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1 Introduction

Recently, a four-parameter class of vertex operator algebras YK,L,M [Ψ] for integral param-

eters K,L,M and a continuous parameter Ψ were introduced in [1].1 These algebras were

1See also [2, 3] for different construction of the same algebras.
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associated to the configuration of three stacks of D3-branes attached to the trivalent junc-

tion of NS5, D5 and (1,1) branes at the three corners. Y-algebras were then identified with

algebras of local operators appearing at a trivalent junction of three interfaces between

topologically twisted U(N), U(M), and U(L) gauge theories coming from the low energy

effective theory of D3-branes. The gauge theory of interest is the geometric Langlands

twist of the N = 4 super Yang-Mills theory [4].

This paper discusses an identification of Y-algebras with truncations of W1+∞ and uses

them as building blocks to construct more complicated vertex operator algebras. At the

level of characters it is analogous to the topological vertex and to the problem of counting

of D0-D2-D4 bound states in the toric Calabi-Yau manifolds [5–7]. This construction leads

to new insights on the structure of vertex operator algebras and provides us with a physical

realization of the algebras using the brane setups.

1.1 Y-algebras as truncations of W∞

Starting with the Virasoro algebra and additional primary generators of each integral spin

3, 4, . . . , Gaberdiel and Gopakumar [8] have shown that there exists a two-parameter family

of algebras W∞[c, λ] satisfying Jacobi identities.2 One can identify special curves in the

parameter space at which the algebra W∞ contains an ideal I. If we quotient out the

ideal, we obtain a truncation of the algebra W∞/I. Some of the truncations were identified

already in [8] with WN algebras. The structure of ideals has further been analyzed in [10, 11]

where new truncations3 were discovered. Based on the structure of vacuum characters, it

has already been anticipated in [1] that there exists a relation between Y-algebras and

truncations of W1+∞ ≡ W∞ × U(1).

In section 2, we review the story behind both Y-algebras (in particular their defition

in terms of a BRST reduction) and truncations of W1+∞. We establish an identification

between these two by matching central charges and vacuum characters of YL,M,N [Ψ] and

W1+∞/IL,M,N . The vacuum character of YL,M,N can be identified with a generating func-

tion of 3d partitions (plane partitions) constrained to fit under the corner shifted by a

vector (L,M,N). We show that parameters of W1+∞ algebra are invariant under the shift

of all L,M,N by a constant value L,M,N → L+k,M+k,N+k. All these shifted algebras

correspond to the same truncation curve in the two-parameter space of W1+∞ algebras.

Above each truncation curve, one gets a sequence of truncations corresponding to shifts by

a positive integer k.

Apart from the match of central charges and vacuum characters there are the following

arguments supporting the identification of YL,M,N and truncations of W1+∞:

1. The basic examples of WN × U(1) truncations can be identified from the BRST

definition of Y0,0,N , Y0,N,0 and YN,0,0 that reduces to the standard Drinfeld-Sokolov

and the coset construction of the algebra. Note that the BRST definition of a generic

YL,M,N provides a BRST construction of all the other truncations.

2See also [9] where the algebra was defined under the name WAn.
3Apart from the one parameter families of truncations, some special double truncations were studied in

detail in [12] using the algebra SHc.
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2. The triality transformations from [8, 10, 11] can be identified with the triality trans-

formations of [1].

3. There are three families of modules associated to line operators inserted at the inter-

faces between the three gauge theories. From the point of view of W1+∞, they are

the modules associated to the three asymptotic directions in the parameter space.

They are naturally permuted by the action of the triality. These modules play an

important role in the gluing construction discussed below.

1.2 Gluing Y-algebras

Instead of the simple trivalent junction, one can consider a more general configuration of a

web of (p, q)-branes [13] and stacks of D3-branes attached to them. From the point of view

of the theory on D3-branes, this setup gives rise to the junction of interfaces (descending

from D3-branes ending on five-branes) between U(Ni) N = 4 super Yang-Mills theories

living on stacks of Ni D3-branes. If we look at the same system from the IR, the finite

segments of five-branes degenerate and the line operators supported at these interfaces

become effectively local operators living at the corner. It is natural to add them into the

final vertex operator algebra associated to the configuration of branes. The total vertex

operator algebra is thus an extension of the tensor product of algebras associated to each

trivalent junction by bimodules of these algebras (and their fusions) associated to the finite

five-brane segments. It turns out that the bimodules that need to be added have (half-)

integral conformal dimension with respect to the total stress-energy tensor of the vertex

operator algebra that is a consistency check that they can indeed be added to the algebra.

We give a prescription for such gluing in the case when each of the trivalent junctions

inside the (p, q)-web can be brought to the elementary trivalent junction corresponding to

Y-algebra by an SL(2,❩) transformation. In such cases, we identify bi-modules that need

to be added to the tensor product of Y-algebras and conjecture that there exist unique (or

at least canonicaly determined) OPEs of such bi-modules that satisfy Jacobi identities.

In examples, we mostly concentrate on configurations of defects descending from D5-

branes ending on (n, 1)-branes. We expect that the path integral of the N = 4 super

Yang-Mills theories living at the worldvolume of D3-branes localizes to the path inte-

gral of the supergroup Chern-Simons theories supported at the (n, 1)-interfaces [1, 14–17].

These Chern-Simons theories are glued together by boundary conditions following from the

boundary conditions descending from D3-branes ending of D5-branes analyzed in [18–20].

For some numbers of D3-branes, the resulting algebra can be given by a BRST construc-

tion following [1, 21–23]. This provides us with another insight into the structure of the

glued algebras. We show in many examples that the vacuum characters of the BRST

construction agrees with those obtained by the gluing and that the central charge of the

total algebra is simply a sum of the central charges of Y-algebras associated to trivalent

vertices. We check that the full algebras decompose correctly in the case of the N = 2

super Virasoro, the Bershadsky-Polyakov W(2)
3 algebra and the U(N)k Kac-Moody algebra

in the way predicted by gluing.

– 3 –
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The algebras associated to the configuration of D5-branes ending on (n, 1)-branes dis-

cussed above can be identified with truncations of infinitely generated W-algebras. Fixing

a discrete data which is a (p, q)-web configuration and a (half-) integral number ρi for

each internal edge of the web diagram, one gets a family of algebras parametrized by two

continuous parameters as in the case of W1+∞ algebra. Each parameter ρi associated to an

internal edge gives one linear constraint on the numbers of D3-branes surrounding the cor-

responding edge and we are free to choose three integer parameters to fully determine the

brane configuration. These parametrize truncations of the corresponding infinite algebra

in the same way as L,M,N parametrized truncations of W1+∞. In the case of ρi = 0, these

algebras can be identified with those of [24] and contain a U(M |N) matrix of generators of

each integral spin 1, 2, 3, . . . . Turning on the parameters ρi shifts the conformal dimensions

of the off-diagonal generators in the U(M |N) matrices. For example, the infinitely gener-

ated W-algebra associated to the resolved conifold diagram with ρ = 1
2 can be identified

with N = 2 super W∞ of [25]. One can understand the truncations of more complicated

infinite W-algebras as being glued from truncations of the basic building block W1+∞.

1.3 What do we learn about VOAs?

Let us now list a set of insights about vertex operator algebras that gluing construction

provides:

1. There are various ways of constructing VOAs, such as various BRST reductions, coset

constructions, free field realizations, or bootstrap for a given spin content. The gluing

construction provides us with a new one. To each web diagram with stacks of D3-

branes attached, one associates a tensor product of mutually commuting Y-algebras

associated to the vertices of the diagram. Their OPE structure can be identified

from [10, 26] by specializing the parameters to the corresponding truncation curve.

One adds bimodules associated to internal edges. These are the universal building

blocks for each diagram. In the last step, one needs to find OPEs of the bimodule

fields. To our knowledge the structure of such modules and their OPEs have not

been constructed yet but their construction should be possible using bootstrap or

the Coulomb gas formalism [27–29]. First steps towards an explicit construction

using free field realization will be discussed in [30] generalizing the construction of

lattice vertex operator algebras [31, 32].

2. It turns out that many well known algebras can be obtained as special cases of the

gluing construction, i.e. they are conformal extensions of a product of Y-algebras by

bimodules. Some examples discussed in this paper are

• N = 2 superconformal algebra is a conformal extension

N = 2 SCA × U(1) ⊃ Y1,0,2 × Y0,1,0 (1.1)

• U(N)k can be decomposed as a conformal extension of

U(N)k ⊃ Y0,0,1 × Y0,1,2 × . . .× Y0,N−1,N . (1.2)

Similar expression exists also for the U(N |M)k super Kac-Moody algebras.

– 4 –
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• Many (non-principal) DS-reductions can be decomposed in a similar way. An

example of such a decomposition is the W(2)
3 algebra

W(2)
3 × U(1) ⊃ Y0,1,3 × Y0,0,1. (1.3)

• The super Kac-Moody algebra D(2, 1;α)1 can be decomposed in two ways

D(2, 1;α)1 × U(1) ⊃ Y1,1,2 × Y1,1,0 × Y0,0,1 × Y0,0,1

D(2, 1;α)1 × U(1) ⊃ Y0,2,1 × Y2,0,1 × Y0,0,1 × Y0,0,1. (1.4)

We comment on many more examples in the main text.

3. The total stress-energy tensor of the glued algebra is a sum of stress-energy tensors

coming from the trivalent junctions. The central charge of the final VOA is thus given

by a sum of central charges of Y-algebras associated to the vertices. This provides

us with a simple way to compute the central charge directly from the web diagram.

In the case when the algebra can be given a BRST definition, the equality of the

central charge of the resulting algebra with the one comming from the sum of the

Y-algebra central charges provides us with a non-trivial check of the equivalence of

the two constructions.

4. From a given diagram, dual BRST constructions of the algebras and duality actions on

the parameter space of the corresponding infinitely generated algebras can be easily

discovered. For example, in the same way as the triality symmetry of Y-algebras was

discovered in [1], one can identify ❩2×❩2 duality action on algebras associated to the

resolved conifold diagram. This duality (which we expect to be valid for any value

of the parameter ρ) generalizes the duality of [25], which corresponds to the special

case of ρ = 1
2 .

5. The structure of modules can be understood in terms of the web diagrams. In par-

ticular, one can associate a family of degenerate modules to line operators supported

at each semi-infinite five-brane and ending at junctions (i.e. associated to each ex-

ternal leg of the diagram). Modules from different families should braid trivially and

the corresponding highest weights states should be charged only under the Y-algebra

associated to the trivalent junction associated to the corresponding external leg. If

the configuration admits a duality action, the families of modules should permute

accordingly.

6. Fixing a web configuration, one obtains different VOAs for different choices of num-

bers of D3-branes attached to the fixed five-branes. We can study various limits where

the number of D3-branes becomes infinite. In this way we obtain infinite W alge-

bras parametrized by a combination of continuous and discrete parameters coming

from the numbers of D3-branes before taking the limit and the relative orientations

of the vertices. Analogously to the case of YL,M,N , diagrams with finite numbers of

D3-branes should correspond to truncations of these infinitely generated W algebras.

– 5 –
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7. In the context of the topological vertex and BPS counting, the flip transitions play

an important role. In our setup, such flip transitions correspond to sliding D5-branes

along (n, 1) branes. We conjecture that algebras related by a flip transition differ

only by decoupled fermions and symplectic bosons. We show it is the case on a

simple example of the diagram associated to the N = 2 super Virasoro algebra, W(2)
3

algebra and the diagram associated to the flip of U(1) and Virasoro algebras. We

also conjecture that in the case of vanishing parameter ρi = 0 of a segment at which

we perform the flip transition, both algebras are the same. In the case of algebras

with a BRST definition, our conjecture is further supported by calculations of the

central charge and the vacuum character.

8. Since the basic building block YL,M,N can be thought of as an algebra of Yangian type

associated to û(1) [11, 33–35], we get for free an interesting integrable structure. In

particular, we have an infinite sets of commuting charges coming from the subalgebras

associated to the vertices.

9. Physical realization of the algebras suggests applications of the algebras in many

places in physics and mathematics such as AGT correspondence, action of VOAs on

equivariant cohomologies of moduli spaces of instantons, the geometric Langlands

program and many others. These relations still remain to be explored.

1.4 D0-D2-D4 counting

There exists a natural duality along the lines of [36] relating our brane configuration to the

one used in the context of the D4-D2-D0 brane counting from [6, 7, 37]. Let us first review

the configuration relevant to the counting of D0-D2-D4 bound states in a toric Calabi-Yau

three-fold. Consider the type IIA string theory on a manifold M10 = CY 3 × R
4 where

CY 3 is a toric Calabi-Yau manifold that can be viewed as a T 2 × R fibration over R
3

with various cycles of T 2 shrinking at various codimension one loci of the base R
3. Let us

introduce D4-branes supported at four-cycles, D2-branes supported at two-cycles and D0-

branes supported at points of CY 3 that are fixed under the T 2 action. All the branes are

extended along one of the additional four directions. D4-branes intersect at codimension

two defects in their world-volumes. The theory on D4-branes are gauge theories coupled

together by extra bi-fundamental matter fields at the loci where the branes intersect as

discussed in [38, 39]. From the point of view of the theory on these intersecting D4-branes,

D2- and D0- branes modify the gauge bundle of the gauge theories supported at D4-branes.

Fixing the numbers of these branes then corresponds to restricting the path integral of the

configuration of D4-branes to a particular instanton sector of gauge field configurations.

The characters of [6, 7, 37] are functions of the parameter q corresponding to the fugacity

for the D0-charge and Qj corresponding to the fugacities for the D2 charge.

The configuration of D0-D2-D4 branes discussed above has a natural lift to the M-

theory on M11 = CY 3 × R
4 × S1. Let us discuss what is the lift of various branes.

D4-branes become M5-branes wrapping the same holomorphic four cycle inside CY3 but

now also wrapping the M-theory circle S1. On the other hand, D2-branes lift to M2-branes

– 6 –
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supported at the same holomorphic cycles of CY3 as before. D0-branes are the KK-modes

on the M-theory circle.

Following [36], we can relate the M-theory configuration to our setup. Loci in the

base of the T 2 × R fibration of CY 3 where various cycles of T 2 shrink give rise to a web

of five-branes supported at R
4 × S1 where S1 is the original M-theory circle. M5-branes

become D3-branes ending on the five-branes and supported at faces of the (p, q)-web. M2-

branes reduce to D1 supported at R
1 inside R

4 × S1 and one of the directions descending

from the base of the T 2 × R
1 fibration. We end up exactly with the configuration used

for calculations in this paper. The D1-branes supported at the interfaces and ending

at junctions correspond to line operators in gauge theory, giving rise to modules for the

algebras. Summing over all the possible D1-brane charges then corresponds to summing

over bimodules associated to line operators supported at the finite five-brane segments.

In the formulas presented here, we recover expressions from [6, 7, 37] for Q = 1. We

expect the parameter Q to be related to the U(1) charges of the added bimodules associated

to the U(1) currents appearing at each trivalent junction. These indeed measure U(1)

charges of corresponding line operators that descent (in the brane picture) from D1-branes

as discussed above.

The characters of Y-algebras as atomic elements of the gluing agree with those of

Jafferis in [7] who proposed the same box counting interpretation. The gluing proposal at

the level of vacuum characters matches the one proposed in [6, 37]. On the other hand,

gluing at the level of full algebras seems to categorify these BPS counting problems.

2 Y-algebras and W∞

L

M

N

NS5 = (0, 1)

D5 = (1, 0)

(−1,−1)

In [1], YL,M,N [Ψ] algebras were defined as vertex operator

algebras associated to the junction of NS5, D5, and (1, 1)

branes.4 Parameters L,M,N label numbers of D3-branes

attached to the trivalent junction from different sides as

shown in the figure. From the point of view of the theory on

D3-branes, this leads to U(L),U(M),U(N) gauge theories

connected by domain walls descending from five-branes on

which D3-branes end. Vertex operator algebras arise as algebras of local operators living

at the corner in the Kapustin-Witten twist of the theory. The parameter Ψ is the canonical

parameter of [4] that labels the Kapustin-Witten twisted N = 4 SYM theories and plays

the role of the level of Kac-Moody algebras used in the definition of YL,M,N [Ψ]. From the

point of view of the N = 4 SYM, Ψ is a combination of the complexified gauge coupling

and the twisting parameter t. Y-algebras are defined as a BRST reduction of a system

of Kac-Moody algebras for super unitary groups and ghost systems. In this section, we

review their definition and we identify them with truncations of W1+∞.

4The configuration might need to be deformed by turning on fluxes.
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2.1 Definition of Y-algebras

Y-algebras were defined as a combination of the Drinfeld-Sokolov reduction and the coset

construction of a supergroup Kac-Moody algebra. Schematically, they are defined as5

YL,M,N [Ψ] =
DSN−M [U(N |L; Ψ)]

U(M |L; Ψ − 1)
for N > M

YL,N,N [Ψ] =
U(N |L; Ψ) × SN |L

U(N |L; Ψ − 1)

YL,M,N [Ψ] =
DSM−N [U(M |L;−Ψ + 1)]

U(N |L;−Ψ)
for N < M (2.1)

where DSN−M denotes the Drinfeld-Sokolov reduction with respect to the (N − M) ×
(N −M) diagonal block of U(N |L) and by the division by U(M |L; Ψ − 1) we mean the

BRST coset to be defined later. SN |L labels the set of N symplectic bosons and L free

fermions that contains a U(N |L;N −L− 1) subalgebra formed from the field bilinears (see

appendix A). More concretely, for parameters in the range N > M , YL,M,N [Ψ] is defined

as the BRST reduction of the complex

U(N |L; Ψ) × U(M |L;−Ψ + 1) × gh(DS) × gh(coset) (2.2)

by two successive BRST reductions. In the complex above, we have introduced gh(DS)

for (super)ghosts needed for the Drinfeld-Sokolov reduction implemented by Q
(DS)
BRST and

gh(coset) for (super)ghosts associated to the BRST coset implemented by Q
(coset)
BRST .

Q
(DS)
BRST can be defined in the following three steps (assuming N > M):

1. Pick the principal SU(2) embedding inside the U(N −M) subalgebra associated to

the (N −M) × (N −M) block inside U(N |L). The corresponding Cartan generator

of such embedding can be taken to be of the form

H =
N −M − 1

2
E11 +

N −M − 3

2
E22 + · · · +

M −N + 1

2
EN−M,N−M (2.3)

where Eij is a generator of the U(N) Lie algebra associated to the matrix with one

at the position i, j. The generator H provides us with a grading that we use in the

next step.

2. Decompose the adjoint representation of U(N |L) into subspaces of H-charge greater

then, equal to, and smaller than one half: g< 1
2
⊕ g 1

2
⊕ g> 1

2
. Introduce fermionic bc

ghosts for each bosonic element and bosonic βγ ghosts for each fermionic element in

5Throughout the paper, we use the notation U(N |L; Ψ) = U(1)(N−L)Ψ×SU(N |L)Ψ−N+L, where Ψ−N+

L is the level of the SU(N |L) Kac-Moody subalgebra, i.e. Ψ is the level relative to the critical level. Although

U(1) current algebra does not have any intrinsic level, we use the subscript to indicate the normalization

of the U(1) current with respect to which the electric modules have integral dimensions. For more details

consult appendix A.
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g> 1
2

and for half of the elements in g 1
2
.6 This system of (super)ghosts is labeled by

gh(DS).7

3. Define a nilpotent BRST charge Q
(DS)
BRST constraining g> 1

2
and half of g 1

2
generators

to a fixed value

Q
(DS)
BRST =

∮

dz

[

(Ji − t+i )ci +
1

2
fkijbkc

icj
]

(2.4)

where t+ is the raising operator of the SU(2) embedding. In our conventions, this

generator has all the entries vanishing except of those above the diagonal that are set

to one. fkij are the structure constants of the algebra of constraints (restrictions of

the structure constants of the U(N |L) Lie algebra). For an explicit example of such

a constraint see appendix B.

The coset BRST reduction is then performed by adding (super)ghosts of conformal

dimension h(ci) = h(γj) = h(bi) − 1 = h(βj) − 1 = 0, one for each generator of U(M |L).

We denote this (super)ghost system by gh(coset) and study the cohomology with respect to

Q
(coset)
BRST =

∮

dz

[

(J1
j − J2

j )cj +
1

2
f ljkblc

jck
]

. (2.5)

Here Jα
j are the currents of the two copies of U(M |L) algebra being sewed and fkij are the

structure constants of U(M |L).8 For the notational simplicity we wrote the formula as if

there were only bosonic generators and fermionic ghosts, but the generalization should be

obvious.

In the case when N −M = 1, the DS1 is a trivial operation and can be omitted. On

the other hand, if N = M , one needs to add symplectic bosons SN |L in the fundamental

representation of U(N |L). These are known to contain a conformally embedded U(N |L;N−
M − 1) Kac-Moody algebra formed by their bilinears. The resulting Y-algebra can be

identified with the BRST reduction of the complex

U(N |L; Ψ) × SN |L × U(N |L;−Ψ + 1) × gh(coset) (2.6)

by the BRST charge

Q
(coset)
BRST =

∮

dz

[

ci(J1
i − J2

i − JS
i ) +

1

2
fkijbkc

icj
]

(2.7)

where JS are the U(N |L) currents obtained from the bilinears in SN |L fields. Intuitively,

this BRST operator couples the symplectic bosons to the two Chern-Simons theories con-

nected by the interface.

6This half of the elements needs to be picked such that they form a Lagrangian subspace inside g 1

2

with

respect to the symplectic pairing given by the standard invariant two-form of SU(N).
7The conformal dimensions of such ghosts are h(ci) = h(γi) = 1−h(bi) = 1−h(βi) = 1−h(Ji) = −H(Ji)

where H(Ji) is the H-charge of the element Ji. This assignment of conformal dimensions ensures that the

BRST charge has degree one with respect to the modified stress-energy tensor of the Drinfeld-Sokolov

reduction and it is useful to count the contribution from the ghosts in the total stress-energy tensor.
8The upper index α = 1, 2 runs over the two copies of algebra while indices j run over the generators of

the adjoint representation of U(M |L).
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In the following, we will use the unified notation

DSN−M [U(N |L; Ψ)] (2.8)

for any non-negative N − M that is defined by the DS-reduction described above for

N −M > 1, that is trivial in the case of N −M = 1, and that produces

DS0[U(N |L)Ψ] = U(N |L)Ψ × SN |L (2.9)

in the case that N = M .

2.2 W1+∞ and its truncations

The vertex operator algebra W∞ is the algebra obtained by an extension of the Virasoro

algebra by independent primary fields of each integral spin ≥ 3, so that the generators are

T,W3,W4,W5 . . . (2.10)

Imposing the conditions of associativity, [8, 9] concluded that there exists a two parameter

family of such algebras, one parameter being the central charge c and the other one can be

chosen to be

x2 =
(C4

33)
2C0

44

(C0
33)

2
(2.11)

where C l
jk are the OPE coefficients (C l

jk is the coefficient of the primary operator Wl in

the OPE of Wj and Wk).9

It is convenient to add a decoupled U(1) current into the algebra and define W1+∞ ≡
U(1)×W∞. At special curves in the two-parameter space of such algebras, W1+∞ develops

an ideal I. Quotienting this ideal out, one obtains a truncation of W1+∞. According to [8],

some of such truncations can be identified with WN ×U(1) algebras generated by fields up

to spin N . The structure of truncations of W1+∞ was further analyzed in [10] where new

truncations were discovered. It turns out that Y-algebra can be identified with these more

general truncations of W1+∞.

As pointed out in [10], there exists an useful parametrization of the structure constants

in terms of a triple of parameters λi satisfying

1

λ1
+

1

λ2
+

1

λ3
= 0 (2.12)

in terms of which the central charge and the parameter (2.11) are given by

c∞ = (λ1 − 1)(λ2 − 1)(λ3 − 1)

x2 =
144(c+ 2)(λ1 − 3)(λ2 − 3)(λ3 − 3)

(λ1 − 2)(λ2 − 2)(λ3 − 2)
. (2.13)

Modifying the stress-energy tensor in such a way that the current J has conformal weight

one, the central charge gets shifted by one c1+∞ = c∞ + 1. The reason for introducing

9Although starting from spin 6 the primary operators are not uniquely determined even up to an overall

rescaling, there is no such problem with primaries of spin 3 or 4.

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
1
0
9

Figure 1. Truncation curves parametrized by (L,M,N) such that (L+1)(M+1)(N+1) ≤ 6. This

restriction means that the first generator that we are quotienting appears at level ≤ 6 in the vacuum

module. We use the parametrization from [10] where the two axes are related to λi parameters by

x = 1

3
(2λ1 − λ2 − λ3), y = 1√

3
(λ2 − λ3) which manifestly shows the S3 triality symmetry. At the

points where two curves cross, we find the minimal models of W∞ algebra if we quotient out by the

maximal ideal which in particular contains the two ideals coming from the two curves that meet.

this parametrization is that for λj = N ∈ N, the algebra truncates to WN × U(1). We

might as well analytically continue the structure constants of WN × U(1) as a function of

the rank parameter N (since with a suitable choice of normalization they are just rational

functions of N and c) and find (following Gaberdiel and Gopakumar [8]) that for a fixed

value of the central charge c, there are generically three different values λj of N with the

same structure constants.

