
WebODE: an integrated workbench for ontology
representation, reasoning and exchange

Óscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez, Óscar Vicente

Facultad de Informática . Universidad Politécnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{ocorcho, mfernandez, asun}@fi.upm.es;
ovicente@delicias.dia.fi.upm.es

Abstract. We present WebODE as a scalable, integrated workbench for
ontological engineering that eases the modelling of ontologies, the reasoning
with ontologies and the exchange of ontologies with other ontology tools and
ontology-based applications. We will first describe the WebODE's knowledge
model. We will then describe its extensible architecture, focusing on the set of
independent ontology development functionalities that are integrated in this
framework, such as the Ontology Editor, the Axiom Builder, the OKBC-based
inference engine, and the documentation and interoperability services.

1 Introduction

In the last decade, many definitions for the term “ontology” (in the context of AI)
have appeared [15] and some of them have changed and evolved over the time. We
think that the most representative definition is: “an ontology is a formal specification
of a shared conceptualization” [19] (which extends Tom Gruber's and Pim Borst's
ones).

Several tools for ontology development have also come up on the last decade:
Ontolingua [9], OntoSaurus [21], WebOnto [7], Protégé2000 [22], OilEd [3],
OntoEdit [20], etc. (a study on some of these tools appeared in [8]); and others for
merging ontologies (Chimaera [18], PROMPT [11]), translating ontologies into
ontology languages (Ontomorph [4]), annotating web pages with ontological
information (OntoMat, SHOE Knowledge Annotator [16], COHSE [2]), etc.

These tools perform different activities of the ontology development process
(design, implementation, merge and annotation, among others). However, most of
these tools have been built as isolated independent tools and they are not normally
capable of interoperating among them [13]. In fact, heterogeneous ontology
platforms should be able to exchange ontologies owned by different organizations,
built with different tools, and implemented on different languages; but no guidelines
are available about how to make platforms mutually interoperable. The need for a
deep study on tools' interoperability is being addressed in the Special Interest Group
on Enterprise-Standard Ontology Environments of the European IST network
OntoWeb and a survey on these tools can be found at [24].

Except for Protégé2000 [22] and OntoEdit [20], the other tools do not provide an
integrated support for most of the activities of the ontology lifecycle, nor do they
support any existing methodology for building ontologies.

Taking into account this situation, in [13] we presented the need for an integrated
ontological engineering workbench supporting three groups of activities (see figure
1): (1) ontology development, management and population activities; (2) ontology
middleware services to allow the easy used and integration of ontological technology
in information systems; and (3) ontology-based applications' development suites to
ease the creation of ontology-based applications.

In the context of this framework, we have developed WebODE1 as a scalable
ontological engineering workbench that gives support to most of the ontology
development, management and population activities presented in figure 1. It also
includes middleware services to aid in the integration of ontologies into real-world
and Semantic Web applications as well as to provide rapid development tools for
applications using ontologies. Finally, WebODE has been created to provide
technological support for Methontology [10], an ontology construction methodology.
Nevertheless, this fact does not prevent it from being used following other
methodologies or no methodological approach at all.

Next sections describe the knowledge model, architecture and main features of
WebODE. We will specially focus on the WebODE Axiom Builder (WAB) and the
WebODE inference engine.

1 http://webode.dia.fi.upm.es/

Fig 1. Main modules of an ontological engineering workbench (adapted from [13]).

2 WebODE's Knowledge Model

The WebODE’s knowledge model [1] is based on the intermediate representations
proposed in Methontology [10]. Hence, it allows modelling concepts and their
attributes (both class and instance attributes), taxonomies of concepts, disjoint and
exhaustive class partitions, ad-hoc binary relations between concepts, properties of
relations, constants, axioms and instances of concepts and relations.

Bibliographic references can be attached to any of the aforementioned ontology
components. Besides, it is possible to import terms from other ontologies. Imported
terms are referred to by means of URLs.

