
WebGeSTer DB—a transcription terminator
database

Anirban Mitra1, Anil K. Kesarwani2, Debnath Pal2,* and Valakunja Nagaraja1,3,*

1Department of Microbiology Cell Biology, 2Bioinformatics Centre, Indian Institute of Science and
3Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India

Received August 15, 2010; Revised October 1, 2010; Accepted October 3, 2010

ABSTRACT

We present WebGeSTer DB, the largest database of

intrinsic transcription terminators (http://pallab

.serc.iisc.ernet.in/gester). The database comprises

of a million terminators identified in 1060 bacterial

genome sequences and 798 plasmids. Users can

obtain both graphic and tabular results on putative

terminators based on default or user-defined par-

ameters. The results are arranged in different tiers

to facilitate retrieval, as per the specific require-

ments. An interactive map has been incorporated

to visualize the distribution of terminators across

the whole genome. Analysis of the results, both at

the whole-genome level and with respect to termin-

ators downstream of specific genes, offers insight

into the prevalence of canonical and non-canonical

terminators across different phyla. The data in the

database reinforce the paradigm that intrinsic ter-

mination is a conserved and efficient regulatory

mechanism in bacteria. Our database is freely

accessible.

INTRODUCTION

Transcription termination is an important regulatory step
of gene expression. All RNA polymerases that transcribe a
DNA template must terminate, dissociate and release the
product RNA at a defined position or region on the DNA.
The RNA structure involved in this process is called a
tanscrtiption terminator (1–3). In bacteria, wherein
detailed studies have been carried out, termination is
achieved by two mechanisms—intrinsic (factor independ-
ent) and factor dependent. The former process is primarily
dependent on the secondary structure formed in the
nascent RNA and can function in a minimal in vitro
system in the absence of other proteins factors (4–6).

In contrast, factor-dependent termination relies on
proteins such as Rho and the Nus factors (7,8).
Once formed during transcription, the terminator inter-

acts with RNA polymerase resulting in destabilization and
dissociation of the ternary elongation complex (TEC)
(3,9–11). Based on the studies in Escherichia coli, an
intrinsic terminator is a RNA structure consisting of a
guanidine-cytidine content (GC)-rich hairpin immediately
followed by a stretch of 6–8U residues. Although such
terminators were found in many genomes, their occur-
rence is rare in several other genomes when the stringent
parameters were applied for the analysis. With the devel-
opment of newer algorithms which could analyse genomes
with different criteria, variant (non-canonical) terminators
were detected and experimentally verified (12–20). Indeed,
since intrinsic termination is an ancient and conserved
mechanism, it is not surprising that all bacteria rely on
this regulatory mechanism.
The exponential increase in available genomic data has

now allowed us to analyse and catalogue the terminator
content of nearly 2000 sequences (chromosomal and
plasmid) of bacterial origin. Here, we present
WebGeSTer DB (http://pallab.serc.iisc.ernet.in/gester),
the largest collection of intrinsic terminators from all
completely sequenced bacterial genomes and plasmids.
The database has been compiled using WebGeSTer,
an improved version of GeSTer (20). At present,
WebGeSTer DB consists of all types of intrinsic termin-
ators identified in 1060 bacterial chromosomes and 798
plasmids available at the NCBI database (Table 1). In
all, information about 977 173 terminators, both canon-
ical and non-canonical, have been compiled in the
database (Table 1). The terminator profile for whole
genomes as well as for individual genes can be extracted
fromWebGeSTer DB. The occurrence of terminators with
respect to specific genes can be visualized in a
high-resolution map. Furthermore, the database has a
user-friendly and interactive interface that allows
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investigators to obtain results in both graphic and tabular
form. The parameters for terminator search can be
user-defined and one can upload new genome sequences
in FAST Alignment (FASTA) or GenBank format for
analysis.

