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Abstract. Yew-Kwang Ng [12] listed several "reasonable properties" for equivalent
changes of probabilities and other proportions. He produced a family of functions sat-
isfying all properties and asked whether there exist essentially different ones. We show
that this is the case, by constructing uncountably many families of functions satisfying
all properties. We show also that there are no other solutions. Our method establishes
connections with webs (nets) and iteration groups. This may be of interest both in itself
and for applications.

1. Introduction. In the paper [12], Yew-Kwang Ng deals with the question how
equivalent changes for probabilities (or proportions and percentages) should be calcu-
lated. To show that this is not obvious, we quote a more recent example: an article in
Newsweek ("Endangered Family", August 30, 1993, p. 26 or p. 38 in different editions)
notes that between 1960 and 1989, the proportion of young white women giving birth out
of wedlock rose from 9 to 22 percent "markedly faster" than it did for blacks. Had the
rate for blacks—42 percent in 1960—"kept pace with the white rate, it would have topped
100 percent by now. As things stand, it's 70 percent." (Our emphasis.) This makes
one wonder about the author's standards for comparing changes in proportions. We see
that different changes in proportions (and probabilities) can certainly not be compared
by taking quotients; and taking differences does not work either, for the same reason:
probabilities cannot go under 0 or above 1 (percentages not below 0% or above 100%).

Ng lists several "reasonable properties" for equivalent changes or, equivalently, for the
family of functions representing them. Then he gives explicitly one family of functions
that have all these properties and asks whether this is essentially the only family sat-
isfying these requirements and possibly an additional convexity property (although the
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word convexity is not used; the rest of the terminology there is also unconventional but
recognizable and, with one exception to be stated below, clearly formulated).

In this paper we show how to construct, with the aid of functional equations, all
families of functions satisfying the requirements in [12], both with and without convexity.
One family is closely related to the normal (Gaussian) probability distribution. It turns
out that there is a great variety of possibilities for defining equivalent changes. Ng
suspected that one might be able to single out a "natural" or "best" solution. This is in
fact not possible, at least on the basis of his explicit requirements alone. However, as will
be discussed at the end, our characterization of all solutions leads to an interpretation
of equivalent changes which allows us to select the functions defining equivalent changes
in a problem-specific way.

We arrive at our results by showing that the graphs of the functions form a regular
geometric web (net) and that by reparametrization this family of functions becomes an
iteration group. This establishes connections to iteration theory which is of great impor-
tance nowadays for mathematics and its applications (think for instance of dynamical
systems and fractals [7, 13]).

In Sec. 2 we will discuss the basic properties listed in [12] and in Sec. 3 we will
show that they define equivalence relations. In Sec. 4 we will prove a characterization
theorem for the families of functions defined by ten of these properties. In Sees. 5
and 6, we will deal with an additional symmetry property and an additional convexity
property, respectively. We will discuss in which way these properties restrict the families
of functions and prove corresponding characterization theorems. These two sections are
complemented by several examples which demonstrate the diversity of possibilities of
realizing the properties. The final section discusses the results. It turns out that our
characterization theorems yield a very natural interpretation of the functions that furnish
equivalent changes of probabilities.

2. The basic properties. The article [12] starts with the question (slightly re-
phrased): "Suppose that a probability (or other proportion) changes from X\ to £2.
Given 2/1, for what probability (or proportion) 2/2 can one say that the change from
Hi to U2 is equivalent to the change from x\ to £2?" Noting that 2/2/2/1 = ^2/^1 or
2/2 — Hi = £2 ~ X\ will not do because probabilities have to stay between 0 and 1 (and
percentages between 0 and 100), the paper lists "reasonable properties" that the function

j/2 = F{xi,yux2) (1)

should have. In what follows, we list these properties, in slightly different order, with
the names given to them by Y.-K. Ng in quotation marks (except for Property 12 which
we call convexity rather than monotonicity in dy/dx). We modified Ng's properties 1,
5, 8, and 12, and accordingly we write 1', 5', 8', 12', and 12" for our corresponding
properties.

The property 1 given in [12]: UF exists for all values £1,2/1, £2 between and inclusive
of 0 and 1", should be slightly changed because, as it stands, it contradicts the other
properties, in particular, Properties 6, 3, 2, and 4. Indeed, in the solution given by Eq.
(1) on p. 294 of [12] (formula (20) in the present paper), the function F is not defined
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for X\ = x2 = 0; x\ = y\ = 0; x2 = 0, y\ = 1; x\ = x2 — 1; x\ = y\ = 1; and for
X'2 = 1, y\ =0. (There is also a similar ambiguity and a slight misprint in Property 5 as
formulated in [12].) Property 1 should be replaced by the following.

Property 1' ("Completeness"). F{x\,y\,x2) is defined for all values of x\, y\ strictly
between 0 and 1 and for all values of x2 between 0 and 1 (0 and 1 included).

Some combinations of 0 and 1 values would also be permissible for x\ and yi, but they
are not needed.

Property 2 ("Uniqueness"). This just states that F is a function.
Property 3 (Interchangeability). This establishes the possibility of exchanging

(xi,yi) and (x2,t/2):

F{x1,y1,x2) =y2 implies F(x2, J/2,®i) = Vi, (2)

that is, F(x2,F(xi,yi,x2),xi) = yi.
From here on X\ and y\ are regarded as fixed while x2 is variable, and we denote

F(x\,y\,x2) by f^(x) — F(x\,yi,x). (This is denoted by fl(x) in [12].) It turns out
that there is a whole family {/'*'} of such functions.

Property 5' requires that the graph of exactly one /M go through each point of ]0,1[2,
the interior of the unit square. (The word "interior" is missing in [12] but it is clear
from Properties 6 and 7 that, for example, no graph goes through (x,0) for x > 0.) This
statement consists of two parts. The first is Ng's original Property 5, "Identity",

F{xi,yi,xi)=yx, (3)

whose meaning is obvious: If x remains unchanged, then also y has to remain unchanged.
It implies that at least one function /M goes through the point (xi,yi). The statement
that at most one function goes through this point is contained in [12] only as an af-
terthought to Property 7. In terms of F it can be phrased as follows. Every function
/b](x) = F(x2,y2,x) whose graph also goes through the point (x\,yi) must coincide
with the above function f^(x) = F(xi,yx,x) :

F(x2,y2,X\) = yi and F(x2, y2, x3) = y3 imply F(xi,y1}x3) = y3. (4)

The interpretation of this is natural: If a change of x from to x\ is equivalent to a
change of y from y2 to y\ and another change from x2 to x3 is equivalent to a change
from y2 to y3, then the direct change from x\ to x3 should be equivalent to a change
from yi to y3. We note that Property 3 follows from this interpretation of Property 5'.
Indeed, choose in (4) x3 = x2, y3 = y2 in order to get

F(x2,y2,xi) = yi and F(x2,y2,x2) = yi imply F{xx, yu x2) = y2.