Now we describe in depth all the components of the WebODE's knowledge model:
• Concepts are identified by their name, though they can also have synonyms and

abbreviations. A natural language (NL) description can be also included.
o Class attributes are attributes that specify characteristics of a class, and

whose value is the same for all the instances of the concept. They are defined
with the following information: attribute name (which must be different from
the rest of attribute names of the same concept); name of the concept it belongs
to (attributes are local to concepts, that is, two different concepts can have
different attributes with the same name); value type or range, which can be a
basic data type (String, Integer, Cardinal, Float, Boolean, Date, Numeric
Range, Enumerated, URL) or a concept (specified by the concept name);
minimum and maximum cardinality, which constrains the number of values
that the class attribute may have; and value(s).
Class attributes can optionally have a NL description, measurement unit and
precision (the last two ones just in case of numeric attributes).

o Instance attributes are attributes whose value may be different for each
instance of the concept. They have the same properties than class attributes
and two additional properties, minimum value and maximum value, which are
used in attributes with numeric value types. Values inserted for instance
attributes are interpreted as default values for them.

• Concept groups are sets of disjoint concepts that are also known as partitions.
They are used to create disjoint and exhaustive class partitions. They have a
name, the set of concepts they group together and, optionally, a NL description.
A concept can belong to several concept groups.

• Built-in relations are predefined relations in the WebODE's knowledge model.
They are divided into three groups: taxonomy relations between concepts
(subclass-of, not-subclass-of), taxonomy relations between groups and concepts
(disjoint-subclass-partition, exhaustive-subclass-partition), and mereology
relations between concepts (transitive-part-of, intransitive-part-of).

• Binary ad-hoc relations between concepts are characterized by their name, the
origin (source) and destination (target) concepts, and their cardinality, which
establishes the number of destination terms of each origin term through the
relation. Cardinality can be restricted to 1 (only one destination term) or N (any
number of destination terms). Optionally, we can provide their NL description
and properties (they are used to describe algebraic properties of the relation).

• Constants are components that have always the same value and can be used in
any expression. They are identified by their name, and have a value type, value
and measurement unit. Its NL description can be optionally provided.

• Axioms and rules are defined by their name, an optional NL description and a
formal expression in first order logic (using the syntax provided by WebODE).
They will be deeply studied in section 4.2.

• Properties are used to describe algebraic properties of ad-hoc relations. They are
divided in two groups: built-in properties (reflexive, irreflexive, symmetric,
asymmetric, antisymmetric and transitive), and ad-hoc user-defined properties.

• Imported terms are components from other ontologies that are included in
another ontology. They are described by their name and a URL that includes the
host and the ontology name from which the term is retrieved and the term name
in that ontology.

Besides, the WebODE's knowledge model supports views and instance sets.

Views are used to highlight specific parts of the ontology. They are analogous to the
classical views of database modelling theory.

Concerning instance sets, they make possible to populate a conceptual model for
different applications or scenarios, maintaining different, independent instantiations
of the same conceptual model in WebODE.

3 WebODE’s Architecture

WebODE is built according to a four-tier architecture: client, presentation, business
logic, and database tiers. In all these tiers, we have used standard technology. The
client tier uses HTML, XML, CSS, JavaScript and Java applets. The presentation tier
uses servlets and JSPs. The business logic tier uses Java and RMI-IIOP. Finally, the
database tier uses JDBC and Oracle.

We will analyse further the database and business logic tiers, which comprise the
“ontology middleware” modules and services from figure 1.

3.1 Database tier

Currently, WebODE ontologies can be stored in any relational database with JDBC
support (WebODE has been tested both in Oracle and MySQL, which gives an idea
of the flexibility of this workbench). Its main features are the optimisation of
connections to the database (connection pooling) and transparent fault tolerance
capabilities.

Besides, the underlying physical model that represents the WebODE knowledge
model has been tuned for obtaining maximum performance.

The database access is abstracted out as an independent service in the platform. In
fact, it has been designed as a pluggable component in the architecture. This allows
its easy replacement by other modules in charge of data management, such as XML-
based databases or RDF-based repositories.

