal parameters and actual parameters using the following bind-param rule:

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

38 TUD-SERG-2008-023

bind-param :

(|[x : $X]|, e) ->

%><f:param name="<%= x %>" value="<%= el %>" /><%

where <defined-java-type> $X

; el := <arg-to-value-string> |[e.id]|

The rule combines a formal parameter x and an actual parameter expression e
into an f:param element with as name the name of the formal parameter, and
as value the EL expression corresponding to e.

Sections A final example is that of nested sections. Contrary to the custom of
using fixed section header levels, WebDSL assigns header levels according to the
section nesting level. Thus, a fragment such as

section { header{"Foo"} ... section { header{"Bar"} ... } }

should be mapped to HTML as follows:

<h1>Foo</h1> ... <h2>Bar</h2> ...

This is again an example of context-sensitive information, which is solved using
a dynamic rule. The rules for section just maps its argument elements. But
before making the recursive call, the SectionDepth counter is incremented.

elem-to-xhtml :

|[section() { elem1* }]| -> %> elem2* <%

where {| SectionDepth

: rules(SectionDepth := <(SectionDepth <+ !0); inc>)

; elem2* := <elems-to-xhtml> elem1*

|}

The dynamic rule scope {| SectionDepth : ... |} ensures that the variable
is restored to its original value after translating all elements of the section.

The rule for the header element uses the SectionDepth variable to generate
an HTML header with the correct level.

elem-to-xhtml :

|[header(){ elem* }]| ->

%><~n:tag><%= <elems-to-xhtml> elems ::*%></~n:tag><%

where n := <SectionDepth <+ !1>

; tag := <concat-strings>["h", <int-to-string> n]

Interesting about this example is that the dynamic rules mechanism makes it
possible to propagate values during translation without the need to store these
values in parameters of the translation rules and strategies.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 39

6.6 Generating Seam Session Beans

The mapping from page definitions to Seam is less interesting than the mapping
to JSF. At this point there are only two aspects to the mapping. First, a page
definition gives rise to a compilation unit defining a stateful session bean using
the name of the page as Seam component name, and the usual boilerplate for
session beans.

page-to-java :

|[define page x_page(farg*) { elem1* }]| ->

|[@Stateful @Name("~x_page")

public class x_Page#Bean implements x_Page#BeanInterface {

@In private EntityManager em;

@Create public void initialize() { bstm* }

@Destroy @Remove public void destroy() {}

cbd*

}]|

where x_Page := <capitalize-string> x_page

; cbd* := <map(argument-to-bean-property)> farg*

; bstm* := <map(argument-to-initialization)> farg*

Second, for each argument of the page, a @RequestParameter with correspond-
ing property is generated as discussed in Section 4.

argument-to-bean-property :

|[x : x_Class]| ->

|[@RequestParameter("~x") private Long x#Id;

private x_Class x;

public void set#x(x_Class x) { this.x = x; }

public x_Class get#x() { return x; }]|

Finally, code is generated for initializing the property by loading the object
corresponding to the identity when the session bean is created.

argument-to-initialization :

|[x : x_Class]| ->

|[if (x_Id == null) { x = new x_Class(); }

else { x = em.find(x_Class.class, x_Id); }]|

where x_Id := <concat-strings>[x, "Id"]

6.7 Boilertemplate Scrapped

This concludes the generator refactoring ‘scrap your boilertemplate’. We have
introduced a language that provides a much better coverage of the user interface
domain, and which can be used to create a wide range of presentations. The
resulting mapping now looks much more like a compiler; each language construct
expresses a single concern and the translation rules are fairly small. Next we
consider several extensions of the language.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

40 TUD-SERG-2008-023

7 Core Language: Extensions

In the first design of the core language for page definitions some aspects were
ignored to keeps things simple. In this section we consider several necessary
extensions.

7.1 Type Checking

Java is a statically typed language, which ensures that many common program-
ming errors are caught at compile-time. Surprisingly, however, this does not
ensure that web applications developed with frameworks such as JSF and Seam
are free of ‘type’ errors after compilation.

JSF pages are ‘compiled’ at run-time or deployment-time, which means that
many causes of errors are unchecked. Typical examples are missing or non-
supported tags, references to non-existing properties, and references to non-
existing components. Some of these errors cause run-time exceptions, but others
are silently ignored.

While this is typical of template-like data, it is interesting to observe that
a framework such as Seam, which relies on annotations in Java programs for
configuration, has similar problems. The main cause is that Seam component
annotations are scanned and linked at deployment-time, and not checked at
compile-time for consistency. Thus, uses of components (e.g. in JSF pages)
are not checked. Dependency injection enables loose coupling between compo-
nents/classes, but as a result, the compiler can no longer check data flow prop-
erties, such as guaranteeing that a variable is always initialized before it is used.
Another symptom of interacting frameworks is the fact that a method that is
not declared in the @Local interface of a session bean, is silently ignored when
invoked in JSF.

Finally, JPA and Hibernate queries are composed using string concatenation.
Therefore, syntactic and type errors (e.g. non-existing column) become manifest
only at run-time. Most of these types of errors will show up during testing, but
vulnerabilities to injection attacks in queries only manifest themselves when the
system is attacked, unless they are tested for.

Type Checking WebDSL To avoid the kind of problems mentioned above,
WebDSL programs are statically type checked to find such errors early. The
types of expressions in template calls are checked against the types of defini-
tion parameters and properties of entity definitions to avoid use of non-existing
properties or ill-typed expressions. The existence of pages that are navigated to
is checked. For example, for the following WebDSL program

entity User { name :: String }

define page user(u : User) {

text(u.fullname)

text(us.name)

navigate(foo()){"bar"}

}

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 41

the type checker finds the following errors:

$ dsl-to-seam -i test.app

[error] entity ’User’ has no property ’fullname’

[error] variable ’us’ has no declared type

[error] link to undefined page ’foo’

Type Checking Rules The type checker is a transformation on WebDSL pro-
grams, which checks the type correctness of expressions and annotates expres-
sions with their type. These annotations will turn out useful when considering
higher-level abstractions. The following type checking rule for the iterator con-
struct, illustrates some aspects of the implementation of the type checker.

typecheck-iterator :

|[for(x : s in e1){elem1*}]| -> |[for(x : s in e2){elem2*}]|

where in-tc-context(id

; e2 := <typecheck-expression> e1

; <should-have-list-type> e2

; {| TypeOf

: if not(<java-type> s) then

typecheck-error(|["index ", x, " has invalid type ", s])

else

rules(TypeOf : x -> s)

end

; elems2 := <typecheck-page-elements> elems1

|}

| ["iterator ", x, "/"])

First, the type checker performs a transformation, that is, rather than just check-
ing, constructs are transformed by adding annotations. Thus, in this rule, the
iterator expression and elements in the body are replaced by the result of type
checking them. Next, constraints on the construct are checked and errors re-
ported with typecheck-error. The in-tc-context wrapper strategy is respon-
sible for building up a context string for use in error messages. Finally, the local
iterator variable x is bound to its type in the TypeOf dynamic rule [20]. The dy-
namic rule scope {| TypeOf : ... |} ensures that the binding is only visible
while type checking the body of the iterator. The binding is used to annotate
variables with their type, as expressed in the typecheck-variable rule:

typecheck-variable :

Var(x) -> Var(x){Type(t)}

where if not(t := <TypeOf> x) then

typecheck-error(|["variable ", x, " has no declared type"])

; t := "Error"

end

7.2 Data Input and Actions

The language of the previous section only dealt with presentation of data. Data
input is of course an essential requirement for interactive web applications. To

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

42 TUD-SERG-2008-023

User { name :: String }

page editUser(user : User) {

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return user(user);

}

}

}

⇒

@Stateful @Name("editUser")

class EditUserBean {

property User user;

public String save() {

em.persist(this.getUser());

return "/user.seam"

+ "?u=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{editUser.user.name}"/>

<h:commandButton type="submit" value="Save"

action="#{editUser.save()}"/>

</h:form>

Fig. 13. Mapping form, input field, and action to JSF and Java/Seam.

make edit pages, we need constructs to create input components that bind data
to object fields, forms, and buttons and actions to save the data. Figure 13
shows a WebDSL page definition for a simple edit page with a single input
field and a Save button, as well as the mapping to JSF and Java/Seam. The
language constructs are straightforward. The form element builds a form, the
inputString(e) element creates an input field bound to the contents of the
field pointed at by e, and the action element creates a button, which executes
a call to a defined action when pushed. The mapping to Seam is straightforward
as well. The action definition is mapped to a method of the session bean.

Action Language The statement language that can be used in action defi-
nitions is a simple imperative language with the usual constructs. Assignments
such as person.blog := Blog{title := name}; bind a value to a variable or
field. Method calls such as publication.authors.remove(author); invoke an
operation on an object. Currently, the language only supports a fixed set of
methods, such as some standard operations on collections, and persistence oper-
ations such as save. The latter can be applied directly to entity objects, hiding
the interaction with an entity manager from the WebDSL developer. The return
statement is somewhat unusual, as it is interpreted as a page-flow directive, that
is, a statement return user(u); is interpreted as a page redirect with appro-
priate parameters. Conditional execution is achieved with the usual control-flow
constructs.

Expressions consist of variables, constant values (e.g. strings, integers), field
access, and object creation. Rather than having to assign values to fields after
creating an object, this can be done with the creation expression. Thus, object
creation has the form Person{ name := e ... }, where fields can be directly

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 43

given a value. There is also special syntax for creating sets ({e1, e2,...}) and
lists ([e1, e2,...]).

Java Embedding The current design of the action language is somewhat ad hoc
and should be generalized. A conventional critique of domain-specific languages
is that they require the redesign of such things as statements and expressions,
which is hard to get right and complete.

An alternative approach would be to directly embed the syntax of Java state-
ments and expressions, and insert the embedded Java fragments into the gener-
ated session bean classes. This would give complete access to the full expressivity
of Java. Indeed this is what is done with the Hibernate Query Language later
in this section. However, Java is a large and complex language; an embedding
would entail importing a type checker for Java as well. Furthermore, it would
entail tying the DSL to the Java platform and preclude portability to other plat-
forms. HQL and SQL are more portable than Java. That is, as long as we rely on
a platform with a relational database, chances are that we can access the data
layer through an SQL query. A more viable direction seems to keep the action
language simple, but provide a foreign function interface, which gives access to
functionality implemented in external libraries to be linked with the application.

7.3 Page Local Variables

So far we have considered pages that operate on objects passed as parameters.
Sometimes it is necessary for a page to have local variables. For example, a

entity User{ name :: String }

page createUser() {

var user : User := User{};

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return user(user);

}

}

}

⇒

@Stateful @Name("editUser")

class createUserBean {

property User user;

@Create

public void initialize() {

user = new User();

}

public String save() {

em.persist(this.getUser());

return "/user.seam"

+ "?user=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{editUser.user.username}"/>

<h:commandButton type="submit" value="Save"

action="#{editUser.save()}"/>

</h:form>

Fig. 14. Page local variables.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

44 TUD-SERG-2008-023

page for creating a new object cannot operate on an existing object and needs
to create a fresh object. Page local variables support this scenario. Figure 14
illustrates the use of a local variable in the definition of a page for creating
new User objects, which is mostly similar to the edit page, except for the local
variable.

7.4 Queries

The presentation language supports the access of data via (chained) field ac-
cesses. Thus, if we have an object, we can access all objects to which it has
(indirect) associations. Sometimes, we may want to access objects that are not
available through associations. For example, in the data model in Figure 7, a
Publication has a list of authors of type User, but a User has no (inverse)
association to the publications he is author of. In these situations we need a
query mechanism to reconstruct the implicit association. In general, queries al-
low filtering of data.