The local fields of the W1+∞ algebra can be labeled by 3d partitions where the confor-

mal dimension of the fields is given by the number of boxes of the corresponding partition.10

At special curves in the two dimensional parameter space of W1+∞ algebras, the generators

associated to 3d partitions having a box at coordinates (L + 1,M + 1, N + 1)11 form an

ideal IL,M,N . In other words, IL,M,N contains all the configurations, where the boxes do

not fit between the corner and its copy shifted by (L,M,N). The curve in the parameter

space for which IL,M,N appears is given by

L

λ1
+
M

λ2
+
N

λ3
= 1. (2.14)

Note that due to (2.12), the ideals IL,M,N ⊃ IL+k,M+k,N+k are associated to the same curve.

Derivation of the formula (2.14) along the lines of [11] can be found in the appendix D.3.

If we quotient by the ideal IL,M,N , we recover an algebra with generators associated to 3d

partitions living between the corner at the origin and the corner shifted by (L,M,N). Each

truncation curve has a corresponding maximal truncation which we get by quotienting by

I(L,M,N)−max(L,M,N)(1,1,1) (2.15)

10This simple combinatorial interpretation is one of the main reasons for considering the additional U(1)

factor instead of restricting purely to W1+∞.
11Here we use the convention that the box corresponding to J−1|0〉 is at position (1, 1, 1).
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or in other words choosing one of (L,M,N) to be zero. These are the truncations discussed

in [10] and they correspond to quotients that are irreducible for generic values of the central

charge. For illustration, few truncation curves are depicted in figure 1.

2.3 Identification between YL,M,N and truncations of W1+∞

Based on the observation that vacuum characters of YL,M,N have the same structure as

vacuum characters of W1+∞ truncations, it was suggested in [1] that these might be actually

related. In this section, we discuss identification of these two in detail and add few other

pieces of evidence supporting such identification.

Vacuum characters. The vacuum character of YL,M,N for N ≥M was determined in [1]

to be given by

χ [YL,M,N [Ψ]] = χWN−M
(q)

∮

dVM |Lχ
M |L
N−M

2

(q, xi, yi). (2.16)

In this expression, χWN
is the character of the U(1)×WN algebra,

∮

dVL,M is the Vander-

monde projector (invariant integration) that projects to U(L|M) invariant combinations of

fields, and χ
M |L
N−M

2

(q, xi, yi) is the character of a system of symplectic bosons in the funda-

mental representation of U(M |L) and with the level shifted by N−M
2 that comes from the

DS-reduction of the off-diagonal blocks of U(N |L; Ψ). All of these ingredients are reviewed

in appendix C.

This character was expected [1] to have an interesting box counting interpretation:

it should count 3d partitions that fit between the corner at the origin and the corner

shifted by (L,M,N). In the limit of large number of D3 branes this simplifies and one

finds the famous MacMahon function counting all plane partitions without any additional

constraints. For finite (L,M,N), it was argued in [1] that the first discrepancy with respect

to the MacMahon function appears at level (L+ 1)(M + 1)(N + 1). Assuming the algebra

YL,M,N to be isomorphic to a quotient of the affine Yangian described above, the existence

of such a null state already fixes the truncation curve. Discussion from the appendix D.3

then justifies the expected form of the character from [1].

Central charges. The central charge of YL,M,N was determined in [1] to be given by12

cL,M,N [Ψ] =
1

Ψ
(L−N)

(

(L−N)2 − 1
)

+ Ψ(M −N)
(

(M −N)2 − 1
)

+ (2.17)

+
1

Ψ − 1
(M − L)((M − L)2 − 1) + (2N +M − 3L)(N −M)2 + L−N.

12Regarding Ψ-dependence in the expression, one can identify the pole at 0 with the infinite leg in (0, 1)

direction, the pole at ∞ with the infinite leg in (1, 0) direction and the pole at 1 with the infinite leg in

(1, 1) direction (these can be thought of as homogeneous and inhomogeneous coordinates on ❈P1). The

prefactor in front of each pole is a cubic expression in the difference of numbers of branes attached to the

corresponding five-brane from the left and right. In general (p, q)-web diagrams, we will recover similar

structure of the central charge.
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Note that this is invariant under replacements

Ψ ↔ 1

Ψ
L↔M

Ψ ↔ 1 − Ψ N ↔M (2.18)

which generate the S3 group of transformations (related to the triality symmetry of W1+∞).

The group acts on (L,M,N) by permutations and on Ψ by fractional linear transformations

permuting (0, 1,∞). This motivates us to introduce another parametrization

λ1 = L− (1 − Ψ)N − ΨM

λ2 = −L− (1 − Ψ)N − ΨM

Ψ
(2.19)

λ3 =
L− (1 − Ψ)N − ΨM

Ψ − 1

satisfying
1

λ1
+

1

λ2
+

1

λ3
= 0 (2.20)

just like in the case of W∞. Furthermore, the expression for the central charge (2.17) can

be rewritten in the form

c1+∞ = (λ1 − 1)(λ2 − 1)(λ3 − 1) + 1. (2.21)

which is equal to the central charge of W∞ (2.13) except for the shift by one due to the U(1)

factor. The S3 triality action of [1] acts simply by permutations of the parameters λi and

the central charge is manifestly triality invariant in this parametrization. It is convenient

for what follows to introduce ǫ parameters (ǫ1, ǫ2, ǫ3) by13

Ψ = −ǫ2
ǫ1

0 = ǫ1 + ǫ2 + ǫ3 (2.22)

(note that they are determined by Ψ only up to an overall scale factor). In terms of these,

the parameters λi can be written in more symmetric form

λi =
Lǫ1 +Mǫ2 +Nǫ3

ǫi
(2.23)

To summarize, if we identify the parameters λi from (2.13) with those introduced in (2.19),

we see that the central charges, the vacuum characters and the triality transformations of

Y-algebras can be identified with those of the truncations of W1+∞ algebra. Moreover the

parameters (2.13) satisfy (2.14). Given the constraining power of the bootstrap analysis,

this is a strong indication of correctness of our identification of Y-algebras as truncations

of W1+∞.

Note the special points where the two truncation curves intersect. The algebras with

such values of parameters contain further null-states that can be factorized. From the

point of view of Y-algebras, these points correspond to the DS-reduction and the coset of

13We expect the parameters ǫi to be related to the Nekrasov parameters.
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Wµ

Hµ

Dµ

L

M

N

M 2

µ

M 1

µ

M 3

µ

N1

N2

N3

Figure 2. Labeling of modules associated to line operators supported each interface. Modules are

labeled by representations of a supergroup induced at the corresponding interface. For example

Dµ ≡M3
µ modules are labeled by representations of U(M |L).

Kac-Moody algebras at rational levels. At rational levels the Kac-Moody algebras contain

null states. To take them into account, one should use Kac-Weyl characters to calculate the

characters of the final algebra. At least in the case of WN algebras these are known to lead

to minimal models [40]. It would be nice to generalize this construction to all Y-algebras.

In our considerations, we will always consider Ψ to be generic, corresponding to a generic

points of the truncation curve (L,M,N).

2.4 Modules of YL,M,N

In order to define the gluing construction, we will need to consider modules for Y-algebras.

The most general module needed for the gluing is labeled by three representations of

unitary supergroups associated to line operators supported at the three infinite interfaces

and ending at the boundary. More concretely, as illustrated in figure 2, the modules for

YL,M,N will be represented by a triple of representations (λ, µ, ν) of U(L|M), U(M |N)

and U(N |L). At present, we have only a partial understanding of the characters and the

conformal dimensions of these representations, which we now summarize.

Topological vertex and box counting. In the special case that the three asymptotic

representations are covariant representations (i.e. contained in the tensor power of the

fundamental representation), we can use the box counting interpretation of the topological

vertex to find the conformal dimensions and the characters [11, 35, 41, 42]. In this case,

the representations (λ, µ, ν) can be labeled by three Young diagrams. The states in the

module of YL,M,N are then in one-to-one correspondence with the plane partitions which

have non-trivial asymptotics given by the Young diagrams (λ, µ, ν) and further restricted

such that the box at coordinates (N1 + 1, N2 + 1, N3 + 1) is not present.

The highest weight state corresponds to the configuration with minimal (but infinite)

number of boxes compatible with the asymptotics. The states at level l are in one-to-one

correspondence with plane partitions obtained by adding l boxes to this minimal configu-

ration (always in a way such that the resulting configuration of boxes is a plane partition).

This identification allows us to write down the character purely in terms of a combinatorial

counting. The conformal dimension of the module can be similarly computed [11] by first

computing the generating function of the conserved charges of YL,M,N and extracting the
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eigenvalue of the L0 generator from it (see appendix D for details). The result for the

representation with an asymptotic Young diagram in the third direction is14

j(M3
µ) =

∑

j

µj (2.24)

h(M3
µ) = − λ3

2λ1

∑

j

µ2j −
λ3
2λ2

∑

j

(2j − 1)µj +
λ3
2

∑

j

µj

= − λ3
2λ1

∑

j

µ2j −
λ3
2λ2

∑

j

(µT )2j +
λ3
2

∑

j

µj . (2.25)

In particular, the conformal dimension of the minimal representation is given by

h(�3) =
1 + λ3

2
(2.26)

irrespectively of the truncation that we are considering. Its complex conjugate representa-

tion has an opposite U(1) charge but the same conformal dimension. By fusing these, we

can in principle obtain an arbitrary maximally degenerate representation of the type we

need for the gluing procedure.

The main disadvantage of the approach using box counting is that we have only access

to representations whose asymptotics are those obtained from the fundamental represen-

tation (i.e. covariant representations) and it is not clear how to generalize these results

directly to the case of fusions of both fundamental and anti-fundamental representations.

The second disadvantage is the lack of useful closed-form formulas for the characters of the

modules, but see [43] for the case where one of the parameters (L,M,N) vanishes.

Characters from BRST construction. It was conjectured in [1] that Y-algebras have

three families of degenerate modules associated to line operators supported on the three

interfaces and ending at the corner. These three families were labeled as in the figure 2.

In the following, we will introduce a more uniform notation

M1
µ = Hµ, M2

µ = Wµ, M3
µ = Dµ. (2.27)

The parameters µ in M1
µ label representations of U(M |N) and analogously for the other

two classes of modules.

In the following, we will consider generic representations M2
ν ⊗M3

µ of Y0,M,N [Ψ] and

YL,0,0[Ψ] algebras. These representations are labeled by representations of U(M) and U(N).

Characters and conformal dimensions of all the modules we use in this paper can be ob-

tained from the SL(2,❩) transformations of this setup. Knowledge of these modules will

allow us to consider configurations that require gluing along internal lines with one of the

stacks on the left or on the right of the leg vanishing. Generic situation requires dealing

with technically more complicated representations of U(N |M) Lie superalgebras and is left

for future work.

The representations of U(M) are labeled by a set of integers (µ1, µ2, . . . , µM ), where

µ1 ≥ µ2 ≥ · · · ≥ µM (note that we do not restrict these to be non-negative and look at all

14The normalization of U(1) current is discussed later.
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the irreducible representation one can get from the tensor product of the fundamental and

the anti-fundamental representation). Choosing a normalization of the U(1) current such

that15

J(z)J(w) ∼ λ1 + λ2
(z − w)2

= −λ1λ2
λ3

1

(z − w)2
, (2.28)

the charge of M3
µ and its conformal dimension are given by16,17

j(M3
µ) =

M
∑

j=1

µj , (2.29)

h(M3
µ) = − λ3

2λ1

M
∑

j=1

µ2j −
λ3
2λ2

M
∑

j=1

(2j −M − 1)µj +
N

2

M
∑

j=1

|µj |. (2.30)

The characters of M2
ν and M3

µ modules of Y0,M,N [Ψ] can be calculated according to [1]

in a similar way as the vacuum character. The only modification is to insert a corresponding

Schur polynomial sµ(xi) and sν(xi) into the formula, i.e. in the case of N > M and M3
µ

representation, the character is given by

χ0,M,N (M3
µ) = χWN−M

(q)

∮

dVMχ
M |0
N−M

2

(q, xi)sµ(xi). (2.31)

In the case of M2
ν modules, one needs to first perform the DS reduction by substituting

xj = q
1
2
(2j−M−1) for j ≤ N −M and then insert into the integral

χ0,M,N (M2
ν ) = χWN−M

(q)

∮

dVMχ
M |0
N−M

2

(q, xi)sν

(

xj → q
1
2
(2j−N2−1), xi

)

. (2.32)

One can similarly calculate characters of modules with two asymptotics M2
µ ⊗M3

ν by first

doing the DS reduction substitution and then inserting into the integral formula both

characters. An example of Y0,1,2[Ψ] is given in C.

Similarly for the character of the YL,0,0[Ψ] representation with two asymptotics, no

DS-reduction is required and one needs to simply insert both Schur polynomials into the

corresponding integral formula.

For positive values of µj , these characters have a nice box-counting interpretation that

was discussed above. The conjugate representations have the sign and the order of µ’s re-

versed and they have the same character and the same conformal dimension. Furthermore,

if we split µ into positive and negative parts, µ = µ+ + µ−, we see that both the U(1)

15There is a freedom of assigning U(1) current algebra factors to vertices and the corresponding U(1)

charges to bimodules. Here we fix this freedom in certain way, but in specific examples other choices may

be more suitable. See section 4.4.1 where this freedom is discussed in detail in the case of U(N)κ affine Lie

algebra.
16Checks of these formulas for YN,0,0, Y0,1,0, Y0,1,1, Y0,2,1, Y0,1,2 can be found in appendix C.3. This

formula was checked for either M or N vanishing.
17To fully specify the irreducible highest weight representations of WN , we should specify N −1 indepen-

dent charges. For the maximally degenerate representations these can be determined in terms of the Young

diagram labels. For this reason we do not need to know the explicit values of the higher spin charges. An

example for the generating function the higher spin charges for the (�, ·, ·) representation see appendix D.2.
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N1

N2

N3

N4

N5

N6
N7

N8

Figure 3. A generic (p, q)-web with stacks of Ni D3 branes attached. The gluing construction

associates a vertex operator algebra to such a diagram. To each vertex in the diagram, one associates

a Y-algebra and to each finite line segment one associates a class of bimodules for the two Y-

algebras that are connected by the corresponding line segment. The final vertex operator algebra

is a conformal extension of the product of Y-algebras by such bimodules and their fusions.

charge and the dimension are additive under this splitting. As far as the character goes, a

generic representation does not seem to have a known simple combinatorial interpretation

unless we are dealing with Y0,0,N = WN algebra for which the character is invariant (up to

overall factor of q to some power) under the shift of all µi by a constant and we can make

all of them positive and then deduce corresponding box counting interpretation.

3 Gluing construction

It was already suggested in [1] that one can use a construction analogous to the topological

vertex [5–7] to produce more complicated vertex operator algebras by gluing Y -algebras.

Consider a web of (p, q)-branes with stacks of D3-branes attached to them from different

sides as in figure 3.18

This configuration gives rise to a web of domain walls in the N = 4 super Yang-

Mills theory. In the topological twist of the theory, local operators inserted at trivalent

junctions of the diagram give rise to Y-algebras. Looking at the configuration from the IR,

the finite segments of five-branes become infinitely small and the whole configuration can

be thought of as a resolution of a single star shaped junction of more complicated domain

walls. According to this picture, the line operators supported at finite segments and ending

at the two trivalent junctions play the role of local operators of the IR junction and should

be added to the final vertex operator algebra. The line operators living at interfaces and

ending at their junctions will be associated to modules for Y-algebras. Operators one

needs to add to the collection of Y-algebras correspond to bimodules associated to such

line operators and their fusions. It turns out that these bimodules have (half-) integral

conformal dimension with respect to the total stress-energy tensor (sum of the stress-

energy tensors associated to each trivalent junction) and can indeed be added to the vertex

operator algebra. In this section, we explain this construction in detail.

18Throughout the paper, we consider only webs corresponding to toric diagrams of Calabi-Yau three-folds

without compact four-cycles, i.e. tree-like diagrams. The construction should be possible in general but in

the presence of the closed faces, generic modules associated the Gukov-Witten defects [44] stretched within

the internal faces can also be added to the VOA.
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A2 = (a1
2
, a2

2
)

A1 = (a1
1
, a2

1
)A3 = −A1 − A2

(0, 1)

(1, 0)

(−1,−1)

M

Figure 4. Transformation relating generic vertex of interest with the one used in identification of

Y-algebras.

3.1 The vertex

We start with the description of the basic building blocks of our construction. The algebra

of local operators associated to the trivalent junction of D5, NS5 and (1,1) brane19 can be

identified with YL,M,N [Ψ] algebra reviewed above. In order to allow more general gluing,

it proves useful to consider a larger family of trivalent junctions that will then serve as

building blocks in the gluing construction. Luckily, one can obtain a larger class of such

vertices by applying S-duality transformations to the basic D5-NS5-(1,1) junction. In the

topological vertex literature, this operation is related to the change of framing.

S-duality acts on an AT ≡ (p, q)T five-brane by a left multiplication by an SL(2,❩)

matrix

M =

(

a b

c d

)

for ad− bc = 1. (3.1)

The corresponding transformation of the coupling parameter Ψ is

Ψ → aΨ + b

cΨ + d
. (3.2)

In terms of ǫ parameters, the transformation is implemented by the left multiplication of

(ǫ1, ǫ2)
T by matrix

(

M−1
)T

=

(

d −c
−b a

)

(3.3)

such that the combination

ǫTA ≡
(

ǫ1 ǫ2

)

(

p

q

)

(3.4)

stays invariant.

Using these SL(2,❩) transformations, one can map a trivalent junction of Aj =

(pj , qj), j = 1, 2, 3, defects (satisfying conservation of charges and the condition that en-

sures existence of such a transformation)

0 = A1 +A2 +A3 (3.5)

1 = A1 ∧A2 ≡ p1q2 − p2q1

19Note that we identify (1, 0) with D5-brane and (0, 1) with NS5-brane in the contrast with [1].
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to the configuration used in the definition of Y-algebras by

M =

(

q2 −p2
−q1 p1

)

. (3.6)

In other words, to each such trivalent junction of A1, A2, and A3 defects as shown in the

figure 4 and the coupling parameter Ψ, one associates the algebra

Y A1,A2,A3

L,M,N [Ψ] = Y

(

1

0

)

,
(

0

1

)

,
(

−1

−1

)

L,M,N

[

−q2Ψ − p2
q1Ψ − p1

]

≡ YL,M,N

[

−q2Ψ − p2
q1Ψ − p1

]

. (3.7)

In terms of ǫ parameters ǫ = (ǫ1, ǫ2)
T and the five-brane charges

Y A1,A2,A3

L,M,N [ǫj ] = YL,M,N

[

ǫTAj

]

≡ YL,M,N [ǫ̃j ] (3.8)

where ǫ̃j = ǫTAj = pjǫ1 + qjǫ2. Note that the necessary consistency requirement ǫ̃1 + ǫ̃2 +

ǫ̃3 = 0 follows from the charge conservation A1 + A2 + A3 = 0 at the trivalent junction.20

In terms of the invariant λ-parameters parametrizing the structure constants of Y (2.19)

we have

λj =
Lǫ̃1 +Mǫ̃2 +Nǫ̃3

ǫ̃j
=
ǫT (LA1 +MA2 +NA3)

ǫTAj
. (3.9)

This is insensitive to rescalings of ǫ and Aj parameters. λj determined in this way satisfy

both (2.12) and (2.14).

There exists a natural ❩2 sign of the SL(2,❩) transformations. By taking a ❩2 reduc-

tion of an SL(2,❩) transformation matrix, we obtain an element of SL(2,❩2) ≃ S3 and

taking the sign of the corresponding permutation gives us a homomorphism SL(2,❩) → ❩2.

Concretely, we can map
(

a b

c d

)

7→ (−1)ac+ad+bd+1. (3.10)

obtaining the required sign. Choosing our canonically oriented vertex to have the + ori-

entation, any other vertex can be assigned an orientation given by the sign of the SL(2,❩)

transformation mapping the canonically oriented vertex to the vertex we are considering.

Concretely, the orientation is given by

sgn
[

Y A1,A2,A3

L,M,N

]

= (−1)p1p2+q1q2+p1q2+1 = (−1)p1p2+q1q2+p2q1 . (3.11)

3.2 The edge

Let us first consider gluing two vertices as in the figure 5 where the numbers are subject

to constraints

A1 +A2 = A′
1 +A′

2

A1 ∧A2 = 1 (3.12)

A′
1 ∧A′

2 = 1

20Note also that identification is possible for any values of A1 and A2 not only those related to the

junction of NS5- and D5-branes by S-duality. One is tempted to identify generic vertex with such algebra.

This naive guess would not be consistent with gluing proposal since bimodules added in gluing construction

would not be (half-) integral.
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(p1, q1)

(p2, q2)

(p′
2
, q′

2
)

(p′
1
, q′

1
)

(p1 + p2, q1 + q2)
K

L

N

M

Figure 5. Any junction of two Y-diagrams can be put into this form by reversing the orientation

of the legs and changing the signs of the corresponding labels. The parameters are subject to the

constraints from (3.12).

(1, 0)

(0, 1)

(p, p+ 1)

(1− p,−p)

(1, 1)
K

L

N

M

Figure 6. By SL(2,❩) transformation, one can put diagram 5 to this form where parameter p is

given by combination (3.14).

The first equation is simply the condition of the conservation of charges and the remaining

conditions come from the requirement that both vertices are S-dual to the elementary

junction of NS5, D5 and (1,1)-brane. One can always change the orientation of the ingoing

and the outgoing legs and change the signs of corresponding (p, q) charges in order to obtain

the configuration in 5. Using the S-duality transformation and the fact that all the building

blocks are S-dual to the triple junction of D5, NS5, and (1,1)-brane, one can transform our

system uniquely to a new configuration depicted in figure 6 by the transformation

M =

(

q2 −p2
−q1 p1

)

. (3.13)

We used the fact that conditions (3.12) let us express all pairings in terms of one remaining

invariant parameter (measuring the relative framing of the two vertices)

p ≡ −A2 ∧A′
2 = 1 +A2 ∧A′

1 = −1 +A1 ∧A′
2 = −A1 ∧A′

1. (3.14)

The first vertex is by definition positively oriented, while the orientation of the second

vertex can be easily read off from (3.11) and we find it to be equal to (−1)p.

By looking at the two Y-vertices in diagram 5 or 6, one can deduce that the final

algebra will be a conformal extension of

Y −A1,−A2,A1+A2

L,M,K [Ψ] × Y
A′

1,A
′
2,−A′

1−A′
2

M,L,N [Ψ] (3.15)

by a collection of M3
µ bimodules of the two Y-algebras on the right hand side.
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Conformal dimension of gluing fields. We can now check that dimension of the

bimodules are (half-)integral. This can be easily seen from the transformed diagram 6.

Remember that the total stress-energy tensor of the glued algebra is given by a sum of

stress-energy tensors associated to the vertices. In particular, the conformal dimension of

a bimodule is the sum of the two dimensions coming from the two endpoints,

hµ = h(M3
µ) + h′(M3

µ). (3.16)

In the special case that the exchanged representation is the fundamental one, we can use

the formula (2.26) and find

h� = 1 +
λ3 + λ′3

2
= 1 +

K +N − L−M

2
+
p(M − L)

2
≡ 1 + ρ. (3.17)

Note in particular that all the dependence on continuous parameters like Ψ has canceled.

The resulting dimension is always (half-)integral. The parameter ρ introduced in this

formula will be important in later sections.

Specializing now to the case L = 0 as in (2.30), we can be more general and write the

expression for arbitrary line operator in representation µ:

hµ =
1 + p

2

M
∑

j=1

µ2j +
1 − p

2

M
∑

j=1

(2j −M − 1)µj +
K +N

2

M
∑

j=1

|µj |. (3.18)

Analogously, in the case that M = 0, we have

hµ =
1 − p

2

L
∑

j=1

µ2j +
1 + p

2

L
∑

j=1

(2j − L− 1)µj +
K +N

2

L
∑

j=1

|µj | (3.19)

This is again independent of the continuous parameter Ψ and is (half-)integral.

Gluing in terms of λ parameters. If we fix the discrete parameter ρ which determines

the dimension of the gluing matter and the five-brane charges Aj and A′
j , we can write

explicitly the gluing conditions for Y-algebras directly in terms of λj and λ′j parameters.