3.2 Business logic tier

The business logic tier has been implemented through a proprietary Java and RMI-
IIOP based application server called Minerva_LIA. This application server provides
an API to create services, which can be added or removed easily with its management
console, thus improving the system’s flexibility, scalability and integration with third-
party solutions, following the latest trends in enterprise middleware.

Minerva_LIA application server's core (built-in) services comprise the basic
building blocks for more complex services in WebODE. They are the following:
authentication, log, administration, thread management, scheduling and backup.

The other services are plugged on top of the Minerva_LIA application server. In
figure 2 we show the structure of all the services used by the WebODE ontology
editor. Any of these components can be plugged in or out, so that the whole
WebODE workbench and the WebODE ontology editor can be easily personalised.

The core of the WebODE's ontology development services are: the database
service (db), the cache, consistency and axiom services, and the ontology access
service (ode), which defines an API for accessing WebODE ontologies. One of the
main advantages of this architecture is that these services can be accessed remotely
from any other application or any other instance of the WebODE workbench.

Finally, the WebODE interoperability services and the ontology documentation
service are completely based on the WebODE ontology access API, and the inference
engine uses extensively the Prolog exportation service. Other middleware services,
such as ODEMerge, ODECatalogue and WebPicker also use the WebODE ontology
access API.

Fig 2. WebODE ontology engineering workbench's architecture.

4 WebODE Ontology Development Services

4.1 Ontology edition service

The WebODE Ontology Editor allows the collaborative construction of ontologies at
the knowledge level. It provides a default form-based web user interface to create
ontologies according to the knowledge model aforementioned. Figure 3 shows the
look and feel of the ontology editor, as well as its three main areas. The main user
interface components are:

Fig 3. WebODE Ontology Editor

 Browsing area. It allows browsing the whole ontology and provides operations
to create new elements and modify or delete the existing ones.

 Clipboard. It allows copying and pasting information easily between forms.
 Edition area. It presents the forms to be filled by the user, according to the

component (concept, attribute, relation, etc.) that is being edited.
The WebODE Ontology Editor also includes OntoDesigner, a visual tool that aids

in the construction of concept taxonomies and ad-hoc relations between concepts.
Concept taxonomies are created with the following set of predefined relations:

subclass of, disjoint decomposition, exhaustive partitions, transitive part of and non-
transitive part of. In figure 5 we show a snapshot of OntoDesigner while editing an
ontology on the travelling domain.

With OntoDesigner, users can create different views of an ontology, so that they
can highlight parts of the ontology, as explained in section 2. Moreover, users can
decide whether showing or hiding different kinds of relations among concepts (either

predefined or ad-hoc ones), in the sense of a graphical prune. This feature helps in the

manual evaluation of the relations contained in an ontology.

Fig 4. OntoDesigner. Some concepts, groups and taxonomic and ad-hoc relationships.

4.2 WAB: WebODE Axiom Builder service

Axioms and rules are important modelling components in the WebODE's knowledge
model. However, we noticed that ontology developers did not usually include them in
their domain ontologies. The reason for this was twofold: either (a) they did not know
the exact syntax they had to use to define axioms and rules; or (b) they found
difficulties to write them in a simple HTML form, as WebODE did not provide
adequate support for the axiom modelling task.

To solve this problem, we have created WAB (WebODE Axiom Builder). WAB is
an axiom and rule editor that is integrated in the WebODE Ontology Editor. It allows
creating first order logic axioms and rules using a graphical user interface. It also
provides a library of built-in axioms, which can be reused for creating other axioms,
rather than building them from scratch.

4.2.1 Axiom building
We will explain how WAB works using an example. Let us suppose that we want to
create the following axiom: “every train that departs from a European location must
arrive at another European location”. This axiom is written in WebODE as follows:

forall(?X,?Y,?Z) (Train(?X) and
 Origin(?X,?Y) and EuropeLocation(?Y) and
 Destination(?X,?Z)
 -> EuropeLocation(?Z))

Figure 5 shows the WAB interface once we have pressed the universal
quantification symbol in order to write our axiom. In this sense, this interface helps

non-expert users in writing their axioms.