There is no need to invent a DSL for querying. The Hibernate Query Lan-
guage (HQL), an adaptation of the relational query language SQL to ORM,
provides an excellent query language [10]. To make HQL available in WebDSL
we follow the language embedding pattern described in earlier work [102]. Fig-
ure 15 illustrates the embedding and its implementation. The query retrieves

entity User{ name :: String }

entity Publication{ authors -> List<User> }

page user(user : User) {

var pubs : List<Publication> :=

select pub from Publication as pub, User as u

where (u = ~user) and (u member of pub.authors)

order by pub.year descending;

for(p : Publication in pubs) { ... }

}

⇓

class UserBean {

property List<Publication> pubs;

@Factory("pubs") public void initPubs() {

pubs = em.createQuery(

"select pub from Publication as pub, User as u" +

" where (u = :param1) and (u member of pub.authors)" +

" order by pub.year descending"

).setParameter("param1", this.getUser())

.getResultList();

}

}

Fig. 15. Mapping embedded HQL queries to string-based query construction in Java.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 45

the publications for which the user is an author. An HQL query is added to the
WebDSL syntax as an expression. For now we assume the result of a query is
assigned to a local page variable, which can then be accessed anywhere on the
page. Queries can refer to values of page objects by means of the antiquotation ~.
In Figure 15, this is used to find the user with the same identity as the user
object of the page. The query is translated to a @Factory method, which uses
the entity manager to create the query using string composition. Antiquoted
expressions become parameters of the query.

While the use of HQL in WebDSL does not provide a dramatic decrease in
code size, there are some other advantages over the use of HQL in Java. In Java
programs, Hibernate queries are composed as strings and parsed at run-time.
This means that syntax errors in queries are only caught at run-time, which is
hopefully during testing, but maybe during production if testing is not thorough.
The getParameter mechanism of HQL takes care of escaping special characters
to avoid injection attacks. However, use of this mechanism is not enforced and
developers can splice values directly into the query string, so the risk of injection
attacks is high. In WebDSL, queries are not composed as strings, but integrated
in the syntax of the language. Thus, syntactic errors are caught at compile-time
and it is not possible to splice in strings without escaping. This embedding of
HQL in WebDSL is a variant of the StringBorg approach, which provides a safe
way of embedding query-like languages without the risk of injection attacks [16].
Another advantage is that the WebDSL type checker can check the consistency of
queries against the data model and local variable declarations. The consistency
of HQL queries in Java programs is only checked at run-time.

8 Abstraction Mechanisms: Templates and Modules

In the previous two sections we have extended the data modeling language with
a core language for presentation, data input, and page flow. The generator now
encapsulates a lot of knowledge about basic implementation patterns. The re-
sulting language provides the required flexibility such that we can easily create
different types of pages without having to extend or change the generator. How-
ever, this same flexibility entails that page definitions will consist of fragments
that occur in other definitions as well. We need to balance the flexibility of the
core language with abstraction mechanisms that allow developers to abstract
from low-level implementation patterns. We can distinguish two forms; genera-
tive and non-generative abstraction mechanisms.

Literal code duplication can be addressed by providing a mechanism for
naming and parametrizing code fragments. In this section we extend the language
with templates, named pieces of code with parameters and hooks. Next, we add
modules, named collections of definitions defined in a separate file, which can be
imported into other modules. Modules are essential for organizing a code base
and to form a library of reusable code. These mechanisms are non-generative, in
the sense that the definitions of patterns are done by the DSL programmer and
do not require an extension of the generator.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

46 TUD-SERG-2008-023

entity Blog {

title :: String (name)

author -> Person

entries <> List<BlogEntry>

}

entity BlogEntry {

title :: String (name)

created :: Date

intro :: Text

}

Fig. 16. Data model for blogs and blog entries.

In the next section, we consider syntactic abstractions, extensions to the lan-
guage providing higher-level abstractions, which are implemented by means of
‘model-to-model’ transformations in the generator. These abstraction mecha-
nisms are generative (like the ones we saw before). Implementation in the gen-
erator allows reflection over the model and non-local transformations.

8.1 Reusing Page Fragments with Template Definitions

Template definitions provide a mech-

Fig. 17. Instance of blog page.

anism for giving a name to frequently
used page fragments. A template def-
inition has the form
define f(farg∗){elem∗}

with f the name of the template, farg∗
a list of formal parameters, and elem∗
a list of template elements. The use
of a defined template in a template
call, leads to the replacement of the
call by the body of the definition.
The markup elements we introduced
in Section 6 are also template calls;
these are not defined by template def-
initions, but by the generator. To il-
lustrate the use of template definitions, we consider pages such as the one in
Figure 17. The body of the page presents entries in a blog, as represented in the
data model in Figure 16, but surrounding that are elements that appear in many
other pages as well. The following parameterless template definitions define the
literal fragments logo, footer, and menu:

define logo() { navigate(home()){image("/img/serg-logo.png")} }

define footer() {

"generated with "

navigate(url("http://www.strategoxt.org")){"Stratego/XT"}

}

define menubar() {

menu{ menuheader{"People"} for(p : Person){ menuitem{...} } } ...

}

Such fragments can be reused in many pages, as in the following page definition:

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 47

define page home() {

block("menubar"){ logo() menubar() }

section{ ... }

footer()

}

Literal template definitions are of limited use. To support reuse of partial
fragments, which have holes that should be filled in by the reuse context, tem-
plates can have hooks in the form of template calls that can be locally (re)defined.
For example, the following main template calls logo, sidebar, menu, body, and
footer.

define main() {

block("outersidebar") { logo() sidebar() }

block("outerbody") {

block("menubar") { menubar() }

body()

footer()

}

}

Some of these templates may have a global definition, such as the ones above, but
others may be defined locally in the context where main is called. For example,
the following page definition calls the main template and defines sidebar and
body (overriding any top-level definitions), thus instantiating the calls to these
templates in the definition of main:

define page blog(b : Blog) {

main()

define sidebar(){ blogSidebar(b) }

define body() {

section{ header{ text(b.title) }

for(entry : BlogEntry in b.entries) { ... }

} } }

Templates may need to access objects. Therefore, templates can have parameters.
For example, the following definition for a sidebar defines links specific to a
particular Person object p.

define personSidebar(p : Person) {

list {

listitem { navigate(person(p)){text(p.name)} }

listitem { navigate(personPublications(p)){"Publications"} }

listitem { navigate(blog(p.blog)){"Blog"} blogEntries() }

listitem { "Projects" listProjectAcronyms(p) }

} }

This allows templates to be reused in different contexts. For example, the tem-
plate above can be used to create the sidebar for the view page for a Person, as
well as for the publications page of that person.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

48 TUD-SERG-2008-023

define page person(p : Person) {

main()

define sidebar() { personSidebar(p) } ...

}

define page personPublications(p : Person) {

main()

define sidebar() { personSidebar(p) } ...

}

Note that the template mechanism is a form of dynamic scoping; template calls
may be instantiated depending on the use site of the enclosing template defi-
nition. However, the variables used in expressions are statically bound and can
only refer to lexically visible variable declarations, i.e. template parameters, local
variables, or global variables. The combination is similar to method overriding in
object oriented languages, where variables are lexically scoped, but method invo-
cations may be dynamically bound to different implementations. The template
calls in a template definition provide a requires interface of internal variation
points.

Template Expansion Template expansion is a context-sensitive transforma-
tion, which again relies on dynamic rules for its implementation. For each tem-
plate definition a dynamic rule TemplateDef is defined that maps the name of
the template to its complete definition.

declare-template-definition =

?def@|[define mod* x(farg*){elem*}]|

; rules(TemplateDef : x -> def)

The dynamic rule is used to retrieve the definition when encountering a template
call. Subsequently, all bound variables in the definition are renamed to avoid
capture of free variables.

expand-template-call :

|[x(e*){elem1*}]| -> |[elem2*]|

where <TemplateDef; rename> x => |[define mod* x(farg*){elem3*}]|

; {| Subst

: <zip(bind-variable)> (farg*, <alltd(Subst)> e*)

; elem2* := <map(expand-element)> elem3*

; str := x

|}

The formal parameters of the template are bound to the actual parameters of
the call in the dynamic rule Subst:

bind-variable = ?(Arg(x, s), e); rules(Subst : Var(x) -> e)

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 49

8.2 Modules

A module system allows a code base to be organized into coherent and possibly
reusable units, which is a requirement for building a library. Module systems
come in different levels of complexity. Module systems supporting separate com-
pilation can become quite complex, especially if the units of compilation in the
DSL do not match the units of compilation of the target platform. For this ver-
sion of WebDSL a very simple module system has been chosen that supports
distributing functionality over files, without separate compilation. A module is
a collection of domain model and template definitions and can be imported into
other modules as illustrated in Figures 18 and 19. The generator first reads in all
imported modules before applying other transformations. The implementation
of import chasing is extremely simple:

import-modules =

topdown(try(already-imported <+ import-module))

already-imported :

Imports(name) -> Section(name, [])

where <Imported> name

import-module :

Imports(name) -> mod

where mod := <parse-webdsl-module>FILE(<concat-strings>[name,".app"])

; rules(Imported : name)

The dynamic rule Imported is used to prevent importing a module more than
once.

9 Abstraction Mechanisms: Syntactic Sugar

With the core language introduced in Sections 6 and 7 we have obtained expres-
sivity to define a wide range of presentations. With the templates and modules
from the previous section we have obtained a mechanism for avoiding code dupli-
cation. However, there are more generic patterns that are tedious to encode for
which templates are not sufficient. Even if a language provides basic expressivity,
it may not provide the right-level of abstraction. So if we encounter reoccurring
programming patterns in our DSL, the next step is to design higher-level ab-
stractions that capture these patterns. Since the basic expressivity is present we
can express these abstractions by means of transformations from the extended
DSL to the core DSL. Such transformations are known as desugarings, since the
high-level abstractions are known as syntactic sugar. In this section we discuss
three abstractions and their corresponding desugarings.

9.1 Output Entity Links

A convention in WebDSL applications is to define for each entity type a cor-
responding page definition for viewing objects of that type with the name of

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

50 TUD-SERG-2008-023

module publications

section domain definition

Publication {

title :: String (name)

year :: Int

authors -> List<Person>

abstract :: Text

}

section presenting publications

define showPublication(pub : Publication) {

for(author : Person in pub.authors){

navigate(person(author)){text(author.name)} ", " }

navigate(publication(pub)){text(pub.name)} ", "

text(pub.year) "."

}

Fig. 18. Module definition.

application org.webdsl.serg

imports templates

imports people

imports blog

imports publications

Fig. 19. Application importing modules.

the entity in lowercase. For example, for entity Publication, a page defini-
tion publication(p : Publication) is defined. Given an object, say pub :
Publication, creating a link to such a page is then realized with navigate as
follows:

navigate(publication(pub)){text(pub.name)}

While not a lot of code to write, it becomes tedious, especially if we consider
that the code can be derived from the type of the variable. Thus, we can replace
this pattern by the simple element

output(pub)

This abstraction is implemented by the following desugaring rule, which uses
the type of the expression to determine that the expression points to an entity
object:

DeriveOutputSimpleRefAssociation :

|[output(e){}]| -> |[navigate($y(e)){text(e.name)}]|

where |[$Y]| := <type-of> e

; <defined-java-type> |[$Y]|

; $y := <decapitalize-string> $Y

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 51

This desugaring is enabled by the type annotations on expressions produced by
the type checker. Similar desugaring rules can be defined for other types, as
illustrated by the following rules:

DeriveOutputText :

|[output(e){}]| -> |[navigate(url(e)){text(e)}]|

where |[URL]| := <type-of> e

DeriveOutputText :

|[output(e){}]| -> |[image(e){}]|

where |[Image]| := <type-of> e

As a consequence of this abstraction, it is sufficient to write output(e) to pro-
duce the default presentation of the object indicated by the expression e.

9.2 Editing Entity Collection Associations

Editing a collection of entities is not as simple as editing a string or text property.
Instead of typing in the value we need to select an existing object from some
kind of menu. Consider the edit page for a publication in Figure 20. Editing the
authors association requires the following ingredients: a list of names of entities
already in the collection; a link [X] to remove the entity from the collection; a
select menu to add a new (existing) entity to the collection. This is implemented
by the following WebDSL pattern:

list { for(person : Person in publication.authors) {

listitem{ text(person.name) " "

actionLink("[X]", removePerson(person)) }

} }

select(person : Person, addPerson(person))

action removePerson(person : Person) {

publication.authors.remove(person);

}

action addPerson(person : Person) {

publication.authors.add(person);

}

The select creates a drop-down menu with (names of) objects of some type.
Upon selection of an element from the list, the corresponding action (addPerson
in this case), is executed. This fragment illustrates the flexibility of the pre-
sentation language; a complex interaction pattern can be composed using basic
constructs. However, repeating this pattern for each entity association is tedious.
Creating this pattern can be done automatically by considering the type of the
association, which is expressed by the first desugaring rule in Figure 21. Thus,
input(pub.authors) is now sufficient for producing the implementation of an
association editor4. Similar rules can be defined for other types, as illustrated in
4 At the time of producing the final version of this paper, the editing of collection

associations has been replaced with a different implementation.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

52 TUD-SERG-2008-023

Fig. 20. Editing collection association.