Let us first introduce a vector in five-brane charge space characterizing the first vertex

σ =
A2

λ3
− A3

λ2
(3.20)

and similarly for the second vertex. Using the five-brane charge conservation

A1 +A2 +A3 = 0 (3.21)

and (2.20) we find that the definition of σ is cyclic invariant,

λ1λ2λ3σ = λ2(λ3A3 − λ1A1) = λ3(λ1A1 − λ2A2). (3.22)

The usefulness of σ lies in the fact that it encodes the λj parameters of the vertex, i.e.

σ ∧Aj =
1

λj
. (3.23)
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Furthermore, eliminating the number of D3-branes and parameter Ψ from the gluing con-

ditions, the gluing condition translates to a simple condition

σ ∧ σ′ = 0 (3.24)

satisfied by σ and σ′ associated to glued vertices. This condition means that the vectors σ

associated to the neighbouring vertices are parallel. We can use this and the definition of

ρ to determine λ′j once we know λj , ρ,Aj and A′
j ,

2ρ = λ3 + λ′3

0 = (λ1A1 − λ2A2) ∧ (λ′1A
′
1 − λ′3A

′
3) (3.25)

0 = (λ1A1 − λ2A2) ∧ (λ′2A
′
2 − λ′3A

′
3)

which is a linear system of equations and can be easily solved for λ′.

Statistics of the gluing matter. Gluing fields turn out to have either bosonic or

fermionic character depending on the relative ❩2 sign (3.11) of the two vertices that we are

gluing (and not whether the dimension of the gluing matter is integral or half-integral).

We expect to have fermionic fields if the two vertices have the same sign and bosonic fields

if the sign is opposite. In terms of the framing factor p we will have bosons for p odd and

fermions for p even. This is indeed consistent examples with values p = −1, 0, 1 that we

discuss in greater detail in later sections.

Summary of gluing. For a complete gluing prescription for an edge, we need to

1. Identify Y-algebra bi-modules associated to the line operators supported at the finite

five-brane segments. These are labeled by finite-dimensional, highest weight rep-

resentations of the U(M |N) group where M and N are the numbers of D3-branes

attached to the finite edge from the right and left. If one of these vanishes (say

M = 0), they are simply labeled by ordered (both positive and negative) integers

µ1 ≥ µ2 ≥ · · · ≥ µN .

2. To perform the gluing at the level of characters, one needs conformal dimensions and

characters of corresponding modules. These can be obtained for example from the

BRST reductions of the Kac-Moody algebra modules or box counting for contravari-

ant modules.

3. We expect that the operator product expansions are fixed completely by the discrete

data described above. The structure constants of W1+∞ were found in [10, 26] and

the structure constants of Y-algebras are simply their restrictions to particular values

of the parameters λ of the corresponding truncations. The higher spin charges of the

modules are determined in terms of the representation data and one can use either

the bootstrap approach or the Coulomb gas calculation [27–29] to find structure

constants associated to both OPEs of the gluing matter with Y-algebra generators

and also within gluing matter fields.21

21Note that there seems to exist a free field realization of Y-algebras that was constructed in [2]. It would

be nice to explore this connection further.
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3.3 Gluing in general

Let us consider an arbitrary of (p, q)-webs composed of the trivalent junctions glued by five-

brane edges as discussed in the previous sections and let us attach stacks of D3-branes to the

faces of the diagram. This configuration gives rise to a web of domain walls in N = 4 SYM

that we want to associate a vertex operator algebra to. The vertex operator algebra will

be a conformal extension of a tensor product of mutually commuting Y-algebras associated

to the vertices in the diagram by the bimodules associated to line operators inserted at

the finite five-brane segments and their fusions. To each such segment, one can associate

a parameter ρi as in the case of a single edge.

One can make following conjectures about the resulting algebra:

1. The total stress-energy tensor of the resulting algebra is the sum of stress-energy

tensors of the individual vertices.

2. As consequence of this, the central charge of the resulting algebra is the sum of the

central charges associated to all vertices.

3. The characters of modules associated to a collection of edges can be computed as a

sum of products of Y-algebra characters, where the sum runs over representations

of a tensor product of Lie (super-) algebras associated to the internal edges. For

example in the case of two vertices we have

χ =
∑

µ

χ
[

Y (1)
]

(M3
µ)χ

[

Y (2)
]

(M3
µ) (3.26)

4. These modules can be obtained by fusion of elementary bimodules associated to the

line operators in the fundamental and anti-fundamental representation supported at

the internal edge. The dimension of these representations is given by (3.17).

5. To each external leg, one can associate a family of modules labeled by representations

of the supergroup associated to the corresponding leg. Different families associated

to non-parallel legs braid trivially, i.e. have conformal dimension that differs by an

integer.

6. If the (p, q)-web is invariant under a subgroup of SL(2,❩) transformation, the glued

algebra will turn out to have dual BRST realization. If the algebra is realized as a

truncation of an infinite algebra, there will be corresponding duality action on the

parameter space of the corresponding infinite algebra.

In the following we will illustrate the general discussion of the gluing construction on few

concrete examples.

3.4 Example — N = 2 superconformal algebra

Let us start with N = 2 superconformal algebra. This algebra is obtained by extending the

Virasoro algebra by a U(1) current J and two oppositely charged spin 3
2 fermionic primaries
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G±. The U(1) current J generates the SO(2) R-symmetry rotating the supercharges. The

operator product expansions are given by

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)G±(w) ∼ 3/2G±(w)

(z − w)2
+
∂G±(w)

z − w

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w

J(z)J(w) ∼ c/3

(z − w)2
(3.27)

J(z)G±(w) ∼ ±G±(w)

z − w

G+(z)G−(w) ∼ 2c

3(z − w)3
+

2J(w)

(z − w)2
+

2T (w)

z − w
+
∂J(w)

z − w

G±(z)G±(w) ∼ reg.

The central charge c is the only free continuous parameter.

1

2

From Poincaré-Birkhoff-Witt theorem we see that the vacuum char-

acter of this algebra at a generic central charge is given by

∞
∏

n=0

(

1 + q
3
2
+n
)2

(1 − q1+n) (1 − q2+n)
(3.28)

Up to an U(1) factor, this is exactly what one would obtain from the glu-

ing construction starting from the diagram on the left. We can thus attempt to decompose

the N = 2 SCA ×U(1) into elementary building blocks that enter the gluing construction.

First, we decouple the U(1) currents to isolate the W∞ stress-energy tensor that lives at

the (2, 0, 1) vertex. The unique combination commuting with J(z) is

T0(z) = T (z) − 3

2c
(JJ)(z). (3.29)

Similarly, we can find spin 3 and spin 4 primaries that commute with J(z) (they are

determined uniquely up to a rescaling). We can next compute the combination of OPE

coefficients
(C4

33)
2C0

44

(C0
33)

2
=

12(c+ 1)(c+ 9)2(5c− 9)

(c− 1)(c+ 6)(2c− 3)(5c+ 17)
(3.30)

and assuming OPEs to be those of W∞, this together with c∞ = c − 1 lets us determine

the λ parameters associated to (2, 0, 1) vertex to be

λ
(1)
1 = − 2c

c− 3
=

−2ǫ1 − ǫ2
ǫ1

= Ψ − 2

λ
(1)
2 = − c

3
=

−2ǫ1 − ǫ2
ǫ2

=
2 − Ψ

Ψ
(3.31)

λ
(1)
3 =

2c

c+ 3
=

−2ǫ1 − ǫ2
−ǫ1 − ǫ2

=
2 − Ψ

1 − Ψ
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which is what we could directly read off from the diagram. The identification between

parameters is

c = 3 − 6

Ψ
, Ψ = − 6

c− 3
. (3.32)

We can also determine the λ parameters of the second vertex

λ
(2)
1 = 1

λ
(2)
2 =

c− 3

6
=
ǫ1
ǫ2

= − 1

Ψ
(3.33)

λ
(2)
3 = −c− 3

c+ 3
=

ǫ1
−ǫ1 − ǫ2

=
1

Ψ − 1

which is consistent with the U(1) degree of freedom coming from the second vertex.

Finally, let us identify the gluing matter. The fields of the lowest dimension that do

not come from the vertices are the fields G±(z). Following the choice of the normalization

of U(1) factors (2.28),

J (1)(z)J (1)(w) ∼ − c(c+ 3)

3(c− 3)

1

(z − w)2
, J (2)(z)J (2)(w) ∼ c+ 3

6

1

(z − w)2
, (3.34)

we know that the basic gluing fields will have charges ±1 with respect to these. We define

a rotated basis of U(1) currents

J(z) ≡ c− 3

3(c− 1)
J (1)(z) − 2c

3(c− 1)
J (2)(z), J̃(z) ≡ J (1)(z) + J (2)(w) (3.35)

such that J(z) is the conventionally normalized R-current in N = 2 SCA and that J̃(z)

decouples. The other primary gluing fields are given by the normal ordered products

G±
(k)(z) ≡ (∂k−1G±(∂k−2G±(· · · (∂G±G±) · · · )))(z). (3.36)

Their U(1) charges are given by

j(1)(G±
(k)) = ±k, j(2)(G±

(k)) = ∓k, j(G±
(k)) = ±k, j̃(G±

(k)) = 0. (3.37)

The conformal dimensions are

h
(1)
1+∞(G±

(k)) =
(c− 3)k2 + 2(c+ 3)k

2(c+ 3)
, h

(2)
1+∞(G±

(k)) =
3k2

c+ 3
, h1+∞(G±

(k)) =
k(k + 2)

2
.

(3.38)

as predicted by (3.18)

Truncations. It is well-known [45–49] that N = 2 SCA has a series of unitary minimal

models for

c = 3

(

1 − 2

k + 2

)

, k = 1, 2, . . . (3.39)

All of these lie obviously on the truncation curve (0, 1, 2) of the first vertex as follows from

our identification of N = 2 SCA. But these minimal models also lie on the truncation

curve (k, 0, 0) which corresponds to the case where the W1+∞ at the first vertex truncates
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to U(1) ×Wk. We can thus predict the values of the central charge c for which the N = 2

SCA truncates only based on the knowledge of truncation curves of W1+∞. Analogously,

the non-unitary minimal models with

c = 3

(

1 − 2(p+ 1)

p′ + 2

)

(3.40)

lie on the intersection of the truncation curves (0, 1, 2) and (p′, p, 0) where the irreducible

quotient of Y012 can also be thought of as a quotient of Yp′p0.

Unifying algebras. The coset of N = 2 SCA with respect to U(1) subalgebra was

studied already in [50] in the context of unifying algebras. The authors noticed that the

resulting algebra, in our notation Y0,1,2 or the parafermion algebra, can be coupled in two

ways to U(1) current algebra, obtaining as result either N = 2 SCA or U(2) affine Lie

algebra (depending on the details of the gluing). This is one of the earliest examples of the

gluing procedure in the literature, here applied to gluing of Y0,1,2 and Y0,0,1 vertices.

3.5 Example — W
(2)
3

As another example, consider the Bershadsky-Polyakov algebra W(2)
3 [51, 52]. It has the

same matter content as N = 2 SCA except for the fact that the spin 3
2 fields are bosons

instead of being fermions. The operator product expansions are now

T (z)T (w) ∼ − (2k + 3)(3k + 1)

2(k + 3)(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w

J(z)J(w) ∼ 2k + 3

3(z − w)2

T (z)G±(w) ∼
3
2G

±(w)

(z − w)2
+
∂G±(w)

z − w
(3.41)

J(z)G±(w) ∼ ±G±(w)

z − w

G±(z)G±(w) ∼ reg.

G+(z)G−(w) ∼ (k + 1)(2k + 3)

(z − w)3
+

3(k + 1)J(w)

(z − w)2
− (k + 3)T (w)

z − w

+
3(JJ)(w)

z − w
+

3(k + 1)∂J(w)

2(z − w)
.

3

1

From the gluing construct we see that the vacuum character

∞
∏

n=0

1

(1 − q1+n)2(1 − q
3
2
+n)2(1 − q2+n)

(3.42)

of U(1)×W(2)
3 equals that of the diagram on the left. We can try to see

if this identification works even at the level of operator product expansions. Similarly to
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the discussion in the previous section, we can first decouple the U(1) factors and find the

stress-energy tensor

T (1)
∞ (z) = T (z) − 3

2(2k + 3)
(JJ)(z) (3.43)

with the central charge

c(1)∞ = −6(k + 1)2

k + 3
. (3.44)

Analogously, we can construct primary spin 3 and spin 4 currents commuting with U(1)

factors,

W
(1)
3 = (G+G−) +

3(k + 3)

2k + 3
(TJ) +

k + 3

2
∂T − 9(k + 2)

(2k + 3)2
(J(JJ))

−3(J∂J) − k2 + 4k + 6

2k + 3
∂2J

W
(1)
4 = (J(G+G−)) + . . . , (3.45)

compute their three-point functions

C0
33 = −(4k + 9)(2k + 1)(k + 3)(k + 1)2

2k + 3

C0
44 = −(5k + 12)(4k + 9)(3k + 5)(2k + 1)(k + 1)2k2

3(15k2 + 19k − 18)
(3.46)

C4
33 =

12(k + 3)2

2k + 3

and finally find the invariant combination of structure constants

C4
33C

0
44

(C0
33)

2
= − 48k2(k + 3)2(3k + 5)(5k + 12)

(k + 1)2(2k + 1)(4k + 9)(15k2 + 19k − 18)
. (3.47)

Equating this to (2.13), we can determine the λ
(1)
j parameters (assuming that the commu-

tant of U(1) currents is W∞) to be

λ
(1)
1 = 2k + 3 =

ǫ2 + 3ǫ3
ǫ1

= 2Ψ − 3

λ
(1)
2 = −2k + 3

k + 3
=
ǫ2 + 3ǫ3
ǫ2

=
−2Ψ + 3

Ψ
(3.48)

λ
(1)
3 =

2k + 3

k + 2
=
ǫ2 + 3ǫ3
ǫ3

=
−2Ψ + 3

1 − Ψ
.

We identified

Ψ = k + 3. (3.49)

We can read-off the λ-parameters of the second vertex from the diagram (again we cannot

determine them from the algebra because of no continuous parameters associated to the
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1

1

2
21

1

Figure 7. Two diagrams associated to D(2, 1;−Ψ)1 × U(1)2Ψ related by a flop.

affine U(1) algebra)

λ
(2)
1 =

−2ǫ1 − ǫ2
−2ǫ1 − ǫ2

= 1 (3.50)

λ
(2)
2 =

−2ǫ1 − ǫ2
ǫ1

= −2 + Ψ = k + 1 (3.51)

λ
(2)
3 =

−2ǫ1 − ǫ2
ǫ1 + ǫ2

=
−2 + Ψ

1 − Ψ
= −k + 1

k + 2
. (3.52)

U(1) currents. Now we can turn our attention to the identification of the U(1) currents.

We take a linear combination of U(1) currents

J(z) =
k + 3

3(k + 2)
J (1)(z) − 2k + 3

3(k + 2)
J (2)(z) (3.53)

J̃(z) = J (1)(z) + J (2)(z) (3.54)

such that J̃(z) decouples from W(2)
3 .

Gluing matter. The gluing fields in the case of W(2)
3 are given by powers of G±(z),

G±
(n)(z) ≡ (G±(G±(· · · (G±G±) · · · )))(z). (3.55)

Their U(1) charges are

j(1)(G±
(n)) = ±n, j(2)(G±

(n)) = ∓n, j(G±
(n)) = ±n, j̃(G±

(n)) = 0. (3.56)

and the conformal dimensions are

h
(1)
1+∞(G±

(n)) =
n(3k + 6 − n)

2k + 4
, h

(2)
1+∞(G±

(n)) =
n2

2k + 4
, h1+∞(G±

(n)) =
3n

2
. (3.57)

which is consistently with (3.18). Note that because of the bosonic nature of the gluing

fields, the quadratic terms proportional to n2 in h
(1)
1+∞ and h

(2)
1+∞ cancel so that the total

dimension of the gluing fields grows linearly with n.

3.6 Example — D(2, 1;−Ψ)1

Let us briefly mention one more exotic example associated to the diagram in the figure 7.

This configuration playes an important role in [53] where the corresponding VOA was

identified with the exceptional super Kac-Moody algebra D(2, 1;−Ψ)1 × U(1)2Ψ and con-

jectured to play the role of the quantum geometric Langlands kernel for the SU(2) Group.
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In [53], various decompositions of the algebra as extensions of its subalgebras were dis-

cussed. Let us show that the character of D(2, 1;−Ψ)1 × U(1)2Ψ agrees to first few orders

in the q-expansion with the prediction coming from the conformal extension of the atomic

Y-algebras

Y0,0,1[Ψ] × Y0,2,1[Ψ] × Y2,0,1[Ψ] × Y0,0,1[Ψ]. (3.58)

Using formulas, from the appendix C, one recovers

χ = 1 + 18q + 133q2 + 730q3 + 3284q4 + 12868q5 + 45441q6 + . . . . (3.59)

Note that we need to sum over modules associated to multiple edges as well as over modules

with two asymptotics turned on. One can identify the leading coefficient 18 with the number

of generators of D(2, 1;−Ψ)1 ×U(1)2Ψ algebra as expected. At higher levels, null states of

the algebra need to be taken into account. Comparing with the formula in the remark 9.9

of [53], one recovers the above expansion as expected.

Note also that the diagram on the left of figure 7 can be transformed to a more

symmetric configuration by a flip (to be discussed later) of the middle line segment. The

algebra after the flip transition can be identified with a conformal extension of

Y0,0,1[Ψ] × Y1,1,2[Ψ] × Y1,1,0[Ψ] × Y0,0,1[Ψ]. (3.60)

As discussed in later sections, these two diagrams are conjectured to produce the same VOA

since the parameter ρ associated to the vertex at which we perform the flip vanishes. Note

also that triality properties of D(2, 1;−Ψ)1 × U(1)2Ψ can be understood as a consequence

of S-duality properties of the configurations of branes. We expect these configurations of

five-branes to produce new families of VOAs with S3 duality action analogous to the triality

of Y-algebras.

As a final comment, let us briefly discuss how the presence of 17 spin 1 currents of

D(2, 1;−Ψ) algebra can be seen from the gluing diagram in the right part of the figure 7.

The diagram contains three resolved conifold subdiagrams and in each case the number of

neighbouring D3 branes is such that the associated parameter ρj = 0. This implies that

we have 2 × 3 fermionic spin 1 currents associated to three internal edges (each internal

edge carries gluing matter field in fundamental and anti-fundamental representation). As

usual, we also have the four commuting bosonic spin 1 currents coming from the vertices.

To find the remaining spin 1 fields, we need to remember that the formula (D.11) tells us

that turning on line operators along neighbouring edges produces another spin 1 field (we

are always using the fact that ρj = 0). In this way we find additional 2 × 3 bosonic spin 1

fields. Turning on the fundamental or anti-fundamental line operators along all three edges

at the same time gives us additional two fermionic spin 1 fields as follows from (D.12). In

total we have 4 + 6 = 10 bosonic and 6 + 2 = 8 fermionic spin 1 fields. One of the bosonic

fields is the overall decoupled U(1) current and the remaining 17 fields are exactly what

we need for D(2, 1;−Ψ) algebra.
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4 Examples with BRST construction

In some cases, one can give an alternative definition of the glued algebra in terms of a BRST

construction. Gluing construction can then shed new light on the structure of the algebras

obtained by such reductions. Configurations we discuss in this section are associated to

diagrams with D5-branes ending from both left and right on a linear chain of (n, 1) branes.

The most general configuration that we will be able to give a BRST definition is such that

the diagram can be cut into two halves that satisfy the following condition: the number of

D3-branes is non-increasing if we follow the upper part of the diagram from the top to the

bottom and the number of D3-branes is non-increasing if we follow the lower part of the

diagram from the bottom up.

Let us motivate the BRST construction. We expect that a proper justification along

these lines can be done analogously to [14–17]. In the Kapustin-Witten twisted theory,

the path integral in this configuration localizes to the path integral of the complexified CS

theory supported at (n, 1) branes connected by a nontrivial interface descending from D3-

branes ending on D5-branes. In the IR, the finite internal five-brane segments shrink and we

can view the configuration as a single interface between the upper and the lower CS theory.

The half-BPS boundary conditions in the N = 4 super Yang-Mills theory descending from

D3-branes ending on five-branes were analyzed in [18]. These boundary conditions can

be translated to the boundary conditions of the bosonic blocks of the complexified super

Chern-Simons theory. The boundary condition on the off-diagonal blocks (descending from

boundary conditions on the 3d bifundamental hypermultiplets supported at the (n, 1) inter-

face) requires some guesswork and will be discussed later. We conjecture the corresponding

VOA to be a BRST reduction of the super Kac-Moody algebra induced at the interface from

the upper and lower CS theories by a BRST charge implementing the boundary conditions.

In the case of a single D5-brane, the BRST reduction that we will consider in the

following reduces to the one used in the definition of Y -algebras as described in section 2.

In this section, we first describe in detail the two reductions associated to two possible

configurations with two D5-branes. The first one is associated to D5-branes ending from

the opposite sides of a chain of (n, 1) branes whereas the second configuration is associated

to D5-branes ending from the same side. The gluing construction provides us with various

predictions for the structure of the corresponding VOA. We check that the central charge

of the algebra obtained by the BRST reduction coincides with the sum of central charges of

the two Y-algebras at each corner and in the case of the resolved conifold diagram we check

its invariance under the ❩2 × ❩2 transformation which is the symmetry of the diagram.

In various examples we find that the vacuum characters indeed match and are invariant

under ❩2×❩2 transformations. Finally, we give a BRST definition in the presence of more

D5-branes and discuss the special examples of the U(N |M)Ψ Kac-Moody algebras.

One can see that requiring a single internal edge (or equivalently two vertices), only p =

−1, 0, 1 are the possible diagrams one might consider. For all the other values of p the branes

would intersect. After fixing one of the two vertices to the standard orientation, figure 8

shows all the three possibilities. Note that the S-duality action maps the families p = −1 ↔
p = 1. We give a BRST definition for the p = −1 case. The p = 1 algebras can be identified
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(0, 1)

(1, 0)

(p, p+ 1)

(1− p,−p)

p = 1

(0, 1)

p = −1 p = 0

(0, 1)

(1, 0)

(1, 2)

(0,−1)(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

(−1, 0)

(2, 1)

L

N

M

K

L

N

M

K

L

N

M

K

N

M

KL

Figure 8. Configurations containing a simple finite leg segment. The p = ±1 cases are related by

S-duality and it acts within the family of p = 0 algebras.

with those by S-duality. On the other hand, p = 0 example is self-dual under the S-duality

action and we expect the corresponding algebras to have dual BRST descriptions in general.

This section gives a BRST definition of almost all algebras associated to diagrams with

these configurations. The only exceptions are the configurations for p = 0 with D3-branes

satisfying the following four conditions L > N,M > K,M > N,L > K.

4.1 Algebras of type 1|1 (resolved conifold diagram)

N
M

K
L

(1, 0)

(1, 0)

(0, 1)

(0, 1)

In this section we want to discuss the junction of two Y-

algebras that corresponds to the resolved conifold diagram

as in the figure on the left. We first introduce a convenient

notation L1|1

K,L̄,M,N̄
[Ψ] for these algebras. The label L1|1 refers

to algebras associated to a linear chain of (n, 1) five-branes to

which one D5-brane is attached from the left and the other

one is attached from the right. Furthermore, we overline the

numbers L̄ and N̄ of D3-branes ending on the (n, 1) branes

from the left and we leave K and M for the D3-branes ending from the right. This labeling

will be used also for more complicated diagrams with a linear chain.

From the gluing point of view the algebra is a conformal extension of

L1|1

K,L̄,M,N̄
[Ψ] ⊃ YL,M,K [Ψ] × YM,L,N [Ψ] (4.1)
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by bimodules labeled by representations of U(M |L). If we specialize the general formulas

from the section 3.2, the scaling dimension of the fundamental gluing field is given by

h(�) = 1 + ρ = 1 +
K +N − L−M

2
. (4.2)

At the level of characters, the BRST construction result must agree with the gluing proposal

χ[L1|1

K,L̄,M,N̄
] =

∑

µ

χ[YL,M,K [Ψ]](M3
µ) χ[YM,L,N [Ψ]](M3

µ). (4.3)

Another property of 1|1 algebras is a ❩2 ×❩2 duality action generated by the transforma-

tions

L1|1

K,L̄,M,N̄
[Ψ] ↔ L1|1

K,M̄,L,N̄

[

1

Ψ

]

L1|1

K,L̄,M,N̄
[Ψ] ↔ L1|1

N,L̄,M,K̄

[

1

Ψ

]

. (4.4)

These duality transformations can be derived from the S-duality transformation together

with rotations and the parity transformation in the same way as the triality action on

Y-algebras.

4.1.1 BRST construction

In the Kapustin-Witten twisted theory, the path integral of the configuration localizes to the

path integral of the complexified U(K|L)Ψ and U(M |N)Ψ Chern-Simons theories connected

by a nontrivial boundary condition that is a combination of oper boundary condition and

continuity condition. The BRST definition of the VOAs is then a reduction that implements

the boundary condition on the two U(K|L)Ψ and U(M |N)Ψ Kac-Moody factors coming

from the restriction of the gauge fields of the upper and lower CS theory to the interface.