Fig 5. WAB: WebODE Axiom Builder. Well-formed axioms' construction

Figure 6 shows the axiom completed in WAB. In this axiom editor, we can create
well-formed expressions in first order logic, using: universal quantification,
existential quantification, negation, conjunction, disjunction, implication and
biconditional. We can also use those terms that have been already defined in the
ontology (concepts, attributes, relations and constants). If we select a concept in the
Concept drop-down list, shown in figure 4, the attributes and relations that can be
applied to this concept appear in the Attribute and Relation drop-down lists,
respectively (including those attributes and relations that are not defined directly in
the concept but are inherited in the concept taxonomy). In the example of figure 6,
companyName is an attribute of concept MeanOfTransport and Destination is an ad-
hoc relation between MeanOfTransport and Location. This prevents users from
entering attributes or relations that cannot be applied to a concept.

WAB also allows users to write directly the axiom expression, without using its
facilities for doing it. The following grammar is used in WebODE axioms:

axiom ::= atom | axiom OR axiom | axiom AND axiom | axiom -> axiom | axiom <-> axiom |

 NOT axiom | FORALL (var_list) axiom | EXISTS (var_list) axiom | (axiom)

atom ::= ID (term_list) | SUBCLASS (term_list) | NOT_SUBCLASS (term_list) |

 DISJOINT (term_list) | EXHAUSTIVE (term_list) | TRANSITIVE (term_list) |

 INTRANSITIVE (term_list) |

 term > term | term < term | term >= term | term <= term | term = term | (atom)

term ::= ID | num | ID (term_list) | term + term | term - term | term * term | term / term | (term)

term_list ::= term | term , term_list

var_list ::= ID | ID , var_list

Once the axiom is defined, we must click on the “Make Prolog” button to parse it

and ensure that it has been correctly defined. Not only does WAB perform a syntactic
check of the axiom, in the sense of testing that it is compliant with the WebODE's
axiom grammar. But also it checks that the vocabulary used in the axiom is defined in

the ontology, that the ad-hoc relations can be applied between two variables, that the
attributes are defined for the concepts to which they are applied, etc.

The final result of this parsing is that the axiom is transformed to Horn clauses, if
possible. To perform this transformation, we follow a well-known process. First,
WAB generates the prenex form of the axiom; then the Skolem Normal Form; next, it
generates the Conjunctive Normal Form and, finally, WAB obtains the Horn clauses.

The result of this process for the axiom presented above is the following:

¬Train(x2) ∨ ¬Origin(x2,x1) ∨ ¬Destination(x2,x0) ∨
¬ EuropeLocation(x1) ∨ EuropeLocation(x0)

Fig 6. WAB: WebODE Axiom Builder. Axiom transformation into Prolog

For each clause obtained in the previous transformation, WAB creates a Prolog

rule, which can be stored in the WebODE database, so that they can be used in the
WebODE’s Prolog inference engine. In this process, the vocabulary used in the
logical expression is also transformed according to the vocabulary provided by the
OKBC protocol knowledge representation primitives [5]. As shown below, our
example uses the OKBC primitives instance_of and value_facet_of are used.

instance_of(Z,europelocation):-
 instance_of(X,train),
 value_facet_of(Y,value,origin,X),
 value_facet_of(Z,value,destination,X),
 instance_of(Y,europelocation).