DeriveInputAssociationList :

elem|[input(e){}]| ->

elem|[list { for(x : $X in e){

listitem{text(x.name) " " actionLink("[X]", $removeX(x))}

} }

select(x : $X, $addX(x))

action $removeX(x : $X) { e.remove(x); }

action $addX(x : $X) { e.add(x); }]|

where |[List<$X>]| := <type-of> e

; x := <decapitalize-string; newname> $X

; $removeX := <concat-strings; newname>["remove", $X]

; $addX := <concat-strings; newname>["add", $X]

DeriveInputText :

|[input(e){}]| -> |[inputText(e){}]|

where SimpleSort("Text") := <type-of> e

DeriveInputSecret :

|[input(e){}]| -> |[inputSecret(e){}]|

where SimpleSort("Secret") := <type-of> e

Fig. 21. Desugaring rules for input

Figure 21. As a consequence, the input(e) call is now sufficient for producing
the appropriate input interface.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 53

Fig. 22. Edit BlogEntry

9.3 Edit Page

The presentation language supports the flexible definition of custom user inter-
faces. Based on this language the generation of the standard view/edit interface
can now be reformulated as a model-to-model transformation. Rather than di-
rectly generating Java and JSF code, a presentation model can be generated
from an entity declaration. The generator for the core language then generates
the implementation. We consider edit pages such as in Figure 22, which consist
of an input box for each property of an entity, organized in a table, and Save
and Cancel buttons. The pattern for the (body of) an edit page is:

form {

table {

row{ "Blog" input(entry.blog) }

row{ "Title" input(entry.title) }

row{ "Created" input(entry.created) }

row{ "Category" input(entry.category) }

row{ "Intro" input(entry.intro) }

row{ "Body" input(entry.body) }

}

action("Save", save()) action("Cancel", cancel())

action cancel() { cancel blogEntry(entry); }

action save() { entry.save(); return blogEntry(entry); }

}

Generation of pages of this form is now defined by the entity-to-edit-form
rule in Figure 23. Note that $x is used both as the argument of the edit page
and the name of the view page. For each property a table row with an input
element is generated using the property-to-edit-row rule. Application of the

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

54 TUD-SERG-2008-023

entity-to-edit-form :

|[entity $X { prop* }]| ->

|[define page $editX($x : $X) {

form {

table { elem* }

action("Save", save())

action("Cancel", cancel())

}

action cancel() { return $x($x); }

action save() { $x.save(); return $x($x); }

}]|

where $x := <decapitalize-string> $X

; $editX := <concat-strings>["edit", $X]

; elem* := <map(property-to-edit-row(|$x))> prop*

property-to-edit-row(|x) :

|[y k s (anno*)]| -> |[row { str input(x.y) }]|

where str := <capitalize-string> y

Fig. 23. Derivation of edit page from entity declaration.

previously defined desugaring rules for input then take care of implementing
the interaction pattern corresponding to the type of the property.

10 Discussion: Web Engineering

The development of WebDSL in this paper touches on the development of
domain-specific languages and on abstractions for web engineering. WebDSL was
intended in the first place as a case study in the development of domain-specific
languages. By now it has turned into a practically useful language. Since the
first version of WebDSL, which is described in this paper, the language has been
improved to increase coverage and has been extended with higher-level abstrac-
tions. List comprehensions support easy filtering and ordering of lists. Entity and
global function definitions are useful for separating logic from presentation. En-
tity inheritance and extension support separation of concerns in data modeling.
Recursive templates support the presentation of nested structures. Declarative
access control rules regulate the access to pages and actions [52]. Furthermore,
some of the implementation patterns have been replaced by others, without af-
fecting the design of the language.

This section gives an assessment of WebDSL as a solution in the domain of
web engineering. The criteria for the success of a DSL from the introduction are
reiterated and the WebDSL project is evaluated with respect to these criteria.
WebDSL is compared to alternative web engineering approaches, giving rise to
ideas for further improvements and extensions. The next section considers other
approaches and techniques for DSL engineering with respect to the criteria.
Section 12 considers several challenges for language engineering.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 55

10.1 DSL Engineering Evaluation Criteria

For the process of developing a domain-specific language we consider the follow-
ing criteria:

– Productivity: What is the expected time to develop a new language? Dis-
tinguish the costs of domain analysis, language design, and language imple-
mentation.

– Difficulty: How difficult is it to develop a language? Can it be done by
an average programmer or does it require special training? Does it require
special infrastructure?

– How systematic and predictable is the process?
– Maintainable: How well does the process support language evolution? How

difficult is it to change the language? Can languages be easily extended with
new abstractions?

For the domain-specific language produced by a language engineering project we
consider the following criteria:

– Expressivity: Do the language abstractions support concise expression of
applications? What is the effect on the productivity of developing applications
using the DSL compared to the traditional programming approach?

– Coverage: Are the abstractions of the language adequate for developing ap-
plications in the domain? Is it possible to express every application in the
domain?

– Completeness: Does the language implementation create a complete imple-
mentation of the application or is it necessary to write additional code?

– Portability: Can the abstractions be implemented on a different platform?
Does the language encapsulate implementation knowledge? To what extent
do the abstractions leak implementation details of the target platform?

– Code quality: Is the generated code correct and efficient?
– Maintainability: How well does the language support evolution? What is the

impact of changing a model? What is the impact of changes to the language?

In the following we evaluate the WebDSL design and development with respect
to these criteria.

10.2 Evaluation of the WebDSL Development Process

The version of WebDSL described in this paper emerged from a project con-
ducted by the author (non full-time) between September 2006 to June 2007.
Several master’s students conducted related research activities that provided in-
put for the project. In particular, Sander Mak developed a concurrent DSL for
web applications [71] from which the idea of page definitions and navigations
analogous to function definitions and calls originated.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

56 TUD-SERG-2008-023

Productivity and Difficulty The effort of a language engineering project is
divided into domain analysis, language design, and language implementation.
In the WebDSL project, by far the most effort was spent in the first stage,
i.e. becoming adequately knowledgeable in (one configuration of) the Java web
programming platform. To give an indication of the effort involved, here is a
brief description of the time line of the project.

In September 2006 a simple wiki application was built with MySQL, JSP,
JDBC, and Java Servlets. The application included a wiki markup parser and
HTML renderer. In February and March 2007 the wiki application was rewrit-
ten using Hibernate as object-relational mapping solution, greatly simplifying
the implementation and improving the code quality. The reimplementation con-
sisted of several iterations and introduced some complex features such as nested
wiki pages and uploading legacy wiki content from XML data. At the end of
March 2007, refactoring the code of the wiki application to try out new archi-
tectural ideas became too painful, and a start was made with building WebDSL.
In April 2007, JSF, Seam, and Hibernate with annotations (instead of XML
configuration) were ‘discovered’ and used as target platform in the emerging
generator. Generation of a basic CRUD application (Section 4) and refinement
of the data model DSL (Section 5) were realized by mid April. With this basic
generator in place it was now possible to experiment with much larger data mod-
els than the one for the wiki application. The running example was changed to
the ‘research group’ application with publications, home pages, project, blogs,
etc. that features in this paper. The presentation language and desugaring trans-
formations for higher-level abstractions (Section 6) were developed in May 2007.
The embedding of HQL queries, the module system, and numerous refinements
and improvements were realized in June 2007.

Language design can be further divided into discovering the conceptual ab-
stractions and formalizing these abstractions by means of a syntax definition.
Again, most of the effort was spent in abstraction discovery; syntax definition
with SDF is straightforward once the desired notation has been designed. The
data model notation is not particularly original; it is basically a variation on
record declarations in C or Pascal. The presentation layer language took a
while to emerge. Although with hindsight it is a fairly obvious abstraction from
JSF templates. In general, WebDSL liberally borrows designs from existing lan-
guages, which is a good idea since these designs will be familiar to developers.

Language implementation was heavily interleaved with design. The author
has ample experience in language design and implementation, and is, as pri-
mary designer, intimately familiar with the Stratego/XT implementation tech-
nology. Thus, implementation of the generator required mainly the ‘encoding’
of the implementation patterns as rewrite rules and strategies using standard
Stratego/XT practices. Getting to this level of language implementation pro-
ductivity requires training in language design and a particular implementation
technology such as Stratego/XT. A few innovations of Stratego/XT were made
during the development of WebDSL. In particular, some utilities for the gen-
eration of multiple output files were developed. Furthermore, in a refactoring

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 57

of the WebDSL generator several measures were taken to increase the locality
of generation rules [54]. In particular, an extension of Java has been developed
to support identifier composition, partial classes, partial methods, and interface
derivation.

Systematic The inductive, technology driven approach to DSL design adopted
in the WebDSL project ensures a natural scope. The domain is defined by what-
ever is being programmed in practice. Abstractions are discovered by studying
programming patterns; common codes ends up as constant code in templates,
variable parts are inserted based on information in the model. This approach
initially just leads to straightforward abstractions from existing programming
practice. However, identification of these abstractions leads to better insight in
the domain, which may give rise to reformulations not directly inspired by pro-
gramming patterns. For example, the access control extension of WebDSL [52]
is not based on the facilities for access control provided by the Seam framework.
Rather an expressive and declarative mechanism is developed enabled by the
possibility to perform desugaring transformations on the DSL itself.

Language design requires some creativity and cannot be very predictable.
At first, abstractions can be formulated as enumeration of configuration data,
possibly in some XML schema. However, good DSLs require a readable concrete
syntax. Language design can be inspired by existing language design patterns.
For example, the design of the user interface language of WebDSL was inspired
took some inspiration from LATEX, not so much in its concrete syntax, as in
concepts of separation of structure and style. A catalog of reusable language
design patterns could be helpful in the design of new DSLs.

The implementation of WebDSL follows standard architectural patterns for
DSL generators.

Maintainable The extensibility of Stratego strategy definitions makes a gener-
ator naturally extensible to support new constructs of the same nature as existing
ones. However, the extension of WebDSL with access control and the addition
of new user interface components, eventually required a number of refactorings
to maintain the modularity of the generator [54].

10.3 Evaluation of the WebDSL Language

Expressivity Programming web applications in WebDSL is a breeze compared
with programming in the underlying Seam architecture. Implementations are
small and the data model and presentation are easily adapted when insights
in the design of an application change. To objectively measure the decrease in
effort (say lines of code) that is obtained by using WebDSL it is necessary to
simultaneously develop the same web application in WebDSL and using some
other techniques. Alternatively, we can exactly rebuild existing web applications
and compare the two implementations. As an approximation we can take metrics
from WebDSL projects as an indication.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

58 TUD-SERG-2008-023

For the website of webdsl.org we are developing a software project man-
agement application using WebDSL. The current prototype counts 2800 lines of
WebDSL code and provides blog, forum, wiki, and issue tracker sub-applications.
Access to the applications is controlled by a declarative access control policy
(see below). The various applications support cross-linking from user-provided
content via wiki-like links, which can address pages symbolically, for example
[[issue(WEBDSL-10)]] creates a link from a blog entry to an issue in the issue
tracker. The generated implementation of this application takes about 44K lines
of Java code (3.6K for entity classes, the rest for beans) and some 25K lines of
XHTML. Of course, this code is not necessarily as compact as it would be pro-
grammed manually. But a factor of 5 to 10 decrease in size compared to manually
programmed applications appears to be a realistic (conservative) estimate.

The order of magnitude decrease in code size implies a significant increase
in productivity. In particular, refactoring the design of an application can be
realized much faster than is the case in the target platform, simply because less
code is involved. However, the reduction of accidental complexity reduces appli-
cation development to the hard part of development, i.e., requirements analysis
and application design. Once it is known what the structure and functionality of
an application should be, it is easy to realize that. However, WebDSL does not
(yet) provide much help for coming up with a design. Further abstractions, such
as for workflow, can help guide the design of certain ‘genres’ of applications.

While macro productivity is increased, micro productivity is not ideal. The
time it takes to generate code, compile it, and deploy it in a JBoss application
server determine the development feedback cycle. This cycle entails a penalty
that is felt most when making small changes. A better model for incremental
compilation and deployment should improve this factor.

