
WebRISC-V: a Web-Based Education-Oriented
RISC-V Pipeline Simulation Environment

Roberto Giorgi
Department of Information Engineering and Mathematics

University of Siena
Siena, Italy

giorgi@diism.unisi.it

Gianfranco Mariotti
Department of Information Engineering and Mathematics

University of Siena
Siena, Italy

gianfranco.mariotti94@gmail.com

ABSTRACT

WebRISC-V is a web-based server-side RISC-V assembly language

Pipelined Datapath simulation environment, which aims at easing

students learning and instructors teaching experience. RISC-V is an

open-source Instruction Set Architecture (ISA) that is highly flexi-

ble, modular, extensible and royalty free. Because of these reasons,

there is an exploding interest both in the industry and academia

for the RISC-V. Here, we present the main features of this simula-

tor and how it can be used for a simple exercise in the classroom.

This web-based simulator permits the execution of RISC-V user-

provided source code on a five-stage pipeline, while displaying the

data of registers, memory and the internal state of the pipeline ele-

ments. One of the main advantages of WebRISC-V is the immediate

availability in the web browser, thanks to its implementation as a

server-side script in PHP.

CCS CONCEPTS

· Computing methodologies → Simulation environments; ·

Applied computing → Interactive learning environments; ·

Computer systems organization → Architectures; Pipeline

computing; Reduced instruction set computing.

KEYWORDS

Computer Simulation, Computer Architecture, RISC-V, Processor

Pipeline

ACM Reference Format:

Roberto Giorgi and Gianfranco Mariotti. 2019. WebRISC-V: a Web-Based

Education-Oriented RISC-V Pipeline Simulation Environment. In Workshop

on Computer Architecture Education (WCAE’19), June 22, 2019, Phoenix, AZ,

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3338698.

3338894

1 INTRODUCTION

RISC-V is a recent open-source Instruction Set Architecture (ISA)

based on reduced instruction set computer (RISC) principles [14]. It

has a modular design, consisting of modular ISA parts, with added

optional extensions. Two of the base ISAs modules (32-bit integer

support or RV32I and 64-bit one or RV64I) are stable ("frozen"), as of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WCAE’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6842-1/19/06.
https://doi.org/10.1145/3338698.3338894

the latest specification [20] and, additionally to these base modules,

there are some optional modules that are stable too, such as the

ones for multiplication (extensionM) and floating point instructions

(extensions F, D, Q).

Anyone who wants to make a RISC-V core can do so freely, since

it has a permissive license for its ISA. Originally, it was designed

to support Computer Architecture research and education, but

nowadays it is also widely supported by more than 200 members

of the RISC-V Foundation (including many big companies). RISC-V

enables longer term software investments, since the specification

of the ISA is not under control of a single vendor, but it is rather

under the control of an independent foundation.

At the same time, the RISC-V is becoming very popular in Com-

puter Architecture courses as a substitute of the MIPS processor.

From a teaching point of view, the RISC-V has the same simplicity

of the MIPS, but it solves some of its idiosyncrasies (like the usage

of register RT instead of register RD in certain instructions). More-

over, it has very good chances to become an industrial standard for

future microprocessors.

Experience shows that students may find difficulties in under-

standing the concepts of conventional instruction pipelining. The

availability of a web-based tool can enhance the chances that

students investigate the reasons of the good performance of the

pipeline and also increases their curiosity in analyzing the internal

state of the basic architectural elements. The tool also serves the

need of testing simple assembly programs and see immediately

the results in the browser. A simulator helps get introduced to the

subject.

WebRISC-V emulates the five stages of the complete RISC-V

integer pipeline, including the forwarding paths and the possibility

to investigate the behavior of the hazard detection and forwarding

units. The microarchitecture design is done in accordance with the

book łComputer Organization and Design: RISC-V Editionž by D. A.

Patterson and J. L. Hennessy [14], in which the pipelined datapath

implementation is explored and explained.