4.2.2 Rule building
The same approach is used for creating rules with WAB. Let's suppose that we want
to create a rule that states that “all the trips by ship that depart from Europe are
handled by the company Costa Cruises”. In this case, we will create the following
rule (shown in figure 7):

if EuropeLocation(Y) and Origin(X,Y) and Ship(X)
then companyName(X,costaCruises)
The syntax of WebODE rules is much simpler than that used for axioms. This

eases the modelling of knowledge in the form of “if ... then” structures, which are
used in many systems. The following grammar is used for WebODE rules:

 lhs ::= atom | atom AND lhs

 rhs ::= atom

 rule ::= IF lhs THEN rhs
Hence, the left-hand side of the rule consists of conjunctions of atoms, while the

right-hand side of the rule is a single atom.
Once a rule is created, WAB checks both the syntax of the rule and its consistency

with the rest of the ontology, and it transforms the rule into Horn clauses. For the
example above, we obtain the following Horn clause:

¬EuropeLocation(Y) ∨ ¬Origin(X,Y) ∨ ¬Ship(X) ∨
companyName(X,costaCruises)

And, consequently, the following Prolog rule, which can be stored in the WebODE

database:

value_facet_of(costaCruises,value,companyname,X):-
 instance_of(Y,europelocation),
 value_facet_of(Y,value,origin,X),

instance_of(X,ship).

Fig 7. WAB: WebODE Axiom Builder. Rule edition

The transformations of axioms and rules to the OKBC vocabulary are done
because the WebODE's inference engine allows working with the primitives defined
in OKBC, as we will see in the next section. Moreover, WebODE ontologies are
completely translated to Prolog syntax, so that these generated Prolog rules can be

used either for checking constraints on the ontology or for generating new
information from it. We will see the results of the Prolog translation in section 4.4.

4.3 WebODE's inference engine service

As we have commented in section 4.2, WebODE includes an OKBC-based
inference engine. This inference engine reasons with a subset of the primitives
identified in that protocol [5], and allows using such primitives to query ontologies
(currently, WebODE's inference engine makes use of Ciao Prolog [17]).

The following groups of OKBC primitives have been implemented:
• Primitives to query about concept taxonomies and instances: get-class-instances,

get-class-subclasses, get-class-superclasses and get-instance-types.
• Primitives to query about slots: get-frame-details, get-slots, get-slot-domain, get-

slot-type, get-slot-value, get-slot-values, get-slot-values-in-detail, get-slot-facets,
get-facet-value and get-facet-values.

• Primitives to check whether a condition holds for a term (class, instance or slot):
individual-p, instance-of-p, member-facet-value-p, and member-slot-value-p.

At present, we are using this inference engine for several purposes:
• Querying about the ontology components, either with these OKBC primitives or

with a user-defined Prolog program, as long as it uses these OKBC primitives or
the Prolog representation of ontology components, which are presented in section
4.4.

• Asserting new knowledge using the Prolog expressions that correspond to the
rules and axioms created with WAB, as explained above.

• Detecting inconsistencies in the ontology. Each axiom in the ontology can be
tested independently from the other ones, as long as it can be transformed into
Horn clauses. It is important to mention that, in this sense, we are not using
axioms for theorem proving, but just for constraint checking.

The WebODE's inference engine is also used by the WebODE's OntoClean

service. This service uses the OntoClean method [23], which allows cleaning concept
taxonomies according to philosophical notions such as: rigidity, identity and unity.

Besides, the WebODE's inference engine has been designed to be easily
extensible, so that other inference engines can be attached to it and used with the
same interface.

Finally, WebODE also provides other constraint checking capabilities, though it
does not use the WebODE inference engine for it. It checks type constraints,
numerical values constraints, cardinality constraints and taxonomic consistency [14]
(i.e., common instances of disjoint classes, loops, etc.). These evaluation capabilities
can be used when an ontology is built either using the form-based user interface or
OntoDesigner. Such functionality is supplied through the use of a Minerva_LIA
service, as part of the ontology development and management services.

4.4 WebODE interoperability services

Ontologies built using WebODE can be easily integrated in other ontology servers or
used in ontology-based applications. Possible choices for interoperability include:
 WebODE's ontology access API, which can be accessed by other applications

using RMI, and is completely compliant with the WebODE's knowledge model.
 XML. WebODE ontologies can be exported into and imported from XML,

following a well-defined DTD2 that uses the same knowledge representation
vocabulary used for expressing the WebODE knowledge model. Ontologies can
be translated completely or on a view or instance-set basis.