By (3) the second equality is always fulfilled, and by renaming X\,yx to x2,y2 and vice
versa we get (2).

A consequence of Property 5' is that there are uncountably many functions /W in the
family. (Their cardinality is the same as that of the set R of real numbers.)
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Property 4 (which is called "Parity" in [12]). This establishes that the family {/^}
contains the identity function given by y = x or, in terms of F, by F{xi,xi,x2) = x2:
If t/i = Xi, i.e., y starts at the same value as x, then we should have y = x for all x to
effect a corresponding change.

Property 7 (Monotonicity). All functions are strictly increasing on the closed
interval [0,1].

Property 6 ("Limitation"). This postulates that 0) = 0, /'''(I) = 1 for all /M,
that is, the graph of each /W goes through (0,0) and (1,1). In terms of F this means
that F(xi,yi,0) = 0 and F(x\,y\, 1) = 1 for all X\,yi in the open interval ]0,1[. In other
words, the (only) change of probability from 2/1 £ ]0,1 [ that is equivalent to a change of
probability from X\ £ ]0,1[ to 0 or 1 is the change from y\ to 0 or 1, respectively.

Property 8 in [12] demands that all /M be continuously clifferentiable on [0,1]. We will
need only continuity (in fact, we will derive differentiability from the additional convexity
property in Sec. 6; see Theorem 3):

Property 8' (Continuity). All functions /M (or all F(xi,y\,-)) are continuous on

[0,1]-
Property 9 is a certain symmetry property, which we will discuss in Sec. 5.
Property 10 ("Anonymity"). This postulates that the inverse function of each /M,

which exists by Properties 6, 7, and 8', also belong to the family. This means in terms
of F that F(y\,xi, •) is the inverse function of F{x\,y\, •), that is,

F(x!,yi,x2) = y2 implies F(yl,x1,y2) = x2,

or F(yi,X\,F{x\,2/i,£2)) = x2, a property similar to Property 3, this time establishing
that x\ and x2 can be exchanged for 2/1 and y2. If the change from x\ to x2 is equivalent
to the change from 2/1 to y2 then the change from y\ to y2 is clearly equivalent to that
from £1 to x2. (It should not matter whether we call the first variable x or y; this explains
the name anonymity.)

Property 11 (Transitivity). This requires the following: "If the change in the vari-
able x from X\ to x2 is equivalent to the change in y from 2/1 to y2 and to the change
in z from z\ to z2 then the change in y from 2/1 to 2/2 is also equivalent to the change
in z from z\ to z2." The geometric interpretation is interesting: "If {x\,y\) and (x2,y2)
lie on the same graph and (xi, z 1) and (x2, z2) lie on the same graph (possibly different
from the previous graph) then also (21,2/1) and (z2,y2) lie on the same graph (possibly
different from the previous two)." See Fig. 1.

We have already seen above that Property 3 is a consequence of Property 5'. We
will now show that Property 11, in conjunction with Properties 4 and 5', is even more
powerful: it implies that every is a one-to-one mapping (bijection). Prom this we will
be able to show that several properties can be omitted.

Let us set Xi = 2/1 and x2 — y2 in Property 11. Then we get the following special
case: "If (xi,xi) and (x2,x2) lie on the same graph (which they always do, by Property
4) and (xi,z\) and (x2,z2) lie on the same graph then also (zi,Xi) and (z2,x2) lie on
the same graph." Thus we observe that the set of graphs of the functions /^ is invariant
under the exchange of coordinates; in other words, they must lie symmetric with respect
to the 45° line y — x. This implies that the functions are bijections, as is formulated in
the following lemma.
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Fig. 1. The transitivity property (Reidemeister condition)

LEMMA. Properties 1', 2, 4, 5', and 11 imply that all functions are bijections of the
interval ]0,1[ onto itself.

Proof. To show that the functions are injective, assume that the points
(.X\,z) and (x2,z) with x\ x2 lie on the same curve. By the above observation, the

points (z,xi) and (2,0:2) he also on the same curve, contradicting the fact that the curve
is the graph of a function (Properties 1' and 2).

Surjectivity means that the equation z2 — f^l\x2) has a solution 0:2 for all functions
/'*! and all z2 G ]0,1[. Set x\ = 1/2 (or any other fixed value in ]0,1[), 21 = /W(x\), and
consider the function going through the point [z\,X\), which exists by Property 5'.
We show that 0:2 = f^\z2) is the required solution. Indeed, the point (22,0:2) lies on the
same curve as (zi,x\). Hence, by the above observation, the point (x2,z2) lies on the
same curve as (xi,zi). By Property 5', this curve is unique, namely the graph of /M.
Thus we get z2 = /'l'(x2) and we are done.

Property 10 follows directly from the above observation. A one-to-one mapping /[*'
of an interval onto an interval is continuous if and only if it is strictly monotonic. So
Properties 7 and 8' are equivalent. (Monotonically decreasing continuous functions can
be excluded since the graph of such a function would cross the graph of the identity func-
tion, contradicting Property 5'.) Properties 7 and 8' together clearly imply Property 6.

To summarize, we have seen that Properties 3, 6, 10, and 7 or 8' can be omitted, and
it is sufficient to assume Properties 1', 2, 4, 5', 11, and one of 7 and 8'.

3. Equivalence relations between pairs of probabilities. Before we investigate
further consequences of our properties, we step back and look at them from a different
point of view. The function F, with

y2 = F(xi,yi,x2), (1)

establishes a quaternary relation between x\,yi,x2, and y2.
However, the very wording of the interpretation that we have given to this relation,

"the change from y\ to y2 is equivalent to the change from X\ to x2v, suggests that we
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should view it as a binary relation between the pairs (£1,2:2) and (1/1,2/2) and, moreover,
that it should be an equivalence relation. Using the more suggestive notation

(xi x2) ~ (2/1 rv 2/2)

instead of (1), we find the properties of an equivalence relation in our properties:
Reflexivity—{x\ rv x2) ~ rv x2)- -is just a translation of x2 = F(x\,x\,x2), which
is Property 4. Symmetry—{x\ rv x2) ~ (2/1 rv 2/2) implies (2/1 rv y2) ~ (x\ rv x2)—is
found as Property 10 about the inverse function. Finally, transitivity—(xi rv x2) ~
(2/1 rv 2/2) and (x\ rx x2) ~ (zi rv z2) together imply (2/1 rv- y2) ~ (zi z2)—was
already identified as a transitivity property, namely as Property 11.