The contribution of this work are:

• a refresh of the WebMIPS simulator [2] to cover the RISC-V

ISA;

• the online availability of the WebRISC-V simulator as educa-

tional tool;

• the availability of the source code WebRISC-V simulator

as an open-source tool (see http://www.dii.unisi.it/~giorgi/

WebRISC-V/download).

https://doi.org/10.1145/3338698.3338894
https://doi.org/10.1145/3338698.3338894
https://doi.org/10.1145/3338698.3338894
http://www.dii.unisi.it/~giorgi/WebRISC-V/download
http://www.dii.unisi.it/~giorgi/WebRISC-V/download


WCAE’19, June 22, 2019, Phoenix, AZ, USA Giorgi and Mariotti

Figure 1: TheWebRISC-Vmain page shows the structure of the pipeline. Each stage buffer has a different color (pink, red, yellow, blue, green).

As can be seen on the left, the instructions get colored by the stage in which they are processed. The black wires represent the datapath wires,

while the red wires represent the control part ones. In the upper part of the page, there are the commands and options.

2 RELATED WORK

Several works based on the MIPS architecture, such as [1ś3, 5ś

10, 13, 17ś19], were designed in order to achieve effective and

easy learning through the practice on simulation tools. There exist

several types ofMIPS educational simulators. Among them there are

simulators such as WepSIM [6], which displays hardware models

of the processor, including the CPU, the main memory, some I/O

devices, and allows the user even to microprogram them to further

understand the inner workings. Other tools like JCachesim [1]

permits the students to analyze the MIPS code impact on the cache

subsystem. QtSPIM [10] and MARS [19] are ISA simulators, which

are focused on the assembly code learning. They implement an

almost complete MIPS instruction set and show the loaded program

execution results through simple visual interfaces. Both of these

tools simulate the single-cycle versions of the CPU but do not show

the underlying datapath. Other simulators focus on visualizing

datapath operation graphically, with some common features. Some

of them show a simple single-cycle datapath: for instance MARS

plug-in MIPS X-Ray [17]. DrMIPS [13] simulator let the user choose

between execution in single-cycle or pipelinedmode in the datapath

model. Other tools show pipelined datapaths, usually including

hazard detection and forwarding units. Notable examples of this

group are WinDLX [8], Mipster32 [5], UCOMIPSIM [7], Visimips

[9], WASP [18] and WebMIPS [2].

Most of these tools have the disadvantage of being accessible only

after installation of additional software on a local computer, with a

notable exception being WebMIPS [2], a web accessible pipelined

datapath simulator that needs no additional software to work on

a client. The use of server-side scripting permits this additional

freedom. WebRISC-V also follows this philosophy by using PHP in

order to make the tool readily available.

Tools for exploring RISC-V processors are just starting to appear

[4, 11, 15, 16]. Therefore, we decided to make a RISC-V educational

pipelined datapath simulator, taking inspiration from the old Web-

MIPS [2] and refreshing it with a more appealing ISA, while keeping

its convenient web-accessibility. Some of those tools are valuable

as simulation and development tools, but they have not been de-

signed for educational purpose [4, 11, 16]. The Ripes simulator is



WebRISC-V: a Web-Based Education-Oriented
RISC-V Pipeline Simulation Environment WCAE’19, June 22, 2019, Phoenix, AZ, USA

specifically designed for education [15] and provides a graphical

representation of the flow of the instructions, as well as an assembly

editor. WebRISC-V has the advantage of being completely server-

side web-based and does not require any installation from the users.

Moreover, compared to Ripes, WebRISC-V models and shows the

forwarding units and the internal state of each architectural element

of the pipeline.

Given the fact that WebMIPS was faithfully presenting the MIPS

pipeline, we decided to recover the user experience in the new con-

text of RISC-V. Also, we thought that - for students - it would have

been important to minimize the difficulties to understand a totally

new environment compared to the MIPS. Moreover, the students

can also play with both WebMIPS and WebRISC-V and appreciate

the little differences of the two tools. Thus, we recovered almost all

features of the WebMIPS, extended some missing ones and fixed

some bugs: we will discuss, in Section 4, the differences between

the two simulators. Both simulators permit to see the details of the

pipelined datapath, the content of the registers, instruction and data

memory, input and output values of each architectural element. The

students and teachers can dynamically visualize the processing of

instructions of source code, using existing examples or by writing

code in the browser directly.