 Ontology languages, through the ontology language export/import modules.
Currently, WebODE is able to export to and import ontologies from: RDF(S),
OIL, DAML + OIL, the XMLization of CARIN and FLogic. If we take into
account that the WebODE knowledge model is very expressive [1], we are able
to provide high quality translations that preserve most of the original information
contained in the ontology and take advantage of most of the modelling
characteristics of the target and source languages. As with XML, ontologies can
be translated completely or on a view or instance-set basis.

 Jess [12]. WebODE generates all the concepts as Java beans, which contain also
information about their attributes and ad-hoc relations. These beans can be easily
uploaded in the Jess system. This means that we can use the ontology developed
in WebODE inside the Jess system, and develop our own programs in Jess using
the ontology components.

 Prolog syntax of OKBC [5]. WebODE provides a subset of the primitives
defined in the OKBC protocol. They are expressed in Prolog, as explained in the
previous section. Table 1 summarizes the mapping between the WebODE's
knowledge model and the Prolog OKBC translation.
WebODE ontology component OKBC Prolog representation

Concept: Travel class: class(travel)
Concept groups -- (they do not exist in OKBC)
Class attribute: Hotel quality own slot: own-slot-of(quality,hotel)
Instance attribute: Hotel price template slot: template-slot-of(price,hotel)
Subclass-of:
 Flight is a subclass of Travel

subclass of: subclass-of(flight,travel)

Ad-hoc relation:
 the departure place of a
 Travel is a Location

slot:
slot-of(departurePlace,travel)
facet-of(type,departurePlace,travel,location)

Constant: average price term: averagePrice
Axiom & rule Prolog rule: cf. section 4.2
Instance: John is a Traveller instance: instance-of(john,traveller)
Property -- (they do not exist in OKBC)
Imported term: Date term: date

Table 1. Summary of WebODE transformations into OKBC Prolog syntax.

2 http://webode.dia.fi.upm.es/webode/dtd/webode_2_0.dtd

4.5 WebODE's ontology documentation service

WebODE ontologies are automatically documented in different formats: HTML
tables representing the Methontology's intermediate representations, HTML concept
taxonomies and XML.

Fig 8. WebODE's documentation service: Concepts Dictionary Intermediate Representation.

Users can decide whether obtaining the documentation of the whole ontology or of
parts of it (specific views or instance sets). As an example, figure 8 presents part of
the concept dictionary of the Travel ontology, which contains its concepts, their class
and instance attributes, instances and ad-hoc binary relations.

The HTML documentation service shows the concept taxonomy, the concept
attributes and the ad-hoc binary relations between concepts.

5 WebODE middleware services

In this section, we present some middleware applications that we have built inside the
WebODE workbench. They are fully integrated in the middle tier and, as such, run
within the Minerva_LIA application server. They use some of the services described
in this paper, such as the interoperability services and the inference engine.
 WebPicker [6] is a set of wrappers that allow importing standards of

classification of products and services in the context of electronic commerce into
WebODE (UNSPSC, e-cl@ss and RosettaNet). We are currently extending it to
wrap other sources of information, such as Cyc.

 ODEMerge performs merging of concepts, attributes and relationships from two
different ontologies built for the same domain, according to semantic criteria and
resources used for natural language processing.

 ODECatalogue is able to generate electronic catalogs from ontologies according
to some parameters. The catalogue generation from an ontology assures a correct
and rich classification of the different products.

6 Conclusions

In this paper, we have presented the WebODE ontological engineering workbench,
whose main contributions are detailed below:

1) Integrated technological support for many activities of the ontology lifecycle.
 WebODE supports in an integrated platform many activities of the ontology

lifecycle that, until recently, have just been supported by isolated, independent
tools. In fact, it does not only support development activities, but also
management and support ones, such as documentation, evaluation, merge or
integration.