Coverage The WebDSL language supports the creation of a wide range of web
applications with a rich data model. There are numerous ways in which the
coverage of WebDSL can be extended and refined. In the rest of this section
several ideas are discussed.

Completeness The WebDSL generator generates complete code. There is no
need to fill in or manually tune generated code skeletons. Sometimes it is nec-
essary to add new built-in types. For instance, to represent patches for version
management of the wiki application of webdsl.org, a patch library implemented
in Java was added to the collection of libraries comprising the run-time system.
Such built-in types are implemented as a separate module with rules plugging
into the type checker and code generator. This extensibility should be made less
intrusive by by supporting the declaration of new types and operations in the
language itself.

Portability The portability of WebDSL to other Java web frameworks, or other
implementation platforms such as PHP or C# has not yet been realized, so

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 59

no hard claims about the quality of the WebDSL abstractions can be made.
However, there is some evidence that the abstractions are fairly robust and
target platform independent. Several of the programming patterns that gave rise
to the WebDSL abstractions have been replaced by others, without changing the
language constructs that they gave rise to. In Section 8 the template mechanism
is implemented through expansion. This precludes the use of recursive template
invocations, which would be useful for the presentation of hierarchical, nested
structure such as a document with sections and subsections. Recently, we figured
out how to translate separate template definitions. This required a change in
the back-end of the generator, but the language itself already supported the
expression of recursive template invocations.

Code Quality WebDSL applications inherit properties such as performance,
robustness, and safety from the target architecture. The technology driven ap-
proach underlying the design of WebDSL starts from the assumption that the
target architecture is solid. However, Seam itself is new and under development.
No experiments have been performed yet to establish these properties in a pro-
duction setting.

Evolution Complete code generation ensures that regular evolution of an ap-
plication is a matter of reapplying the generator to obtain an implementation for
a new version. Otherwise, the evolution of web applications and the version of
WebDSL they are constructed with has been ignored in this paper. It is however,
an important consideration in a software development process based on DSLs.
Section 12 outlines (research) challenges for evolution of DSL-based software
development.

10.4 Static Verification

WebDSL statically checks application definitions. Expressions accessing, manip-
ulating, and creating data are checked for consistency with the declared entities
and the variable declarations in scope. The existence of pages in navigations is
checked, the types of actual parameters to page navigations are checked against
the formal parameters of page definitions. Embedded HQL queries can also be
checked against the declared entities; implementation of this feature is not yet
complete. The remaining errors are logical errors in actions (e.g. accessing a prop-
erty with null value), and errors in the composition of web pages. In practice,
most errors that occur during development are application design errors. That
is, realization during testing that pages and interactions should be organized
differently. Due to code generation, the generated code correctly implements the
specification. Errors normally made in boilerplate code are avoided. Any remain-
ing errors are bugs in the generation templates, which only need to be repaired
once.

Logical errors cannot be completely eliminated. Well-formedness of generated
web pages could be checked statically by extending the type checker to check for

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

60 TUD-SERG-2008-023

valid combinations. The only error of this kind encountered in practice, is forget-
ting to embed form elements in a form{...}. The other template elements can
be combined fairly liberally due to the leniency of browsers. However, checking
such properties would ensure better HTML documents. This is done in systems
such as <bigwig> [14], JWIG [25], WASH [92] and Ocsigen [9]. In particular,
the <bigwig> and JWIG systems provide sophisticated correctness checks of
document well-formedness. Templates in these systems are used to dynamically
create documents, including the use of recursive definitions. Data-flow analysis
is used to verify that all possible documents that can be generated by a program
are valid.

10.5 Input Validation and Data Integrity

Properties and entities may need to satisfy more strict constraints than can be
expressed using types alone. First, in some cases it is required to restrict the form
of value types. For example, the syntax of an email address should be checked
on submission and an error reported if not conforming. Next, constraints on
combinations of objects should be checked. For example, in a conference system,
the author of a paper may not be a reviewer of that same paper. Violations
to this constraint should be detected when changes are made. Both types of
constraints can be expressed declaratively, using regular expressions for input
validation and Boolean expressions over object graphs for structural invariants.
The PowerForms tool of the <bigwig> project provides a declarative language
for declaring the client-side validation of form fields using regular expressions
and interdependencies between form fields [13]. We plan to include support for
the specification of data integrity constraints in a future version of WebDSL.

10.6 Access Control

A related concern is controlling the access to data and the pages that present
and modify them. Access control checks can be expressed in WebDSL page def-
initions by means of a conditional content construct (if condition holds, show
this content). However, directly expressing access control with that mechanism
would result in a tangling of concerns. We have designed an extension of WebDSL
with declarative rules for user authentication and access control that supports
separate specification [52].

10.7 Presentation

Presentations in WebDSL depend on the basic page elements defined by the gen-
erator. The elements supported currently cover the basics of HTML, abstracting
from visual layout by relying on cascading stylesheets (CSS). Fancier elements
can be added by extending the generator with new mappings from page ele-
ments to JSF components. It should be possible to provide such extensions as a
plug-in to the generator, which requires an extensibility mechanism. Using the

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 61

extensibility of strategy definitions in Stratego and an extension of Java to sup-
port partial classes, such extensibility is realized in a refactoring of the WebDSL
generator [54]. A concern in the design of such extensions should be a proper
separation between declaration of the structure of page content and visual for-
matting. Many JSF components are variations on the same theme, e.g. a list, vs
a table, vs a grid, which are different visualizations of the same information.

The current design of WebDSL is page-centric, with actions and navigations
leading to requests of complete new pages. The trend in web application design
is towards inclusion of elements from rich (desktop) user interfaces, in which only
parts of the page get updated as a reaction to user actions. An experiment with
targetting the Echo2 Ajax framework [2] has shown that it might be feasible
to develop rich user interfaces with the WebDSL abstractions. The central idea
of the experiment was to use templates as the components to be replaced as a
response to user actions. A less ambitious approximation of richer user interfaces
can be obtained by targetting Ajax JSF components, which is already done to
some extent.

10.8 Control-Flow

WebDSL provides a high-level language for implementing web applications by
abstracting away from low-level details. However, in its core the language has
the same page-centric model as the underlying Seam architecture. It could even
be observed that WebDSL makes this architecture more explicit; where in Seam
a page is defined by means of a number of separate artifacts, WebDSL unifies
the elements of a page in a single definition. This architecture implies that user
interactions take the shape of a series of requests and responses.

The Mawl [4] form processing language introduced a paradigm for modeling
web interactions in the form of traditional console interaction. That is, web
pages are considered as the input and output actions of a sequential program
that control the interaction. The following Mawl example defines a session in
which first the user should provide a name (GetName), which is echoed in the
next step (ShowInfo) [4]:

global int access_cnt = 0;

session Greet {

local form {} -> { string id } GetName;

local form { string id, int cnt } -> {} ShowInfo;

local string i = GetName.put({}).id;

ShowInfo.put({i, ++access_cnt});

}

Here GetName and ShowInfo are the names of separately defined HTML tem-
plates with parameters filled by the put operation. The statelessness of the http
protocol requires the server to remember where to resume the program after the
user submits a request.

In an application of Scheme to web applications, Queinnec [80] observed
that capturing of the interaction state can be implemented elegantly by means

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

62 TUD-SERG-2008-023

entity Counter { accesses :: Int }

globals { var stats : Counter := Counter { accesses := 0 }; }

entity Visitor { name :: String }

define page getname() {

form {

var n : String;

"Enter your name: " input(n)

action("Go", go())

action go() {

var v : Visitor := Visitor{ name := n };

stats.accesses := stats.accesses + 1;

v.persist();

return greet(v); } } }

define page greet(v : Visitor) {

"Hello, " output(v.name)

" you are visitor number " output(stats.accesses)

}

Fig. 24. Interaction sequence using pages in WebDSL.

of continuations, in particular the call/cc feature of Scheme. This approach has
subsequently been adopted and refined in the PLT Scheme web server [67]. The
Seaside Smalltalk web programming environment uses callbacks with closures to
model control flow [40]. The OCaml web framework Ocsigen uses continuation
passing style and stores continuations server-side on disk between requests [9].
The WASH [92] framework uses a monad to capture the continuation of a re-
sponse. While continuations appear to be a very elegant formalization of sequen-
tial series of interactions with a single user, it is not clear that continuations can
also be used to capture interactions involving (many) different users over multi-
ple sessions as is needed for implementing workflows.

The Seam [56, 74] framework, which WebDSL targets, supports a notion of
conversations to deal with the problem of keeping state in different threads of the
same session separate. The solution here is basically to encode the continuation
in a combination of data and context, i.e., the page being visited. In WebDSL
it has not appeared necessary yet to build on this mechanism. First of all, the
typical interaction that consists of presenting a form and receiving its inputs can
be realized with a single page definition (based on the JSF facilities for forms).
Next, WebDSL has session entities for storing data relevant for all interactions in
a session (a feature not discussed in this paper). We have chosen to model state in
sequential interactions, as well as in more complex interaction scenarios such as
workflows, using regular WebDSL entities. Figure 24 illustrates this by encoding
the Mawl example discussed above (including the forms for presentation). The
definition introduces a Counter entity to keep track of the number of visits using

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 63

an application global variable. The Visitor entity is used to store the name of a
visitor obtained in the getname page. The object is then passed as a parameter
of the greet page, where it is used to obtain the name. The go() action of
the getname page creates the Visitor object and makes it persistent. This is
the difference with the Mawl approach, where the session data is transient and
restricted to the session. The advantage is that interactions become naturally
persistent such that users can come back to an interaction in later sessions.
Scenarios in which multiple stakeholders in different roles need to interact are
naturally modeled in this style as well. Using an appropriate access control policy,
the visibility of the objects can be restricted. While this mechanism provides
flexible expressivity for implementing all kinds of control flows, we will consider
adding higher-level abstractions for defining complex workflows. For short-lived
conversations (e.g. filling in a multi-page form) it would still be useful to have
in-memory non-persistent (transient) state, for which the Seam conversations
model may be the right implementation solution.

10.9 Testing

An important open issue is the testing of web application developed with WebDSL.
We need two types of tests. First, regression testing for the language and genera-
tor, is needed to make sure that the implementations generated by the generator
are correct. For this purpose we would need to make a set of small test appli-
cations, that exercise specific constructs of the language. Secondly, WebDSL
application developers need to test that their program satisfies its specification.
It should not be necessary to test basic, low-level functionality, since correctness
of the language construct should ensure their functionality. Thus, application
tests should test application behavior. For both kinds of tests we need a DSL
for expressing high-level tests.

10.10 Model-View-Controller

WebDSL programs combine the user interface implementation with the logic as-
sociated with user interface events. This design violates the model-view-controller
pattern, which dictates that the user interface (view) should be separated from
the controller [48]. There are several reasons why such a separation is desirable.

First, to distribute functionality over different nodes in the network in order
to distribute the load to more than one server. Typically, the application is
separated into tiers, each of which is implemented as a process on a different
server. This goal is not precluded by the WebDSL approach. Even while an
application definition integrates UI and logic, in the implementation these are
separated into JSF pages and session beans, which are designed for a layered
architecture.

Secondly, motivation for applying the MVC pattern is to be able to use
different views with the same logic and/or to let developers with different skills
work on view and controller separately. This requires not so much that logic
and view should be separated (as a policy), but rather requires mechanisms that

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

64 TUD-SERG-2008-023

allows them to be separated when that is necessary. The template mechanism of
WebDSL allows views and actions, performed in those views, to be implemented
separately, where the view calls an abstract template, defined by the controller,
as illustrated in the following example:

define view(field1 : String, field2 : String) {

form{ input(field1) input(field2) submit(field1, field2) }

}

define control(m : Model) {

view(o.field1, o.field2)

define submit(field1 : String, field2 : String) {

action("Submit", submit())

action submit(){ m.field1 := field1; m.field2 := field2; }

}

}

Here the view template definition can be an elaborate structure definition, which
only takes basic data types as input values. Invoking an action is delegated to
an abstract submit template. The control uses the view to display the data,
and defines a concrete submit to implement the action.