3 FEATURES

In this Section, we outline the main features of the WebRISC-V

simulator.

3.1 General Structure

WebRISC-V has its back-end written in PHP and its front-end in

HTML and JavaScript [12], and as such can be executed from the

Web browser, providing the advantage of immediate accessibility

to students without any installing (the sister project WebMIPS was

previously written in the less supported ASP scripting language).

On the other side, if the teacher wants a local installation, he/she

has to make a single installation on a Linux or Windows server.

Being a server-side web application, it is installed and executed

on a web server and presented to the user on their client interface.

This simulator includes most of the instructions of the 64-bit RISC-V

base ISA module and its multiplication extension. Here the idea is

to support only a subset of the ISA, which is enough to write simple

programs like, e.g., a recursive factorial. To avoid slowdowns or

crashing of the server, the execution of each uploaded program is

limited to 1000 clock cycles, and data memory is limited to 5 KiB. So,

in case of eventual programming errors, such as infinite loops, the

execution can stop anyway in a short time. As previously outlined,

most of the features of the WebMIPS simulator are also available in

the WebRISC-V with the addition of:

• support of the RISC-V ISA itself;

• 64-bit support and little-endian addressing;

• microarchitecture modifications of the pipeline design to

properly execute the RISC-V instructions.

These additions will be discussed in detail in Section 4.

3.2 Loading Code

WebRISC-V loads the RISC-V assembly via the Load/Reload Program

button. The user can choose among one of the built-in examples,

modify the existing code, or write it from scratch. When loading

the assembly instructions, the parser checks if there are unsup-

ported/miswritten instructions or miswritten labels. If there is an

error, the simulation stops and the corresponding line number is

displayed. In case of no error, the instructions are ready to execute

in the pipeline. To help the student learn the instructions, the list

of supported instructions is always visible on the left side, besides

the text box (Figure 2).

Figure 2: The Load Program page shows one of the built in pro-

grams. On the left, there is the complete list of supported instruc-

tions, always visible.

3.3 Program Execution

WebRISC-V assembly code execution can happen in two modes, by

executing all the code at once, or step-by-step. The stage buffers

have a specific color (pink, red, yellow, blue, green respectively for

the Fetch, Decode, Execute, Memory and Write-Back stages). The

same color is used in the loaded program that is visible on the left.

Each instruction get a color based on the stage where it is currently

processed (left of Figure 1). The current clock cycle is always visible

besides the program name on the left. After the execution has

completed, the total number of clock cycles is displayed, as can be

seen in Figure 3. Execution of all the code at once is mostly used

for verifying the correctness of the assembly code, but could be

used if the user is interested in the final state of registers and data

memory or the total clock cycles.

By executing in single steps, the user can follow in the left panel

the advancing of instructions in each stage of the pipeline and

analyze the value of registers and content of data memory. At the

same time, in themain page representing the pipeline schematic, the

student can observe the internal state of the architectural elements.

By clicking on the desired pipeline elements (for example the ALU

or Control Unit), or by activating the łpop-up on hoverž function

and passing the pointer over them, the user can see the input and

output values of the unit. The main panel also gives the option to

hide the Data or Control wires through the corresponding check-

boxes. For each instruction, the Instruction-Memory tab displays

(Figure 4):



WCAE’19, June 22, 2019, Phoenix, AZ, USA Giorgi and Mariotti

Figure 3: Clock cycle count and final message at the end of the

execution.

• the instruction-memory address,

• the instruction type (R, I, S, SB, or UJ),

• the binary representation,

• the binary and decimal value of each field (OPCODE, RS1,

RS2, RD, FUNCT, IMMEDIATE)

• the current stage (Fetch, Decode, Execute, Memory, Write-

Back) of the instruction in the pipeline.

Figure 4: The fields of the binary code are clearly specified for

each instruction, alongwith itsmnemonic,machine value (numeric

value), instruction type, and the value of each field.