On the other hand, we may view (1) also as a relation between the pairs (xi, yi) and
(2:2,2/2)- (In order to get on equal footing, we here restrict also x2 and y2 to ]0,1[.) The
statement

(2:1,1/1) • ~(^2, y2)

may be given the interpretation: "The pair (2:1,2/1) of initial values for x and y cor-
responds to the pair (x2,y2) of final values for these quantities." Again, the wording
suggests that this is an equivalence relation, which is indeed the case: Reflexivity—
(2:1,1/1) rsj (2:1,2/1)—is the existence part of Property 5'; symmetry—(21,2/1) (2:2,2/2) im-
plies (x2, y2)~(xi,yi)—is Property 3; finally, transitivity—(x2,y2)^(xi,y1) and (2:2,2/2)
~(2:3,2/3) imply (xi, yi)~(x3,2/3)—is the uniqueness part of Property 5'.

Note that we formulated transitivity in such a way that, in conjunction with reflexivity,
it should imply symmetry. The usual formulation of transitivity, a ~ b and b ~ c implies
a ~ c, can then be directly obtained by symmetry.

All properties mentioned so far in this section (3, 4, 5', 10, and 11) are purely algebraic
in the sense that they assume nothing about the set of values that the quantities x, y, z
can take. Properties 1 and 2 are basic in the sense that they establish the objects that
one deals with. The only further properties in Sec. 2 that have not been identified as
properties of equivalence relations are 6, 7, and 8'. These have to do with the particular
form of the functions and are of a different type. Properties 12' and 12" will be further
requirements of this type. Only Property 9, which will be introduced in Sec. 5, is of
an algebraic nature again. It uses the structure of the involutory mapping x 1—> 1 — x
(complementation) on the underlying set.

4. Geometric webs; iteration groups; the first characterization theorem.
We now continue to explore the consequences of the properties and, in particular, we
take a closer look at Property 11.

By Properties 6, 7, and 8', the functions /M are continuous strictly increasing bijec-
tions of the interval ]0,1[ onto itself. By Property 5', the graphs of these functions and
the x = constant, y — constant lines form a geometric web or net (see [1, 2, 5, 6]), that
is, three families of continuous curves on a subset of the plane, in this case on ]0,1[2,
such that each point of the subset lies on exactly one curve of each family and two curves
of different families always meet in exactly one point. Property 11 is exactly the Reide-
meister condition (see Fig. 1 and [1, 2, 5]) for three curves of the same family together
with the one y = x, which belongs, by Property 4, also to the family.
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As shown in [1] (see also [2]), if the Reidemeister condition is satisfied with one fixed
curve of the third family (the three other curves of the third family and the "curves"
of the other two families are arbitrary within the constraints of the condition) then it
is always satisfied. Moreover, there exist continuous and strictly monotonic bijections
(homeomorphisms) I/: ]0,1[ —> R such that the "contour lines" z = constant of the
equation

®(z) = tp{x) + tp(y)

are the curves of the third family, while, as mentioned above, the first two families consist
of the vertical and horizontal lines x = constant and y = constant, respectively. So the
curves of the third family are given by

y = ^-^(z) - V(z))-

This has to be the same as f^(x) since the curves of the third family are the graphs of
the functions /^', and the choice of the value of z, or r = ^(z) for that matter, picks
an individual /M from the family of functions {/^}. We will thus reparameterize and
introduce a meaningful parameter r in place of i to which no particular meaning was
attached, writing /by definition. So we have

V = f{T\x) = ~ Hx))-

Since ip: ]0,1 [ —> R is a bijection, r = t/j(z) assumes every real value. Moreover, the
identity function y = x belongs, by Property 4, to {/I1'} and so now to Let the
parameter belonging to it be To, that is,

<p-1(r0 - = x;

thus, tp{x) = To — and

f(T\x) = <y?_1(r - t0 + <p(x)).

As a slight second reparametrization we introduce the parameter t = r — To and write
fl — f ^ ■ With r, also t = r — To runs through the entire set of real numbers. Thus,
our family of functions {/f} is given by

fl(x) — ip~1(ip(x) + t) for all x € ]0,1[; tel. (5)

As for the identity function, it clearly belongs to the parameter value t = 0:

/°(x) = x.

The functions /' given by (5) satisfy

/'(/"(z)) = + ip[fu{x)}) = ip~1(t + u + <p{x)) = ft+u(x).
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Thus, they form an iteration semigroup or, since the identity function is included, an
iteration monoid. But, by Property 10, also the inverse function of any fl belongs to
this monoid, let us call it fl . By the definition of inverse functions we have

x = f' (fix)) = (p-^t + t' + <p{x)),

that is, <p{x) = t + t' + <p(x) for all x, and t' = —t. Therefore, /-t is the inverse of /' and
{ft} is an iteration group. Concerning iteration groups, connected to webs or otherwise,
see, for example, [2, 3, 4, 11].

If we want the graph of fl to pass through (x\, y\), then

2/1 = l) = + (p(xi));

so, t = <p{yi) - ip(xt) and y = fl(x) = tp-l{ip(yx) - <p(x{) + tp(x)). Therefore,

2/2 = F(xi,yi,x2) = ^Mz/i) - vim) + <fi(x2)) (6)

describes the function whose graph goes through (x\,y\), and (1) can be written as

<P(V2) ~ <p(yi) = <f(x2) ~ <p(xi). (7)

Thus, it turns out that
F(x,y,z) = F(x,z,y).

In (5) and (6) we had <p continuous and strictly monotonic. Without loss of generality
we may suppose that tp is strictly increasing, by changing t to —t if necessary.

Until now we were on the open square ]0,1[2. Adding the two points (0,0) and (1,1)
according to Property 6 we would give, if we wanted to keep the representations (5) and
(6),

o = /f(0) = \t + <p(0)) and 1 = /*(1) = ip 1{t + y?(l)),

that is,
V?(0) = t + i/?(0) and <p(l) = t + </?(!), for all t € R.