Implementing the constraints coming from the boundary conditions for K > L and

N > M by a BRST reduction, one expects the final VOA to be a combination of the

Drinfeld-Sokolov reduction of U(K|L; Ψ) with respect to the principal sl2 embedding in-

side the (K−M)×(K−M) block in the U(K) bosonic part of U(K|L), the Drinfeld-Sokolov

reduction with respect to the principal embedding in the (L−N)×(L−N) block in the other

U(L) bosonic part and the coset with respect to the remaining U(M |N ; Ψ) Kac-Moody alge-

bra. In analogy with the construction of [1], one writes for such a combined BRST reduction

L1|1

K,L̄,M,N̄
[Ψ] =

DSL−N [DSK−M [U(L|K; Ψ)]]

U(M |N ; Ψ)
. (4.5)

In expressions of this form, we need to be careful what we mean by a sequence of

Drinfeld-Sokolov reductions. There are two natural definitions. The first natural choice

would be to pick a grading associated to the sum of the Cartan elements of the two sl2
embeddings and constrain the fields with positive weight with respect to this combined

element as in the case of the standard DS-reduction. We can see that this choice would be

symmetric with respect to both trivalent junctions of the diagram. This would not match
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the predictions from the gluing suggesting that this is not the right thing to do. We expect

the symmetric variant to be related to the unresolved configuration. In particular, note

that the Z2 × Z2 symmetry of the resolved conifold diagram get enhanced to S4 that is

consistent with the S4 symmetry of the central charge derived from the BRST construction.

We leave details for the future.

The other possibility is to slightly modify the standard construction by doing the re-

duction in two steps. Firstly, we need to constrain the components with positive weight

with respect to the first embedding associated to the U(K|M) block (DS-reduction asso-

ciated to the upper vertex as in the case of Y-algberas). Classically (and at the level of

characters), this first constraint decomposes U(K|L; Ψ) fields as

DSK−M : U(K|L; Ψ) → WK−M × U(M |L; Ψ − 1) × SM |L
K−M

2

(4.6)

where WK−M denotes the fields of the WK−M algebra and SM |L
K−M

2

a system of M symplectic

bosons and L fermions with the conformal dimension shifted by N−M
2 . The first reduction

produces an algebra containing the U(M |L; Ψ − 1) Kac-Moody algebra as a subalgebra

coming from the U(K|L; Ψ) currents modified by off-diagonal ghosts. In the second step,

one needs to constrain the fields of the Kac-Moody algebra U(M |L; Ψ − 1) with shifted

level by setting to zero fields with positive weight22 with respect to the Cartan element

of the sl2 embedding associated to the second vertex. The algebra decomposes classically

(and at the level of characters) as

DSL−N : U(M |L; Ψ − 1) → WL−N × U(M |N ; Ψ) × SM |N
L−N

2

(4.7)

where SM |N
L−N

2

now contains M fermionic and L bosonic generators that refers to the fact

that corresponding D5-brane ends from the opposite direction. The SM |L
K−M

2

fields from the

first step are left unconstrained but the modification term that needs to be added to the

stress-energy tensor in the second step splits them into fields

DSL−N : SM |L
K−M

2

→ SM |N
K−M

2

×
ρ+L−N− 1

2
∏

i=ρ+ 1
2

Fi (4.8)

where L−N components were split into fermionic fields Fi with dimensions

ρ+ 1, ρ+ 2, . . . , ρ+ L−N. (4.9)

An explicit example of the constraints one needs to impose is given in the appendix B.

In the case when DS-reduction is with respect to a one dimensional block (i.e. K−M =

1 or L−N = 1), no constraints need to be imposed remembering that fields from the off-

diagonal block of the first reduction are not constrained in the second step. Similarly if

K−M = 0 or L−N = 0 vanishes, instead of constraining the fields, one needs to introduce

22Remember that only half of the fields with weight 1
2
need to be constrained as in the case of Y-algebras.
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extra SM |L or SM |N
fields into the system, similarly as in the case of the trivalent vertex

and use currents modified by bilinears in these extra fields in the BRST reductions of the

following steps.

After the two DS-reductions, the algebra still contains a U(M |N ; Ψ) factor as a sub-

algebra and one should take a coset with respect to this factor. By coset, we mean an

equivariant BRST reduction with respect to the BRST charge that glues this U(M |N ; Ψ)

subalgebra with U(M |N ;−Ψ) algebra induced from the bottom Chern-Simons theory. Note

that the shifted levels of the two factors are opposite which is a necessary condition for the

BRST charge to be nilpotent.

An analogous definition of the algebra can be given in the case M > K and N > L

with K ↔M , N ↔ L and the two DS-reductions interchanged (this correspond to rotation

of the diagram by 180◦).

We can also define a similar reduction for the case when the number of D3-branes

decreases from the top and from the bottom until the two series of D3-brane numbers meet.

In the case of the resolved conifold diagram, this corresponds to K > M and N > L. One

can then read the boundary conditions from both sides, show that the resulting algebras

contain two Kac-Moody algebras of opposite level and then equivariantly glue these factors.

The resulting algebra is the BRST reduction of the system

DSK−M [U(K|L; Ψ)] ×DSN−L[U(M |N ;−Ψ)] × gh (4.10)

that glues the two U(M |L; Ψ − 1) × U(M |L;−Ψ + 1) subalgebras. As usual, gh in the

expression above denotes the ghosts needed to implement the gluing. Note that combining

the fields in the fundamental representation of the remaining U(M |N) factors coming

from the two DS-reduction into the U(M |N) invariant combinations gives rise to fields

of dimensions starting with ρ + 1. This is consistent with the gluing picture and BRST

reduction above athough the origin of the fields is slightly different.

4.1.2 Central charge and characters

Having defined the algebras by a BRST reduction, one can calculate the central charge

straightforwardly. The result is23

c
[

L1|1

K,L̄,M,N̄
[Ψ]
]

= Ψ
(

(L−N)((L−N)2 − 1) − (K −M)((K −M)2 − 1)
)

+
1

Ψ

(

(L−K)((L−K)2 − 1) − (N −M)((N −M)2 − 1)
)

+(L−N +M −K)(L2 + LN − 4LM + LK − 2N2

+NM + 2NK +M2 +MK − 2K2 + 1). (4.11)

The details of the computation are given in appendix E.1.

Having central charge of a general 1|1 algebra, we can now test the predictions of the

gluing construction. We conjectured that the central charge of the glued algebra is simply

23Note that the pole at Ψ = 1 in the formula disappeared and the poles at 0 and ∞ are multiplied with

two factors associated to the two external legs with given asymptotics as expected from the orientation of

the infinite five-brane segments.
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a sum of the central charges associated to its vertices and indeed

c
[

L1|1

K,L̄,M,N̄
[Ψ]
]

= c [YL,M,K [Ψ]] + c [YM,L,N [Ψ]] (4.12)

so the extension is conformal. Moreover, one can check that the central charge is invariant

under the ❩2 × ❩2 duality action (4.4).

The vacuum character of the resulting algebra can be also computed straightforwardly

following the description outlined above. One finds a general expression

χ
[

L1|1

K,L̄,M,N̄

]

= χWK−M
χWL−N

ρ+L−N− 1
2

∏

r=ρ+ 1
2

χF
r

∮

dVM,Nχ
N |M
K−M

2

(xj , yi)χ
M |N
L−N

2

(yi, xj). (4.13)

Note that the variables xi and yj in the two symplectic boson factors interchange. We can

identify the first two factors with the vacuum characters of WK−M and WL−N algebras

coming from the diagonal blocks of DS-reduction, the factors χF
i coming from the L −N

fermionic fields with a shifted level and the integral projecting to the U(M |N) invariant

combinations of the fundamental fields. Explicit expressions for these building blocks can

be found in appendix C.

To write the characters of more general modules associated to Wilson lines supported

at the two NS5-like interfaces one only needs to insert the corresponding Schur polynomials

into the formula above in the same way as in the case of Y-algebras.

4.1.3 Matching characters

In this section we discus various examples of 1|1 algebras at the level of characters to show

the match between the results of the gluing and the BRST construction.

Example 1: L
1|1

0,N̄,0,0̄

N

The first example is the algebra L1|1

0,N̄ ,0,0̄
related to U(1) ×WN by a flip

transition that will be discussed later. The algebra has BRST definition

as

L1|1

0,N̄ ,0,0̄
[Ψ] = DSN

[

U(N ;−Ψ) ×FN
]

. (4.14)

The BRST charge implementing the DS-reduction is the one associated

to the principal embedding in U(N) and producing U(1) × WN algebra but with the

currents Jij of the U(N ;−Ψ) Kac-Moody algebra modified by the fermionic bilinears Ĵij =

Jij +χiψj . These new currents can be shown to produce a new U(N ;−Ψ + 1) Kac-Moody

algebra with shifted level.

Applying the construction described in the previous section, the DS-reduction of the

U(N) factor produces the character of WN and introduces a shift of the dimensions of the

fermionic fields by −N−1
2 , . . . , N−1

2 . The character following from the BRST definition is

then

χ
[

L1|1

0,N̄ ,0,0̄

]

=
∞
∏

n=0

N
∏

m=1

1

1 − qn+m

(

1 + qm+n−N
2

)2
. (4.15)
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In terms of the gluing, the algebra should be decomposable as a conformal extension of

two U(1) ×WN algebras

L1|1

0,N̄ ,0,0̄
[Ψ] = YN,0,0[Ψ] ⊠N Y0,N,0[Ψ]. (4.16)

At the level of characters, the above expression for the character (4.15) should decompose

into a sum of the form

χ
[

L1|1

0,N̄ ,0,0̄

]

=

∞
∏

n=0

N
∏

m=1

1

(1 − qn+m)2

∑

µ

q
1
2

∑

i µ
2
i+

1
2

∑

i(N−2i+1)µis2µ

(

xi = q
1
2
(N−2i+1)

)

(4.17)

where sµ(xi) is the Schur polynomial. We have checked the equality for N = 1, 2, 3.

Example 2: L
1|1

1,1̄,0,0
vs. L

1|1

1,0,1̄,0

1
1

The next example is simply the Kac-Moody algebra

L1|1
1,1̄,0,0

[Ψ] = U(1|1; Ψ) (4.18)

with the vacuum character

χ
[

L1|1
1,1̄,0,0

]

=
∞
∏

n=0

(

1 + q1+n

1 − q1+n

)2

. (4.19)

The S-dual definition of the algebra is

L1|1
1,0,1̄,0

[

1

Ψ

]

=
U(1; 1

Ψ) ×F × B
U(1; 1

Ψ)
. (4.20)

By the coset, we really mean the BRST reduction with respect to the BRST charge

Q =

∮

dz(J (1) − J (2) + χψ + xy) (4.21)

where J (1) and J (2) are currents of the two U(1; 1
Ψ) and U(1;− 1

Ψ) factors, χ, ψ are the

additional fermions and x, y are the added symplectic bosons. The character of this algebra

is given by

χ
[

L1|1
1,0,1̄,0

]

=
∞
∏

n=0

1

1 − q1+n

∮

dx

x

∞
∏

n=0

(1 + xqn+
1
2 )(1 + x−1qn+

1
2 )

(1 − xqn+
1
2 )(1 − x−1qn+

1
2 )

(4.22)

We can now use the identities from appendix F to expand the two factors under the integral

sign and perform the integration. One gets

χ
[

L1|1
1,0,1̄,0

]

=

∞
∏

n=0

1

(1 − qn+1)3

∞
∑

n=0

n
∑

m=−n

(−1)n−mq
n(n+1)

2 . (4.23)

This expression can be identified with (4.19) using the formulas, in appendix F with z = 1.

We can also construct the same character from the gluing procedure by summing over

M3
µ modules of Y1,0,1[Ψ] and Y0,1,0[Ψ]. From the perspective of gluing, it is obvious that the
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two algebras X1,0,0,1[Ψ] and X0,0,1,1[−Ψ] have the same vacuum character. The expression

predicted from the gluing is

χ
[

L1|1
1,1̄,0,0

]

=

∞
∏

n=0

1

(1 − qn+1)3

∞
∑

n=|m|

(−1)n−mq
n(n+1)

2 . (4.24)

It is simple to show that this expression is equivalent to the one in (4.23). We thus conclude

that all the three expressions for the character in this simple example agree.

Example 3: L
1|1

2,1̄,0,0̄
vs L

1|1

2,0̄,1,0̄

1
2

The third algebra we consider has the following BRST definition,

L1|1
2,1̄,0,0̄

[Ψ] = DS2[U(2|1; Ψ)]. (4.25)

Explicitly, the DS2 BRST charge is given by

Q =

∮

dz [(J12 − 1)c12 + J13γ13] . (4.26)

This BRST reduction was already mentioned in [1] and is known to be a realization of

N = 2 super Virasoro algebra times U(1) current algebra [54] with well known vacuum

character

χ
[

L1|1
2,1̄,0,0̄

]

=

∞
∏

n=0

(

1 + qn+
3
2

)2

(1 − q1+n)2 (1 − q2+n)
. (4.27)

1

2

The dual BRST construction is given by

L1|1
2,0̄,1,0̄

[

1

Ψ

]

=
U(2; 1

Ψ) ×FU(1)

U(1; 1
Ψ)

(4.28)

by which we mean a BRST reduction with respect to

Q =

∮

dz(J
(1)
22 + χψ − J (2)) (4.29)

for J
(1)
22 a component of the U(2) current and J (2) the U(1) current. The character is given

by

χ
[

L1|1
2,1̄,0,0̄

]

=

∮

dz

z

∞
∏

n=0

(1 + zqn+
1
2 )(1 + zqn+

1
2 )

(1 − qn+1)(1 − zqn+1)(1 − z−1qn+1)
. (4.30)

Using the summation and the contour integral formulas from the appendix, one can rewrite

the integral as a sum

χ
[

L1|1
2,1̄,0,0̄

]

=
∞
∏

n=0

1

(1 − qn+1)4

∞
∑

s=−∞

∞
∑

n=0

(−1)n(1 − qn+1)q
s2+n(n+1)

2
+(n+1)s. (4.31)

One can analogously expand (4.27) and check that both expansions agree.
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On the other hand, according to the gluing construction, the algebra can be thought

of as a conformal extension

L1|1
2,1̄,0,0̄

[Ψ] ⊃ Y1,0,2[Ψ] × Y0,1,0[Ψ]. (4.32)

At the level of characters, one gets

∞
∏

n=0

1

(1 − qn+1)4

∞
∑

s=−∞

q
s2

2

(

∞
∑

n=s

(−1)n+sq
n(n+1)−s(s−1)

2 +
∞
∑

n=s+1

(−1)n+sq
n(n+1)−s(s−1)

2

)

.

(4.33)

This expression can be shown to be equivalent to (4.31). In the previous section we have

already seen that the full N = 2 super Virasoro algebra times U(1) decomposes as predicted

by the gluing construction.

Example 4: L
1|1

2,1̄,0,1̄
vs L

1|1

2,0̄,1,1̄

1
2

1

The next example tests the BRST construction of type (4.10). Let us

start with the conventional BRST reduction associated to L1|1
2,1̄,0,1̄

. The

VOA can be identified with

L1|1
2,1̄,0,1̄

[Ψ] =
DS2[U(2|1; Ψ)] × S̄0|1

U(0|1; Ψ)
. (4.34)

The DS-reduction of the first step is with respect to the standard BRST

charge

Q =

∮

dz [(J12 − 1)c12 + J13γ13] . (4.35)

The cohomology contains the Ĵ33 current containing bilinears in ghosts associated to the

off-diagonal components and the coset is identified with the BRST reduction that glues

the Ĵ33 + χψ current with the extra U(1; Ψ) current coming from the lower CS theory for

ψ, χ the fermionic fields S̄0|1.

At the level of characters, the DS-reduction DS2[U(2|1; Ψ)] produces Virasoro algebra

together with the U(1) current and the fermion with the conformal dimension shifted to 3
2

and charged under U(0|1; Ψ). The character of the resulting algebra is

χ
[

L1|1
2,1̄,0,1̄

]

=
∞
∏

n=0

1

(1 − qn+1)(1 − qn+2)

∮

dz

z

∞
∏

n=0

(1 + zqn+
3
2 )(1 + z−1qn+

3
2 )

(1 − zqn+
1
2 )(1 − z−1qn+

1
2 )
. (4.36)

2

1

1

The algebra discussed above is related by S-duality to L1|1
2,0̄,1,1̄

[ 1Ψ ]

which is defined as a BRST complex
{

U

(

1|1;− 1

Ψ

)

× U(2; Ψ) × {b, c}, Q =

∮

(

J
(1)
22 − J

(2)
22

)

c

}

(4.37)

where the coset BRST current sews the J
(1)
22 component of the U(2; Ψ)

Kac-Moody algebra and the J
(2)
22 component of the U(1|1;−Ψ) Kac-

Moody algebra. At the level of the vacuum characters, one gets

χ
[

L1|1
2,0̄,1,1̄

]

=
∞
∏

n=0

1

(1 − qn+1)2

∮

dz

z

∞
∏

n=0

(1 + zqn+1)(1 + z−1qn+1)

(1 − zqn+1)(1 − z−1qn+1)
. (4.38)
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The numerator of the integrand can be expanded and then integrated using the formulas

in appendix F to get

χ
[

L1|1
2,0̄,1,1̄

]

=

∞
∏

n=0

1

(1 − qn+1)5

∞
∑

s=0

m
∑

s=−m

∞
∑

n=0

(−1)s+m+n(1 − qn+1)q
n(n+1)

2
+

m(m+1)
2

+(n+1)s.

(4.39)

A similar manipulation can be done with the character (4.36) and one obtains the same

expansion.

Finally, we can write the algebra as a conformal extension of

L1|1
2,1̄,0,1̄

[Ψ] ⊃ Y1,0,2[Ψ] × Y0,1,1[Ψ]. (4.40)

The vacuum character is then given by

χ
[

L1|1
2,1̄,0,1̄

]

=

∞
∏

n=0

1

(1 − qn+1)5

∞
∑

s=−∞





∞
∑

n=|s|

(−1)n−mqn(n+1)



×

×
(

∞
∑

n=s

(−1)n+mq
n(n+1)−m(m−1)

2 +
∞
∑

n=s+1

(−1)n+mq
n(n+1)−m(m+1)

2

)

(4.41)

that can be shown to be equivalent to the expansion above.

Example 5: self-dual L
1|1

2,0̄,1,2̄

2

1

2

In this section, we study an example of decomposition of the algebra

L1|1
2,0̄,1,2̄

[Ψ] into the pair of parafermionic algebras Y0,1,2[Ψ] and Y1,0,2[Ψ].

Note that this algebra can be identified by S-duality with L1|1
2,0̄,1,2̄

[ 1Ψ ] and

the example is actually self-dual. Definition of the algebra using the

BRST reduction is in terms of the complex

U(2; Ψ) ×DS2[U(1|2;−Ψ)] × {b, c} (4.42)

with BRST charge

Q =

∮

(

J
(1)
22 − J

(1)
11

)

c. (4.43)

The BRST charge glues the J11 component of U(1|2;−Ψ) with the J22 component of

U(2; Ψ). The vacuum character of the algebra is

χ
[

L1|1
2,0̄,1,2̄

]

=

∞
∏

n=0

(

1

1 − q1+n

)2 1

1 − q2+n

∮

dx

x

∞
∏

n=0

(1 + xq
3
2
+n)(1 + x−1q

3
2
+n)

(1 − xq1+n)(1 − x−1q1+n)
. (4.44)

On the other hand, we expect the algebra to be a conformal extension

L1|1
2,0̄,1,2̄

[Ψ] ⊃ Y0,1,2[Ψ] × Y1,0,2[Ψ] (4.45)

of the product of two copies of the parafermionic algebra Y0,1,2. At the level of characters,

one gets

∞
∏

n=0

1

(1 − qn+1)6

∞
∑

s=−∞

q
n2

2 ×
(

∞
∑

n=s

(−1)n+sq
n(n+1)−s(s−1)

2 +

∞
∑

n=s+1

(−1)n+sq
n(n+1)−s(s+1)

2

)2

(4.46)

that can be identified with (4.44) after expanding and performing the contour integral.
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Example 6: L
1|1

1,2̄,0,0̄
vs L

1|1

1,0̄,2,0̄

2
1

The next example is going to probe the gluing proposal in the case when

the sum runs over the representations of the non-abelian group U(2).

This algebra will later be shown to be related via flip transition to the

example 3.

The algebra L1|1
1,2̄,0,0̄

has the following BRST definition

L1|1
1,2̄,0,0̄

[Ψ] = DS2 [DS1[U(1|2; Ψ)]] (4.47)

that can be thought of as a BRST reduction of U(1|2; Ψ) × {b, c} by the BRST charge

Q =

∮

dz (J23 − 1) c23. (4.48)

The cohomology will be explicitly constructed later together with its relation to the N = 2

super Virasoro algebra. One can immediately write down the expression for the vacuum

character of the algebra

χ
[

L1|1
1,2̄,0,0̄

]

=
∞
∏

n=0

(

1 + qn+
1
2

)2 (

1 + qn+
3
2

)2

(1 − qn+1)2 (1 − qn+2)
. (4.49)

1

2

There again exists a dual BRST reduction in terms of the coset

L1|1
1,0̄,2,0̄

[

1

Ψ

]

=
U(2;− 1

Ψ) × S0|2

U(1;− 1
Ψ)

(4.50)

where by this coset, we mean the BRST reduction of the system

U

(

2;− 1

Ψ

)

× U

(

1;
1

Ψ

)

× {χ1, ψ1} × {χ2, ψ2} (4.51)

with respect to the BRST charge

Q =

∮

dz
(

J
(1)
22 + χ2ψ2 − J (2)

)

(4.52)

that glues the J
(1)
22 component of the U(2;− 1

Ψ) algebra with the U(1; 1
Ψ) current modified

by a bilinear in the fermionic fields S0|2. At the level of characters, one gets

χ
[

L1|1
1,0̄,2,0̄

]

=

∞
∏

n=0

(

1 + qn+
1
2

)2

(1 − qn+1)

∮

dz

z

∞
∏

n=0

(

1 + zqn+
1
2

)(

1 + z−1qn+
1
2

)

(1 − zqn+1) (1 − z−1qn+1)
. (4.53)

The equality of the two expressions follows from the equality of characters already discussed

in the example 3. The only difference is the overall contribution from the fermions of

conformal weight 1
2 .

It is a non-trivial check to see if the above expressions match the result of gluing. Using

our gluing proposal, the algebra is expected to be the conformal extension

L1|1
1,2̄,0,0̄

[Ψ] ⊃ Y2,0,1[Ψ] × Y0,2,0[Ψ] (4.54)
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Using formulas, from appendix C for modules of Y0,2,1[Ψ] and Y0,0,2[Ψ], we have checked

that the character

χ
[

L1|1
1,2̄,0,0̄

]

=
∑

µ1≥µ2

χ [Y0,2,1[Ψ]]
(

D3
µ1,µ2

)

χ [Y2,0,0[Ψ]]
(

D3
µ1,µ2

)

. (4.55)

agrees with above expressions up to q30 term. This provides a non-trivial consistency check

for our proposal involving summations over U(2) representations.

Example 7: self-dual L
1|1

1,2̄,0,1̄

1
2

1

Let us now consider the second self-dual example

L1,2̄,0,1̄[Ψ] = L1,2̄,0,1̄

[

1

Ψ

]

=
DS1 [DS1[U(1|2; Ψ)]]

U(1;−Ψ)
(4.56)

that can be thought of as the cohomology of the BRST complex
{

U(1|2; Ψ) × U(1; Ψ) × {b, c}, Q =

∮

dz
(

J
(1)
33 − J (2)

)

c

}

(4.57)

where J
(1)
33 is one of the generators of U(1|2; Ψ) and J (2) is the U(1; Ψ) current. At the

level of the characters, we get

χ
[

L1|1
1,2̄,0,1̄

]

=
∞
∏

n=0

(

1 + qn+
1
2

)2

(1 − qn+1)2

∮

dz

z

(

1 + zqz+
1
2

)(

1 + z−1qz+
1
2

)

(1 − zqz+1)(1 − z−1qz+1)
. (4.58)

From the point of view of gluing, this algebra is a conformal extension

L1|1
1,2̄,0,1̄

[Ψ] ⊃ Y2,0,1[Ψ] × Y0,2,1[Ψ]. (4.59)

This example is the second test involving the summation over U(2) representations. Using

expressions from the appendix C, one gets a conjectural equality of the above expression

with a double sum

χ
[

L1|1
1,2̄,0,1̄

]

=
∑

µ1≥µ2

χ[Y2,0,1[Ψ]]
(

D3
µ1,µ2

)

χ[Y0,2,1[Ψ]]
(

D3
µ1,µ2

)

(4.60)

that we have checked up to the order q20.