The Data Memory tab displays the dword content (64-bits) at

a single address, at a specific address range or the content of the

whole data memory (Figure 5).

The Register tab shows the content of the registers. The registers

are identified either by their register number or their calling con-

vention name. Their values are shown both in binary and decimal

format (Figure 6).

Figure 5: The content of the data memory can be inspected.

Figure 6: The content of the registers.

3.4 A simple exercise for the student: pipeline
data hazards and forwarding during
execution

In the pipeline implementation, as described in the Patterson-Hennessy

book[14], the branch decision is taken in the Decode stage of the

pipeline to save one cycle. To illustrate the functioning of the haz-

ard detection and forwarding units, we use here one of the built-in

assembly demonstration examples, i.e., the łsimple calculatorž pro-

gram. By using this simple example, we can easily illustrate the

functioning of hazard detection and forwarding in the pipeline, as

a stall happens happens at cycle number 6. The left panel lists the

pipeline stages that are in stall during the execution of the program,

as can be seen in the top-left of Figure 7. Continuing execution, the

data hazard resolves, the stall passes through the pipeline, and so

the three instructions previously fetched continue their execution

as is shown on the right of Figure 7.

By selecting the hazard detection and forwarding units in the

pipeline, a user can see their corresponding input and output signals

(Figure 8 and Figure 9), and so follow the propagation of the stall

through the pipeline during execution, as shown in Figure 7.

As of this writing, WebRISC-V implements 31 RV64I integer

instructions (two of them are actually pseudo-instructions ś the J

and the JR, which are mapped on the JAL and JALR, respectively)



WebRISC-V: a Web-Based Education-Oriented
RISC-V Pipeline Simulation Environment WCAE’19, June 22, 2019, Phoenix, AZ, USA

*

*

Figure 7: The case of a stall in the Decode stage due to a branch,

whose condition is resolved only in the Decode stage. On the right,

two cycles later, the three instructions previously fetched in the

pipeline continue their execution after the stall that has been

caused by the branch instruction. The star, besides the colored stage,

indicates the stalled instruction.

Figure 8: The content of the Forwarding Unit.

Figure 9: The content of theHazard DetectionUnit appears besides

the unit, when the user hovers the mouse on it. The same happens

for any other unit of the pipeline.

and 4 RV64M multiply extension instructions, as described in the

RISC-V specification [20].

4 WEBRISC-V SPECIFIC FEATURES

There are several features that make WebRISC-V stand out from

his sister project WebMIPS. The WebMIPS is big-endian, while the

WebRISC-V implements little-endian addressing. Little endianness

is more convenient for extending the architecture from words of 32

bits, to double-words of 64 bits or quad-words of 128 bits, so it is an

important feature to be noted by the students. There are also some

changes in the pipeline from MIPS to RISC-V (Figure 10), such as

the removal of the RegDst signal, which selects between the RT and

RD registers in the Decode stage, since the RISC-V core instruction

WebMIPS

WebRISC-V

Figure 10: WebMIPS and WebRISC-V pipelines schematic compar-

ison: the WebRISC-V has some simplification for the Instruction

fields and there is no need for the selection of the actual register

destination.



WCAE’19, June 22, 2019, Phoenix, AZ, USA Giorgi and Mariotti

format was reworked to have only RD as the instruction destina-

tion register. Another modification is the substitution of the Sign

Extension unit with an Immediate Generation unit, which gets the

instruction as input and, while recognizing the instruction format,

composes an appropriate immediate for a specific instruction type,

as RISC-V has several kinds of configurations for the immediate

field.

In addition, the user experience was improved by changing the

visualization of some elements in the User Interface. For improved

interactivity with the user, various options were added. One of

them is a checkbox that makes it possible to dynamically see the

content of specific elements by hovering over them with the mouse.