11 Discussion: Language Engineering Paradigms

An application domain is a collection of concepts. The description of an applica-
tion in a domain is a collection of statements involving those concepts using the
‘language of the domain’. For example, ‘make a page that displays the properties
of this object’ is a sentence in the domain of web applications. A conceptual do-
main language can be implemented in many different forms, even as a library in
a ‘conventional’ general-purpose programming language. Language engineering
is concerned with the design and implementation of languages in all their differ-
ent forms. This section provides a brief survey of existing language engineering
paradigms and their impact on the language development process. A complete
and in-depth survey of language engineering is out of the scope of this paper.
There are many surveys on domain-specific languages and their development
from different perspectives, including [86, 85, 99, 33, 73, 32, 87, 60].

Approaches The discussion is organized by considering the distance of the
approach to the implementation platform. Application frameworks are based on
the concept of ‘a library as a language’ (Section 11.1). Domain-specific embedded
languages encode a language using the syntactic facilities of the host language
(Section 11.2). Interpreted DSLs are separate languages, which are passed to an
interpreter library (Section 11.3). Domain-specific language extensions add new
syntax to a general purpose language (Section 11.4). Compiled domain-specific
languages are defined completely separately from the implementation platform,
and can in principle be translated to more than one platform (Section 11.5).

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 65

Technologies These approaches entail fundamentally different architectures
for capturing domain-specific knowledge with implications for development and
usage. Somewhat orthogonal to these basic approaches are specific technologies
for realizing them. Technological frameworks are typically designed for use with
a particular approach, but their use may be stretched to other approaches as
well. Section 11.6 outlines the main ingredients of language implementations,
and gives an overview of some typical tool sets.

Criteria In the previous section we applied the set of evaluation criteria to
WebDSL. In this section we use these criteria to compare the properties of
different approaches. Of course, it is not possible to make generic statements
about all products of a particular approach. For example, the quality of generated
code is not magically guaranteed by using a particular generator technology,
but will depend the efforts of the generator developer performing meticulous
research into the properties of the target platform. However, certain approaches
may facilitate better results in some area than others.

11.1 Application Frameworks

The most accessible approach to encapsulating domain knowledge is by means
of a library or (object-oriented) framework. The language defined by a library is
the application programmer’s interface (API). That is, a library provides data
structures (objects) with operations (methods). The basic elements of the lan-
guage are the calls to operations. The composition mechanism is generic, that
is, not specific for the domain. For example, an object-oriented programming
language provides object creation, method calls, subclassing, and inversion of
control [46].

Developing Frameworks An application framework is directly implemented
in a third-generation general-purpose programming language such as Java. Thus,
framework development can directly use all the productivity advantages pro-
vided by modern programming languages and their interactive development en-
vironments. While frameworks are developed in a basic programming language,
designing a good framework is not easy and requires well trained software devel-
opers. However, there is a rich literature with design patterns [48] for developing
object-oriented software and frameworks. Maintenance of frameworks is tricky
when many client applications exist. Changing the interface breaks the build of
client code, but only changing the implementation may not be safe either, since
client code may depend on implementation details of the framework.

Developing with Frameworks The primary advantage of a framework com-
pared to other approaches discussed later, is that they integrate well with other
programming tasks. However, the implementation technology does not support
domain-specific verification. Only constraints that can be encoded in the host

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

66 TUD-SERG-2008-023

type system can be checked at compile time. Frameworks are expected to cover
a complete (technical) domain, which tends to make them large and complex.
The expressivity of a framework is low, as the notation based on the generic
composition mechanisms of the host language are typically not tuned to the
application domain. Modern frameworks such as Hibernate [10] and Seam [56,
74] are fairly high-level due to the use of annotations and dependency injec-
tion, which are targeted by run-time or deployment-time compilation and in-
strumentation. Software developed with a particular framework is not portable
to a different platform. The framework ties client code to its host language. To
support all possible functionality, frameworks may provide multiple layers of ab-
stractions which are not removed by the compiler. The internal structure is not
completely encapsulated and are for example manifest in stack traces produced
by exceptions. Frameworks use mechanisms such as inheritance and annotation
processing to allow client code to specialize the generic functionality it provides.
This form of extensibility is built into the infrastructure.

11.2 Domain-Specific Embedded Languages

While one could view the API provided by a framework as a language, this is not
typically the perspective of programmers. The idea behind domain-specific em-
bedded languages (DSELs) is to build DSLs in the form of libraries in a general-
purpose language. Hudak argues that combinator libraries in higher-order func-
tional languages such as Haskell are especially suited for building domain-specific
languages [55]. In essence, DSELs are the same as frameworks, but the differences
in abstraction mechanisms between object-oriented and functional languages,
give them a different flavor.

Developing Combinator Libraries The core advantage of DSELs is the reuse
of abstraction mechanisms in the host language. It is not necessary to design and
implement a mechanism for functional or modular abstraction. Also control-
flow constructs are easily defined in a lazy functional language such as Haskell.
Infix operators get a long way to approach domain-specific notation. Thus, the
developer can concentrate on the truly domain-specific aspects of the language.
Furthermore, there is no need to write code generators; language ‘constructs’ are
combinators, which are defined by means of function definition.

Developing with Combinator Libraries DSELs share with frameworks the
good integration with the host language, the lack of portability, and the lack of
domain-specific verification, syntax, optimization, and error messages. However,
domain-specific type checking can be achieved to some extent using phantom
types [70].

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 67

11.3 Interpreted Domain-Specific Languages

Interpreted DSLs are proper languages with their own syntax and semantics sep-
arately defined from a host language by means of an interpreter, which executes
sentences.

Developing Interpreters Developing an interpreted language requires devel-
opment of a syntax (with corresponding parser) and the interpreter itself. The
problem of building an interpreter can be mitigated by organizing an interpreter
as a factory that creates instantiations of a class hierarchy. After initialization
of the objects, it functions as a ‘normal’ program. Thus, an existing framework
can be given domain-specific notation through an interpreter.

Developing with Interpreters When the interpreter is built into a library,
it can be invoked from a general-purpose program and may fit in a software
development approach otherwise based on a general-purpose language. For ex-
ample, SQL and XSLT can be used in this fashion. Models can be executed on
any platform with an interpreter, which entails that the interpreter is needed
at run-time. It is typically not easy to support interaction between interpreted
code and code in a GPL. However, a combination of the factory approach men-
tioned above and reflection may support some form of interaction, e.g. a foreign
function interface that supports calling (host) library functions from the DSL
program. Usually, interpretation incurs overhead compared to compiled code,
since the interpreter must parse and inspect the (abstract) representation of the
model. Extension of the language may not be easy, as it the requires extension
of the interpreter.

11.4 Domain-Specific Language Extension

The idea of domain-specific language extension is to extend a general-purpose
host language with domain-specific guest notation. In contrast to domain-specific
embedded languages, the syntax of the host language is actually extended to
truly accommodate the domain-specific notation. An assimilation transforma-
tion maps extension back to base language [21]. This can be implemented as a
pre-processor of the base language or by a proper extension of the host language
compiler. Dmitriev advocates this approach with the name language oriented
programming [36],

Developing Language Extensions Developing a good language extension
implementation is difficult, since it requires extension or reimplementation of a
considerable part of the host language infrastructure. First, a complete syntax
definition of the host language is needed, which can be extended with the domain-
specific notation. This requires some form of syntactic extensibility. Second, the
extension needs to be implemented either by extending the host compiler or
by means of a translation down to the base language. (This is basically similar

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

68 TUD-SERG-2008-023

to DSL compilation, discussed below.) Third, the type checker of the host lan-
guage needs to be extended. There are a number of approaches for realizing this
scenario.

Extensible languages are languages that are prepared (to some extent) for
extension with new syntactic constructs. The prototypical example of an exten-
sible language is Scheme, which provides macros for introducing new ‘syntactic
forms’ [26]. Macro definitions define a translation from the new language con-
struct to more basic language constructs. Macros are applied by the interpreter.
Thus, programs can introduce and use extensions. Other incarnations of this
approach are Template Haskell [83], which supports compile-time generation
of program fragments (but no syntactic extensions), and Converge [95], which
provides compile-time meta-programming support for the definition of new em-
bedded languages and their assimilation. Language workbenches [47] are IDEs
supporting the creation of macro-like language extensions.

Pre-processing is another popular approach to realize language extension.
The advantage over extensible languages is that a pre-processor can be built for
any base language, also those not designed with macro-like facilities. An example
of a pre-processor based language extension approach is MetaBorg [21], which
relies on the modularity of SDF to create the syntactic extension of a language
and on Stratego for expressing assimilation rules. MetaBorg extends the frame-
work approach to DSL implementation with proper syntax, thus providing a
domain-specific notation for the abstract syntax defined by an API. A partic-
ular instance of MetaBorg is StringBorg [16], a technique for providing proper
syntax checking for interpreted DSLs such as SQL. Instead of encoding queries in
string literals, which makes applications vulnerable to injection attacks, queries
are defined in an embedded DSL, which is syntactically checked. Under the hood
a string representation of the query is eventually constructed, but without the
risks of malicious injections. The disadvantage of pre-processors is that they do
usually not provide proper integration with the semantic checking of the host
language, since that requires re-implementation of those parts of the compiler in
the pre-processor.

Extensible compilers avoid the incompleteness of pre-processors by exposing
the internal structure of the compiler to extensions. Thus, the implementation
of an extension can extend the type checker to guarantee that only statically
correct programs are compiled, and that error messages are phrased in terms of
the source program, not the assimilated one. Examples of extensible compilers
for Java are Polyglot [75], Silver [109] and JastAddJ [45]. The latter two are
based on extensible attribute grammars formalisms, which supports declarative
and compositional specification of the type system of a language [109, 44].

The disadvantage of an extensible compiler is that an extension is based
on white box reuse of the base compiler, rather than a semantic description
of the language. This requires intimate knowledge of the implementation of the
compiler and exposes extensions to changes in the implementation. The approach
of compilation by normalization [58] avoids this problem by providing a mixed
source and byte code language as target for a pre-processor. By means of tracing

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 69

information, type and run-time errors can be reported in terms of the original
source code. By exposing the target language as part of the source language, pre-
processors can produce low-level implementations where needed without invasive
extension of a compiler.

While extending compilers to support extended languages is understood to
some extent, modern languages require rich interactive development environ-
ments. Exploration of the design and implementation of such IDEs for embedded
languages is only recently started [59].

Developing with Language Extensions Provided that also the IDE is ex-
tended, a general purpose language with domain-specific extensions can provide
a very expressive programming environment that allows to use a DSL where
needed, and the general-purpose language for ‘normal’ programming. As is the
case with frameworks and combinator libraries, models in an embedded lan-
guages are tied to their host language and cannot be used with a different plat-
form. It is important that assimilations do not leak, that is, expose the developer
to the result of translating embedded models to host code, for example in the
form of error messages at compilation or run-time.

11.5 Compiled Domain-Specific Languages

WebDSL falls in the category of compiled domain-specific languages, that is,
a language dedicated to a particular application domain, not embedded in a
particular host language or implementation platform. Models in such languages
are implemented by compilation or code generation, i.e. translation to a program
in some target language.

The main disadvantage of the approach is that implementation of a DSL
compiler can be a significant undertaking. Unlike DSELs, there is no linguistic
reuse of abstraction facilities of a host language, implying that all the basic
constructs that a language requires, need to be implemented in addition to the
actual domain-specific elements. For example, WebDSL has an action language,
which is a subset of imperative language with object-oriented elements.

The main advantage is that the language can be designed to be independent of
the target platform, and that models in the language can thus be implemented on
more than one platform. To achieve portability one should guard against leakage
of implementation details from the target platform. While abstractions cannot
be borrowed from a host language, the gain is that there are no constraints
imposed on the design of abstractions. Furthermore, the compiler can provide
domain-specific error checking and optimization.

There are many variant approaches including generative programming [33,
32] and model-driven engineering [82] and technologies for realizing them. How-
ever, the essential architecture is the same in all approaches. In addition, to
proper DSL compilers there are less complete variations, scaffolding and light
weight languages.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

70 TUD-SERG-2008-023

Scaffolding The term ‘code generation’ is understood in some contexts as the
generation of incomplete code skeletons from configuration data, e.g. a UML
model. For example, from a class diagram a set of Java classes is generated with
the attributes and operations as specified in the diagram, but the implementation
of the methods needs to be filled in. Another example is Ruby on Rails [93], a
framework for web application implementation based on the Ruby programming
language, which generates boilerplate code from a database schema.