Thus, (p(0) and ip( 1) cannot be finite real numbers, but we can define them as —oo and
+oo if we want to keep (5), (6), and the definitions as stated in Property 6:

<£>(0) = —oo, y>(l) = +oo, and accordingly, oo) = 0, i/j_1(+oo) = 1. (8)

This definition keeps and <p~l increasing and even continuous in the following sense.
Since ip is an increasing bijection of ]0,1[ onto R, we have

lim <p(x) = —oo, lim <p(:r) = oo, and lim v9_1(s) — 0; lim V_1(s) — 1-
x—>0 x—>1 s—► — oo s—>00

It is easy to check that the functions given by (5) and (6), with the extension (8), have
all the properties 1', 2-4, 5', 6, 7, 8', 10, and 11. Indeed, we have just forced Property 6
to hold:

F(xi,yi,0) = ip~1(ip(y1) - <p{xi) - oo) = <^_1(-oo) = 0,

F(xi,yul) = tp~1(ip(yx) - <p(xi) + oo) = <^_1(+oo) = 1.
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Property 1' is obvious, (6) defines F for all x\,y\,x2 £ ]0,1[, and the cases X2 = 0 and
X2 = 1 have just been discussed. Property 2 is self-evident. We check Property 3 by
substituting (6) into it:

F{x2,F{x1,y1,x2),xi) = ip~1(ip{F(xi,yi,x2)) - <p(x2) + v{x{))

= 1) + <P(X2) ~ <p{x2) + ^(^l))

= v_1Mj/i)) = yi-

Properties 4 and 10 we have checked already: /° is the identity function, /~4 is the
inverse function of /'. Property 5' is satisfied because the graph of fp(yi)-<p(xi) (ancj 0f
no other fl) goes through (£1,1/1), by the choice of t in the derivation of (6) above:

ff(yi)-p(xi)(Xl) = 1(v?(a:1) + ip{yi) - y>(xi)) = y\-

Properties 7 and 8' are obvious because <p is continuous and strictly monotonia
Finally, we check Property 11. Do the equations

fixi) = yi,ft{x2) = y2, and fu{xi) = zu fu(x2) = z2,

that is,

t + <p{x{) = f(y\), t + ip(x2) = <p(y2), and u + <p(x 1) = u + ip(x2) = ip(z2) (9)

indeed imply that there exists a v such that fv(z 1) = y\, fv(z2) = y2) that is,

v + ip(zi) = (p(y 1) and v + ip(z2) = <p(y2)t

Yes, and v — t — u does the job because from (9)

V(l/i) - <f(z 1) =t-u = <p{y2) - ip{z2).

This concludes the proof of the following theorem.

Theorem 1. The general families of functions satisfying the requirements 1', 2, 3, 4,
5', 6, 7, 8', 10, and 11 are given by (5) and (6), where <p is an arbitrary continuous and
strictly increasing bijective mapping from ]0,1[ onto E, extended by (8).

We show now that for a given family of functions, is unique up to positive affine
transformations tp{x) 1—> a ■ <p(x) + b with a > 0. Suppose that two functions tp and (p
give rise to the same family of functions {/4 | t G M} = {gu \ u G R} with

fix) = tp~1{(p(x) + t)

and
gu(x) = <p-\f>(x)+u).

The two parametrizations must be related by some bijective function A: M —» K:
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which is equivalent to

+ A(i)) = ip~l (f(x) + t) for all x G ]0,1[ and tel.

By setting p := (p o ip_1 and x = <p~l{u) we obtain (p{x) = (p{^p~l{u)) — p(u) and

p{u + t) = ipitp-1 (ip(x) + t)) = (p(y-l(y(x) + \{t))) =p{u) + X{t),

for all ti,teR. The functional equation p(u + t) = p(u) + A(t) is a Pexider equation. It
implies that p(u + t) — p{u) depends only on t and, since p is continuous, the solution
can only be of the form

p{u) — au + b

for some constants a and 6; see [10]. Thus we get

if(x) = p{<p(x)) = aip(x) + b.

Since <p and (p are increasing, a must be positive.
We could select a unique tp representing a family of functions by stipulating, for

example, that <p( 1/2) = 0 and </?(3/4) = 1. This still leaves uncountably many strictly
increasing bijections of ]0,1[ onto K which are not affine functions of each other; so there
are uncountably many families of functions satisfying the requirements V, 2-4, 5', 6, 7,
8', 10, and 11.

Note that addition of a constant b to <p(x) does not change the functions defined by
(5) and (6) at all, because the constant simply cancels out. The multiplication by a
corresponds to a reparametrization of the family {/'} given by (5). It again has no effect
on (6), however.

We note that we may also allow <p to be decreasing. The theorem would still hold,
with the obvious modifications of (8). Everything else could remain unchanged.

5. A further property: symmetry with respect to y = 1 — x\ the second
characterization theorem; Y.-K. Ng's example. In [12] a further "reasonable prop-
erty" is an invariance with respect to replacing all probabilities x by the complementary
probabilities 1 — x:

Property 9 (Complementarity). F(l — x\, 1 — yi, 1 — x?) — 1 — F(xi, j/i, #2).
This equation is rather intuitive. Consider, for instance, the connection between

changes in employment and unemployment rates. If the change from X\ to x<i is equivalent
to the change from y\ to y2 then the change from l—x\ to 1 — x? should also be equivalent
to the change from 1— y\ to 1 —j/2 • A geometric interpretation of Property 9 in conjunction
with Property 10 can be derived as follows. Property 9 states that F(x\,yi,x2) = y2
implies F( 1 — Xi, 1 — 3/1,1 — ̂ 2) = 1 — J/2, and vice versa. By Property 10, the last
equation is equivalent to F(1 — 1 — X\, 1 — 3/2) = 1 — #2- Thus we have as an equivalent
formulation:

F(xi,yi,x2) = y2 implies F(1 - ylt 1 - xu 1 - y2) = 1 - x2. (10)
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y

1 - x = f\l-fl(x))

1 -/'(«)

Fig. 2. Reflection with respect to the line x + y = 1

Now consider an arbitrary function fl and let (x\,y{) be the point of intersection of its
graph with the line x + y = 1. (This point exists because of Properties 6 and 8'.) We
have then, for all x and y,

f(x) = F(x1,y1,x) = y

implies
1 -x = F(1 —2/i,l -xi, 1 -y) = F(x1,yul - y) = fl( 1 - y).

The next-to-last equation follows from x\+y\ = \. Thus, we get the following relation
from Properties 9 and 10:

ft(x)=y implies f{l - y) = 1 - x, (11)

or
f(l-f*(x)) = \-x. (12)

Geometrically, with every point (x,y) = (x,ft(x)), also its mirror image with respect to
the 135° line, (1 — y, 1 — x) = (1 — fl{x), 1 — x), lies on the graph of fl (see Fig. 2), that
is, the graph of each fl is symmetric with respect to the line y = 1 — x.