Another one is a floating box that always shows the cycle count

during the execution. Several other improvements are added to the

WebRISC-V, compared to WebMIPS:

• a list of implemented instructions was added into the ’load

program’ page, to give students a table of easy examples on

what arguments a specific instruction needs for its operation;

• for educational purposes, we show the "empty" slots of the

pipeline at the beginning of the execution (pipeline fill up)

and at the end of the execution (pipeline drain) (see also

Figure 3);

• the cycle count and program name is always visible to im-

prove the awareness of the context;

• the student can explore the values inside the pipeline by sim-

ply hovering the pointer on a specific architectural element

(see Figure 9) (this saves two clicks to open and close a pop-

up window - a feature still available for convenience); this

feature improves the interactivity of the student with the

pipeline exploration and avoids to create too much distrac-

tion that could be caused by displaying toomuch information

at once.

Furthermore, a significant change to improve the usability is

the Step-Back function, that allows the user to go back one step at

anytime during execution, to better compare changes in specific

points of the pipeline and facilitate the understanding. The user can

can go back and forward to observe the specific changes at each

cycle.

CONCLUSIONS

WebRISC-V is a web-based tool, which is based on server-side

scripting (the well supported PHP scripting language), which means

that it is highly portable on servers and can be used directly from

any web browser without requiring any installation procedure on

the client side. We plan to improve the graphical interface for an

even better user experience and complete the mapping of a few

other RISC-V instructions. However, the current set already allows

the user to test any algorithm translated to assembly. TheWebRISC-

V simulator is already available and usable for most of the needs in

the Computer Architecture classes. The simulator can be tried at

this URL: http://www.dii.unisi.it/~giorgi/WebRISC-V. The source

code is also available as indicated in the introduction.

ACKNOWLEDGMENTS

We are grateful to the makers of WebMIPS [2], a MIPS pipeline

simulator written in ASP, from which WebRISC-V took great in-

spiration. We would like to thank the anonymous reviewers for

their helpful comments. This work has been partially supported

by the European Commission under the AXIOM H2020 project (id.

645496), TERAFLUX (id. 249013), and HiPEAC (id. 779656).

REFERENCES
[1] I. Branovic, R. Giorgi, and C. Prete A. 2002. Web-based training on Computer

Architecture: The case for JCachesim. In IEEE Workshop on Computer Architecture
Education (WCAE-02). Anchorage, AK, USA, 56ś60. http://www.dii.unisi.it/
~giorgi/papers/Branovic02a.pdf

[2] I. Branovic, R. Giorgi, and E. Martinelli. 2004. WebMIPS: A New Web-Based
MIPS Simulation Environment for Computer Architecture Education.. In IEEE
Workshop on Computer Architecture Education (WCAE-04). Munich, Germany,
93ś98. https://doi.org/10.1145/1275571.1275596

[3] M De Los Angeles Cifredo-Chacon, Angel Quiros-Olozabal, and Jose Maria
Guerrero-Rodriguez. 2015. Computer architecture and FPGAs: A learning-by-
doing methodology for digital-native students. Computer Applications in En-
gineering Education 23, 3 (2015), 464ś470. https://doi.org/10.1002/cae.21617
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21617

[4] Michael Clark. 2017. rv8: A High Performance RISC-V to x86 Binary Translator.
[5] Joao Carlos de Oliveira Quintas. 2017. Mipster32: A 32 bit MIPS Simulator. LAP

LAMBERT Academic Publishing.
[6] F. Garcia-Carballeira, A. Calderon, S. Alonso-Monsalve, and J. Prieto Cepeda. 2019.

WepSIM: an Online Interactive Educational Simulator Integrating Microdesign,
Microprogramming, and Assembly Language Programming. IEEE Transactions
on Learning Technologies (2019), 1ś1. https://doi.org/10.1109/TLT.2019.2903714

[7] A. Gersnoviez, M. Brox, M. A. Montijano, J. A. Sújar, and C. D. Moreno. 2018.
UCOMIPSIM 2.0: Pipelined MIPS Architecture Simulator. In 2018 XIII Technologies
Applied to Electronics Teaching Conference (TAEE). 1ś6. https://doi.org/10.1109/
TAEE.2018.8476063

[8] H. Grunbacher and H. Khosravipour. 1996. WinDLX and MIPSim pipeline sim-
ulators for teaching computer architecture. In Proceedings IEEE Symposium
and Workshop on Engineering of Computer-Based Systems. 412ś417. https:
//doi.org/10.1109/ECBS.1996.494568