The advantage of a scaffolding generator is that it is relatively easy to build.
There is no need not design and implement abstractions for areas where the
developer is expected to do heavy customization. The big disadvantage is that
it requires maintenance at the level of the generated code. This requires round-
trip engineering or carefully marking in the generated code which parts where
generated and which parts customized, such that only generated parts can be
re-generated. However, this will remain fragile and prone to inconsistencies be-
tween model and code. Often, re-generation is not supported as it carries a
substantially higher implementation cost than the scaffolding generator itself.
More importantly, the approach exposes the developer to the implementation,
which breaks encapsulation of the generator and limits its scalability.

Lightweight Languages Another category of DSL implementations is that
of lightweight languages [86]. These are languages with a very restricted scope,
possibly used in a single software project. Such languages are economically viable
because they are implemented cheaply, for instance using regular expressions in
Perl. The translation consists of simple local translations and does not include
static error checking, placing the burden of creating a correct model on the
programmer. This approach does not scale to languages that need to be used in
many projects and/or by many developers.

Heavyweight Languages A proper domain-specific language is constructed
according to well established architectural patterns for compilers [3]. A generator
consists of a front-end that parses the model from a concrete syntax representa-
tion (be it a visual or textual) to an abstract representation. This representation
is subsequently checked against the static semantic constraints. After option-
ally applying a number of transformations to the model itself, it is translated to
code in some target language. There is a long tradition of tool kits with DSLs for
reducing the effort of building compilers, e.g. [63, 57, 81, 49, 62, 5]. Stratego/XT
fits in this tradition and so do the various MDE tool sets introduced recently.
Within these architectural boundaries there are different styles for implementing
the various aspects of a generator.

11.6 Language Engineering Tools

For the development of a framework or combinator library only an appropriate
host language is required. For the other approaches discussed above, i.e. inter-
preted DSLs, language extensions, and compiled DSLs, tool infrastructure for

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 71

language engineering is required. A language implementation requires parsing,
analysis, transformation, generation, and/or interpretation as discussed in Sec-
tion 3.4. As with any domain, these tasks can be expressed in general purpose
programming languages. However, by its nature this domain is a fertile breeding
ground for tools and domain-specific languages. The rest of this section gives a
brief summary of the main variation points and illustrates how some existing
tool sets bind these variation points.

Parsing The definition of a textual DSL requires a parser that turns the text
of a model into a structured representation, which can be used for further pro-
cessing. Most parser generators are based on deterministic subsets of the set
of all context-free grammars, such as LL (recursive descent) implemented by
ANTLR [77] or LR [64] as implemented by YACC [57]. While these subsets
guarantee unambiguous syntax definitions and (near) linear time parsing, the
restrictions can require awkward encodings of linguistic constructs. Generalized
parsing algorithms such as Earley [41], GLR [94], or SGLR [101] do not suffer
these limitations. However, the support for error messages and error recovery is
typically not as good as with deterministic parsers.

Model Representation The abstract representation of a model is the data
structure that analysis, transformation, and generation operate on. The prop-
erties of a representation determine how costly (in terms of time and space) it
is to perform certain operations. Unfortunately there is no single representation
that makes all operations equally cheap [104].

With a functional representation such as the Annotated Terms (ATerms)
used in Stratego [96], or the algebraic data types in (pure) functional languages
such as Haskell [79], performing transformations is cheap since copying of sub-
trees constitutes of copying references, instead of cloning. Also, a functional
representation is persistent in the sense that a transformation does not destroy
the old representation. However, the directed acyclic graph (DAG) structure
does not admit extending the tree with references to other parts of the tree.
Hence, context information needs to be stored in symbol tables or similar data
structures.

In contrast, graph structures (including object graphs in object-oriented lan-
guages) allow extension of nodes with arbitrary cross references in the graph,
which can be used to make context information into local information. For ex-
ample, add a reference from a variable to its declaration. This makes the result
of analyses much easier to express. The downside is that transformations on
graphs are not persistent, i.e. require a destructive update, or copying of the
entire graph structure. Meta models in modeling frameworks such as EMF [23]
define graph structures, and thus require graph transformation solutions. Of
course, EMF can be used to model more restricted representations, including
functional representations.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

72 TUD-SERG-2008-023

Analysis and Transformation Analysis and transformations of models are
used to prepare the model for code generation, for example by enriching it
with type annotations (Section 7.1) or by desugaring high-level constructs as
lower-level ones (Section 9). In principle, analyses and transformations can be
expressed in any functional, imperative, or logical programming language. How-
ever, specialized transformation languages may allow more declarative and/or
more concise expression of transformations. As discussed above, the representa-
tion of models has consequences for the applicable transformation paradigms.

Term rewriting [6] is a useful paradigm for transformation of a functional
representation. Rewrite rules are declarative specifications of one step trans-
formations. Exhaustive application of rewrite rules is performed by an implied
rewriting strategy. Rewriting is useful for repeated, cascading transformations
such as desugaring, where model elements are rewritten to combinations of other
model elements, which can subsequently again be rewritten. This approach re-
quires an easy way to construct large patterns of model elements. Concrete object
syntax [102] enables the natural construction of model fragments of hundreds of
nodes, which is extremely tedious using abstract object construction techniques.
In pure term rewriting, rewrite rules are applied exhaustively to the entire term.
Because of non-confluence and non-termination more control over the applica-
tion of rules may be necessary. Various approaches for controlling rules have
been developed [104], among which the programmable rewriting strategies of
Stratego.

Analysis typically requires non-local information, e.g. the declaration of a
variable and its use. While rewriting approaches can express context-sensitive
analyses and transformations, e.g. the type checker in Section 7.1), a more declar-
ative approach to expressing analyses is provided by attribute grammars [65],
which are supported by systems such as JastAdd [44] and Silver [109]. An at-
tribute grammar assigns values to attributes of tree nodes. Attribute values are
defined by means of attribute equations in terms of other attributes. The schedul-
ing of attribute value computations is left to the attribute grammar compiler.
The value of an attribute may depend on the entire tree. Applying just a sin-
gle local transformation in principle invalidates all attribute values in the tree,
and requires re-computing all attribute values. Therefore, attribute grammars
are useful for performing analyses of static trees, while rewriting approaches are
more suitable for performing transformations. It is a research challenge to find
a combination of the formalisms such that analysis and transformation can be
mixed.

There are numerous approaches to transformation of graph representations
as occur in modeling approaches. Czarnecki and Helsen [34] give an extensive
survey of features of model transformation approaches.

Generation Many tool sets provide a template engine such as Velocity [89],
StringTemplate [78], or Xpand [43] for translation of models to program text.
A template is a quotation of a static piece of code. Variability in the code is
realized by means of anti-quotation expressions that allow insertion of names,

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 73

expressions, or sub-templates specialized for the input model. Templates are an
improvement over the practice of printing string literals in a regular program-
ming language, which require escaping of special characters and often do not
support multi-line fragments. Textual templates do not check the syntax of the
quoted code fragments. This makes the technique easily adaptable to any target
language. However, it may result in syntactically incorrect code being gener-
ated. More importantly, the generator does not have access to the structure
of the generated code. This makes it impossible to apply transformations, e.g.
instrumentation, to the generated code.

The approach used in this paper can be characterized as ‘code generation
by model transformation’ [54]. The generator produces a model representation
of the target program, which is amenable to further transformation. Producing
large fragments of target models is often inconvenient using the abstract syntax
notation. Concrete object syntax combines the surface syntax used in a template
engine with the underlying model representation of the generated code. Imple-
mentation of concrete syntax requires a grammar formalism that supports the
modular composition of the context-free and lexical syntax of languages [102,
22]. Eventually, the model representation needs to be rendered as text. This is a
straightforward one-to-one rendering of each node also known as pretty-printing.

Tool Sets A tool set for language engineering provides a particular combination
of support choosing some point in the design space sketched above. In addition,
this configuration is realized on a particular programming platform, which may
be a specific operating system and usually a particular programming language.
Thus, while in principle the architectures of the tool sets is comparable, in prac-
tice the choice for a particular tool set may be based on other factors than just
the techniques supported. Furthermore, for branding purposes, tool producers,
be it industrial, open source, or academic, tend to emphasize the differences
between tools, rather than their commonalities. The following list of tool sets
gives an impression of the variability in the domain, without pretending to be
complete.

Rewriting languages

– ASF+SDF [97] is a compiled language based on first-order term rewriting
with traversal functions, providing concrete syntax for patterns in rules.

– TXL [31] is an interpreted, rule-based functional language with concrete
syntax patterns, and a form of deep application of rules.

– Stratego/XT [17] is a compiled transformation language based on rewriting
with programmable rewriting strategies; rules can use abstract or concrete
syntax.

– Strafunski [68] is a combinator library for strategic programming (in the
sense of Stratego) in Haskell.

Attribute grammar formalisms

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

74 TUD-SERG-2008-023

– Eli [50] is a composition of language processing tools including statically
scheduled attribute grammars.

– JastAdd [44] is a compiled language based on rewriteable reference attributed
grammars.

– Silver [109] is a compiled attribute grammar formalism with forwarding and
dynamic scheduling of attribute evaluation.

Modelware

– Open ArchitectureWare [43] is an Eclipse-based tool set for textual DSL
definition and code generation. It uses EMF [23] for the representation of
models. The xText grammar formalism, which is based on ANTLR, is used to
define textual syntax of DSLs and the generation of an Eclipse editor plugin.
The xTend ‘functional’ language is used for model transformation, and the
xPand textual template language is used for model to text transformation.

– MetaCase [60] supports the creation of visual domain-specific modeling lan-
guages.

– Visual Studio DSL Tools [30] is a meta-modeling framework for visual mod-
eling languages. Code generation is achieved using a textual template engine.

12 Discussion: Language Engineering Challenges

A discussion of some challenges for research in language engineering.

DSL Interaction WebDSL is a composition of several languages, that is, a
data model language, a presentation language, a query language (HQL), and
an expression and action language. The language is a good basis for further
abstractions, such as ones for access control and workflow. Template definitions
and modules support the creation of reusable components. While these different
languages support different aspects of web applications, they are integrated into
a composite language to ensure smooth interaction between the different aspects;
as opposed to the heterogeneous architecture of web applications implemented
in Java. Although inspired by similar features in other languages, the language
was designed and implemented from scratch. It would be useful to have language
design and implementation patterns to be reused when creating new languages,
if possible supported by tools or reusable libraries of language components.

A particular issue that arises in domain-specific language engineering is the
design of language interaction. Software development typically requires the in-
teraction between several technical and application domains. How can programs
in different languages refer to each other? Can modules be compiled, or even
type checked separately? Warmer [107] has developed a collection of DSLs for
web applications using the Microsoft DSL Tools. In that work the assumption is
that separate models are compiled to separate target files. Interaction of models
is achieved using a registry that records interface information (key, value pairs).
This approach precludes weaving of code from different models. Mak [71] has

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 75

explored the separation and interaction of languages in a variant of WebDSL.
Basically, the separation was into a data model language and presentation lan-
guage, which map to separate target code components.

Development Environment Software developers, especially those develop-
ing in Java or C# are accustomed to sophisticated development environments
(IDEs), which help the programmer by means of syntax highlighting, cross-
referencing, access to documentation, and code completion. When developing
a new DSL, the barrier to being used can be lowered considerably, if such in-
teractive support would be available as well. The challenge here is to generate
from the definition of a language an IDE, for example by creating an Eclipse
plug-in supporting syntax highlighting, syntax checking, typechecking, refactor-
ing, code completion, and cross-referencing. Despite research projects such as
the Synthesizer Generator [81] and the ASF+SDF MetaEnvironment [62], the
creation of an IDE for a new language remains a laborious process. The Eclipse
IDE Meta-tooling Platform [1] may reduce the effort to develop IDEs for new
languages. A first step on the path to the integration of the language definition
techniques used in this paper (Stratego and SDF), is the generation of Eclipse
plug-ins based on the IMP framework from SDF definitions [59].