GENERATION OF DATABASE

The terminator database has been compiled using
WebGeSTer, developed from the parent program,
GeSTer (20), incorporating several improvements. The
details of WebGeSTer generation are available in the
website. Briefly, WebGeSTer accepts sequences in both
GenBank and FASTA format, extracts the regions of
�20 to +270 bp relative to the stop codons from
genomic sequences, and searches them for potential palin-
dromic sequences. For the region downstream of every
stop codon, all possible hairpins are computed and the
most stable structure (with the most negative �G value)
is selected as the ‘Best’ terminator. A genomic �Gcut-off

selects the final set of identified terminators. For any ter-
minator, the sequence, genomic coordinates, structural
parameters such as length of stem, loop, sequence

following the hairpin mismatches and gaps can be
obtained from the output. WebGeSTer can identify both
canonical and non-canonical terminators and group them.
The different types of terminators (Figure 1) catalogued in
the WebGeSTer DB are:(i) L-shaped (canonical termin-
ators): where the hairpin is followed by a 10 bp trail
having >3 uridylates. The four types of non-canonical
terminators are: (ii) I-shaped: where there are �3
uridines in the trail following the hairpin, (iii) U-shaped:
when there is more than one hairpin structure in tandem
with an interval of <50 nt between them, (iv) X-shaped:
convergent type structures that function as terminators for
the convergently transcribed genes on two different
strands and (v) V-shaped: two hairpins, with the second
hairpin starting immediately at the end of first one. In case
of the U, V and X terminators, the individual structures
can be L- or I-shaped. The program is adaptable in which
the user can change the parameters such as stem-length,
loop size, maximum allowance for mismatch and gap and
also search region. The core algorithm of WebGeSTer was
written in PERL and produced ASCII text files. From
these files, data were extracted to populate the MySQL
tables. The database was built using MySQL version
5.0.84 and interfaced using PERL version 5.10.0 and
PHP version 5.2.9. The figures were drawn using GD
library, version 2.45.To evaluate the accuracy and sensi-
tivity of the WebGeSTer DB, a sample of 100 experimen-
tally known terminators was assessed (14). The algorithm
identified 91 of these terminators (Supplementary Table
S1) and hence false negatives make up <10% of all the
predictions. The detection ability of WebGeSTer was
tested by drawing an receiver operating characteristic
(ROC) curve for each genome. The ROC curves plot the
probability of detection against the probability of false
alarm at various input thresholds to the algorithm (16).
The results for individual genomes are obtainable from the

Figure 1. Terminators catalogued in the WebGeSTer DB—(i) L-shaped (canonical terminators): hairpin+10 bp trail having >3 uridylates,
(ii) I-shaped: hairpin+�3 uridines in the trail, (iii) U-shaped: >1 hairpin in tandem with an interval of <50 nt in between, (iv) V-shaped: two
hairpins’ structure, where the second structure starts immediately at the end of first one and (v) X-shaped: convergent type structures that function as
terminators for the convergently transcribed genes on two different strands.

Table 1. Summary of information available at WebGeSTer DB

Bacterial genomes 1060
Plasmids 798
Genes 3 335 043
‘All’ terminators 1 228 606
‘Best’ terminators 977 173
L-shaped terminators 523 243
I-shaped terminators 453 930
U-shaped terminators 100 364
V-shaped terminators 1615
X-shaped terminators 55 872
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webpage. Further the validation of the predictions comes
from analysing experimentally characterized operons (e.g.
rrn, trp, thr, his operons of E.coli K-12). For these
operons, WebGeSTer correctly predicts the terminators
present at 30 end, but not any ‘false’ intra-operonic
terminators.

CONTENT AND INFORMATION RETRIEVAL

WebGeSTer DB is the largest compilation of intrinsic
terminators till date. To facilitate retrieval of data from

the WebGeSTer DB, the information has been arranged
in different tiers ranging from different phyla to genomes
of individual strains (Figure 2 and Table 2). A search
initiated at a phylum (e.g. Firmicutes, Proteobacteria)
can be threaded to finally reach the details of a
particular terminator downstream of a specific gene-of-
interest (Figure 3). In the database, users can find the ter-
minator profiles of either an individual genome or all the
member species of a given phylum/class by a easy-to-use
search module. Information on a given genome has been
further subdivided into files, which provide details, for e.g.

Figure 2. GeSTerDB and WebGeSTer interface. The user can refine his search for terminator profiles with one or more of the criteria provided. For
e.g. a search for ‘Total ORFs >5000’ and ‘Terminators (lowest �G)>2500’ would retrieve all genomes which have more than 5000 genes and also
greater than 2500 ‘Best’ terminators.