To check the converse implication from (12) and from Property 10 to Property 9,
remember that F{x\,y\,x2) — 2/2 means that there is an in the family whose graph
contains both points (x\,y\) and (£2,2/2)- By the symmetry of /', or by (11), the same
/' contains the points (1 — 2/1,1 — Xi) and (1 — 2/2,1 — £2), that is, we conclude that
F(1 — 2/i,l — xi, 1 — 3/2) = 1 — a?2- So we have (10), which, as we have seen above, is
equivalent to Property 9 if Property 10 is also supposed.

We will now determine the general function f*, of the form (5), which satisfies (12).
First notice that, for each fixed t, fl is a bijection of ]0,1[ onto ]0,1[. (We are here
ignoring the values fl(0) = 0 and /'(l) = 1.) We can write (12) with y = /'(x), that is,
x = (/f)_1(y) = /"%)> as

/t(i-2/) = i-rf(2/).
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In view of (5), this is equivalent to

(^_1(V9(1 -y)+t) = 1 - tp~1(tp{y) - t). (13)

For t = tp(y) this reduces to

1 -y) + <p(y)) = l - v_1M2/) - <p(y)) = 1 - </>_1(0).

Thus we have, for all y G ]0,1[,

<p( 1 - y) + <p{y) = ip{ 1 - ^_1(0)),

which is constant. By setting y = 1/2 we see that the constant is 2(^(1/2). Since we may
add an arbitrary constant to </? without changing the functions ff (cf. the discussion after
Theorem 1), we can without loss of generality make the following simplifying assumption:

¥>(1/2) = 0. (14)

Our condition now becomes

</?(l - y) + ip(y) = 0 for all y € ]0,1[.

With z — \ — y this can be written as

<p(% + z) = -vd ~ z)•

This means that the graph of </? is symmetric about the point (^,0) = (^,y>(|)). Thus
d by

9(z) = <p(k +z) (15)

the bijection g: ]— —> R defined by

is odd:
g{-z) = -g(z).

Conversely, if we start with an arbitrary continuous strictly increasing odd bijection
g: ] — i, |[ —> R, the function

<p(y) -=9{y- 5) (16)

will always satisfy (13). Indeed, from (16) we get

</>_1(s) = \ +9~\s). (17)

We have
</>(! - y) = -y) = ~g{y - §),

because g is odd, and therefore

<p~x(<p( 1 -y) + t) = \ +5-1(v?(l -y) + t) = l + g~\-g(y - |) + t),
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while
1 - -t) = \ - g~x(.y{y) -t) = \- g~\g{y - \) -1).

The right-hand sides of the last two chains of equations are equal, since with g also <?_1
is odd. Thus (13) is satisfied and so is (12) for all x 6 ]0,1[ and tel.

We have also, for all t € E,

ft(x)=ip l(t + <p{x)) = \+g l{t + g{x-\)) forxeJO, 1[,
/f(0)=0, /'(!) = !. (18)

The boundary equations for 0 and 1 come from Property 6 and make (12) valid also for
x = 0 and x = 1 :

f\ 1 - /4(0)) = f\ 1) = 1-0, f(l - f( 1)) = f(0) = 1-1.

Substitution of (16) and (17) into (6) gives the representation

2/2 = F(xi,yi,x2) = \ +g~1{g{yi - |) - g{xi - \)+g{x2 - |)) for 0 < x2 < 1,

F(xi, yi,0) = 0, F(xi, 2/1,1) = 1.
(19)

So we have proved the following theorem.

Theorem 2. The general families of functions satisfying the requirements 1', 2-4, 5', 6,
7, 8', and 9-11 are given by (18) and (19), where g is an arbitrary continuous, strictly
increasing, and odd bijective mapping from ] — |, |[ onto R.

Like the function ip in Theorem 1, the function g in Theorem 2 can be subjected to
an arbitrary affine transformation g(z) i—> a ■ g{z) + b with a / 0 without affecting the
family /4. However, for b ^ 0 these transformations do not preserve oddness. In fact,
the requirement that g be odd can be weakened to the symmetry of g about the point
(0, <?(0)): g(—z) — <?(0) = ~(g{z) — g(0)). (Similarly, it does not matter whether g is
increasing or decreasing.) The more restrictive formulation in Theorem 2 comes from
the simplifying assumption (14) that </?(l/2) = g(0) = 0.

Ng [12] presents an example that meets all requirements 1 (really 1') and 2-11. We
show how the solution in [12] fits into the framework of the above theorem. That solution

fli](x) = ^ + 1)x
3 1 ' 2x + i - 1'

or, in terms of (1),

cv \ x2yi(l-x1)
1/2 = F(x1,yux2) = —r T——7 r; 20

x\(l x2) +y\{x2 -xi)

see Fig. 3 on p. 488. To see that these functions are of the forms (5) and (6), respectively,
choose ip(x) = ln(a;/(l — x)), that is, = 1/(1 + e_s), and the reparametrization

t = fi(i) = In ■
2—1
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Fig. 3. The functions /' in Ng's example, defined by (21), for t = 0,
-0.25, -0.5, -0.75, -1, -1.5, -2, -2.5, and -3.

Then indeed

f(x)-ip (t + tp(x)) - i + e-t-\n(x/(i-x)) ~ ] + e-t . i|i ~ x + e-t(i _ (21)

and

f[i\(x) = r(i)(x) = 7 1 = (» + !)x = (i + 1)a:
x + |^j(l-x) (i + l)x + (i - 1)(1 — x) 2x + i-V

as it should be. Also
1

F{xi,y1,x2) = V (¥>(l/i) - ¥>(zi) + ¥>(^2)) =

-i/fi +
1 + exp(— In  h In ^ In . )v i—yi i—x\ 1—X2'

l-2/i £1 l-x2\_ a;2yi(l-xi)
yi 1 - x1 x2 J x2y\{l - xi) + (1 - yi)xx(l - x2)

x2yi(l - xi)
xi(l -x2) + yi(x2 -xi)'

again as required. Let us finally check that ft(x) is indeed of the form (18). We define
the function g by

1 + 2 z
g{z) = In   — for — 1/2 < z < 1/2.

This function is odd: g{—z) = ln((l — 2z)/(l + 2z)) = —g{z), and its inverse is g~1{s) —
|(es - l)/(es + 1) = |tanh f. We have \ + g^1{s) = |(1 + tanh|) = l/(e~s + 1), and
thus

\ + 9~l {t + 9 (x - i)) = 1/ (exp (-£ -g{x-\)) + l)

= l/ (exp (-< - 1„ + 1

1 =me-t .i=x + 1 (1 — x)e~t + x
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As we see, here also /4(0) = 0 and /((1) = 1 are contained in the same formula.
Although the function given by g(z) = ln((l + 2z)/(l — 2z)) is simple, there is nothing

special about it that would imply that the functions ft are in some sense natural or best
solutions, as was conjectured by Ng [12]. However, if we substitute ip(x) = ln(x/(l — x))
into (7) and take exponentials on both sides of the equation we get the following condition
for equivalent changes in probabilities:

2/1 2/2 xi x2

1 — 2/1 1 — 2/2 1-Xi 1 - X2

and this could be explained by saying that the "odds" x/(l — x) have to change propor-
tionally.