4.2 Algebras of type 0|2

N

M

K

L

(0, 1)

(1, 0)

(1, 0)

(2, 1)

In this section, we consider an analogous diagram as the one

of the resolved conifold but now with both D5-branes ending

from the right as shown in the figure. The discussion will be

similar to the one of the previous section but let us highlight

few differences.

The glued algebra is a conformal extension of two mutually

commuting Y-algebras

L0|2

K,L̄,M,N
[Ψ] ⊃ YL,M,K [Ψ] × YL,N,M [Ψ − 1] (4.61)
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with gluing matter given by bimodules M3
µ ×M2

µ. Specializing the parameters from the

section 3.2 to the case at hand, one finds p = 1 and

h(�) = 1 + ρ = 1 +
K +N − 2M

2
(4.62)

(note that this is independent of L). In terms of the characters, we expect the BRST

construction to produce

χ
[

L0|2

K,L̄,M,N

]

=
∑

µ

χ[YL,M,K [Ψ]]
(

M3
µ

)

χ[YL,N,M [Ψ − 1]]
(

M2
µ

)

(4.63)

and the central charge to be the sum of the central charges of the two Y-algebras.

4.2.1 BRST construction

Looking at the system from the IR, the configuration looks like a junction of interfaces

between U(K), U(L) and U(N) gauge theories. After a topological twist, the path integral

localizes to the path integral of the complexified Chern-Simons theories induced at the NS5

and (2, 1) interface glued together by a boundary condition descending from the boundary

condition coming from D3-branes ending on five-branes. This boundary condition can be

extracted from the boundary conditions discussed in [18] in the case when K ≥ M ≥ N

or N ≥ M ≥ K and is a combination of two oper boundary conditions and a continuity

condition.

Let us first discuss the K ≥ M ≥ N case. Imposing the boundary conditions as con-

straints on the Kac-Moody algebras descending from the upper and the lower CS theories

using the BRST procedure leads to the following identification of the VOA

L0|2

K,L̄,M,N
[Ψ] =

DSM−N [DSK−M [U(K|L; Ψ)]]

U(N |L; Ψ − 2)
. (4.64)

Note that both DS-reduction are performed in the same block of the bosonic generators

of U(K|L; Ψ). Analogously to the resolved conifold algebra, we perform the reduction in

three steps. After the first reduction associated to the upper vertex, one obtains an algebra

containing the U(M |L; Ψ − 1) subalgebra. In the second step one uses the BRST charge

implementing the DS reduction associated to the second vertex with the currents of the

U(M |L; Ψ − 1) algebra with the level shifted by one. Since the second reduction is per-

formed in the same bosonic block of the algebra, the resulting algebra contains subalgebra

U(N |L; Ψ − 2) with the level shifted by two. In the final step one glues equivariantly the

components of the U(N |L; Ψ − 2) subalgebra with the extra U(N |L;−Ψ + 2) Kac-Moody

algebra coming from the lower CS theory.

Under the two DS-reductions, the fields decompose in a similar way as in the case

of the 1|1 algebra. The only difference is that the SM |L
K−M

2

factor from the first reduction

decomposes under the second reduction as

DSM−N : SM |L
K−M

2

→ SN |L
M−N

2

×
ρ+M−N− 1

2
∏

i=ρ+ 1
2

Bi (4.65)
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producing M −N bosonic fields of the shifted dimension

ρ+ 1, ρ+ 2, . . . , ρ+M −N. (4.66)

Note again the appearance of the parameter ρ from (4.62). The fields with shifted dimen-

sions (coming from the off-diagonal bocks containing fields charged under the Cartans of

both sl2 embeddings) are now bosonic. The same is true also for the U(N |L) invariant

combinations of the symplectic bosons and fermions coming from the two BRST reductions.

All the fields of the resulting algebra are bosonic in this case as expected.

An analogous definition can be given in the case of N ≥ M ≥ K with the factors

K ↔ N and Ψ → −Ψ + 2 exchanged (since this configuration can be obtained from the

previous one by an SL(2,❩) transformation).

One can also define BRST reduction in the case when K > M and N > M by

performing the DS-reduction for the upper and to lower vertices independently,

DSK−M [U(K|L; Ψ)] ×DSN−MU(N |L;−Ψ + 2) (4.67)

and then gluing the U(M |L; Ψ−1) subalgebra of the first vertex with the U(M |L;−Ψ + 1)

of the second vertex using BRST (as in the resolved conifold case).

4.2.2 Central charge and characters

The central charge is given by (more details of the computation are given in E.2)24

c
[

L0|2

K,L̄,M,N
[Ψ]
]

=
(N − L)((N − L)2 − 1)

Ψ − 2
− (L−K)((L−K)2 − 1)

Ψ
(4.68)

+(((K −M)2 − 1)(K −M) + ((M −N)2 − 1)(M −N))Ψ −M −K

+(N −M)2(−3L+N + 2M) + (M −K)2(−3L+M + 2K) + 2L

−
(

(N −M)2 − 1
)

+ (N −M) −M −K(N −M)2(−3L+N + 2M)

+(M −K)2(−3L+M + 2K) + 2L−
(

(N −M)2 − 1
)

(N −M).

It can again be shown to be equal to the sum of the two central charges of the two elementary

vertices. The vacuum character is given by an integral formula

χ
[

L0|2

K,L̄,M,N

]

= χWK−M
χWM−N

ρ+M−L− 1
2

∏

r=ρ+ 1
2

χB
r

∮

dVN,Mχ
N |M
K−M

2

(xi, yj)χ
N |L
M−N

2

(xi, yj). (4.69)

The characters of the two modules associated to the line defects supported at the NS5

and the (2, 1) interface can be computed in a similar way with an extra insertion of the

corresponding Schur polynomials.

4.2.3 Matching characters

Let us now consider a few familiar examples and match the predictions of the BRST

construction with the one coming from the gluing.

24The structure of poles in Ψ can be again read off from the diagram. Note that the pole at Ψ = 2

associated to the (1, 2) infinite five-brane appeared.
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Example 1: L
0|2

0,L̄,0,0

L

The first example is a coset25

L0|2

0,L̄,0,0
[Ψ] =

U(L;−Ψ) × S0|L × S0|L

U(L;−Ψ + 2)
(4.70)

again defined as the BRST reduction of the complex

U(L)−Ψ × S0|L × S0|L × U(L)Ψ−2 × gh (4.71)

with respect to the BRST charge

QBRST =

∮

dz(J i
j − J̃ i

j + ψiχj + ψ̃iχ̃j). (4.72)

where (ψi, χi) and (ψ̃i, χ̃i) are the two sets of L fermionic fields. The fields in the cohomol-

ogy are formed by U(L) invariant combinations of the pair of fermions in the fundamental

representation. In particular, the final algebra contains U(2; 1) subalgebra generated by

derivatives of products of the bosonic bilinears.

One can check that the vacuum character of the BRST construction

χ
[

L0|2

0,L̄,0,0

]

=
1

K!

∮ K
∏

i=1

dxi
xi

K
∏

i=1

∞
∏

n=0

(

1 + xiq
n+ 1

2

)2 (

1 + x−1
i qn+

1
2

)2
(4.73)

matches the one from the gluing

χ
[

L0|2

0,L̄,0,0

]

=

∞
∏

n=0

L
∏

m=1

1

1 − qn+m

∑

µ

q
∑K

i=1 µ
2
i+

∑K
i=1(K+1−2i)µis2µ(xi = q

1
2
(K−2i+1)). (4.74)

We have checked that they agree for K = 0, 1, 2 up to order q30, q20, and q10 respectively.

It is worth mentioning that this diagram has a natural interpretation in the case when

n D5-branes end on the (n, 1) branes (the diagram we discuss later) and a stack of L D3

branes attached at the face on the left. The corresponding algebra is a cohomology gluing n

fermionic fields in the U(L) invariant way. The algebra will include U(n;n− 1) subalgebra

extended by other fields.26

Example 2: U(2;Ψ) as L
0|2

2,0̄,1,0

2

1

Another important example is the Kac-Moody algebra

L0|2
2,0̄,1,0

[Ψ] = U(2; Ψ) (4.75)

with the vacuum character

χ
[

L0|2
2,0̄,1,0

]

=

∞
∏

n=0

1

(1 − qn+1)4
. (4.76)

25This coset has already been discussed in [53].
26Note that similar algebras [55–59] play important role in the discussion of the equivariant cohomology

of the moduli space of U(L) instantons on C
2/Zn. In particular, [59] discusses construction similar to our

gluing.
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One can see that the above character agrees with the gluing construction and using

the formulaæ from appendix C, one gets

χ
[

L0|2
2,0̄,1,0

]

=

∞
∏

n=0

1

(1−qn+1)4

∞
∑

s=−∞

(

∑

n=s

(−1)n+sq
n(n+1)−s(s−1)

2 +

∞
∑

n=s+1

(−1)n+sq
n(n+1)−s(s+1)

2

)

.

(4.77)

The equality then follows from the identity

1 =
∞
∑

s=−∞

(

∑

n=s

(−1)n+sq
n(n+1)−s(s−1)

2 +
∞
∑

n=s+1

(−1)n+sq
n(n+1)−s(s+1)

2

)

. (4.78)

Example 3: W
(2)
3 as L

0|2

2,0̄,1,0

3

1

The next example can be identified with the W(2)
3 algebra of [51, 52]

times the omnipresent U(1) factor. The algebra is given by the BRST

reduction27

L0|2
2,0̄,1,0

[Ψ] = DS2[U(3; Ψ)]. (4.79)

The character of the algebra is given by

χ
[

L0|2
2,0̄,1,0

]

=
∞
∏

n=0

1

(1 − qn+1)2
(

1 − qn+
3
2

)2
(1 − qn+2)

. (4.80)

This expression can be expanded using the formulas in appendix F as

χ
[

L0|2
2,0̄,1,0

]

=
(

1 − q
1
2

)2
∞
∏

n=0

1

(1 − qn+1)4 (1 − qn+2)

∞
∑

n=0

n
∑

m=−n

(−1)n+mq
n(n+1)−m2

2 . (4.81)

From the gluing perspective, the algebra can be constructed as a conformal extension

L0|2
2,0̄,1,0

⊃ Y0,1,3[Ψ] × Y0,0,1[Ψ − 1]. (4.82)

At the level of characters, one gets

χ
[

L0|2
2,0̄,1,0

]

=

∞
∏

n=0

1

(1 − qn+1)4(1 − qn+2)

∞
∑

s=−∞

[

(1 + q)

∞
∑

n=|s|

(−1)n+sq
n(n+1)−s2

2 (4.83)

+q
1
2

∞
∑

n=|s+1|

(−1)n+sq
n(n+1)−(s+1)2

2 + q
1
2

∞
∑

n=|s−1|

(−1)n+sq
n(n+1)−(s−1)2

2

]

that is equivalent to the expansion above.

27Note the similarity of the algebra with N = 2 super Virasoro coming from the analogous DS-reduction

of U(2|1;Ψ).
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Example 4: L
0|2

3,0̄,2,0

3

2

The final example deals with a configuration closely related to the previ-

ous one. The relation is discussed in detail in the section 6. The algebra

L0|2
3,0̄,2,0

is defined as

L0|2
3,0̄,2,0

= DS2[DS1[U(3; Ψ)]] (4.84)

by which we mean the DS-reduction of U(3; Ψ)×{b12, c12} with respect to the BRST charge

Q =

∮

dz(J12 − 1)c12. (4.85)

The character of the algebra differs from the previous one by the contribution from the

free fermion

χ
[

L0|2
3,0̄,2,0

]

=
∞
∏

n=0

1

(1 − qn+1)2
(

1 − qn+
1
2

)2 (

1 − qn+
3
2

)2
(1 − qn+2)

. (4.86)

From the gluing point of view the algebra can be constructed as a conformal extension of

the form

L0|2
3,0̄,2,0

[Ψ] ⊃ Y0,2,3[Ψ] × Y0,0,2[Ψ − 1]. (4.87)

The vacuum character is

χ0,0,2,3 =
∑

µ1≥µ2

χY0,2,3[Ψ](W
3
µ)χY0,0,2[Ψ−1](W

1
µ)

=
1

2

∞
∏

n=0

1

(1 − qn+1)7

∑

µ1≥µ2

(q−
1
2
µ1+

1
2
µ2 − q

1
2
µ1−

1
2
µ2+1) ×

×
∞
∑

n1=0

∞
∑

n1=0

(−1)n1+n2(1 − qn1+1)(1 − qn2+1)q
n1(n1+1)+n2(n2+1)

2 ×

×
(

q(n1+1)µ1+(n2+1)µ2 + q(n1+1)µ2+(n2+1)µ1

−q(n1+1)(µ2−1)+(n2+1)(µ1+1) − q(n1+1)(µ1+1)+(n2+1)(µ2−1)
)

. (4.88)

Multiplying both numerator and denominator of the expression (4.86) by the factor of

(1 − q)3 and using the identities from the appendix to expand the products, one can show

that the two proposals for the character match.

4.3 Algebras of type M |N

In this section, we briefly discuss a generalization of the BRST reductions in the case of

diagrams with D5-branes ending on (n, 1) branes from both left and right. We describe the

BRST reduction of a general configuration with monotonic number of D3-branes. Example

of such a configuration is given in the figure 9.
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Figure 9. Example of a configuration of branes with a BRST definition.

4.3.1 BRST construction

Let N1 ≥ N2 ≥ · · · ≥ Nn be the sequence of D3-branes on the left of the (n, 1) branes and

M1 ≥ M2 ≥ · · · ≥ Mn be the sequence of D3-branes attached from the right. There is a

natural generalization of the construction from the previous two sections where 1|1 and 0|2
algebras were constructed using a sequence of DS-reductions and one coset construction.

To find the expression for the BRST reduction, we follow the diagram from the top to the

bottom. We start with the Kac-Moody algebra U(M1, N1; Ψ). Each time a D5-brane ends

from the right, the Drinfeld-Sokolov reduction DSMi−Mi+1 needs to be performed (where i

labels the D5-branes ending from the right). Similarly, each time a D5-brane ends on the

chain of (n, 1) branes from the left, the Drinfeld-Sokolov reduction DSNj−Nj+1 needs to be

performed (here i labels the D5-branes ending on the left). Finally, one needs to take a

coset with respect to the remaining U(Mm|Nn) super Kac-Moody algebra. For example,

the diagram from 9 leads to the following algebra

L62̄41̄10[Ψ] =
DS1[DS3[DS1[DS2[U(6|2; Ψ)]]]]

U(1;−Ψ + 2)
(4.89)

where the DSN and DSN are defined as in the case of 1|1 and 0|2 diagrams. Note that after

each DS-reduction associated to the D5-brane ending from the right, the final algebra con-

tains a Kac-Moody algebra with level shifted by minus one and after each DS-reduction as-

sociated to the D5-brane ending from the left, the final algebra contains a Kac-Moody alge-

bra with level shifted by one. The final level one gets after performing all the DS-reductions

is opposite to the level of the Kac-Moody algebra induced from the bottom CS theory.

Let us now summarize how the fields decompose under DSN−M and DSK−L reductions

at each step. The U(N |K; Ψ) Kac-Moody algebra factor decomposes as

DSN−M : U(N |K; Ψ) → WN−M × U(M |K; Ψ − 1) × SM |K
N−M

2

DSK−L : U(N |K; Ψ) → WK−L × U(N |L; Ψ + 1) × SN |L
K−L

2

. (4.90)
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Figure 10. The structure of DS-reductions from the example 4.89.

On the other hand, the fields SN |K
k and SN |K

k from the previous steps decompose as

DSN−M : SN |K
k → SM |K

k × Bk−N−M−1
2

× · · · × Bk+N−M−1
2

DSN−M : SN |K
k → SM |K

k ×Fk−N−M−1
2

× · · · × Fk+N−M−1
2

DSK−L : SN |K
k → SN |L

k ×Fk−K−L−1
2

× · · · × Fk+K−L−1
2

DSK−L : SN |K
k → SN |L

k × Bk−K−L−1
2

× · · · × Bk+K−L−1
2

. (4.91)

The decomposition is shown explicitly for the example above in the figure 10.

A similar BRST reduction can be defined in the case when the diagram can be cut

into two halves where in the upper half, the number of D3-branes decreases from the top

to the bottom and in the lower half it decreases from the bottom to the top. The BRST

definition is then given by performing a sequence of DS-reductions on both the upper and

the bottom Kac-Moody algebra and then gluing two remaining Kac-Moody subalgebras

with opposite level by BRST construction.

4.4 Kac-Moody algebras

It is well known [60] that imposing Az̄ = 0 at the boundary of U(N) Chern-Simons theory

at level Ψ gives rise to the Kac-Moody algebra U(N ; Ψ). A lift of such (rotated Dirichlet)

boundary condition can be identified according to [18] with a configuration of N D3-branes,

each of them ending on a single D5-brane with a flux that deforms the standard Dirichlet

boundary condition. To obtain the Kac-Moody algebra from the corner configuration,

one needs to introduce an extra NS5-like boundary on which the Chern-Simons theory is

induced and also to impose a correct boundary condition. Such configuration consists of

N D5-branes attached to (n, 1) branes with n increasing by one at each junction. The

number of D3-branes starts with N in the upper right corner and gradually decreases by

one each time we cross a D5-brane. An example of such a configuration for N = 4 is shown

in the figure 11.
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Figure 11. Configuration corresponding to U(4)Ψ Kac-Moody algebra.

Based on this argument about the resolution, one can naturally conjecture that

U(N ; Ψ) can be constructed as a conformal extension

U(N)Ψ = ×N
n=1Y0,n−1,n[Ψ −N + n]. (4.92)

This indeed agrees with the BRST definition that contains a sequence of N trivial DS-

reductions in one dimensional blocks of U(N ; Ψ) in this special case.

The case of U(1; Ψ) is trivially true and the case of U(2; Ψ) was already discussed in the

previous section. To support the conjectural relation of the U(N ; Ψ) Kac-Moody algebra

with gluing of Y-algebras in general case, let us argue that the central charge coming from

the gluing construction agrees with the central charge of the Sugawara stress-energy tensor

and that the vacuum character for U(3; Ψ) agrees. Indeed, it is easy to see that after

summing over the contributions to the central charge from each vertex, one finds the total

central charge

c [U(N ; Ψ)] =

N−1
∑

n=0

c [Y0,N−n−1,N−n[Ψ − n]] = N2 − N(N2 − 1)

Ψ
(4.93)

that agrees with the central charge of the Sugawara stress-energy tensor for U(N ; Ψ).

3

2

1

Let us check that the gluing construction gives the correct vac-

uum character also in the case of U(3; Ψ). This algebra is conformal

extension of

U(3,Ψ) ⊃ Y0,2,3[Ψ] × Y0,1,2[Ψ − 1] × Y0,0,1[Ψ − 2]. (4.94)

In this case, one needs to sum over the modules associated to characters with two asymp-

totic Young diagrams. This calculation is a non-trivial check of our proposals under these

conditions. The character can be expressed as

∞
∑

ν=−∞

∑

µ1≥µ2

χ[Y0,2,3[Ψ]](M3
µ1,µ2

)χ[Y0,1,2[Ψ − 1]](M2
µ1,µ2

,M3
ν )χ[Y0,0,1[Ψ − 2]](M1

ν ). (4.95)

Plugging in from the appendix C, we have checked that the character indeed agrees with

the one of U(3; Ψ) up to q10.
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Figure 12. Configuration corresponding to U(4|2)Ψ Kac-Moody algebra.

Similarly, one can conjecture the brane configuration and the corresponding gluing

construction giving rise to the U(N |M ; Ψ) Kac-Moody algebra. In the case of supergroups,

one needs to impose Dirichlet boundary conditions on both sides of the NS5-like boundary.

It is unclear at first sight what is the correct ordering of the D5-branes ending from the

left and right in the resolution of the configuration in terms of (p, q)-webs. But fortunately

various configurations are mutually related to each other by a sequence of flip transitions to

be discussed later. Parameters ρi associated to each finite segment turn out to be zero and

as will be discussed in the next section, we expect algebras related by a flip transformation

with ρ = 0 to be equal. Moreover, it is also easy to check that the central charges of

algebras related by a flip indeed agree in this case.

Let us compute the central charge in the super Kac-Moody algebra case. We start with

the ordering of branes such that D5-branes ending on (n, 1) branes first alternate and then

continue ending from one side after there are no other D5-branes left. Example of such a

configuration is shown for U(4|2; Ψ) in figure 12. The contributions to the central charge

from all the resolved conifold segments vanish. One is left with the contribution equal to

Kac-Moody algebra of difference rank U(N−M ; Ψ) for N > M or U(M−N ;−Ψ) otherwise.

This leads to the correct central charge of the U(N |L; Ψ) Kac-Moody superalgebra.

4.4.1 Decomposing U(N)κ

Since the affine algebra U(N)κ at level κ is an important example of the gluing construction,

let us derive the gluing diagram by directly decomposing the algebra itself. We have the

conformal decomposition

U(N)κ ⊃ U(N)κ
U(N − 1)κ

× U(N − 1)κ
U(N − 2)κ

× . . .× U(2)κ
U(1)κ

× U(1)κ. (4.96)

From the level-rank duality we know that

U(N)κ
U(N − 1)κ

≃ U(1) × SU(κ)N−1 × SU(κ)1
SU(κ)N

≃ U(1) ×Wκ, (4.97)
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i.e. each factor in (4.96) can be associated with Y algebra. Let us verify this decomposition

by calculating the OPEs. We normalize the generators of U(N)k such that

JJ
K(z)JL

M (w) ∼ κδLKδ
J
M

(z − w)2
+
δLKJ

J
M (w) − δJMJ

L
K(w)

z − w
. (4.98)

The indices J,K, . . . run from 1 to N . Now we split the currents according to N →
(N − 1) + 1 and the lowercase Latin indices j, k, . . . will run from 1 to N − 1. We denote

the fields after the splitting

Xj(z) = J j
N (z)

Yj(z) = JN
j(z) (4.99)

Z(z) = JN
N (z).

and J j
k(z). The operator product expansions can now be written as

Jk
k(z)J l

m(w) ∼ κδkl δ
j
m

(z − w)2
+
δlkJ

j
m(w) − δjmJ l

k(w)

z − w

J j
k(z)X l(w) ∼ δlkX

j(w)

z − w

J j
k(z)Yl(w) ∼ −δ

j
l Yk(w)

z − w

J j
k(z)Z(w) ∼ reg.

Xj(z)Xk(w) ∼ reg.

Yj(z)Yk(w) ∼ reg. (4.100)

Xj(z)Yk(w) ∼ κδjk
(z − w)2

+
J j

k(w)

z − w
− δjkZ(w)

z − w

Xj(z)Z(w) ∼ Xj(w)

z − w

Yj(z)Z(w) ∼ −Yj(w)

z − w

Z(z)Z(w) ∼ κ

(z − w)2
.

We now want to determine the parameters of W-subalgebra commuting with U(N − 1)κ.

U(1)k current. We see directly from the operator product expansions that the field Z(z)

satisfies the OPE of U(1) current

Z(z)Z(w) ∼ κ

(z − w)2
. (4.101)

The corresponding Sugarawa stress-energy tensor with central charge 1 is

1

2κ
(ZZ)(z). (4.102)
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Dimension two fields and stress-energy tensor. We have 7 dimension 2 fields

(J j
kJ

k
j), (J j

jJ
k
k), J j ′

j , (XjYj), (ZZ) and Z ′ and (J j
jZ) that commute with the global

subalgebra of U(N −1)κ and we want to find a linear combination of these such that it has

regular OPE with Z(z) and with J j
k(z). There is a unique field satisfying these conditions,

T∞ = − 1

2(N + κ)(N + κ− 1)
(J j

kJ
k
j) −

1

2κ(N + κ)(N + κ− 1)
(J j

jJ
k
k) (4.103)

+
1

2(N + κ)
((XjYj) + (YjX

j)) − N − 1

2κ(N + κ)
(ZZ) +

1

κ(N + κ)
(ZJ j

j).

We chose the normalization in such a way that the OPE with T∞ with itself is that of the

stress-energy tensor. The central charge is

c∞ =
(N − 1)(κ− 1)(N + 2κ)

(N + κ)(N + κ− 1)
. (4.104)

By construction, the fields Z and J j
k commute with T∞ while the fields Xj and Yk have

OPE

T∞(z)Xj(w) ∼ (κ− 1)(N + 2κ)

2κ(N − 1 + κ)

Xj(w)

(z − w)2
− 1

N − 1 + κ

(J j
kX

k)(w)

z − w

− 1

κ(N − 1 + κ)

(Jk
kX

j)(w)

z − w
+

(ZXj)(w)

z − w
+
∂Xj(w)

z − w
(4.105)

This nicely illustrates the general fact that while the gluing fields like Xj(w) are primary

with respect to stress-energy tensors at vertices in the sense that the higher than quadratic

poles in OPE vanish and that the quadratic pole is proportional to Xj(w), the linear

pole is not simply a derivative of Xj(w). In the language of mode operators, the state

corresponding to Xj(w) is annihilated by positive modes of the T∞ and is eigenstate of

its zero mode, but the action of L−1 on fields is not simply the derivative. Only the total

stress-energy tensor of the whole algebra generates the spatial translations.