 Additionally, WebODE allows developing ontologies at the knowledge level.
Ontology developers do not need worry about building an ontology directly in an
implementation language. Later, the contents of the ontology can be
automatically translated into several implementation languages.

 First order logic axioms and rules can be more easily created according to the
WebODE syntax, using the WebODE Axiom Builder. They are also translated
into Prolog syntax, if possible, using some primitives extracted from the OKBC
knowledge model. Primitives from the OKBC protocol can be used to send
queries about WebODE ontologies with the Prolog inference service.

 Finally, WebODE is not only useful for building ontologies, but also provides a
wide range of services for ontology-based applications.

2) Technological support for ontology development methodologies.
 WebODE has been built to provide support to a methodology for ontology

development: Methontology.
 However, this does not prevent WebODE from being used with another ontology

development methodology or without any specific methodological approach.

3) Ontology interoperability.
 Interoperability amongst modules and services inside the WebODE workbench.

The use of a common API to access WebODE ontologies from any service and
the use of XML exportation/importation functionalities allow modules and
services interoperate easily.

 Interoperability with other tools and applications. The translation functionalities
available in the workbench allow exchanging ontologies with other tools,
environments or applications.

This workbench has been successfully used, with different domains and purposes
and by different groups of people, in the following projects:
 The European IST project MKBEEM (IST 1999-10589). In this project, B2B

and B2C ontologies have been built and reengineered using WebODE.
 The Ontoweb thematic network (IST-2000-29243). We have built the

OntoRoadMap application3 on top of WebODE. It is an ontology-based web
application that allows the community to register, browse and search ontologies,

3 http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html

methodologies, tools and languages for building ontologies, as well as ontology-
based applications in areas like the: semantic web, e-commerce, KM, NLP, III,
etc., This application uses an ontology in the domain of ontologies.

 The Spanish CICYT project ContentWeb (TIC2001-2745). In this project, we
have created WebPicker for (semi)automatic ontology acquisition from e-
commerce standards for the classification of products and services (UNSPSC,
RosettaNet and e-cl@ss) and in the domain of leisure activities.

 The Spanish CICYT project on Methodology for Knowledge Management (TIC-
980741). We have built using WebODE ontologies that model a few institutions.

 (Onto)2Agent. We have built the Reference Ontology, that asseses ontology-
based applications' developers on the most suitable ontology to use in an
application.

 Environment Ontology (UPM-AM-9819). In this project, we have built the
Elements and Environmental Ions ontologies, in the domain of chemistry, and
have integrated them with existing ontologies, such as the Ontolingua's ontology
Standard Units.

 MRO (Ontologies for cataloguing business services). In this project, we have
merged heterogeneous electronic catalogues in the domain of office furniture.

In the future we will provide more functions both to the WebODE Ontology Editor
and the middleware area, such as an ontology translation manager for the WebODE
interoperability services, ontology configuration management capabilities, ontology
upgrading and semantic annotation services. We will therefore lay the foundations for
a more complete implementation of the workbench presented in section 1. We will
also focus on the implementation of an ontology development suite that allows a high
reusability of ontologies and rapid creation of ontology-based applications. Finally,
WebODE services will be soon made available as Semantic Web services.

Acknowledgements

This work is supported by a FPI grant funded by UPM and by the project
"ContentWeb: Plataforma tecnológica para la web semántica: ontologías, lenguaje
natural y comercio electrónico4" (TIC-2001-2745). This work would not have been
possible without the help of JC Arpírez, JF Cebrián, R de Diego, M Lama, A López,
V López, E Mohedano, JP Pérez and JA Ramos in the implementation and tests of
WebODE services, and M Blázquez and JM García-Pinar in the development of
ODE.

References

1. Arpírez, J.C.; Corcho, O.; Fernández-López, M.; Gómez-Pérez, A. WebODE: a scalable
ontological engineering workbench. First International Conference on Knowledge Capture
(K-CAP 2001). Victoria, Canada. October, 2001.

2. Bechhofer, S., Goble, C. Towards Annotation Using DAML+OIL. KCAP'01 Workshop on
Semantic Markup and Annotation. Victoria, Canada. October, 2001.