6. A last property: convexity; further characterization theorems and ex-
amples. For the case that Properties 1-11 might not characterize equivalent changes
uniquely, the author suggests in [12] that "we may wish to adopt further reasonable
properties so as to narrow down the permissible functions defining equivalent changes,
preferably to a unique function F for a unique family /M." He proposes the Property
12 that "for any /M whose graph lies below/above the y = x line, dy/dx — (/'*')' be
(strictly) increasing/decreasing throughout" (again slightly rephrased). It is clear that,
for differentiable functions, this is the (strict) convexity/concavity of /M, and that is what
we will call it. Without supposing differentiability (we will prove, though, that the fl are
continuously differentiable) we will show that this requirement does not narrow down
the permissible functions to a unique family of functions either, and we will determine
all functions satisfying the requirements 1-12. We state two variants of Property 12:

Property 12' (Convexity). Each f is convex on ]0,1[ for t < 0.
Property 12" (Strict Convexity). Each fl is strictly convex on ]0,1[ for t < 0.
By Property 10, ft will then be (strictly) concave for t > 0. Of course, f° is the linear

function y — x.
Before we investigate how to modify Theorem 1 to accommodate this additional prop-

erty we will show that it implies that and are continuously differentiable.
Recall that we have already obtained from the other properties the representation

f(x) = <p-x(y{x) +t), (5)

where ip was a strictly increasing continuous function, with the extension (8). In this sec-
tion we will more often deal with the inverse function <^-1, and thus it will be convenient
to write (5) as

ft(x) = $($~1(x) + t), (5')

where is a strictly increasing and continuous bijection $: KU{—oo, oo} —> [0,1].
Now we have in addition that fl is concave on ]0,1[ if t > 0. Therefore, the right

derivative (/4)+ of /' exists and is finite for all x € ]0,1[:

(/')V(x)= lim +
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For arbitrary x and h with 0 < x < x + h < 1 there exist s and 6 > 0 such that x = $(s),
x + h = $(s + 6). So we can write

(f4)' fx) - lim <S>(s + t + 6) -&(s + t) _ n ($(s + £ + £) -$(s + £))/<5
[J )+[x) - glun+ Hs + 6)_Hs) {${s + 6)-$(s))/S ■ {22}

Furthermore, since $ is monotonic, it is differentiable at some point so (even almost
everywhere). So for s = So the limit of the denominator

lim $(s0 + 6) - $(s0)
fi->o+ 6

exists. By (22), also the limit of the numerator

$(s0 + t + 6) - $(s0 + t)
5—>0+ 6

exists. Since t was arbitrary, $ is thus differentiable from the right everywhere. So the
limits of both the numerator and the denominator in (22) exist for all s and t. Moreover,
the limit of the denominator could be 0 at s = so only if the limit of the numerator
would be 0 too, that is, if $'+(.so +1) = 0 for all t. So $ would have to be constant, but
it is strictly increasing; therefore, §'+{z) ^ 0 for all z £ R.

We differentiate /' from the right with respect to t, using the representation (5'), and
since <3?'+ exists everywhere, so does

$,+ ($"1(x))= dft{-X) - f\x)~x
dt — lim   = lim

t_0+ t t—0+ t

We denote this function of x by a. As the limit of the concave functions (ft(x) — x)/t, the
function a is clearly concave, and thus continuous (cf. [10, 14]). Therefore, the function
a(4>(s)) = 3>+(s) is continuous on R. It follows that $ is differentiable, <fr'+ = <E>' > 0,
and is continuous on R.

Since <£>' is continuous and nowhere 0, also is continuously differentiable. There-
fore, we have proved the following theorem.

Theorem 3. If a family of functions satisfies the requirements 1', 2-4, 5', 6, 7, 8', 10, 11,
and 12' or 12", then the functions <p> and $ = ip_1 in (5) are continuously differentiable,
and thus the functions /f are themselves continuously differentiable.

Given these differentiability properties, it is not difficult to characterize the functions
(p that give rise to convex and concave functions /'. From (22),

_ ^'(s +
(/')'(*) = $'(s)

where x = $(s). The derivatives of (strictly) concave functions are (strictly) decreasing.
So, by Property 12' or 12", dy/dx = {/*')'{x) has to be (strictly) decreasing in x for fixed
t > 0 and, since tp in s = <p(x) is strictly increasing,

$'(s +1)
$'(s)
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5 5 -f- t s' s' -\- t

Fig. 4. Concavity of k

will be (strictly) decreasing in s for all fixed t > 0. We take logarithms, remembering
that $' is positive, and introduce the continuous function k: M —» M defined by

k(s) = ln(3>'(s)). (23)

Thus,
ln($'(s + t)) — ln($'(s)) = k(s + t) — k(s)

is (strictly) decreasing in s, for t > 0. But (cf. [10] and Fig. 4), k(s + t) — k(s) decreases
(strictly) in s for all fixed positive t exactly if k is (strictly) concave. Indeed, for (strictly)
concave functions, the slope of the chord from one point of the graph to a variable second
point (strictly) decreases. So, for t > 0 and s' > s

k(s + t) — k(s) k(s' + t) — k(s) k(s' + t) — k(s')
t ~~ s' +1 — s ~~ t '

with strict inequalities in the case of Property 12". On the other hand, by setting s' = s+t
in k(s+t) — k(s) > k(s'+t) — k(s') we get the Jensen inequality 2k(s+t) > k(s) + k(s+2t),
which, for continuous functions k, implies that k is concave (strictly concave in the case
of strict inequality). Now, from (23), ^'(s) = ek(-s) and by (8), $(—oo) = <^_1(-oo) = 0.
So we get

^(s) = $(a) = f ek{z)dz (24)
J — OC

and

/OO

e k(z)dz = 1, (25)
-OO

provided that the improper integrals exist. (This is only a question about the limit as the
bounds go to oo, since, like all concave functions, k is continuous (see [10]), and therefore
ek(z) is integrable.) Existence of the improper integrals is ensured as long as k(z) is not
(weakly) monotonic throughout, that is, in addition to being concave it is first strictly



492 JANOS ACZEL. GUNTER ROTE, and JENS SCHWAIGER

Fig. 5. A concave function majorized by a "roof" function <5 — *y\z\

increasing, then possibly constant for some interval, and finally strictly decreasing (it is
unimodal; the constant part may be missing). Then, by concavity, k(z) is majorized by
some "roof" function of the form —~y\z\ + 6 with 7 > 0 (see Fig. 5), that is,

0 < ek(z) < e~^+6

and
/S POO pooek{z)dz < / ek(z)dz < / e~y^+sdz = 2e6/7 < 00.