Dimension 3 and 4 fields. In order to find the λ-parameters of Y algebra, we need

to identify the primary spin 3 and spin 4 fields. Up to a normalization, there is a unique

dimension 3 primary field

W3(z) = (J j
k(Jk

lJ
l
j))(z) + . . . (4.106)

with the OPE structure constant

C0
33 =

3(N − 1)(κ− 2)(κ− 1)(N + κ)(N + κ− 1)(2N + κ− 2)(N + 2κ)(2N + 3κ)

2κ
.

(4.107)

Similarly, we find a unique spin 4 primary normalized as

W4(z) = (J j
k(Jk

l(J
l
mJ

m
j)))(z) + . . . (4.108)

and with structure constant

C0
44 =

4(N − 1)N(κ− 3)(κ− 2)(κ− 1)(κ+ 1)(N + κ)(N + κ− 1)

κ2(5N2κ+ 17N2 + 10Nκ2 + 29Nκ− 17N + 12κ2 − 12κ)
× (4.109)

×(N + 2κ)(N + 2κ− 1)(2N + κ− 2)(2N + 3κ)(3N + 2κ− 3)(3N + 4κ).
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Figure 13. A configuration of branes corresponding to the coset U(N)κ/U(N − 1)κ. The level is

encoded in Ψ = κ.

The remaining structure constant C4
33 needed for identification of λ is

C4
33 = −9(N + κ)(N + κ− 1). (4.110)

Comparing this with (2.13), we can identify

λ =

(

κ,
κ

N + κ− 1
,− κ

N + κ

)

. (4.111)

These parameters are exactly what one would read off from the diagram shown in figure 13

with the value of level κ determined as

Ψ = −κ. (4.112)

Charges of gluing fields. We would like to identify the fields Xj and Yk as the gluing

fields. Unfortunately, their charges with respect to Z don’t match with the gluing pre-

scription (2.28). There is however a freedom of redefinition of U(1) currents associated to

vertices. Let us first normalize the U(1) currents Jα(z) such that

Jα(z)Jβ(w) ∼ δαβ
(z − w)2

. (4.113)

The index α labels the individual vertices so in the case of U(N)κ it runs from 1 to N .

Having fixed the normalization of the fields in this way, we are still free to make global

SO(N) rotations in the space of U(1) currents. The gluing matter fields have charges

which follow from (2.28) and (2.29). For example in the case of U(N)κ diagram, the basic

bimodule between α-th and (α+ 1)-st node has charges described by the charge vector

vα,α+1 =

√

1

κ+ κ
α−1+κ

eα −
√

1

κ− κ
α+1+κ

eα+1 (4.114)

where eα is the standard Euclidean basis of the charge space. The invariant quantities under

orthogonal rotations of U(1) fields are the inner products between the charge vectors of

neighbouring bimodules. In our case, we find the non-zero inner products

vα,α+1 · vα+1,α+2 = −
√

1

κ− κ
α+1+κ

√

1

κ+ κ
α+κ

= −1

κ
. (4.115)
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This should be compared to diagonal U(1) currents of U(N)κ affine Lie algebra: the nor-

malized currents are in our case the Cartan currents

(

1√
κ
J1

1,
1√
κ
J2

2, . . . ,
1√
κ
JN

N

)

. (4.116)

The gluing matter is given by the fields associated to simple roots

(

J1
2, J

2
3, . . . , J

N−1
N

)

(4.117)

as well as their conjugates. Their corresponding charge vectors can be read off from the

OPE

1√
κ
J j

j(z)Jk
k+1(w) ∼

√

1

κ
(δj,k − δj,k+1)

Jk
k+1(w)

(z − w)
(4.118)

and we find the vectors

wα,α+1 =

√

1

κ
eα −

√

1

κ
eα+1. (4.119)

The inner products between these are

wα,α+1 · wα+1,α+2 = −1

κ
. (4.120)

as before. We conclude that the basis of U(1) charges described in (2.28) and (2.29) and the

natural Cartan basis in U(N)κ are related by an O(N) rotation in a way that is compatible

with charge assignments of the gluing matter fields.

Positive roots from composite line operators. We can now understand the origin

of all spin 1 U(N)κ fields directly from the gluing diagram. The Cartan U(1) fields come

from the vertices of the diagram. The simple roots and their negatives come from the

spin 1 gluing matter fields in the fundamental representation. Every time we have ρ = 0

associated to an edge, it gives rise to such a spin 1 field. If we turn on the line operators

in the fundamental representation along neighbouring edges, the formula (D.11) tells us

that we get additional spin 1 fields which correspond to positive roots. We thus have a

one-to-one correspondence between connected chains of edges in the diagram and positive

(or negative) roots, simple edges corresponding to simple roots.

4.4.2 Dual diagram

The diagrams drawn so far represent the configuration of D3 and five-branes as they are

in type IIB string theory. For some purposes it is useful to draw the dual diagrams,

where the nodes correspond to faces and are labeled by the number of D3 branes of the

corresponding stack of branes. The slopes of lines correspond to five-brane charges as

before, but the five-brane charge conservation condition now translates to the fact that the

faces of the diagram are closed triangles. An example of such diagram is shown in figure 14.

Very similar diagrams appear in the related context in [61].
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Figure 14. Dual diagram representing the U(4|2; Ψ) Kac-Moody algebra. In this picture, the

different orderings of five-branes coming from the left and right correspond to different triangulations

of the polygon.

5 Large number of D3-branes

In this section we study what happens as the number of attached D3-branes grows to

infinity. We already discussed the simplest case of the algebra YL,M,N . As L, M or N goes

to infinity, the vacuum character approaches the MacMahon function which counts the

plane partitions without any further constraints. Combinatorially, the requirement of the

absence of a box at position (L+ 1,M + 1, N + 1) which leads to truncation of the algebra

disappears. The operator product expansions for the spin content given by MacMahon

functions were studied in [8] and the result is a two-parametric family of algebras W1+∞

parametrized by λj with constraint (2.12). The central charge and the OPE structure

constants in the primary basis are determined in terms of λj as in (2.13). YL,M,N algebras

can be recovered by recalling that if (2.14) is satisfied the algebra W1+∞ develops an ideal

such that YLMN is the quotient of W1+∞ by this ideal. In this section, we generalize this

point of view to other algebras that we constructed by the gluing procedure.

5.1 Resolved conifold — Wρ

1|1×∞ algebras

As a first example, let us see what are the possible limits of the conifold L1|1

K,L̄,M,N̄
algebras

as the number of D3 branes approaches infinity. Compared to the YL,M,N junction, the

conifold configuration has another stack of D3 branes so one might naively expect a three-

parametric family of algebras. We will see that in the infinite numbers of branes limit, one

recovers different characters for each choice of the discrete parameter

ρ =
N + L−K −M

2
(5.1)

that we keep fixed as we take the limit. For each choice of ρ, there are two continuous inde-

pendent λ-parameters from one of the vertices as in the case of YL,M,N . The λ-parameters

of the second vertex can be then determined in terms of the discrete parameter ρ and the

gluing conditions (3.25). We thus obtain a family of algebras Wρ

1|1×∞ associated to the

conifold diagram, labeled by one discrete parameter ρ (associated to the edge) and two

continuous parameters parametrizing the structure constants of the algebra. We expect to

be able to recover L1|1

K,L̄,M,N̄
algebras as truncations of the Wρ

1|1×∞ family.
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5.1.1 Vacuum character from BRST computation

Let us now explicitly verify the claims of the previous section by computing the vacuum

character of Wρ

1|1×∞,

χ
[

Wρ

1|1×∞

]

=
∞
∏

n=1

(1 + qn+ρ)
2n

(1 + qn)2n
. (5.2)

Let us first see how the character (5.2) appears from the BRST definition of the algebra

for K ≥ M and L ≥ N . When computing the vacuum character, there are various

contributions coming from the different blocks of U(K|L). Firstly, there are characters of

WK−M and WL−N coming from the two diagonal blocks. Secondly there is a sequence of

pairs of L−N fermionic fields with conformal weights

ρ+ 1, ρ+ 2, . . . ρ+ L−N (5.3)

coming from the fermionic off-diagonal blocks that are influenced by both DS-reductions.

Apart from these, there are U(M |N) invariant combinations of SM |N
K−M

2

and SM |N
L−N

2

. These

can be identified with products of bilinears of their generators. If we forget about the

relations satisfied by the products of bilinears (which is a condition that disappears in

the infinite number of branes limit), SM |N
K−M

2

fields form an infinite tower of generators of

each integral spin starting with K −M + 1. This sequence continues the one of WK−M

and together they form one factor of W1+∞. Similarly, U(M |N) invariant combinations of

SM |N
L−N

2

continues the sequence of fields of WL−N to produce the second factor of the W1+∞

vacuum character. Finally, the bilinears mixing SM |N
K−M

2

and SM |N
L−N

2

form an infinite tower

starting at conformal dimension ρ+L−N + 1. Note that these fields are fermionic since a

bosonic field gets combined with a fermionic field and these combinations continue the L−N
fermionic fields discussed above. One can see that total character is indeed given by (5.2).

The BRST proposal for K ≥M and N ≥ L produces the same character by a slightly

different argument. The two WK−M and WN−L blocks get extended by bilinears of SM |L
K−M

2

and SM |L
K−M

2

respectively. In this case there are no off-diagonal blocks that would be in-

fluenced by both DS-reductions but U(M |K) invariant combinations combining the fields

coming from both SM |L
K−M

2

and SM |L
K−M

2

give rise to fermions with each integral spin starting

at spin 1 + ρ and we can draw the same conclusion as in the previous case.

5.1.2 Vacuum character from gluing

From the point of view of gluing, the character formula (5.2) can be obtained by a small

modification of the standard sums used in topological vertex calculations. In the limit of

infinite numbers of branes K,L,M,N → ∞, the relevant tensor representations of U(∞)

decouple into contravariant representations (contained in tensor powers of the fundamental

representation) times covariant representations (contained in tensor powers of the anti-

fundamental representation). Moreover, the pit conditions truncating the two trivalent

vertex algebras disappear to infinity and the characters involved considerably simplify.
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We can use this example to illustrate the gluing at the level of W1+∞ algebras. First

of all, the λ parameters associated to two vertices are connected via

λ′j = λj
λ3

2ρ− λ3
(5.4)

as follows from (3.25). We want to sum over all characters of W1+∞ labeled by the rep-

resentations of the line operators stretched along the edge. In the limit of large number

of D3 branes, these are parametrized by a pair of Young diagram labels (µ, ν), the first

labeling the contravariant part and the second labeling the covariant part of the U(∞)

representation. The corresponding W1+∞ character factorizes and is equal to

χ(µ,ν) = qhµ+hν

∞
∏

n=1

1

(1 − qn)n
Pµ(q)Pλ(q) (5.5)

where the power of q in the prefactor is the conformal dimension of the representation and

where Pµ(q) is the quantum dimension of the representation (normalized to be a polynomial

in q starting with 1 + . . .),

Pλ(q) =
∏

�∈λ

1

1 − qhook(�)
(5.6)

(see [5, 11, 41]). The full vacuum character for the conifold algebra is now obtained

by summing over all the representations of the line operators and taking the product of

characters of algebras associated to both vertices

χWρ

1|1×∞
=
∑

µ,ν≥0

z|µ|−|ν|χ(µ,ν)χ
′
(µ,ν) (5.7)

=
∞
∏

n=1

1

(1 − qn)2n
×
∑

µ,ν≥0

(

qhµ+h′
µz|µ|P 2

µ(q)
)

×
(

qhν+h′
νz−|ν|P 2

ν (q)
)

. (5.8)

We turned on the fugacity parameter z for the U(1) current associated to one of the two

Y-algebra vertices which refines the character. Now we need to evaluate

∑

µ≥0

(

qhµ+h′
µz|µ|P 2

µ(q)
)

=
∑

µ≥0

(

q
1
2

∑

j µ
2
j+

1
2

∑

j(2j−1)µj+ρ
∑

j µjz
∑

j µjP 2
µ(q)

)

. (5.9)

This sum is a typical example of sums studied in the topological vertex computations and

we find
∑

µ≥0

(

qhµ+h′
µz|µ|P 2

µ(q)
)

=
∞
∏

n=1

(1 + zqρ+n)n. (5.10)

This again reproduces the formula (5.2), this time with the additional fugacity parameter z.

Let us now consider two special values of the parameter ρ. In the case when ρ = 0,

one gets in the large N limit the character of W1|1
1+∞ (an algebra generated by 2× 2 matrix

of generators for each integral spin). This algebra appeared in [24] as an example in the

context of categorified Donaldson-Thomas invariants and corresponding counting of D0-

D2-D6 bound states. We devote the next section to the example of ρ = 1
2 that can be

identified with N = 2 super-W∞.
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Figure 15. First few truncation curves in the (µ1, µ3) parametrization for 0 ≤ ρ ≤ 5

2
and the

number of branes K + L + M + N ≤ 8. Note that the figures are invariant under the reflection

µ1 ↔ µ2 corresponding to the S-duality action.

5.1.3 N = 2 super-W∞

In the case of ρ = 1
2 , the character can be identified with the vacuum character of N = 2

super-W∞ × U(1) of [25] (times our standard U(1) factor).28 The authors extended the

N = 2 superconformal algebra by a simple tower of higher spin N = 2 supermultiplets with

spins of lowest components being 2, 3, . . .. Imposing the Jacobi identities, a two-parameter

family of such algebras was found. For special values of parameters, a truncation of this

algebra admits a coset construction using the Kazama-Suzuki coset

U(N + 1; Ψ−1) × SN |0

U(N ; Ψ−1)
(5.11)

and a construction using the Drinfeld-Sokolov reduction of U(N+1|N). Both of these real-

izations can be identified with the BRST constructions that we propose for a special choice

of discrete parameters K,L,M,N and turn out to be related by S-duality of our diagram

L1|1

N+1,N̄ ,0,0̄
[Ψ] ↔ XN+1,0̄,N,0̄

[

1

Ψ

]

. (5.12)

In particular, for N = 1, we get the N = 2 superconformal algebra that is an extension

of the Virasoro algebra by a spin 1 current and two oppositely charged spin 3
2 fermions.

28See also [62] for the special case of parameters where the algebra becomes linear.
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Together with the stress-energy tensor, these four fields form a N = 2 supermultiplet with

lowest component having spin 1. In [63], the N = 2 SCA was extended by adding a N = 2

supermultiplet with lowest spin 2. In appendix G this algebra is discussed from the gluing

point of view. The algebra is again associated to the conifold diagram N = 2. It is natural

to conjecture that in general the N = 2 extension of WN is given by the L1|1

N+1,N̄ ,0,0̄
algebra

and that all the other configurations with ρ = 1
2 are other truncations of N = 2 W∞.

Candu and Gaberdiel introduce a parameter µ with the property that setting µ = −N ,

we recover the truncations discussed above and parametrize the full algebra in terms of µ

and the central charge c. Analogously to the triality symmetry of W1+∞, at each generic

fixed value of the central charge c there are four different values of µ which give identical

OPEs in the primary basis. These values of µ are [25]

µ1 = µ, µ2 =
(c− 1)µ

c+ 3µ
, µ3 =

c+ 3µ

3(µ− 1)
, µ4 = − c

3µ
.

Since N = 2 W∞ has apart from the stress-energy tensor an extra spin 2 primary field

commuting with the U(1) factor, we can find a linear combination of the spin 2 fields which

give us two independent commuting Virasoro subalgebras. Their central charges are

c1 =
c(µ+ 1)(c+ 6µ− 3)

3(c+ 3µ)2

c2 = −(c− 3µ)(c(µ− 2) − 3µ)

3(c+ 3µ2)
(5.13)

c = c1 + c2 + 1.

Note that we have

c1 =
(1 + µ1)(1 + µ3)(µ1µ3 − µ1 − µ3)

µ1 + µ3
,

c2 =
(1 + µ2)(1 + µ4)(µ2µ4 − µ2 − µ4)

µ2 + µ4
(5.14)

so defining

µ1 = −λ1, µ2 = −λ′1, µ3 = −λ2, µ4 = −λ′2 (5.15)

we can rewrite the partial central charges c1 and c2 in the standard form

c1 = (λ1 − 1)(λ2 − 1)(λ3 − 1)

c2 = (λ′1 − 1)(λ′2 − 1)(λ′3 − 1). (5.16)

We can thus identify the parameters λj and λ′j with the λ-parameters associated to the

two vertices. This hints that N = 2 super W∞ algebra indeed contains two mutually

commuting W∞ algebras as subalgebras and gives a picture consistent with the gluing.29

The duality transformations of the algebra that can be identified with the ❩2 ×❩2 duality

action given by transformations

Ψ ↔ Ψ, K ↔M, L↔ N (5.17)

29A similar observation was made by [64] where the authors study the gluing of N = 2 W∞ from the

Yangian point of view.
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and

Ψ ↔ 1

Ψ
, K ↔M (5.18)

that can be identified with permutation of parameters

µ1 ↔ µ2, µ3 ↔ µ4

µ1 ↔ µ3, µ2 ↔ µ4. (5.19)

Note that the parametrization and the whole construction works for arbitrary value of ρ

and we expect an existence of a two continuous parameter families of ❩2 × ❩2 algebras

for each choice of ρ such that L∞|∞

K,L̄,M,N̄
are their truncations. The structure of these

truncations in the (µ1, µ2) parameter space is shown in the figure 15 for various values of

ρ. You can see that figures are indeed invariant under µ1 ↔ µ2. The points where two

truncation curves intersect correspond to the BRST reductions at rational levels and we

expect them to correspond to minimal models of Wρ

1|1×∞ algebras.

5.2 Truncations of Wρ
2×∞

Let us now consider the case of algebras of the type 0|2 with the corresponding parameter

ρ fixed. Sending parameters K,L,M,N → ∞ to infinity, relations satisfied by product

of bilinears in the BRST calculation of the character disappear and one gets a character

analogous to Wρ

1|1×∞. The only difference is that all the invariant combinations are bosonic

and the final character is given by

χ
[

Wρ

0|2×∞

]

=

∞
∏

n=1

1

(1 − qn)2n(1 − zqn+ρ)n(1 − z−1qn+ρ)n
. (5.20)

The same formula can be obtained from the gluing construction in the same way as in the

resolved conifold case. We just need to use

∑

µ≥0

(

qhµ+h′
µz|µ|P 2

µ(q)
)

=
∑

µ≥0

(

q
∑

j(2j−1)µj+ρ
∑

j µjz
∑

j µjP 2
µ(q)

)

=
∞
∏

n=1

1

(1 − zqρ+n)n
.

(5.21)

Algebras discussed in this section can be identified with truncations of Wρ

0|2×∞. Note

that ρ = 0 case again coincides with algebras studied in [24] in the context of counting

D6-D2-D0 bound states on the resolution of C2/❩2 × C.

5.3 Truncations of Wρi

M |N×∞

All examples discussed so far in this section can be identified with truncations of some

infinite algebra. In the BRST reduction described in above, one generates WN algebra

and symplectic bosons in fundamental representation of the reduced group associated to

each vertex. Moreover, at each vertex, symplectic bosons generated in the previous step

decomposes into the fields of shifted dimensions and symplectic bosons in fundamental

representation of the reduced group. Example of such process for first three reductions

from the example (4.89) is diagrammatically captured in 10. After projecting to the coset
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invariant combinations, one can argue that in the infinite number of branes limit, one

obtains the character of the form

χ[Wρi
M |N×∞] =

(

∞
∏

n=1

1

(1 − qn)n

)N+M
∏

i=1

(1 ± qn+ρi)±2n
∏

i>j

(1 ± qn+ρi+ρj )±2n (5.22)

where the products run over all internal edges and one chooses the + sign if both branes

of corresponding finite segment ends from the same side and the − sign otherwise. The

same character follows from the gluing construction: for example, in the U(3) case we use

the fact that

∞
∏

n=1

1

(1 − z1
z2
qn)n(1 − z1

z3
qn)n(1 − z2

z3
qn)n

=

=
∑

µ,ν

q||µ||
2+||ν||2−(µ,ν)

(

z1
z2

)|µ|(z2
z3

)|ν|

P (·, µ)P (µ, ν)P (ν, ·) (5.23)

where P (µ, ν) are the box-counting functions [11] related up to an overall factor to the

topological vertex C(µ, ν, ·). For the total character we thus find

χρ=0
3×∞ =

∞
∏

n=1

3
∏

j,k=1

1

(1 − zjz
−1
k qn)n

(5.24)

as expected for W3×∞.

Algebras coming from gluing or BRST construction for finite number of branes can

be identified with truncations of χρi
N |M×∞. For fixed values ρi, there are three integral

parameters left unfixed. These parameters parametrize truncation lines of χρi
N |M×∞ inside

the conjecturally two parameter family of algebras. Shifting all the numbers of branes by a

constant value again corresponds to a different truncation above the same truncation curve.

For ρi = 0 we already know a large three-parameter family of truncations coming from

the coset algebras
U(K +M |L+N)k

U(K|L)k
. (5.25)

By construction these cosets contain U(M |N)k as subalgebra but for K 6= 0 6= L also other

fields extending it.

6 Flip transition

In this section, we comment on the flip transition that plays an important role in the litera-

ture related to the BPS counting. At the level of diagrams the flip transition corresponds to

the sliding of five-branes. We conjecture that the algebras associated to diagrams related by

a flip transformation differ by a trivial algebra of decoupled fermions or symplectic bosons.

As a test of this conjecture we argue that central charges of the algebras related by

a flip differ only by a contribution of free fermions and symplectic bosons. In the case of

the linear diagrams with a BRST definition, we show that vacuum characters differ by a

contribution of such free fields. We explicitly construct algebras L0|2
3,0̄,2,0

, L1|1
0,1̄,0,0̄

and L1|1
0,2̄,0,0̄

and show that they differ from the flipped algebra by a free field contribution.
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Figure 16. Flip transition for type 1|1 (resolved conifold) algebras.

6.1 Flip of algebras of type 1|1

Let us start with a flip in the resolved conifold diagram. This transition exchanges the

order of the two D5-branes as shown in the figure 16. The related algebras are

L1|1

KL̄,M,N̄
[Ψ] ↔ L1|1

L,K̄,N,M̄
[−Ψ] (6.1)

where the minus sign is a consequence of the parity transformation relating the right hand

side of the figure 16 to the standard resolved configuration.

The central charges of the flipped algebras differ by a Ψ-independent factor

c
[

L1|1

KL̄,M,N̄
[Ψ]
]

− c
[

L1|1

L,K̄,N,M̄
[−Ψ]

]

= 4ρ(2ρ2 − 1). (6.2)

This is exactly the contribution coming from free (b, c) systems with conformal dimensions

(ρ+ 1,−ρ), (ρ+ 2,−ρ), . . . , (−ρ, ρ+ 1) (6.3)

since (for ρ < 0)
−ρ
∑

h=ρ+1

c[h] = 4ρ(2ρ2 − 1) (6.4)

where c[h] is the central charge of the stress-energy tensor of the b, c ghost system with

respect to which hc = h and hb = 1 − h are the conformal weights of the c, b fields.

At the level of characters, the difference is by a factor of (for ρ negative)

−ρ+ 1
2

∏

m=ρ+ 1
2

χF
m =

∞
∏

n=0

−ρ+1
∏

m=ρ+1

(

1 + qn+m
)

(6.5)

as can be most easily seen from the BRST construction. The only difference at the level

of the BRST reduction is in the two off-diagonal blocks whose elements are charged under

the Cartan elements of both sl2 embeddings. The contributions from the WK−M and

WL−N factors are present in the characters of both algebras. The integral projecting

on the U(N |M) invariant combinations is the same as well since all the fields under the

integral originate from the off-diagonal blocks charged with respect to only one of the two

sl2 embeddings. The only difference is thus in the product of χF
i factors given above.
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6.1.1 Example — flip of U(1;Ψ)

The flip of the U(1; Ψ) algebra is the simplest but also trivial example of a flip transition

since the algebra is simply

DS0[U(1; Ψ)] = U(1; Ψ) ×F (6.6)

from the definition. It automatically contains a decoupled fermion F .

6.1.2 Example — flip of Virasoro × U(1;Ψ)

A non-trivial example is the flip of the L1|1
2,0̄,0,0̄

[Ψ] algebra, i.e. L1|1
0,2̄,0,0̄

[−Ψ]. The BRST

definition of the algebra is in terms of a reduction of

U(2; Ψ) × {χ1, ψ1} × {χ2, ψ2} × {b, c} (6.7)

implemented by the BRST charge

Q =

∮

dz(J12 + χ1ψ2 − 1)c (6.8)

that can be identified with the BRST reduction associated to the principal sl2 embedding

inside U(2) but with the current modified by a fermionic bilinear.