4 ContentWeb: Platform for the Semantic Web: ontologies, natural language and e-commerce

3. Bechhofer, S.; Horrocks, I; Goble, C.; Stevens, R. OilEd: a Reason-able Ontology Editor
for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp
396--408. 2001.

4. Chalupsky, H. OntoMorph: A Translation System for Symbolic Knowledge. KR-2000.
471-482. 2000.

5. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice J. P. The Generic Frame
Protocol 2.0. Technical Report, Stanford University.1997.

6. Corcho, O.; Gómez-Pérez, A. WebPicker: Knowledge Extraction from Web Resources. 6th
Intl. Workshop on Applications of Natural Language for Information Systems (NLDB'01).
Madrid. June, 2001.

7. Domingue, J. Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on
the Web. KAW98. Banff, Canada. 1998.

8. Duineveld, A.; Studer, R.; Weiden, M; Kenepa, B.; Benjamis, R. WonderTools? A
comparative study of ontological engineering tools. KAW99. Banff. Canada. 1999.

9. Farquhar A., Fikes R., Rice J., The Ontolingua Server: A Tool for Collaborative Ontology
Construction. 10th Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada. 1996.

10. Fernández-López, M.; Gómez-Pérez, A.; Pazos, J.; Pazos, A. Building a Chemical
Ontology using methontology and the Ontology Design Environment. IEEE Intelligent
Systems and their applications. #4 (1):37-45. 1999.

11. Fridman, N., Musen, M. PROMPT: Algorithm and Tool for Automated Ontology Merging
and Alignment. AAAI-2000. Austin, Texas. August, 2000.

12. Friedman-Hill, E.J. Jess, The Expert System Shell for the Java Platform. Version 6.1a1 (3
April 2002). http://herzberg.ca.sandia.gov/jess/docs/61/

13. Gómez-Pérez, A. A proposal of infrastructural needs on the framework of the semantic
web for ontology construction and use. FP6 Programme Consultation Meeting 9. April
27th, 2001.

14. Gómez-Pérez, A. Evaluation of Ontologies. International Journal of Intelligent Systems.
16(3). March, 2001.

15. Guarino, N.; Giaretta, P. Ontologies and Knowledge Bases: Towards a Terminological
Clarification. In N. Mars (ed.) Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing. IOS Press, Amsterdam: 25-32. 1995

16. Heflin, J.; Hendler, J. A Portrait of the Semantic Web in Action. IEEE Intelligent Systems,
16(2), 2001.

17. Hermenegildo, M., Bueno, F., Cabeza, D., Carro, M., García, M., López, P., Puebla, G.
The Ciao Logic Programming Environment. International Conference on Computational
Logic (CL2000). July, 2000.

18. McGuinness, D., Fikes, R., Rice, J., Wilder, S. The Chimaera Ontology Environment.
AAAI-2000. Austin, Texas. August, 2000.

19. Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge Engineering: Principles and Methods.
IEEE Transactions on Data and Knowledge Engineering, 25(1-2), 1998, pp.161–197.

20. Sure, Y.; Erdmann, M.; Angele, J.; Staab, S.; Studer, R.; Wenke, D. OntoEdit:
Collaborative Ontology Development for the Semantic Web. International Semantic Web
Conference (ISWC02). Sardinia. Italy. June, 2002. LNCS 2342. pp. 221-235.

21. Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward Distributed Use of Large-Scale
Ontologies. AAAI Symposium on Ontological Engineering. Stanford. USA. March, 1997.

22. Using Protégé-2000 to Edit RDF. Technical Report. Stanford University.
http://www.smi.Stanford.edu/ projects/protege/protege-rdf/protege-rdf.html

23. Welty, C.; Guarino, N. Supporting Ontological Analysis of Taxonomic Relationships. Data
and Knowledge Engineering. September 2001.

24. A survey on ontology tools. Deliverable D13.IST OntoWeb Thematic Network. May
2002.