Table 2. Salient searches at WebGeSTer DB

Search by . . . Example (type in . . . ) Results

Organism Mycobacterium tuberculosis All M. tuberculosis strains and plasmids (if any)
Taxon 1239 (taxon ID from NCBI) All genomes belonging to phyla 1239, i.e. firmicutes
Stem length 4:10 Individual genomes which have terminators with stem length

between 4 and 10 bp
GC content (%) >60 All genomes which have genomic GC content >60%
Total terminators >4000 All genomes with more than 4000 terminators
Terminators (greatest �G) and L

(greatest �G)
>3000 and >2000 All genomes which have >3000 ‘Best’ terminators, of which

>2000 are L-shaped

Further searches

From genome page . . . Access to . . .

Download rawdata.zip Individual files detailing genes, sequences, terminators, genomic coordinates. . .
Figures Structures of all identified terminators- scroll down or search terminators by GI number,

gene name . . .
Tables Whole genome distribution of terminators—‘ALL’ palindromic structures, ‘Best’ structures,

L-shaped or I-shaped . . .
TER-MAP (genome browser for terminators) High-resolution map of genome, with terminators (L or I-shaped) downstream of genes

visible. By clicking on individual terminators, the user can gain access to its parameters
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of ‘All’ candidate terminators, the ‘Best’ candidate termin-
ators and different types of terminators (L, I, U, V, X).
The database contains several computed features for every
individual terminator. These include its sequence, stem
length, loop size, distance from gene, �G, etc. (Table 3).
All the information can be downloaded as zipped files
from the website for further processing.
WebGeSTer DB also provides the user with

whole-genome terminator maps. The genes and different
types of terminators of any genomic region from all of the
1858 sequences (1060 chromosomes+798 plasmids) can
be visualized by TERminator MAP (TER-MAP), an
interactive map at single gene level resolution (Figure 4).
Genes and terminators of both strands are arranged in
linear array in TER-MAP. ‘All’ identified palindromic
structures are indicated and amongst them, the ‘Best’

terminator candidates are highlighted. Furthermore, the
user can click onto the terminator-of-interest and be
guided to the data for that specific terminator.
Information about the genes can be similarly obtained
that leads to the NCBI file (http://www.ncbi.nlm.nih.
gov/protein) about that specific gene and gene product.

WebGeSTer works using a default set of parameters
aimed to provide maximum number of accurate and sen-
sitive predictions. These are: stem length between 4 and
30 bp, and loop size between 3 and 9 nt and maximum
mismatch of 3 nt (12,14,15,19). However, experiments
have suggested that an intrinsic terminator with a stem
length of 8–9 bp is sufficient to enforce termination
(10,21,22). Most experimentally known terminators have
hairpins in this range. Furthermore, in silico analyses have
previously shown that most terminators across diverse
species have stem length between 6 and 13 bp (14,16–18).
Keeping these results in consideration, two sets of data are
present for each sequence in the database. One of them
has been generated with the default settings of GeSTer
(stem length between 4 and 30 bp, and loop size between
3 and 9 nt). For the second set, criteria for stem length was
set at 4–12 bp, while loop size was 3–8 nt.

WebGeSTer DB is unique in housing information also
on several types of non-canonical terminators.
Experimentally, there is a substantial body of evidence
for non-canonical terminators (I, U, X and V-shaped) in

Figure 3. Progressive data accession in WebGeSTer DB. A search initiated at a specific genome can finally lead to details about a terminator
downstream of a specific gene.

Table 3. Parameters of terminators obtainable from WebGeSTer DB

1. Length of stem of hairpin—subdivided into upstem length,
downstem length

2. Sequence of stem—subdivided into upstem and downstem
sequence

3. Length and sequence of mismatches and gaps
4. Size and sequence of loop
5. Distance of terminator from stop codon
6. �G of terminator
7. Accession number of gene
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many species of mycobacteria, Streptomyces lividans and
actinophages (12,13,19,20,23). Non-canonical terminators
also occur at ends of several experimentally identified
operons in diverse bacteria (17,18,24). Even the prototyp-
ical E. coli seems to have a large number of non-canonical
terminators and experimentally a mutant E. coli RNA
polymerase has been shown to terminate at such
non-canonical terminators(25). Information about
non-canonical terminators from GeSTer results has been
applied to define operon boundaries in the S. coelicolor
genome (26), a bacteria with few canonical terminators.
Thus, by also compiling data about non-canonical termin-
ators, WebGeSTer DB could be a starting point for
further research into understanding the mechanism of ter-
mination and improving genome annotation. However, it
is possible that a subset of hairpins identified is class I
pause signals and not necessarily non-canonical termin-
ators. No secondary structure prediction algorithm can
distinguish between them. One would have to experimen-
tally determine the 30-end of the RNA to distinguish class
I pause signals from the non-canonical terminators.