-oc J— 00 J — oc

On the other hand, if k(z) is, say, monotonically increasing, then there are constants ko
and Zq such that k{z) > ko for all z > zq, and the integral

/OO /»oekiz)dz> /
-OO JZ0

ek°dz

is clearly infinite.
Condition (25) is just a normalizing condition. Thus we may start with an arbitrary

concave or strictly concave function h(z) for which the improper integral

/OO

eh{z)dz
OO

exists. Then the function k{z) := h(z) — In C is also (strictly) concave. We get

ip-1(s) = ${s)= f eHz)-lnCdz = ^ ■ f eh{z)dz,
J — 00 J — OC

and (25) will be fulfilled. Since the function 3>: R —>]0,1[ defined in this way is continuous,
differentiable and strictly increasing, and since it fulfills

lim $(s) = 0 and lim $(s) = 1
s—* — OO S—>00

by the definition of improper integrals, it is a bijection onto ]0,1[. It follows that its
inverse function ip = $_1 is also a continuous and strictly increasing bijection and fulfills
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(8), thus satisfying all conditions of Theorem 1. Furthermore, $'(s + t)/$'(s) decreases
(strictly) for every fixed t > 0. (For this the condition that fc, or h = k + InC, be
(strictly) concave was necessary and sufficient.) So, for t > 0, every fL as given by (5)
will be (strictly) concave, and Property 12' or 12" will also be fulfilled. Thus we have
proved the following theorem.

Theorem 4. The general family of functions for which the requirements 1', 2-4, 5', 6,
7, 8', 10, 11, and 12' (or 12") are satisfied is given by the representation (5), with

m-1 (S) = I/ eh^dz for sel,
^ i-oo (26)

(y9~1(—oo) = 0, </?_1(+oo) = 1.

Here, C = eh(-z^dz > 0, and h: E —» M is an arbitrary concave (resp. strictly concave)
function that is strictly increasing at a point and strictly decreasing at another point.
(This ensures the existence of both improper integrals.)

We may of course consider the convexity property in conjunction with the symmetry
property 9 of the previous section. The additional condition that we have to satisfy is
that the function g(z) = </?(^ +z) defined by (15) be odd. This is tantamount to requiring
that the inverse function,

5_1(s) = V~\s) - \ = $(s) - i

be odd. Differentiating this by s, we get

*'00 = (g-'Yis).

If g~x is odd then (g~1)' is even and so is <£>'. Thus, by (23), also k is even. The function
h differs from k only by a constant and is therefore also even.

All the above arguments are reversible. Indeed, it is easy to check that for an even
function h, (26) in Theorem 4 will give rise to a function ip~1 that makes g~1{s) =
V?_1(s) — 1/2 odd, because — 1/2 = — (<p_1(s) — 1/2) is equivalent to

^_1(-s) + V_1(«) = 1,

and this follows from

^-1(-s) + ¥p-1(s) = i [ * c"™dz t ln r eh^dz
^ J—oo J—oc

= ~~^J eh(~i)di + ]j / eh(z)dz

= A r eh^dz+ i f ehWdz=± f°° eh^dz = 1.
^ J s ^ J—oo J — oo

Therefore, the family {/f} will also fulfill Property 9 by Theorem 2. So we have proved
the following theorem.
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Theorem 5. The general family of functions for which the requirements 1', 2-4, 5', 6,
7, 8', 9-11, and 12' (or 12") are satisfied is given by the representation (5), with

V"1 eh^dz, for s £

tp 1 (—oo) = 0, tp 1(+oo) = 1.

Here C = fxx eh^dz > 0, and h: R —> R is an arbitrary nonconstant even concave (resp.
strictly concave) function. (The existence of both improper integrals is guaranteed.)

Note that, in the case of even concave functions, it is enough to exclude the constant
functions in order to ensure that the improper integrals exist.

Let us discuss the uniqueness of the functions h in Theorems 4 and 5 for a given family
{/f}. Recall from the remarks after Theorem 1 that the function tp is unique up to affine
transformations tp(x) a ■ <p(x) + b. In terms of </>-1(s) = $(s), this means that affine
transformations of the variable s in the domain of <£, and only these, leave the family
{f1} unchanged. We may thus go from 3>(s) to <E>(s) = $(as + b), and by (23) and (26),
from h(s) to h(s) = h(as + b), for a ^ 0. Addition of a constant to h also has no effect,
since the division by the normalizing factor C cancels it. The class of all functions h that
yield the same family {/J} by Theorems 4 and 5 is therefore

{h(s) = h(as + b) + c \ a ^ 0; 6, c G R},

for some fixed function h. Note that for 6^0 these transformations do not preserve
evenness. Thus the function h in Theorem 5 actually need not be even, as long as it is
symmetric about some point 7: h(7 + s) = h(7 — s). The more restrictive formulation in
Theorem 5 comes from the simplifying assumption (14) in Sec. 5 that tp(1/2) = 0, i.e.,
<3>(0) = 1/2; cf. the discussion after Theorem 2.

Again there are uncountably many strictly concave even functions h that differ in more
than a linear transformation of the variable or an addition of a constant (see Example
3 below for uncountably many concave ones), and so there are still uncountably many
families of functions satisfying all our requirements. We conclude with a few further
examples of such families.

1. If h(z) = —z2/2, which is even and strictly concave, then

C =

and

/OO

e~z /2dz — \Z2tt
-OO

9 1(s) = —L f e z2/2dz,
V J —00

as in the normal (Gaussian) probability distribution. The corresponding family of func-
tions is shown in Fig. 6a.

2. The following function is concave, but not strictly concave, and not even. It will
thus give rise to a family of curves that is not symmetric about the line x + y = 1:

f 2z for z < 0,
f ~ (27)I — z tor z > 0.
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(a) (b)

Fig. 6. Examples of families of functions ft defining equivalent
changes of probabilities. Each figure shows the functions /* for i = 0,
—0.25, —0.5, —0.75, —1, —1.5, —2, —2.5, and —3. The functions /'
for positive t are obtained by reflecting /-t on the diagonal y =
x. (a) The family corresponding to the normal distribution; (b) a
nonsymmetric family resulting from (27); (c) and (d): the families
resulting from h(z) as given by (28), for a = 0.9 and a = —1,
respectively.