The cohomology is generated by fields

J = J11 + J22

ψ̃1 = ψ1 + cbψ2 + J11ψ2

χ̃1 = χ1

ψ̃2 = ψ2

χ̃2 = χ2 − cbχ1 + J11χ1 (6.9)

T =
1

2Ψ
(J11J11 + 2J12J21 + J22J22)

−c∂b− ψ1∂χ1 + ∂ψ2χ2 +
Ψ − 1

2Ψ
(J ′

11 − J ′
22)

where T is the stress-energy tensor with the central charge

c = 10 − 6Ψ − 6

Ψ
(6.10)

as expected. The fields (ψ̃1, χ̃1) and (ψ̃2, χ̃2) have OPEs of a pair of free fermions. Their

OPEs with J are

J(z)ψ̃1 ∼ − Ψψ̃2

(z − w)2
, J(z)χ̃1 ∼

Ψχ̃2

(z − w)2
. (6.11)

χ̃1 and ψ̃2 are primaries of conformal dimension 0 while χ̃2 and ψ̃1 having OPEs with the

stress-energy tensor of the form

T (z)χ̃2(w) ∼ (1 − Ψ)χ̃1

(z − w)3
+

χ̃2(w)

(z − w)2
+
∂χ̃2(w)

z − w

T (z)ψ̃1(w) ∼ −(1 − Ψ)ψ̃2

(z − w)3
+

ψ̃1(w)

(z − w)2
+
∂ψ̃1(w)

z − w
(6.12)
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Figure 17. Flip transition for type 0|2 algebras in the case of K ≥ M ≥ N . A fixed number

of D3-branes is attached to each D5-brane. The crossing of D5-branes acts non-trivially on the

number of D3-branes at the internal face.

Note that one can modify both the J current and the stress-energy tensor T as

J → J + Ψ∂χ̃1ψ̃2

T → T − ∂χ̃1ψ̃1 − ∂ψ̃2χ̃2 − Ψ∂χ̃1χ̃1ψ̃2∂ψ̃2 +
Ψ − 1

2
∂2(χ̃1ψ̃2). (6.13)

After such a modification, the free fields decouple and one is left with the Virasoro algebra

times a U(1) algebra. The central charge of the modified stress-energy tensor

14 − 6Ψ − 6

Ψ
(6.14)

is the same as the central charge of the algebra before the flip.

6.2 Flip of algebras of type 0|2

Flipping D5-branes in the 0|2 diagram results in the change of numbers of D3-branes

between the two five-branes as shown in the figure 17. The algebras related by such a flip

are

L0|2

K,L̄,M,N
[Ψ] ↔ L0|2

K,L̄,K−M+N,N
[Ψ]. (6.15)

One can show analogously to the resolved conifold diagram that the central charges and

characters again differ by a contribution of 2|ρ| copies of the (β, γ) systems with correct

conformal dimensions. The only difference in this case is the different expression for the

parameter ρ and the bosonic nature of the decoupled fields.

6.2.1 Example L
0|2

0,0̄,2,3

Let us show that the algebra L0|2
0,0̄,2,3

associated to the flip of the W(2)
3 × U(1) algebra

contains W(2)
3 × U(1) as a subalgebra together with a decoupled free fermion.
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The algebra L0|2
0,0̄,2,3

is defined as a BRST reduction of U(3; Ψ)×{b12, c12} by the BRST

charge

Q2 =

∮

dz(J12 − 1)c12. (6.16)

The cohomology contains the currents

J1 =
J11 + J22

Ψ
− 1 − Ψ

Ψ
J33,

J2 = J11 + J22 (6.17)

that are mutually local and they are normalized according to (2.30) as

J1(z)J1(w) ∼ Ψ + 3
Ψ − 4

(z − w)2
, J1(z)J1(w) ∼ 2(Ψ − 1)

(z − w)2
. (6.18)

Apart from these currents, the reduced algebra contains generators of dimension 1
2 given

by

G+
1 = J13,

G−
1 = J32 (6.19)

and of dimension 3
2 of the form

G+
2 = J23 + (Ψ − 2)J11J13 + (Ψ − 3)J13J22 + J13bc,

G−
2 = J31 + (Ψ − 3)J11J32 + (Ψ − 2)J22J32 − J32bc (6.20)

together with the stress-energy tensor

T =
1

2Ψ

∑

i,j=1,2,3

JijJji +
1

2
∂J11 −

1

2
∂J22 + ∂b12c12 (6.21)

with the central charge

c = 25 − 24

Ψ
− 6Ψ. (6.22)

The superscripts ± in the expressions above denote the charge of the gluing fields with

respect to J1 and J2 currents.

Let us discuss OPEs of the algebra. G±
1 form subalgebra of symplectic bosons with

OPE

G+
1 (z)G−

1 (w) ∼ 1

z − w
. (6.23)

The operator product expansions between Ji currents and G±
2 fields are

J1(z)G±
2 (w) ∼ ± G±

2

z − w
, J2(z)G±

2 (w) ∼ (Ψ − 1)(2Ψ − 5)G±
1

(z − w)2
± G±

2

z − w
, (6.24)

OPEs between G±
1 and G±

2 fields are

G±
1 (z)G±

2 (w) ∼ ±(2 − Ψ)G±
1 G

±
1

z − w

G±
1 (z)G∓

2 (w) ∼ ± 1

z − w

(

(3 − Ψ)G−
1 G

+
1 +

Ψ

Ψ − 1
J1 +

1 − 3Ψ + Ψ2

Ψ − 1
J2

)

. (6.25)
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Finally for OPEs between G±
2 fields we find

G±
2 (z)G±

2 (w) ∼ ±
(

2Ψ3−13Ψ2+27Ψ−17
)

(

G±
1 G

±
1

(z−w)2
+
G±

1 ∂G
±
1

z−w

)

G+
2 (z)G−

2 (w) ∼ (Ψ−1)(Ψ−3)(2Ψ−5)

(z−w)3

+
1

(z−w)2

(

2(2Ψ−Ψ2)

Ψ−1
J1+

(Ψ−3)(Ψ−2)

Ψ−1
J2+(2Ψ3−11Ψ2+16Ψ−3)G+

1 G
−
1

)

+
1

z−w

(

ΨT +2(2Ψ−5)J2G
+
1 G

−
1 − Ψ2

2(Ψ−1)2
J1J1+

Ψ(6−7Ψ+2Ψ2)

(Ψ−1)2
J1J2

+
(2Ψ4−12Ψ3+21Ψ2−8Ψ−4)

2(Ψ−1)2
J2J2+(1−Ψ)G+

1 G
−
2

+2(Ψ3−6Ψ2+10Ψ−3)∂G+
1 G

−
1 +(Ψ2−4Ψ+3)G+

1 ∂G
−
1

+
2Ψ−Ψ2

Ψ−1
∂J1−

Ψ2−5Ψ+6

2(Ψ−1)
∂J2

)

. (6.26)

If we redefine the generators of the algebra as

J1 → J1 +G+
1 G

−
1

J2 → J2 +G+
1 G

−
1

G+
2 → G+

1 − (G+
1 )2G−

1 +
ΨJ1G

+
1

1 − Ψ
+

(1 − 3Ψ + Ψ2)J2G
+
1

1 − Ψ
+ (Ψ − 1)∂G+

1

G−
2 → G−

1 −G+
1 (G−

1 )2 +
ΨJ1G

−
1

1 − Ψ
+

(1 − 3Ψ + Ψ2)J2G
−
1

1 − Ψ
− (Ψ − 1)∂G−

1

T → T − 1

2
∂(G+

1 G
−
1 ) (6.27)

we discover that the currents G±
1 form a symplectic boson pair and they decouple. The

remaining algebra can be identified with the algebra W(2)
3 × U(1) with the stress-energy

tensor of the correct central charge

c = 26 − 24

Ψ
− 6Ψ. (6.28)

6.3 Flip in a general diagram

In a general tree diagram, the flip is a local transition that influences only the vertices

associated to the flipped leg and the edge along which the leg flipped. In particular, this

means that both the vacuum character and the central charge of the full algebra differ by

a contribution of free fields that can presumably be decoupled and the change in these

quantities can be read-off locally.

Note also that both the central charge and the vacuum character remain the same in

the case of vanishing ρ = 0. At the level of BRST reduction, one can indeed see that the two

reductions can be related by a unitary transformation of the current algebra generators. It

is natural to expect that the two algebras related by a flip are equal in arbitrary diagram

as soon as ρ = 0 as we mentioned already in the discussion of the D(2, 1;−Ψ)1 × U(1; 2Ψ)
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algebra. This situation also applies for the U(M |N ; Ψ) Kac-Moody algebras where for

symmetry reasons we expect the algebra to be independent of the order of reductions in

the first and second diagonal block (see figure 12).

7 Outlook

Summation over supergroup representations. From the technical point of view,

we lack full understanding of summation over YL,M,N representations with all three

asymptotics non-trivial and the most general pit condition. At the level of characters,

it would be very useful to know a formula for the character of representations of YL,M,N

with three non-trivial asymptotics with both covariant and contravariant labels (boxes

and antiboxes) and with the general truncation condition. From the BRST point of

view, the main obstacle at this level seems to be related to understanding the relevant

representations of supergroups and their characters. From the point of view of W1+∞, one

needs to understand the fusion ring of the box and anti-box representations, in particular

the mixed covariant and contravariant representations.

OPEs of gluing matter. In constructions considered in this article, we identify the

representations of W1+∞ under which the gluing fields transform, but we don’t calculate

their OPEs with W1+∞ generators explicitly. This step is important in order to have full

OPEs of the resulting glued algebra [30]. One possible approach to find these OPEs is to

study better free field representations of YL,M,N algebras and realize the gluing fields as

vertex operators. Another possibility is to use the Yangian picture and find the relations

satisfied by the gluing fields in that language. This was done in detail in the case of N = 2

W1+∞ algebra in [64, 65]. See also [66–69] for calculation of correlation functions of WN .

Double truncations. In most of this article, we considered one-parameter truncations

of the algebras, i.e. keeping Ψ generic. An interesting situation appears at the double

truncation points, i.e. rational points in the space of parameters. These double truncations

some of which were discussed in detail in [12] are associated to the points where two (an

thus infinitely many) truncation curves in the λi parameter space of W1+∞ intersect. From

the point of Y-algebras, these correspond to BRST reductions of Kac-Moody algebras at

rational levels that contain null-vectors. Such BRST reductions are known to lead (at least

in the case of WN algebras) to minimal models [40]. Note that at rational values of Ψ,

the Kapustin-Witten thery contains bulk line operators and it might be possible to give

a gauge theory interpretation of the identification of various modules by moving the line

operators to the bulk. Double truncations include in particular all the (unitary or not)

WN minimal models and lead to nice combinatorial problems counting the states in the

highest weight representations. The doubly-truncated algebras are also the ones considered

by [70, 71] which is another motivation to study them better.

Web diagrams with loops. So far, all examples that we considered were associated to

tree-level diagrams. The gluing procedure does not seem to lead to any inconsistency when

applied also to diagrams with closed loops. However, it is not a priori clear if application of
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the gluing procedure straightforwardly would describe degrees of freedom associated to the

corresponding brane configuration or if there are other degrees of freedom coresponding

to the Gukov-Witten defects stretched at the finite faces that have to be included in

this case. The configuration of D3-branes supported at these finite faces can be lifted to

the configuration of M5-brane wrapping a coresponding four-cycle in the toric Calabi-Yau

manifold and it is natural to conjecture some relation of our glued algebras with those of [72]

in these particular cases of four-manifolds that can be realized as holomorphic four-cycles

in a toric Calabi-Yau threefold.

Action of VOAs on equivariant cohomology of moduli spaces. The duality with

D4-branes intersecting each other inside CY 3 provides us with conjectural actions of VOAs

on equivariant cohomologies of various moduli spaces as discussed in [34]. Note that Y0,0,N
associated to a single stack of D4-branes wraping C2 inside C3 correctly reproduces WN

algebra as an algebra acting on the moduli space of ADHM instantons [34, 73]. The more

general algebra YL,M,N have a dual of three stacks of D4-branes wraping three holomorphic

C2 cycles (fixed under the torus action) inside C3 and intersecting each other. This is a

special case of the configuration of spiked instantons discussed in [38, 39]. It is natural to

conjecture the existence of the action of Y-algebras on these moduli spaces. This has a

natural generalization to D4-branes intersecting in general toric CY 3 and we expect the

glued algebras to play important role in the corresponding BPS counting problems.

Moreover, one can realize the configuration of N D4-branes wrapping a resolution of

the C2/Zn singularity from the configuration of n D5-branes ending on (n, 1) branes from

the right and N D3-branes supported at the face on the left. This configuration is indeed

dual to the one of [74] and generalizes it for a stack of D4-branes. Our BRST definition

(and the gluing construction in the case of [59]) seems to produce the same (or closely

related) algebras to those discussed in [55–59]. The simple examples seem to match. It

would be nice to explore this relation further. See also [75, 76].

Refined topological vertex. There are refined versions of the topological vertex [77–

79]. Because of the infinite set of commuting charges sitting at each vertex of (p, q)-web, we

can in principle obtain many refined quantities. It would be interested to see if we can ob-

tain the various refined quantities perhaps using the ideas of [80] or if a q-deformed version

of the gluing construction works analogously for quantum toroidal algebras [42, 81–88].

Integrability. It is known that the YL,M,N algebra can be (by a change of variables)

recast in the Yangian form [11, 34, 35]. In this form, there is an infinite set of commuting

charges that can be explicitly diagonalized. From our gluing construction, we have such a

Yangian structure associated to each vertex. It would be interesting to understand how the

gluing picture fits in the Yangian picture, perhaps by extending the Yangian as an asso-

ciative algebra by additional generators and relations corresponding to the gluing matter.

It would be nice to explore the possible relation of our glued algebras with those of [89].

Spin chains and R-matrix. The YN,0,0 algebras can be obtained from the Maulik-

Okounkov R-matrix and are associated to a spin chain of length N , where at each site we
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have a free boson [34, 90, 91]. There exist also other R-matrices in free field representations

associated to the other asymptotics. It would be interesting to see if by using a combination

of these different R-matrix representations one can obtain more general YL,M,N vertices and

also if the gluing discussed in this article can be related to this spin chain picture.

Gluing and 4d N = 2 SCFTs. Vertex operator algebras appear also in the context

of 4d N = 2 SCFTs. For example the vertex operator algebra of Argyres-Douglas theories

of type (AM−1, AN−1) contains a double truncation of W∞ corresponding to (M, 0, 0) and

(0, N, 0) truncation curves [92]. This connects WN minimal models and box counting to

counting of BPS states in these theories. For class S theories there is a gluing procedure

which associated a vertex operator algebra to a given 4d theory [70, 71]. The elements of

this gluing construction are formally very similar to the ones used here, namely the Drinfeld-

Sokolov reduction modifying the punctures and the BRST coset construction used for gluing

the basic building blocks. On the other hand, the basic building blocks themselves are very

different: the case considered in this article has a truncation of W∞ as a basic building

block, while the building blocks of VOAs associated to 4d theories are VOAs associated

to trinions TN . These theories have large flavour groups and are explicitly known only

for low ranks [93]. Another important difference is that we work at generic values of the

central charge, while the VOAs of trinion theories have all parameters fixed (analogously

to the case of double truncations of W∞). It would be very interesting to see how these

two approaches to gluing are related.

Grassmannian coset. There are well-known GKO cosets

SU(N)k × SU(N)l
SU(N)k+l

≃ SU(k + l)N
SU(k)N × SU(l)N

(7.1)

related by the level-rank duality which specialize to WN algebra for l = 1. These cosets

appear as a subalgebras of the algebra associated to the configuration of l D5-branes ending

on (n, 1) branes from the right and N D3-branes ending from the left but they do not seem

to be realizable directly by the gluing construction. The reason is that there is only one

stress-energy tensor in the coset, while the algebras that we construct have one spin 2 field

for each vertex. It is possible that we could obtain a larger class of W-algebras by using

this Grassmannian coset as a one-parameter deformation of the basic vertex used in the

gluing construction.
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A Free fields

We use the notation U(N |M ; Ψ) for the Kac-Moody algebra associated to the Lie superal-

gebra U(N |M) that contains SU(N |M)Ψ−N+M and U(1)(N−M)Ψ as subalgebras. The OPE

of the currents is given by

JA
B (z)JC

D(0) ∼ (−1)p(B)p(C)(Ψ −M +N)δADδ
C
B + δABδ

C
D

z2
+ (A.1)

+
(−1)p(A)p(B)+p(C)p(D)+p(C)p(B)δADJ

C
B (0) − (−1)p(B)p(C)δCBJ

A
D

z

where p(a) = 0 for a = 1, . . . ,M and p(a) = 1 otherwise.

Note that for U(N |0; Ψ) the algebra reduces to the Kac-Moody algebra SU(N)Ψ−N ×
U(1)NΨ with OPEs given by

JA
B (z)JC

D(w) ∼ (Ψ −N)δADδ
C
B + δABδ

C
D

(z − w)2
+
δADJ

C
B (w) − δCBJ

A
D(w)

z − w
(A.2)

and similarly U(0|M ; Ψ) reduces to the algebra SU(M)−Ψ+N×U(1)−NΨ. In the expressions

above, we choose a certain normalization of the diagonal U(1) current in U(N |0; Ψ) or

U(0|N ; Ψ). This normalization is such that modules associated to the electric modules

have integral charges.

We introduce the notation SN |M for a system of N pairs of symplectic bosons (Xa, Y
a)

where a = 1, . . . N and M free fermions (χi, ψ
i) for i = 1, . . . ,M with OPEs given by

Xa(z)Y b(w) ∼ δba
z − w

, χi(z)ψj(w) ∼ δji
z − w

. (A.3)

Note that the algebra SN |M contains U(N |M ;N−M−1) subalgebra generated by bilinears

J =

(

XaY
b Xaψ

i

χjY
b χjψ

i

)

. (A.4)

Similarly, exchanging the role of bosons and fermions, we introduce a notation SN |M
for a

system M symplectic bosons (Xi, Y
i) and N free fermions (χa, ψ

a) with OPEs given by

Xi(z)Y j(w) ∼ δji
z − w

, χa(z)ψb(w) ∼ δba
z − w

. (A.5)

From their bilinears, we can construct U(N |M ;N −M + 1) algebra generated by bilinears

J =

(

χaψ
b χaY

i

Xjψ
b XjY

i

)

. (A.6)

– 70 –



J
H
E
P
1
1
(
2
0
1
8
)
1
0
9

We also introduce a notation F for the algebra of a free fermion S0|1 and B for the algebra

of a free symplectic boson S1|0.

Occasionally, we also use notation SN |M
i for the system SN |M with a choice of the

stress-energy tensor such that the fields have the shifted conformal dimension ( 1
2 + i, 12 − i).

Corresponding stress-energy tensor have central charge

(N −M)(12(1 + i)2 − 1). (A.7)

We analogously define SN |M
i , Bi and Si.

B Examples of BRST constraints

B.1 Y-algebras

For L = 1,M = 1, N = 4, one needs to impose the following constraints in the DS-reduction

part of the BRST definition of Y-algebras

























∗ 1 0 0 0

N −M∗ ∗ 1 ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 M

∗ ∗ 0 L

. (B.1)

This constraint is implemented by the BRST charge given by

∮

dz
[

(J12 − 1)c12 + (J23 − 1)c23 + J13c13 + J14c14 + J15γ15 + J43c43 + J53γ53 (B.2)

+b31c12c23 + β45c44γ45 − β54c44γ54 − β45c55γ45 + β54c55γ45 + (c44 + c55)γ45
]

.

In the second step of the construction of the corresponding Y-algebra one needs to sew the

U(1|1; Ψ − 1) subalgebra with an extra U(1|1;−Ψ + 1) Kac-Moody algebra.

In the case of N −M odd, one fixes the upper-triangular part of the first (N −M) ×
(N−M) block, N−M−1

2 rows in the upper right off-diagonal blocks of size (N−M)×M and

(N−M)×L and N−M−1
2 columns in the lower left off-diagonal blocks of size M× (N−M)

and L× (N −M).

For N −M even, we can choose the Lagrangian subspace by constraining N−M
2 − 1

rows in the upper right off-diagonal blocks and N−M
2 columns in lower left off-diagonal

blocks (or vice versa). In both cases, the expression for the BRST charge contains also

cubic terms in ghosts that mix the components in the diagonal and the off-diagonal blocks.
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B.2 X-algebras

For N = 5,M = 2,K = 7, L = 3 in the BRST definition of X-algebras, one needs to impose

following constraints

























































































N

∗ 1 0 0 0 0 0 0 0 0 0 0

N −M∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ 0

M∗ ∗ 0 ∗ ∗ ∗ 0

K

∗ ∗ 0 0 0 ∗ 1 0 0 0 0 0

K − L
∗ ∗ 0 0 0 ∗ ∗ 1 0 0 0 0

∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 ∗ ∗ ∗ 0

L∗ ∗ 0 ∗ ∗ ∗ 0

∗ ∗ 0 ∗ ∗ ∗ 0

. (B.3)

Note that DS-reduction in the 3 × 3 block is performed first and then DS-reduction in the

4 × 4 block of inside the U(2|7) algebra.

C Characters

C.1 Building blocks

This section contains explicit formulæ for various terms appearing in the calculation of

the characters using BRST construction of the algebras discussed in the text. The vacuum

character of WN algebra is given by

χWN
(q) =

∞
∏

m=0

N
∏

n=1

1

1 − qn+m
. (C.1)

The characters of the complex SM |L
m of M symplectic bosons and L free fermions with the

level shifted by m is

χM |L
m (q, xi, yj) =

∞
∏

n=0

M
∏

i=1

L
∏

j=1

(

1 + yjq
n+ 1

2
+m
)(

1 + y−1
j qn+

1
2
+m
)

(

1 − xiq
n+ 1

2
+m
)(

1 − x−1
i qn+

1
2
+m
) . (C.2)

The character of SM |L
m withM fermionic and L bosonic components has analogous character

with xi ↔ yi together with M ↔ L interchanged.

The projection onto U(M |L) invariant combinations is performed by integration with

the Vandermonde measure

dVM,L =
1

M !L!

M
∏

i=1

dxi
xi

L
∏

j=1

dyj
yj

∏

i1>i2

(

1 − xi1
xi2

)

∏

j1>j2

(

1 − yj1
yj2

)

∏

i

∏

j

(

1 + xi

yj

)(

1 +
yj
xi

) . (C.3)
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In the generic U(M |L) case, the denominator needs to be expanded and regularized. In all

the examples of this paper, we restrict to the case of M = 0 or L = 0 when the denominator

vanishes and we do not have to deal with these technicalities.

In later sections, we also need the character of free fermions and symplectic bosons

with shifted dimension

χF
m =

∞
∏

n=0

(

1 + qn+
1
2
+m
)

,

χB
m =

∞
∏

n=0

1

1 − qn+
1
2
+m

. (C.4)

C.2 S-duality transformations of modules

Triality transformation of modules of Y-algebras is given by following diagram:

YL,M,N [Ψ] YM,N,L

[

1− 1

Ψ

]

YN,L,M

[

1

1−Ψ

]

M
1
µ

M
2
µ

M
3
µ

M
1
µ

M
2
µ

M
3
µ

M
1
µ

M
2
µ

M
3
µ

S-duality then acts as

YL,M,N [Ψ] ↔ YM,L,N

[

1

Ψ

]

, M1
µ ↔ M2

µ. (C.5)

C.3 Examples with one asymptotics

Example 1: WN . The first example are simply characters of WN algebras. The char-

acter of the M3
µ representations can be identified (via S-duality) with M2

µ characters of

Y0,0,N
[

1 − 1
Ψ

]

that are computed by specializing (2.32). The result is given by

χ [YN,0,0[Ψ]]
(

M3
µ

)

= q
1
2(1− 1

1−Ψ)(
∑

i µ
2
i+

∑

i(N−2i+1)µi)
∞
∏

n=0

N
∏

m=1

sµ

(

xi = q
1
2
(N−2i+1)

)

1 − qn+m
(C.6)

where the denominator is the character of U(1) × WN and the numerator is sometimes

called the quantum dimension of the representation µ. The conformal dimension of the

representation is given by formula

h
(

M3
µ

)

=
1

2

(

1 − 1

1 − Ψ

)

∑

i

µ2i +
1

2

1

1 − Ψ

∑

i

(2i− 1 −N)µi. (C.7)

In particular, specializing to N = 1 one gets

χ [Y1,0,0[Ψ]]
(

M3
ν

)

= q
1
2(1− 1

1−Ψ)ν2
∞
∏

n=0

1

1 − qn+1
(C.8)

and for N = 2 we have

χ [Y2,0,0[Ψ]]
(

M3
µ1,µ2

)

= q
1
2(1− 1

1−Ψ)(µ2
1+µ1+µ2

2−µ2)q−
µ1
2
+

µ2
2

1 − qµ1−µ2+1

∏∞
n=0(1 − qn+1)

. (C.9)
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Example 2: Y0,1,1[Ψ]. For the Y0,1,1[Ψ] algebra, one gets from the reduction of the

U(1)Ψ−1 module the expression

χ [Y0,1,1[Ψ]]
(

M3
ν

)

= q
ν2

2(Ψ−1)

∞
∏

n=0

1

(1 − qn+1)2

∞
∑

n=|m|

(−1)n−mq
n(n+1)

2 (C.10)

The conformal dimension of the representation is given by

h
(

M3
ν

)

=
ν2

2(Ψ − 1)
+
ν2

2
+

|ν|
2
. (C.11)

Example 3: Y1,0,2[Ψ]. The character of the representation M3
ν is given by

χ [Y1,0,2[Ψ]]
(

M3
ν

)

= q
1
2

(

1− 1
(1−Ψ)

)

n2
∞
∏

n=0

1

(1 − qn+1)3
× (C.12)

×
(

∞
∑

n=m

(−1)n+mq
n(n+1)−m(m−1)

2 +

∞
∑

n=m+1

(−1)n+mq
n(n+1)−m(m+1))

2

)

Note that the conformal dimensions of such representations are

h(M3
ν ) =

ν2

2(Ψ − 1)
+
ν2

2
+ |ν|. (C.13)

Example 4: Y2,0,1[Ψ]. The character of the representation M3
µ1,µ2

is given by

χ [Y2,0,1[Ψ]]
(

M3
µ1,µ2

)

= q
µ21+µ1
2(Ψ−1)

+
µ2
2−µ2

2(Ψ−1)

∞
∏

n=0

(−1)µ1+µ2

(1 − qn+1)3
· (C.14)

·





∞
∑

n=|µ1|

∞
∑

m=|µ2|

−
∞
∑

n=|µ1+1|

∞
∑

m=|µ2−1|



 (−1)n+mq
n(n+1)+m(m+1)

2 .