[9] M. T. Kabir, M. T. Bari, and A. L. Haque. 2011. ViSiMIPS: Visual simulator of
MIPS32 pipelined processor. In 2011 6th International Conference on Computer
Science Education (ICCSE). 788ś793. https://doi.org/10.1109/ICCSE.2011.6028756

[10] James Larus. 2019. QtSPIM. http://spimsimulator.sourceforge.net/
[11] Tim Newsome. 2019. Spike. https://github.com/riscv/riscv-isa-sim
[12] Robin Nixon. 2012. Learning PHP, MySQL, JavaScript, and CSS: A Step-by-Step

Guide to Creating Dynamic Websites. O’Reilly Media, Inc.
[13] B. Nova, J. C. Ferreira, and A. Araújo. 2013. Tool to support computer architecture

teaching and learning. In 2013 1st International Conference of the Portuguese Society
for Engineering Education (CISPEE). 1ś8. https://doi.org/10.1109/CISPEE.2013.
6701965

[14] David A. Patterson and John L. Hennessy. 2017. Computer Organization and De-
sign RISC-V Edition: The Hardware Software Interface (1st ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[15] Morten Borup Petersen. 2019. Ripes. https://github.com/mortbopet/Ripes
[16] Dustin Richmond, Michael Barrow, and Ryan Kastner. 2018. Everyone’s a Critic:

A Tool for Exploring RISC-V Projects. 2018 28th International Conference on Field
Programmable Logic and Applications (FPL) (2018), 260ś2604.

[17] G. C. R. Sales, M. R. D. Araújo, F. L. C. Pádua, and F. L. Corrêa Júnior. 2010.
MIPS X-Ray: A plug-in to MARS simulator for datapath visualization. In 2010
2nd International Conference on Education Technology and Computer, Vol. 2. V2ś
32śV2ś36. https://doi.org/10.1109/ICETC.2010.5529442

[18] A. Stojkovic, J. Djordjevic, and B. Nikolic. 2007. WASP: A Web-Based Simulator
for an Educational Pipelined Processor. International Journal of Electrical Engi-
neering & Education 44, 3 (2007), 197ś215. https://doi.org/10.7227/IJEEE.44.3.1
arXiv:https://doi.org/10.7227/IJEEE.44.3.1

[19] Kenneth Vollmar and Pete Sanderson. 2006. MARS: An Education-oriented
MIPS Assembly Language Simulator. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’06). ACM, New York, NY,
USA, 239ś243. https://doi.org/10.1145/1121341.1121415

[20] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2014.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

http://www.dii.unisi.it/~giorgi/WebRISC-V
http://www.dii.unisi.it/~giorgi/papers/Branovic02a.pdf
http://www.dii.unisi.it/~giorgi/papers/Branovic02a.pdf
https://doi.org/10.1145/1275571.1275596
https://doi.org/10.1002/cae.21617
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.21617
https://doi.org/10.1109/TLT.2019.2903714
https://doi.org/10.1109/TAEE.2018.8476063
https://doi.org/10.1109/TAEE.2018.8476063
https://doi.org/10.1109/ECBS.1996.494568
https://doi.org/10.1109/ECBS.1996.494568
https://doi.org/10.1109/ICCSE.2011.6028756
http://spimsimulator.sourceforge.net/
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1109/CISPEE.2013.6701965
https://doi.org/10.1109/CISPEE.2013.6701965
https://github.com/mortbopet/Ripes
https://doi.org/10.1109/ICETC.2010.5529442
https://doi.org/10.7227/IJEEE.44.3.1
http://arxiv.org/abs/https://doi.org/10.7227/IJEEE.44.3.1
https://doi.org/10.1145/1121341.1121415
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

	Abstract
	1 Introduction
	2 Related Work
	3 Features
	3.1 General Structure
	3.2 Loading Code
	3.3 Program Execution
	3.4 A simple exercise for the student: pipeline data hazards and forwarding during execution

	4 WebRISC-V specific features
	Acknowledgments
	References