Deployment A DSL generator only automates one step in the development
process of a software system. While the generator encapsulates knowledge about
developing applications in the domain, more knowledge is required for success-
fully deploying an application. Therefore, a good DSL should also hide irrelevant
deployment details. Ideally, the DSL programming environment offers a virtual
machine for operating DSL programs, which completely hides its run-time sys-
tem. Thus, in the domain of web applications such a virtual machine would ap-
pear to run WebDSL applications directly, and behind the scenes generate the
Java/XML implementation code, compile it, and activate the application server
to run the application. The Nix software deployment system [39, 37] provides a
suitable infrastructure for realizing this scenario. Using a functional language,
deployment configurations from source builds to service activation can be de-
scribed [38]. Using this approach a first experimental setup has been created for
deploying WebDSL applications, which is being used to deploy the webdsl.org
website.

Extensibility A language should be designed for growth [88] in order to ac-
commodate future requirements. Therefore, the implementation of a language
should be easily extensible with new basic types, new constructs, new abstrac-
tions, and new sub-languages. Systems such as Silver [109], JastAdd [44], and
Stratego/XT [103] (used in this paper), provide source level extensibility. That
is, a language definition can be separated into modules and new features can be
implemented by providing new modules. However, the new combination needs to
be compiled from source as a whole. True extensibility would entail that users

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

76 TUD-SERG-2008-023

of the language can combine extensions provided by different producers for a
particular application without recompiling the generator. This requires separate
binary extensibility of language definitions and generators.

Evolution The introduction of domain-specific languages can greatly improve
the evolution of software by drastically reducing the amount of source code
needed for systems. Paradoxically, reliance on DSLs also introduces a new soft-
ware evolution problem. The number of languages in which software is written
increases, requiring developers with knowledge of multiple languages [91]. Fur-
thermore, while software applications may become easier to maintain, the imple-
mentations of the languages need to be maintained as well [98]. A problem that
is seen as one of the factors for the failure of fourth generation languages. The
next paragraphs discuss a number of challenges for evolution of domain-specific
languages.

Data Migration Evolving applications based on DSLs should become easier.
The size of an application is an order of magnitude smaller than before, which
should make understanding and modifying programs easier. Complete code gen-
eration ensures that a complete system can be generated after modifying the
DSL program. However, the data models that are implemented as the database
schemas of deployed applications may have changed, requiring the database to
be migrated to the new data model. To ease the evolution of applications, it is
necessary to automate data migration as much as possible. At least there should
be a language for specification of the migration between two data models at the
level of the data model language (abstracting from implementation details of the
database schema). Furthermore, the mapping between two data models could be
inferred to some extent by considering the two versions.

Model Migration The problem of data migration also plays a role on a level
higher-up in the modeling hierarchy. Changing the definition of a DSL requires
adapting existing DSL models. To increase the acceptability of DSL evolution, it
is desirable to support language changes with automatic conversion tools. First
of all, that requires the definition of a transformation from models in the old lan-
guage to models in that new language such that the new models have the same
semantics as the old models. Supporting such semantics preserving transforma-
tions, requires the new language to at least support the functionality of the old
language, which imposes some constraints on evolution. As in the case of data
migration it would be desirable if the migration of models can be derived from
the evolution of the grammar. In practice, language designers take great care to
design language changes to be backwards compatible. Better migration solutions
will enable language designers to make more drastic (re)design decisions, which
are sometimes needed when insight in the domain grows.

An important practical consideration in the migration of programs is the
treatment of white-space and comments (layout). Developers do not appreciate
the look of their programs to be drastically changed by automatic transforma-
tions. As a result, a semantics preserving transformation on the abstract syntax

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 77

structure of a program is not sufficient. One solution direction is to support
transformation with layout preservation. However, true layout preservation is
not a solvable problem, since comments in programs do not have a formal re-
lation to the surrounding code. Instead it would be a good idea to reduce the
role of layout in languages. First, by making comments part of the syntactic
structure, it can be treated like any other structures in transformations. Next,
domain-specific languages should be designed to support self documenting code.
After all, one of the ideas of DSLs is that they should express high-level ap-
plication concerns, not implementation details. Finally, introducing enforceable
coding standards (for layout) can eliminate the problem of re-formatting. (Note
that these issues hold for visual (diagrammatic) languages as much as they do
for textual languages.)

Abstraction Evolution A particular variant of DSL evolution is the addition of
new abstractions to the language. In that case it may be worthwhile to trans-
form existing DSL models to use the new abstractions. This requires recognizing
the use of the implementation patterns that the new abstraction mechanism
abstracts from. Semi-automatic support for pattern recognition and subsequent
transformation would be useful to support developers in migrating to the higher-
level abstractions.

Harvesting from Legacy Code Finally, after having developed a new DSL, it may
be necessary to migrate existing legacy applications to the new DSL, which re-
quires recognizing implementation patterns in legacy code. Even while a DSL
design may be based on the abstraction of implementation patterns, these pat-
terns may not be used exactly in an existing code base. As a concrete case,
consider transforming legacy EJB applications to WebDSL programs, where JSF
pages are translated to page definitions, entity classes to entity declarations, and
session beans to page actions.

13 Conclusion

This paper has presented a case study in domain-specific language engineering.
Based on this experience let’s make an attempt at answering the questions ‘when
and how to develop a domain-specific language?’.

When to develop a DSL? Starting to develop a DSL should only be done
when there is a good understanding of the application domain and there exists
a considerable code base for systems in the domain. That code base should ex-
hibit clear signs of inadequate abstraction facilities in the form of boilerplate
code in large quantities, even if best practices are being applied. Another sign
is that mechanisms that have been introduced to raise the level of abstraction
elude the verification facilities of the implementation language. Typical exam-
ples are XML configuration files, interpreter literal strings (SQL queries), and
dependency injection annotations.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

78 TUD-SERG-2008-023

How to develop a DSL? Choose a high-level target technology; the DSL
should not readdress problems that have already been solved by existing tech-
nology. Start with considering relatively large chunks of programs as candidate
patterns. Study and understand the technology and recognize common patterns.
Set up a basic generator early on. That makes it easy to experiment with al-
ternative implementation strategies in the target architecture without having to
write a lot of code. Do not overspecialize syntax. For example, a separate syntac-
tic construct for each page element such as section, header, list in WebDSL,
would lead to hard wiring in such constructs and a much larger implementation.
Do not overgeneralize syntax either. Ending up with a completely generic syntax
such as XML does not lead to readable programs. A core language that captures
the essential operations of the domain is essential for achieving good coverage.
But do not try to identify a core language from the start. The result may be
too close to the target target technology. For example, a modeling language that
covers all EJB concepts provides 100% coverage, but is too low-level. Extend the
core language with syntactic abstractions that allow concise expression. Include
facilities to build a library, such as modules for organization of the code base
and parametric abstraction over DSL fragments.

Acknowledgments

In August 2006 Ralf Lämmel and Joost Visser invited me to give a tutorial at
the GTTSE summer school to be held in July 2007. This invitation provided a
perfect target and outlet for the rather uncertain sabbatical project that I had
conceived to build a domain-specific language for web applications. Along the
way I had many inspiring discussions about various aspects of this enterprise
and received feedback on drafts of this paper. I would like to thank the follow-
ing people for their input (in more or less chronological order of appearance):
Martin Bravenboer, Jos Warmer, Sander Mak, William Cook, Anneke Kleppe,
Jonathan Joubert, Rob Schellhorn, Danny Groenewegen, Zef Hemel, Paul Klint,
Jan Heering, Ron Kersic, Nicolae Vintae, Charles Consel, and the GTTSE’07 re-
viewers. The research was supported by NWO/JACQUARD project 638.001.610,
MoDSE: Model-Driven Software Evolution.

References

1. Eclipse IDE Meta-tooling Platform (IMP). http://www.eclipse.org/proposals/imp/.
2. Echo web framework. http://echo.nextapp.com/site/echo2, July 2007.
3. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, techniques, and tools.

Addison Wesley, Reading, Massachusetts, 1986.
4. D. L. Atkins, T. Ball, G. Bruns, and K. Cox. Mawl: A domain-specific language for

form-based services. IEEE Transactions on Software Engineering, 25(3):334–346,
1999.

5. A. Augusteijn. Functional Programming, Program Transformations and Com-
piler Construction. PhD thesis, Department of Computing Science, Eindhoven
University of Technology, The Netherlands, 1993.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 79

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

7. J. W. Backus. Automatic programming: properties and performance of FOR-
TRAN systems I and II. In Proceedings of the Symposium on the Mechanisation
of Thought Processes, Teddington, Middlesex, England, November 1958. The Na-
tional Physical Laboratory.

8. J. W. Backus et al. Report on the algorithmic language ALGOL 60. Communi-
cations of the ACM, 3(5):299–314, May 1960.

9. V. Balat. Ocsigen: typing web interaction with objective Caml. In A. Kennedy
and F. Pottier, editors, Proceedings of the ACM Workshop on ML, pages 84–94,
Portland, Oregon, USA, September 2006. ACM.

10. C. Bauer and G. King. Java Persistence with Hibernate. Manning, Greenwhich,
NY, USA, 2007.

11. K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.
12. J. L. Bentley. Programming pearls: Little languages. Communications of the

ACM, 29(8):711–721, August 1986.
13. C. Brabrand, A. Møller, M. Ricky, and M. I. Schwartzbach. PowerForms: Declar-

ative client-side form field validation. World Wide Web Journal, 3(4):205–314,
December 2000. Kluwer.

14. C. Brabrand, A. Möller, and M. I. Schwartzbach. The <bigwig> project. ACM
Transactions on Internet Technology, 2(2):79–114, 2002.

15. M. Bravenboer. Connecting XML processing and term rewriting with tree gram-
mars. Master’s thesis, Utrecht University, Utrecht, The Netherlands, November
2003.

16. M. Bravenboer, E. Dolstra, and E. Visser. Preventing injection attacks with syn-
tax embeddings. A host and guest language independent approach. In J. Lawall,
editor, Generative Programming and Component Engineering (GPCE 2007),
pages 3–12, New York, NY, USA, October 2007. ACM.

17. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16.
Components for transformation systems. In ACM SIGPLAN 2006 Workshop
on Partial Evaluation and Program Manipulation (PEPM 2006), pages 95–99,
Charleston, South Carolina, January 2006. ACM SIGPLAN.

18. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT Tu-
torial, Examples, and Reference Manual (latest). Department of Information
and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands, 2006.
http://www.strategoxt.org.

19. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17.
A language and toolset for program transformation. Science of Computer Pro-
gramming, 2008. Special issue on Experimental Systems and Tools.

20. M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program transformation
with scoped dynamic rewrite rules. Fundamenta Informaticae, 69(1–2):123–178,
2006.

21. M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific lan-
guage embedding and assimilation without restrictions. In D. C. Schmidt, editor,
Proceedings of the 19th ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA 2004), pages 365–383, Van-
couver, Canada, October 2004. ACM Press.

22. M. Bravenboer and E. Visser. Designing syntax embeddings and assimilations for
language libraries. In MoDELS 2007 Satellite Events Proceedings, Lecture Notes
in Computer Science, Nashville, USA, 2008. Springer. Selected paper from the
Workshop on Language Engineering (ATEM 2007).

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

80 TUD-SERG-2008-023

23. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse
Modeling Framework. Addison-Wesley, 2004.

24. D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured english query lan-
guage. In R. Rustin, editor, Proceedings of 1974 ACM-SIGMOD Workshop on
Data Description, Access and Control, pages 249–264, Ann Arbor, Michigan, May
1974. ACM.

25. A. S. Christensen, A. Möller, and M. I. Schwartzbach. Extending Java for high-
level web service construction. ACM Transactions on Programming Languages
and Systems, 25(6):814–875, 2003.

26. W. Clinger. Macros in scheme. SIGPLAN Lisp Pointers, 4(4):17–23, 1991.

27. E. F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, 1970.

28. C. Consel. From a program family to a domain-specific language. In C. Lengauer,
D. Batory, C. Consel, and M. Odersky, editors, Domain-Specific Program Genera-
tion, number 3016 in Lecture Notes in Computer Science, State-of-the-Art Survey,
pages 19–29. Springer-Verlag, 2004.

29. C. Consel and R. Marlet. Architecturing software using a methodology for lan-
guage development. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Pro-
ceedings of the 10th International Symposium on Programming Language Imple-
mentation and Logic Programming, volume 1490 of Lecture Notes in Computer
Science, pages 170–194, Pisa, Italy, Sept. 1998.

30. S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific Development with
Visual Studio DSL Tools. Addison Wesley, 2007.