We obtain

/OO r0 n ooeh^z)dz= e2zdz+ e~zdz = e°/2 — 0 — 0 + e° = 3/2,
-oo J — oo JO

( le2s
<p 1(s) = $(s) = | ^_

for s < 0,
\e~s for s > 0.
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The two segments join smoothly because

lim $(s) = lim $(s) = - = $(0),
s—>0+ 3

lim <E>'(s) = lim ^'(s) = - = $'(0).
s^0+ s—>0" 3

Here we give also fl(x) as calculated from (5):

i2tx for 0 < x <

/>) - ^e2t/(\ — x)2 for | < x < 1 — |ef, for t < 0,

b1 - e l(l — x) for 1 — |e* < x < 1,

and
e2t

fix) =
e"*x for 0 < x < |e 2t,

1 — 2e 11\/Tfx for 2t < x < |, for t > 0,
1 — e_t(l — x) for | < x < 1.

It satisfies all requirements 1', 2-4, 5', 6, 7, 8', 10, 11, and 12', but it clearly violates
Property 9. The corresponding family of functions is shown in Fig. 6b. Note that the
functions are not strictly convex: In the squares [0,1/3]2 and [1/3, l]2 they are straight
lines.

3. Here is an uncountably infinite set of families of functions satisfying the require-
ments 1', 2-4, 5', 6, 7, 8', 9-11, and 12'. We give only h,C, and explicitly. The
function

' 1 — a — z for z > 1,

—az for 0 < z < 1,
Kz) = f (28)az tor — 1 < z < (J,

1 — a + z for z < —1,

is again even and concave (but not strictly concave) for all 0 < a < 1 (an uncountably
infinite set). We have for a ^ 0

C = Ca = 2{a~1 + e-Q(l - a"1))

c

ip-^s) = <

J^gi-a+s for s <

(4-((eas — e~a)/a + e~a)) for — 1 < s < 0,

1 — gr-((e~QS — e~a)/a + e~a)) for 0 < s < 1,

1 — -j=j-el~a~s for s > 1.

The functions fl may be calculated from this by (5). For a = 0.9 and a = —1, these
families of functions are shown in Fig. 6c-d. Figure 6d illustrates a case where the
convexity property does not hold.

4. For Y.-K. Ng's example (21) in [12], we get

h(z) = z - 2ln(l + e2).
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This too is even:

h(—z) = — z — 2 ln(l + e~z) — — z — 21n(e2 + 1) + 2 lne2 = 2 — 2 ln(l + ez) = h(z)

and strictly concave: h"(z) = — 2e2/(l + e2)2 < 0. Let us check the representation in
Theorem 5:

/oo roc roc z 1
eHz)dz = ez-2U^1+eZ)dz= . _„dz = -

-00 J— OO J — C

<P~1(s) = ^J'ehMdz = - 1

(1 + e2)2 e2 + 1

z=oo
= 1,

2 = —OO

e2 + 1

1 1= 6
es + 1 1 + es 1 + e s'

as in Sec. 5. This family has been shown in Fig. 3.

7. Discussion: interpretation of the results. We saw that <E>:M —> ]0,1[ is
continuous and strictly increasing; furthermore,

lim $(s) = 0, lim $(s) = 1.
s—► — 00 s—*00

So <I> is the probability distribution function of a random variable 5:

$(s) — Prob[5 < s],

and s = <E»_1(x) = <p[x) is the x-quantile of S, i.e., s is the threshold value for probability
x in the sense that the probability that S does not exceed s is x. (We could also consider
$ as a sufficiently smooth approximation of an empirical distribution function of some
quantity S, replacing the term "probability" by "percentage".) This gives a natural
interpretation of (6) and (7), which can now be written as

$-1(y2) - $~1(?/i) = ^_1(x2) - <E>-1(xi). (29)

The right-hand side is the amount by which the threshold must be moved to change the
probability from X\ to By Theorem 1 and, in particular, (7) and (29), the change of
probability from y\ to 3/2 is "equivalent" to the change from X\ to x2 if it corresponds to
the same difference in threshold values.

The reader may wish to reexamine the "reasonable properties" in [12] and in the
present paper in view of this interpretation. They will indeed turn out to be quite natural.
All that is needed concerning the random variable S is that it should be continuous and
its support should be all of M in order that tp(x) = <i>_1(x) can be defined for every
x £ ]0,1[ and (29) can be solved uniquely for y2 whatever xi,x2, and y\ are. It is not
completely obvious, however, why S should have a positive probability density for the
whole set R. This is in fact mainly a consequence of the innocuous-looking property 6. As
mentioned there, it implies that it is not possible to change the probability or proportion
y from any value 1/1 < 1 to j/2 = 1 in a manner equivalent to a change between two
values Xi and x2 strictly between 0 and 1. While this may be reasonable in certain
circumstances it can definitely not be taken for granted. One may imagine an alternative



498 JANOS ACZEL, GUNTER ROTE, and JENS SCHWAIGER

scenario where the change of variable y from y\ < 1 to y2 — 1 is equivalent to a change
from X\ e]0,1[ to an x2 G]0,1[. No change of y would then match a further change of x
beyond x2. (This is apparently the conclusion of the argument in the Newsweek article
quoted at the beginning of Sec. 1, which, in such a setting, does not look so absurd after
all.) Thus we would have given up Property 1, which says that a matching probability
y2 exists for all values of x\, x2, and y\. If, on the other hand, we want to keep Property
1 we might say that any change from x\ to a value x'2 beyond x2 is equivalent to the
change from y\ to 1. But then there would not exist a unique x'2 matching the change
from 2/1 to 1, contradicting uniqueness (Property 2).

In the interpretation of $ as the distribution of a random variable, Property 9 describes
a symmetric distribution, since then the probability density function $' is symmetric; cf.
the discussion after Theorem 5. Furthermore, the convexity property 12' means exactly
that the density function is log -concave. Indeed, as we have seen in the proof of Theorem
4, Property 12' means that the function k defined by (23), that is, k(s) = ln<f>'(s), is
concave.

As mentioned before, in Example 1 of Sec. 6,

2'2dz

is the normal (Gaussian) probability distribution with mean 0 and variance 1. For
many problems this is clearly the most appropriate basis to find equivalent changes in
probabilities by use of formula (29).

The problem of comparing changes in probabilities relates to difference measurement,
which goes back at least to O. Holder in 1901 [8, Sec. 2]. He derived (6) and (7) from
other assumptions [8, §23]; see also [9, Theorem 4.2],
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