The conformal dimensions is

h(M3
µ1,µ2

) =
µ21 + µ1
2(Ψ − 1)

+
µ22 − µ2
2(Ψ − 1)

+
µ21
2

+
µ22
2

+
|µ1| + |µ2|

2
. (C.15)

Example 5: Y0,1,3[Ψ]. By a small modification of the calculation from [1], one gets for

the M3
ν modules of the Y0,1,3[Ψ] algebra the expression

q
ν2

2
1

1−Ψ

∞
∏

n=0

1

(1 − qn+1)(1 − qn+2)

∮

dz

z

zν

∏∞
n=0

(

1 − zqn+
3
2

)(

1 − z−1qn+
3
2

) (C.16)

= q
ν2

2
1

1−Ψ

∞
∏

n=0

1

(1 − qn+1)(1 − qn+2)

∮

dz

z

zν
(

1 − zqn+
1
2

)(

1 − z−1qn+
1
2

)

∏∞
n=0

(

1 − zqn+
1
2

)(

1 − z−1qn+
1
2

)

= (−1)νq
ν2

2
1

1−Ψ

∞
∏

n=0

1

(1 − qn+1)3(1 − qn+2)

[

(1 + q)
∞
∑

n=|ν|

(−1)nq
n(n+1)−ν2

2 (C.17)

+q
1
2

∞
∑

n=|ν+1|

(−1)nq
n(n+1)−(ν+1)2

2 + q
1
2

∞
∑

n=|ν−1|

(−1)nq
n(n+1)−(ν−1)2

2

]
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where we used the formula from the appendix F to expand the product in the denominator

and then performed the contour integral. Note that a similar calculation holds for M3
ν

modules of any Y0,1,N [Ψ]. The conformal dimension of these modules is given by

h
(

M3
ν

)

=
ν2

2

1

1 − Ψ
+

3

2
|ν|. (C.18)

Example 6: Y0,2,3[Ψ]. Our last example with one asymptotic is the character of M3
µ1,µ2

representation of the Y0,2,3[Ψ] algebra

q
1
2

µ21+µ1+µ22−µ2
1−Ψ

1

2

∞
∏

n=0

1

1−qn+1

∮

dx1
x1

dx2
x2

(x2−x1)(xµ1
1 x

µ2−1
2 −xµ2−1

1 xµ1
2 )

∏∞
n=0

∏

i=1,2 (1−xiqn+1)
(

1−x−1
i qn+1

)

=
q

1
2

µ21+µ1+µ2
2−µ2

1−Ψ

2

∞
∏

n=0

1

(1−qn+1)5

∞
∑

n1,n2

(−1)n1+n2(1−qn1+1)(1−qn2+1)q
n1(n1+1)+n1(n1+1)

2

×
[

q(n1+1)µ2+(n2+1)µ1 −q(n1+1)(µ2−1)+(n2+1)(µ1+1)

−q(n1+1)(µ1+1)+(n2+1)(µ2−1)+q(n1+1)µ1+(n2+1)µ2
]

. (C.19)

The conformal dimension of this module are given by

h
(

M3
µ1,µ2

)

=
1

2

µ21 + µ1 + µ22 − µ2
1 − Ψ

− 1

2
µ1 +

1

2
µ2 +

3

2
(|µ1| + |µ2|). (C.20)

C.4 Example with two asymptotics

In this section, we derive the character of modules with two asymptotics for the example

of Y0,1,2[Ψ] associated to the two Wilson lines supported at the NS5- and (1, 1) interfaces.

Such modules are labeled by an integer ν and a pair of integers (µ1, µ2) satisfying µ1 ≥ µ2.

These two label representations of U(1) and U(2) respectively. Inserting the two Schur

polynomials, one gets

= q
µ21+µ22+µ1−µ2

2Ψ
+ ν2

2 (1− 1
1−Ψ)

∞
∏

n=0

1

1 − qn+1

∮

dz

z

z−ν(zµ2 + zµ1+1)

(1 − z)(1 − zqn+1)(1 − z−1qn+1)

= q
µ21+µ22+µ1−µ2

2Ψ
+ ν2

2 (1− 1
1−Ψ)

∮

dz

z

zµ2−ν − zµ1+1−ν

(1 − qn+1)3

∞
∑

n=0

n
∑

m=−n

zm(−1)n−mq
n(n+1)−m(m+1)

2

= q
µ21+µ22+µ1−µ2

2Ψ
+ ν2

2 (1− 1
1−Ψ)

∞
∏

n=0

1

(1 − qn+1)3
·

·





∞
∑

n=|µ1−ν|

(−1)n+µ1−νq
n(n+1)−µ1(µ1+1)

2 +
∞
∑

n=|µ2−ν|

(−1)n+µ2−νq
n(n+1)−µ2(µ2−1)

2



 (C.21)

D Representations of W∞

In this section we will demonstrate few properties of W1+∞ using the Yangian generators of

the algebra [12, 33, 35, 94]. For many more details and examples see [11]. The main piece
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of information that we need is that there is a change of variables of W1+∞ which maps

the algebra to an associative algebra with generators ψj , ej and fj where j = 0, 1, 2, . . ..

ψj generators all commute and can be explicitly diagonalized in representations while ej
and fj generators act as raising and lowering operators. The relations between these

generators are generated by certain quadratic and cubic relations spelled out explicitly

in [11, 35]. While the local properties of W1+∞ as a vertex operator algebra are obscure in

the Yangian language, the representation theory considerably simplifies and the underlying

integrable structure is also visible in this picture.

D.1 Representations from Yangian point of view

The advantage of the Yangian basis of W1+∞ is that many representations have a simple

combinatorial interpretation. The representation space is spanned by a certain generaliza-

tion of Young diagrams (typically plane partitions) with possible additional geometrical

conditions (like a truncation to a fixed number of layers in one of the directions, more

general pit condition or non-trivial asymptotics as in the case of the topological vertex).

Originally a special basis of this type was found in [95] and is thus also known as AFLT

basis. In the following, we will denote these basis vectors by |Λ〉. The Cartan generators

ψj are diagonal in this basis with explicitly known eigenvalues,


1 + h1h2h3

∞
∑

j=0

ψju
−j−1



 |Λ〉 =
u− q + ψ0h1h2h3

u− q

∏

�∈Λ

ϕ(u− q − h�)|Λ〉 ≡ ψΛ(u)|Λ〉

(D.1)

Here h� are the weighted Cartesian coordinates of a box in the generalized Young diagram,

h� = h1x1(�) + h2x2(�) + h3x3(�). (D.2)

The structure function of the algebra ϕ(u) is a rational function

ϕ(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)
. (D.3)

The parameters hj parametrize the algebra and are related to λj parameters of W∞ via

h1 = −ψ0λ2λ3, h1 = −ψ0λ2λ3, h1 = −ψ0λ2λ3. (D.4)

The satisfy h1+h2+h3 = 0. In the representations that we consider the generator ψ0 takes

a non-zero constant value and can be eliminated by a rescaling symmetry of the algebra.

The action of the raising and the lowering operators ej and fj can be schematically

written as

ej |Λ〉 =
∑

�∈Λ+

(q + h�)jE(Λ → Λ + �)|Λ + �〉

fj |Λ〉 =
∑

�∈Λ−

(q + h�)jF (Λ + � → Λ)|Λ + �〉. (D.5)

The sum runs over all the boxes that can be added to or removed from the partition Λ.

E(Λ → Λ +�) and F (Λ +� → Λ) are amplitudes for adding and removing a box at given
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position and are not arbitrary but are partially fixed by the commutation relations of the

algebra [11] (there is a certain degree of arbitrariness coming from rescaling of the vectors

in the representation space). In particular, the boxes can be only added or removed at

positions where the ψΛ(u) eigenvalue has a simple pole when considered as a meromorphic

function in u plane.

D.2 Conformal dimension of minimal representations

We are now in position to determine the dimension of minimal representations from the

combinatorics of the plane partitions. The minimal representation has Young diagram

asymptotics (�, ·, ·) along the three coordinate axes, i.e. we need to build a tower of an

infinite number of boxes in the first direction. The minimal configuration of boxes with fixed

asymptotics corresponds to a highest weight state and the descendant states are obtained

by adding an additional finite number of boxes in a way compatible with plane partition

restrictions. The ψj charges of the highest weight state are captured by the product

ψ�,·,·(u) =
u+ ψ0h1h2h3

u

∞
∏

j=1

ϕ(u− jh1 − h2 − h3). (D.6)

We put q = 0 because we are building the configuration from the uncharged vacuum with

J0|0〉 = ψ1|0〉 = 0. Now using the constraint h1 + h2 + h3 = 0 we see that most of the

factors in the product cancel and the limit at finite u is just

ψ�,·,·(u) =
(u+ ψ0h1h2h3)(u+ h1)

(u− h2)(u− h3)
. (D.7)

The conformal dimension of this state corresponds to one half of ψ2 eigenvalue which in

this case is
1 − h2h3ψ0

2
≡ 1 + λ1

2
(D.8)

exactly as in (2.26). Apart from knowing the conformal dimension of (�, ·, ·) configuration

we can similarly use the generating function to extract also all the higher spin charges ψj

of any state in the representation.

If we were interested in the conformal dimension with respect to W∞, i.e. not includ-

ing the contribution from the U(1) charge of the representation, we could use the same

generating function of charges with replacement u → u − q where q is a parameter which

lets us choose an arbitrary U(1) charge of the vacuum state. In particular, for

q =
1

ψ0h1
(D.9)

we obtain a generating function of charges for (�, ·, ·) representation with vanishing U(1)

charge. Its conformal dimension can be extracted from the third order pole at infinity and

we find

h∞(�, ·, ·) =
1

2
λ1

(

1 − 1

λ2

)(

1 − 1

λ3

)

. (D.10)
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Figure 18. An example of the configuration of boxes representing a highest weight state with

three non-trivial asymptotics, (�,�,�). There is one box shared by all three piles of boxes which

contributes a −2 shift of the conformal dimension of this representation. This figure is taken

from [11].

More asymptotics. It is useful to understand how to obtain the conformal dimension

of the representations with two non-trivial asymptotics, for example the representation

(�,�, ·). This is relatively easy once we know the conformal dimension of representations

(�, ·, ·) and (·,�, ·). The conformal dimension is the eigenvalue of L0 operator which

combinatorially counts the number of boxes. In the case of plane partitions with non-

trivial asymptotics, there is an infinite number of boxes needed to build the asymptotics,

so we need to regularize the infinite sum 1 + 1 + 1 + . . . in certain way. Fortunately, the

generating function of charges ψΛ(u) provides a natural regularization: ψΛ(u) as a rational

function has a well-defined limit when the number of boxes piled in certain direction goes

to infinity, creating a non-trivial asymptotic. From this limiting function we can easily

extract the L0 eigenvalue, i.e. the conformal dimension and the result exactly reproduces

the U(N) quadratic Casimir known from the representation theory of WN algebras.

In the case of two non-trivial asymptotics (see figure 18), we can relate the conformal

dimension of primary (�,�, ·) (which counts the regularized number of boxes with two

piles of boxes, one in the first direction and one in the second direction) to the conformal

dimension of primaries (�, ·, ·) and (·,�, ·) (which measure the regularized pile of boxes

in first and second direction separately). We see that the difference is only one box at

the origin which we are overcounting if we simply add the conformal dimensions of the

individual piles, so we have a formula

h(�,�, ·) = h(�, ·, ·) + h(·,�, ·) − 1. (D.11)

Analogous discussion applies for any two asymptotic Young diagrams, but we must

correctly count the number of boxes in the overlap. For three non-trivial asymptotics, we

have simply

h(�,�,�) = h(�, ·, ·) + h(·,�, ·) + h(·, ·,�) − 2 (D.12)

because by combining the three piles in three different directions we counted the box at

coordinates (1, 1, 1) three times.
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D.3 Truncation curves

To derive the truncation curves, we proceed analogously as in the previous section by

determining ψ(u) for certain state. The state in question is now represented by a cube of

dimensions (L+ 1,M + 1, N + 1) and it is the first state that does not lie below the corner

shifted by (L,M,N). We want to see for which values of parameters of the algebra is this

state singular (a null vector).

First of all, the generating function of charges for a configuration of L×M×N boxes is

ψ(u) =
u+ ψ0h1h2h3

u

L
∏

l=1

M
∏

m=1

N
∏

n=1

ϕ(u− lh1 −mh2 − nh3) (D.13)

=
(u+ ψ0h1h2h3)(u− Lh1 −Mh2)(u− Lh1 −Nh3)(u−Mh2 −Nh3)

(u− Lh1)(u−Mh2)(u−Nh3)(u− Lh1 −Mh2 −Nh3)
(D.14)

The simple poles in this function are positions where boxes can be added or removed [11, 12].

In particular there is a simple pole at

u = Lh1 +Mh2 +Nh3 (D.15)

which means that the box at coordinates (L,M,N) can be generically removed. But for

special values of parameters h1, h2 and h3 this simple pole can be canceled by a simple

zero at u = −ψ0h1h2h3 and this is the equation for the truncation curve:

Lh1 +Mh2 +Nh3 = −ψ0h1h2h3. (D.16)

Note that for (L,M,N) truncation we should consider the configuration of boxes with

(L + 1) × (M + 1) × (N + 1) boxes, but because of the condition h1 + h2 + h3 = 0 these

give us the same truncation curve.

An alternative way to arrive at this result to is to study vanishing of F coefficient.

Its vanishing means that the amplitude for removal of the box at coordinates (L+ 1,M +

1, N + 1) vanishes which is exactly the condition for this vector to be the highest weight

vector of the submodule it generates. We find

F (Λ + � → Λ) ∝
√

Lh1 +Mh2 +Nh3 + ψ0h1h2h3 (D.17)

and the equation (2.14) follows from this immediately.

E Calculation of the central charges

E.1 Resolved conifold 1|1 algebra

Let us calculate the central charge of a generic algebra for K > L, N > M . The central

charge of the Kac-Moody algebra that we start with is given by

c0 = 1 +
Ψ −N +K

Ψ
((N −K)2 − 1). (E.1)

– 79 –



J
H
E
P
1
1
(
2
0
1
8
)
1
0
9

Contributions from the modification term of the stress-energy tensor gives

c
(2)
DS = −(Ψ −N +K)(N −M)((N −M)2 − 1),

c
(1)
DS = (Ψ −M +K − 1)(K − L)((K − L)2 − 1). (E.2)

Ghost contribution to fix fields in the two diagonal blocks is

c1 = −(K − L)(K − L− 1)((K − L)(K − L− 1) − 1),

c2 = −(N −M)(N −M − 1)((N −M)(N −M − 1) − 1). (E.3)

In the four off diagonal blocks where fields are graded only with respect to one of the two

DS blocks, one gets a contribution

c3 = (K −M)(N −M − 1)((N −M − 1)2 − 2),

c4 = (M − L)(K − L− 1)((K − L− 1)2 − 2). (E.4)

Finally, the coset contributes

ccoset = −1 − Ψ −M + L

Ψ
((M − L)2 − 1). (E.5)

Total central charge is then

c0 + c
(1)
DS + c

(2)
DS + c1 + c2 + c3 + c4 − ccoset (E.6)

= +
1

Ψ

(

(K −N)((K −M)2 − 1) − (L−M)((L−M)2 − 1)
)

+Ψ
(

(K − L)((K − L)2 − 1) − (N −M)((N −M)2 − 1)
)

+ (K − L+M −N) ·
·(K2 +KL− 4KM +KN − 2L2 + LM + 2LN +M2 +MN − 2N2 + 1)

E.2 0|2 algebra

Starting with the central charge of U(N |K)Ψ Kac-Moody algebra

cU(N |K)Ψ = 1 +
Ψ −N +K

Ψ
((N −K)2 − 1), (E.7)

we have to modify it by modifying terms contributing to the final central charge by

c
(1)
DS = −(Ψ −N +K)(N −M)((N −M)2 − 1),

c
(2)
DS = −(Ψ −M +K − 1)(M − L)((M − L)2 − 1). (E.8)

Ghosts needed to perform a fixing in the two diagonal blocks contribute

c1 = −(N −M)(N −M − 1)((N −M)(N −M − 1) − 1),

c2 = −(M − L)(M − L− 1)((M − L)(M − L− 1) − 1). (E.9)

We have also contributions from the ghosts in the off-diagonal blocks

c3 = (K −M)(N −M − 1)((N −M − 1)2 − 2),

c4 = (K − L)(M − L− 1)((M − L− 1)2 − 2). (E.10)
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Adding the coset term

ccoset = −1 − Ψ − 2 − L+K

Ψ − 2

(

(L−K)2 − 1
)

(E.11)

and putting everything together one gets the central charge of the final algebra

cK,L,M,N [Ψ] = cU(N |K)Ψ + c
(1)
DS + c

(2)
DS + c1 + c2 + c3 + c4 + ccoset (E.12)

=
(L−K)((L−K)2 − 1)

Ψ − 2
− (K −N)((K −N)2 − 1)

Ψ

+(((N −M)2 − 1)(N −M) + ((M − L)2 − 1)(M − L))Ψ −M −N

+(L−M)2(−3K + L+ 2M) + (M −N)2(−3K +M + 2N) + 2K

−
(

(L−M)2 − 1
)

+ (L−M) −M −N(L−M)2(−3K + L+ 2M)

+(M −N)2(−3K +M + 2N) + 2K −
(

(L−M)2 − 1
)

(L−M).

F Some useful summation formulæ

In the examples, we use known summation formulæ

∞
∏

n=0

(

1 + zqn+
1
2

)(

1 + z−1qn+
1
2

)

=
∞
∏

n=0

1

1 − qn+1

∞
∑

n=−∞

znq
n2

2 (F.1)

∞
∏

n=0

(

1 + zqn+1
) (

1 + z−1qn+1
)

=
∞
∏

n=0

1

1 − qn+1

∞
∑

n=0

n
∑

m=−n

(−1)m+nznq
n(n+1)

2

∞
∏

n=0

1

(1 − zqn+
1
2 )(1 − z−1qn+

1
2 )

=

∞
∏

n=0

1

(1 − qn+1)2

∞
∑

n=0

n
∑

m=−n

(−1)n+mzmq
n(n+1)−m2

2

∞
∏

n=0

1

(1 − zqn+1)(1 − z−1qn+1)
=

∞
∏

n=0

1

(1 − qn+1)2

∞
∑

n=0

(−1)n(1 − qn+1)q
n(n+1)

2

together with special cases when we set z = 1. We also use integration formulæ derived

in [1] of the form

∮ N
∏

i=1

dxi
xi

xsii
∏

i,n(1 − qn+
1
2xi)(1 − qn+

1
2x−1

i )
=

∞
∑

ni=0

∏

i

(−1)niq
ni(ni+1)

2
+(ni+

1
2)si , (F.2)

∮ N
∏

i=1

dxi
xi

xsii
∏

i,n(1 − qn+1xi)(1 − qn+1x−1
i )

=

∑∞
ni=0

∏

i(−1)ni(1 − qni+1)q
ni(ni+1)

2
+(ni+1)si

∏∞
n=0(1 − qn)2N

.

G Romans N = 2 W3 algebra

Another example of the gluing construction is the N = 2 supersymmetric version of W3

algebra constructed by Romans [63]. This algebra is obtained by extending the N = 2

stress-energy tensor supermultiplet (J,G±, T ) by another multiplet (W 0
2 ,W

±
2 ,W

1
2 ) with
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spins
(

2, 32 ,
3
2 , 3
)

. The operator product expansions of spin 2 supermultiplet with itself

contains a priori two structure constants not fixed by N = 2 superconformal algebra,

W2W2 ∼ C0
22✶ + C2

22W2 (G.1)

but one of them is fixed by the Jacobi identities to

C0
22 = −(c− 15)(c− 1)c(c+ 6)(2c− 3)

4(c+ 3)2(5c− 12)2
(C2

22)
2 (G.2)

and the remaining structure constant C2
22 can be chosen at will by rescaling the fields of

spin 2 supermultiplet (this is analogous to what happens in construction of Zamolodchikov

W3 algebra). This means that N = 2 W3 algebra has one free continuous parameter with

is the central charge.

We can construct two stress-energy tensors commuting with the U(1) current J and

with each other

T (1) =
2(c+ 6)(2c− 3)

3(c− 1)(c+ 12)
T − 2(c+ 3)(5c− 12)

3(c− 1)(c+ 12)C2
22

W 0
2 − (c+ 6)(2c− 3)

(c− 1)c(c+ 12)
(JJ) (G.3)

T (2) =
(c− 15)c

3(c− 1)(c+ 12)
T +

2(c+ 3)(5c− 12)

3(c− 1)(c+ 12)C2
22

W 0
2 +

(c− 15)

c(c− 1)(c+ 12)
(JJ) (G.4)

and such that

T = T (1) + T (2) +
3

2c
(JJ). (G.5)

The central charges of these stress-energy tensors are

c(1)∞ =
2(c+ 6)(2c− 3)

3(c+ 12)
(G.6)

c(2)∞ = − (c− 15)c

3(c+ 12)
. (G.7)

There are no primary fields commuting with T (1) and J which indicates that W(2)
∞ is

truncated at the level of the Virasoro subalgebra and so it has λ-parameters

λ(2) =

(

2,
c− 6

9
,−2(c− 6)

c+ 12

)

. (G.8)

On the other hand, we can construct the unique (up to rescaling) spin 3 and 4 primaries

with respect to T (1) and commuting with T (2) and J ,

W
(1)
3 = W 1

2 − 3C2
22

2(c+ 3)
(G+G−) + . . . (G.9)

W
(1)
4 = (G−W+

2 ) − (G+W−
2 ) +

12

c
(JW 1

2 ) + . . . (G.10)

such that the W(1)
∞ structure constants are

C0
33 = −(c− 24)(c− 1)2(c+ 6)(2c− 3)(C2

22)
2

4c(c+ 3)2(5c− 12)
(G.11)

C0
44 = −(c− 24)(c− 3)(c− 1)2(c+ 6)(c+ 18)(2c− 3)(C2

22)
2

c2(5c− 12)(5c2 + 39c+ 153)
(G.12)

C4
33 =

54(c− 1)C2
22

(c+ 3)(5c− 12)
(G.13)
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From this we find the λ-parameters of W(1)
∞ to be

λ(1) =

(

− c
6
,− 3c

c− 6
,

3c

c+ 12

)

. (G.14)

2

3

To find the corresponding gluing diagram we need first to understand

the truncation curves. Using (2.14) we see that W(1)
∞ has λ-parameters

compatible with (0, 2, 3) truncation while as already mentioned for W(2)
∞

we have the (2, 0, 0) truncation. Since we want the same spin of the

gluing matter as in the case of N = 2 SCA, we associate to N = 2 W3

the same conifold diagram with ρ = 1
2 . It is easy to check that this

is compatible with (3.9) which confirms the identification of Romans N = 2 W3 times a

commuting U(1) factor with the algebra associated to this diagram.
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