31. J. Cordy. The TXL source transformation language. Science of Computer Pro-
gramming, 61(3):190–210, 2006.

32. K. Czarnecki. Overview of generative software development. In J.-P. Bantre et al.,
editors, Unconventional Programming Paradigms (UPP 2004), volume 3566 of
Lecture Notes in Computer Science, pages 313–328, Mont Saint-Michel, France,
2005.

33. K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools, and
applications. Addison-Wesley, New York, NY, USA, 2000.

34. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621–646, 2006.

35. M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray, and
L. Scott, editors, Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools (CoSET 2000). University of Wollongong, Australia,
2000.

36. S. Dmitriev. Language Oriented Programming: The next programming paradigm.
http://www.onboard.jetbrains.com/articles/04/10/lop/, 2004.

37. E. Dolstra. The Purely Functional Software Deployment Model. PhD thesis,
Utrecht University, Utrecht, The Netherlands, January 2006.

38. E. Dolstra, M. Bravenboer, and E. Visser. Service configuration management. In
J. E. James Whitehead and A. P. Dahlqvist, editors, 12th International Workshop
on Software Configuration Management (SCM-12), pages 83–98, Lisbon, Portu-
gal, September 2005. ACM.

39. E. Dolstra, E. Visser, and M. de Jonge. Imposing a memory management disci-
pline on software deployment. In J. Estublier and D. Rosenblum, editors, 26th
International Conference on Software Engineering (ICSE 2004), pages 583–592,
Edinburgh, Scotland, May 2004. IEEE Computer Society.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 81

40. S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible environment for build-
ing dynamic web applications. IEEE Software, pages 56–63, September/October
2007.

41. J. Earley. An Efficient Context-free Parsing Algorithm. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1968. (See also [42]).

42. J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

43. S. Efftinge, P. Friese, A. Haase, C. Kadura, B. Kolb, D. Moroff,
K. Thoms, and M. Völter. openArchitectureWare User Guide. Version 4.2.
www.openarchitectureware.org, 2007.

44. T. Ekman and G. Hedin. Rewritable reference attributed grammars. In M. Oder-
sky, editor, 18th European Conference Object-Oriented Programming (ECOOP
2004), volume 3086 of Lecture Notes in Computer Science, pages 144–169, Oslo,
Norway, July 2004. Springer.

45. T. Ekman and G. Hedin. The jastadd extensible java compiler. SIGPLAN Notices,
42(10):1–18, 2007.

46. M. Fowler. Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html, January 2004.

47. M. Fowler. Language workbenches: the killer-app for domain specific languages?
http://www.martinfowler.com/articles/languageWorkbench.html, 2005.

48. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

49. R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A
complete, flexible compiler construction system. Communications of the ACM,
35:121–131, feb 1992.

50. R. W. Gray, S. P. Levi, V. P. Heuring, A. M. Sloane, and W. M. Waite. Eli: a
complete, flexible compiler construction system. Commun. ACM, 35(2):121–130,
1992.

51. J. Greenfield and K. Short. Software Factories. Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley, 2004.

52. D. Groenewegen and E. Visser. Declarative access control for WebDSL: Com-
bining language integration and separation of concerns. In D. Schwabe and
F. Curbera, editors, International Conference on Web Engineering (ICWE 2008).
IEEE CS Press, July 2008.

53. J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

54. Z. Hemel, L. Kats, and E. Visser. Code generation by model transformation.
A case study in transformation modularity. In J. Gray, A. Pierantonio, and
A. Vallecillo, editors, International Conference on Model Transformation (ICMT
2008), Lecture Notes in Computer Science. Springer, June 2008.

55. P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28:196, 1996.

56. JBoss Seam. Seam - Contextual Components. A Framework for Java EE 5,
1.2.1.ga edition, 2007. http://www.jboss.com/products/seam.

57. S. C. Johnson. YACC—yet another compiler-compiler. Technical Report CS-32,
AT & T Bell Laboratories, Murray Hill, N.J., 1975.

58. L. Kats, M. Bravenboer, and E. Visser. Mixing source and bytecode. A case for
compilation by normalization. In G. Kiczales, editor, Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA 2008), Nashville, Tenessee, USA, October 2008. ACM
Press.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

82 TUD-SERG-2008-023

59. L. C. L. Kats, K. T. Kalleberg, and E. Visser. Generating editors for embedded
languages. integrating SGLR into IMP. In A. Johnstone and J. Vinju, editors,
Proceedings of the Eigth Workshop on Language Descriptions, Tools, and Appli-
cations (LDTA 2008), Budapest, Hungary, April 2008.

60. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling. Enabling Full Code Gen-
eration. John Wiley & Sons, Inc., 2008.

61. S. Kent. Model driven engineering. In M. Butler, L. Petre, and K. Sere, editors,
Third International Conference on Integrated Formal Methods (IFM 2002), vol-
ume 2335 of Lecture Notes in Computer Science, pages 286–298. Springer-Verlag,
May 2002.

62. P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2):176–201, April 1993.

63. D. E. Knuth. Backus Normal Form vs. Backus Naur Form. Communications of
the ACM, 7(12):735–736, December 1964.

64. D. E. Knuth. On the translation of languages from left to right. Information and
Control, 8:607–639, 1965.

65. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968. Correction in: Mathematical Systems Theory 5(1), pp. 95-96,
Springer-Verlag, 1971.

66. D. E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-
Wesley, Reading, Massachusetts, 1984.

67. S. Krishnamurthi, P. W. Hopkins, J. A. McCarthy, P. T. Graunke, G. Pettyjohn,
and M. Felleisen. Implementation and use of the plt scheme web server. Higher-
Order and Symbolic Computation, 20(4):431–460, 2007.

68. R. Lämmel and J. Visser. Typed combinators for generic traversal. In Proceed-
ings Practical Aspects of Declarative Programming (PADL 2002), volume 2257
of Lecture Notes in Computer Science, pages 137–154. Springer-Verlag, January
2002.

69. L. Lamport. LaTeX : A Documentation Preparation System. Addison-Wesley,
Reading, Massachusetts, 1986.

70. D. Leijen and E. Meijer. Domain specific embedded compilers. In Proceedings
of the 2nd conference on Domain-specific languages (DSL 1999), pages 109–122,
New York, NY, USA, 1999. ACM Press.

71. S. Mak. Developing interacting domain specific languages. Master’s thesis,
Utrecht University, Utrecht, The Netherlands, November 2007. INF/SCR-07-20.

72. K. D. Mann. JavaServer Faces in Action. Manning, Greenwhich, NY, USA, 2005.
73. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-

specific languages. ACM Computing Surveys, 37(4):316–344, 2005.
74. J. F. Nusairat. Beginning JBoss Seam. Apress, New York, USA, 2007.
75. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible com-

piler framework for Java. In Proceedings of the 12th International Conference
on Compiler Construction, volume 2622 of Lecture Notes in Computer Science,
pages 138–152. Springer-Verlag, April 2003.

76. OMG Architecture Board ORMSC. Model driven architecture. OMG document
number ormsc/2001-07-01, July 2001. Available from www.omg.org.

77. T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages
by Terence Parr. The Pragmatic Programmers, 2007.

78. T. J. Parr. Enforcing strict model-view separation in template engines. In WWW
’04: Proceedings of the 13th international conference on World Wide Web, pages
224–233, New York, NY, USA, 2004. ACM.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 83

79. S. Peyton Jones, editor. Haskell98 Language and Libraries. The Revised Report.
Cambridge University Press, 2003.

80. C. Queinnec. The influence of browsers on evaluators or, continuations to pro-
gram web servers. In International Conference on Functional Programming (ICFP
2000), pages 23–33. ACM, 2000.

81. T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Construct-
ing Language-Based Editors. Springer-Verlag, New York, NY, USA, 1988.

82. D. C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25–31, February
2006.

83. T. Sheard and S. L. Peyton Jones. Template metaprogramming for Haskell. In
M. M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16,
October 2002.

84. C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (OOPSLA 2006), pages 451–464, New York,
NY, USA, 2006. ACM.

85. D. Spinellis. Notable design patterns for domain specific languages. Journal of
Systems and Software, 56(1):91–99, Feb. 2001.

86. D. Spinellis and V. Guruprasad. Lightweight languages as software engineer-
ing tools. In USENIX Conference on Domain-Specific Languages, pages 67–76,
Berkeley, CA, Oct. 1997. USENIX Association.

87. T. Stahl and M. Völter. Model-Driven Software Development. Wiley, 2005.
88. G. L. Steele Jr. Growing a language. Higher-Order and Symbolic Computation,

12:221–236, 1999. (Text of invited talk at OOPSLA 1998).
89. T. Sturm, J. von Voss, and M. Boger. Generating code from uml with velocity

templates. In Proceedings of the 5th International Conference on The Unified
Modeling Language (UML 2002), pages 150–161, London, UK, 2002. Springer-
Verlag.

90. Sun Microsystems. JSR 220: Enterprise JavaBeansTM , Version 3.0. Java Per-
sistence API, May 2 2006.

91. A. L. Tharp. The impact of fourth generation programming languages. SIGCSE
Bull., 16(2):37–44, 1984.

92. P. Thiemann. WASH/CGI: Server-side web scripting with sessions and typed,
compositional forms. In S. Krishnamurthi and C. R. Ramakrishnan, editors,
Practical Aspects of Declarative Languages (PADL 2002), volume 2257 of Lecture
Notes in Computer Science, pages 192–208, Portland, OR, USA, January 2002.
Springer.

93. D. Thomas and D. H. Hansson. Agile Web Development with Rails. The Pragmatic
Bookshelf, 2005.

94. M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, 1985.

95. L. Tratt. Domain specific language implementation via compile-time meta-
programming. ACM Transactions on Programming Languages and Systems, 2009.
(To appear).

96. M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient annotated
terms. Software, Practice & Experience, 30(3):259–291, 2000.

97. M. G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling lan-
guage definitions: the ASF+SDF compiler. ACM Transactions on Programming
Languages and Systems, 24(4):334–368, 2002.

98. A. van Deursen and P. Klint. Little languages: Little maintenance? Journal of
Software Maintenance, 10(2):75–92, 1998.

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

84 TUD-SERG-2008-023

99. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

100. J. van Wijngaarden. Code generation from a domain specific language. Designing
and implementing complex program transformations. Master’s thesis, Utrecht
University, Utrecht, The Netherlands, July 2003. INF/SCR-03-29.

101. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

102. E. Visser. Meta-programming with concrete object syntax. In D. Batory, C. Con-
sel, and W. Taha, editors, Generative Programming and Component Engineering
(GPCE 2002), volume 2487 of Lecture Notes in Computer Science, pages 299–315,
Pittsburgh, PA, USA, October 2002. Springer-Verlag.

103. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
216–238. Spinger-Verlag, June 2004.

104. E. Visser. A survey of strategies in rule-based program transformation systems.
Journal of Symbolic Computation, 40(1):831–873, 2005. Special issue on Reduc-
tion Strategies in Rewriting and Programming.

105. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. In Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming (ICFP 1998), pages 13–26. ACM Press,
September 1998.

106. W3C. Cascading Style Sheets, level 2. CSS2 Specification, May 1998.
http://www.w3.org/TR/REC-CSS2/.

107. J. Warmer. A model driven software factory using domain specific languages. In
D. H. Akehurst, R. Vogel, and R. F. Paige, editors, Model Driven Architecture —
Foundations and Applications, Third European Conference (ECMDA-FA 2007),
volume 4530 of Lecture Notes in Computer Science, pages 194–203. Springer, June
2007.

108. B. Wiedermann and W. R. Cook. Extracting queries by static analysis of transpar-
ent persistence. In M. Felleisen, editor, Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2007),
pages 199–210, Nice, France, January 2007. ACM.

109. E. V. Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute grammar-
based language extensions for Java. In E. Ernst, editor, 21st European Conference
on Object-Oriented Programming (ECOOP 2007), volume 4609 of Lecture Notes
in Computer Science, pages 575–599, Berlin, Germany, July 2007. Springer.

SERG WebDSL: A Case Study in Domain-Specific Language Engineering

TUD-SERG-2008-023 85

WebDSL: A Case Study in Domain-Specific Language Engineering SERG

86 TUD-SERG-2008-023

TUD-SERG-2008-023
ISSN 1872-5392 SERG