Earlier, GeSTer data has been used to find terminators
in the archaea Thermococcus kodakarensis (27).
WebGeSTer DB has now a collection of terminator
profiles for 77 archaeal genomes and plasmids of
archaeal origin. Archaea employ a different mechanism
for transcription termination, which is dependent on
presence of T-rich sequences downstream of the stop

codon, that would get transcribed into a U-stretch in the
transcript (27). Since all L-shaped terminators invariably
consist of a U-trail, the program can also detect several
such archaeal terminators.
Keeping in mind the new scenarios (e.g. meta genomes)

where the WebGeSTer algorithm could be effective in
detecting intrinsic terminators, we have upgraded
WebGeSTer to accept FASTA sequences from external
users (Supplementary Figure S1). This could also be par-
ticularly useful to researchers who need to analyse a
sequence that has not yet been made available in the
GenBank format. The database is freely accessible and
will be updated on a regular basis.

ANALYSIS OF TERMINATORS ACROSS BACTERIA

WebGeSTer DB also houses a detailed analysis of the
structural parameters of terminators, their prevalence
and their divergence. The analysis was carried out using
data from a large sample extracted from the database with
representative species from 22 phyla. The salient findings
are summarized below:

(i) Intrinsic terminators are present in all bacterial
genomes. Canonical or L-shaped terminators are
the most abundant terminators (�51% of ‘Best’
terminators). However, non-canonical terminators
that have been experimental shown to be functional,

Figure 4. TER-MAP—the high-resolution terminator map and browser. From the genome summary page, the user can navigate to a defined region
of the genome or to a specific gene. Terminators are represented as ‘lollipops’ at ends of genes. Clicking on any terminator leads to more information
about its computed structure and other parameters.
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are also present in large numbers (�49%)
(Supplementary Table S1).

(ii) Of the genes, 28.1% have a’ Best’ candidate termin-
ator immediately downstream of its stop codon.
Both canonical and non-canonical terminators
tend to cluster within 50 bp of the stop codon in
most species.

(iii) Substantial difference in terminator preference is
observed across phyla. Some phyla show a prefer-
ence for L-shaped terminators, while many others
have larger representation of the I-shaped termin-
ators (Supplementary Figure S2).

(iv) Across species, most terminators have a stem length
of 7–14 bp and a loop size of 4 nt (Supplementary
Figure S3). Since the �G of the terminator is mainly
a function of its stem–loop structure, most of the
identified terminators have �G in the range �15 to
�25 kcal/mol (median value �18.1 kcal/mol)

(v) The fraction of I-shaped terminators increases as
the genomic GC content rises across phyla
(Supplementary Figure S4). Thus, genomic GC
content is one of the determinants of the type of
terminator predominant in a given organism.

(vi) Transcription termination factor Rho is essential in
many bacteria, while some other species do not have
a rho gene. The terminator content of 55 bacterial
genomes that lacked a rho gene was assessed and
they have a preponderance of L-shaped terminators.
Most of these bacteria belong to Firmicutes and
Tenericutes.

CONCLUSIONS

WebGeSTer DB is a catalogue and presentation of intrin-
sic terminators. The data sets from WebGeSTer DB show
that intrinsic termination is a universally conserved mech-
anism present in all bacterial species sequenced till date.
The representative data from WebGeSTer DB are in
agreement with the experimental evidence of intrinsic ter-
mination, and hence serve as a validation of the database.
The database provides insight into the evolved variations
in intrinsic terminators, like other successful regulatory
process. The compilation would be invaluable for
further experimentation on the mechanism of termination
and understanding of gene expression in different bacteria.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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