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ABSTRACT With the rapid development of Web Virtual Reality (WebVR) technology, increasing focus has

been placed on this domain. WebVR indoor scenario design studies have been of important value in both

academia and industry. However, many bottlenecks still need to be overcome, such as the weak computing

capacity and limited memory space available in web browsers. In particular, there are many deficiencies

in virtual scenes, i.e., lack of fidelity, low automation and poor scene interactability. In this paper, we pro-

pose a novel WebVR indoor furniture layout design framework to enhance the capabilities of automatic

furniture layout and significantly enhance the interactiveness of virtual scenarios. In particular, we present

a hand-drawn sketch recognition scheme based on the ResNet convolutional neural network (CNN), which

can strongly improve scenario interactiveness by allowing the user to conveniently add new furniture by

means of free-hand drawing operations rather than tedious manual drag-and-pull operations. In addition,

based on a deep Q-learning network (DQN), the best positions (states) for these pieces of furniture (agents)

in virtual scenarios can be automatically determined, making it easy to satisfy popular design principles.

Finally, we report experiments conducted to validate the feasibility of our proposed framework, and the

results fully demonstrate that this framework is completely feasible.

INDEX TERMS WebVR, indoor scenario design, ResNet, hand-drawn, deep Q-learning network.

I. INTRODUCTION

With the rapid development of web technology, the combi-

nation of virtual reality (VR) and web technology, i.e., Web

Virtual Reality (WebVR) technology, has attracted increasing

attention. The potential applications of WebVR are widely

varied, including applications in medical surgery, education,

indoor and outdoor scenario design, and so on. Because

WebVR has the advantages of being highly convenient and

plugin-free, it has become one of most promising fields of

web technology. In practice, most of the advances in virtual

effects achieved so far in traditional VR technology have

mainly relied on third-part devices, such as the Leap Motion

and Kinect.

Moreover, efforts to achieve a human-centered focus in

WebVR-based indoor layout design have been gaining in
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popularity, especially for bedroom scenarios. Correspond-

ingly, free-style indoor design for virtual 3D space has

become increasingly important. However, there are still many

problems that need to be solved; e.g., because of the lim-

ited capabilities of current interactive schemes for effec-

tively specifying and arranging 3D furniture, such 3D furni-

turemanipulations require excessive labor-intensive dragging

operations, thus strongly decreasing the interest of users who

might otherwise be strongly attracted to participate in indoor

layout design. Hence, there is a need to effectively eliminate

many of the dull and tedious tasks currently required in layout

design, for example, by enabling the automatic generation

of indoor layout results in accordance with popular layout

principles. In this way, users’ interest can be more effectively

captured to encourage them to positively engage in indoor

layout design.

Nevertheless, there are still dozens of bottlenecks related

to indoor scenario layout design that need to be overcome,
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such as the latency problem. In a WebVR application, exces-

sively long latency times can lead to significant usability

challenges, potentially causing users to lose patience and

shut down the webpage. Therefore, a rapid response time is

important for WebVR applications. For indoor layout design,

although good results can be obtained based on some of

the complex networks that are currently available (such as

GoogLeNet), these networks are not well adapted to handle

such design-related tasks because their response times are too

slow, and thus, their high latency may destroy their value for

such purposes.

As is well known, layout design is a very subjective topic,

and there are few existing datasets or standard indicators for

studying and assessing related methods. In fact, the majority

of the existing state-of-the-art methods are focused primar-

ily on 3D indoor scene understanding, while the needs of

human-centered design have typically been ignored or dis-

regarded. However, there are many aspects of the problem of

layout design in 3D space that require attention, including the

questions of how to achieve a suitable 3D rendering effect and

furniture arrangement results that are consistent with popular

stylistic sensibilities.

On the other hand, the pursuit of high fidelity in VR has

increased the feasible scale of VR scenarios. As a result,

the demands to overcome various visualization problems

in WebVR have become increasingly urgent. Moreover,

the analysis of the actions of virtual agents requires high

computing power; by contrast, the computing capacity of

web browsers is very limited. Thus, the question of how to

effectively capture the characteristics of objects in a real scene

is a key problem in WebVR.

In this paper, we focus on designing a better method

for solving the virtual indoor furniture layout problem to

effectively support human-centered indoor scenario design,

i.e., we solve the virtual indoor furniture layout (VIFL) prob-

lem for designing a reasonable and personalized furniture lay-

out in a WebVR indoor scene. This is a spatial optimization

problem that is inextricably linked with both ideal scenario

learning and the visualization of three-dimensional data.

Moreover, the problem of suitable human-computer inter-

action (HCI) is difficult to solve for such a massive applica-

tion. For an online WebVR application in particular, there is

a strong need to develop a means through which a good HCI

effect can be conveniently realized. In practice, the users of

a VIFL system will often need to add new furniture models

into virtual scenes. In traditional methods, however, the abil-

ity to arrange the furniture in virtual indoor scenes such

as bedrooms relies on manual drag-and-drop manipulations.

Consequently, furniture rearrangement is a very labor-

intensive task, and when there are a large number of furniture

models available, it can be extremely time consuming for

users to manually find the target furniture. Moreover, some-

times, users may not know exactly which furniture they wish

to use. In such a case, it may be possible to provide a better

user experience if the user is able to hand draw a sketch

to describe a general idea of the furniture that is desired.

However, the correct recognition of such hand-drawn abstract

and amateur sketches is quite difficult to achieve. Based on

the above discussion, the contributions of the present paper

can be summarized as follows:

(1) We propose a method based on a convolutional neural

network (CNN) for recognizing hand-drawn furniture

sketches. In this way, a more intelligent HCI process

can be achieved.

(2) We present an approach for determining the most

appropriate positions of furniture agents in a vir-

tual indoor scene. In essence, the objective of the

VIFL problem is to find the most appropriate position

(i.e., state) for each furniture agent in a virtual sce-

nario. More concretely, the deep Q-learning method is

used to optimize the positions of the furniture agents,

i.e., state/action strategy selection is applied to obtain

the best positions. In this paper, we assume that four

different actions (forward, back, left, and right) can be

employed to obtain new Q-values to identify the best

position for each furniture agent. In essence, the prob-

lem is treated as a complex strategy selection problem

based on environmental feedback.

This paper is organized as follows. In Section II, we present

previous related work on hand-drawn sketch recognition and

WebVR layout design. In Section III, we introduce our inno-

vative approach. In Section IV, we explain the details of our

proposed method. The results of an experimental evaluation

are presented in SectionV. Finally, SectionVI concludes this

work and presents an outlook on future studies.

II. RELATED WORKS

A. HAND-DRAWN SKETCH RECOGNITION

In the computer vision domain, the hand-drawn sketch recog-

nition problem is always a hot topic, and numerous suc-

cessful related studies have been reported in the literature.

However, in these works, the research objects are generally

common hand-drawn sketches; therefore, the existing sketch

datasets are mainly based on general-purpose sketches, and

no specialized furniture sketch dataset is available. However,

the ability to correctly solve a given recognition problem

heavily depends on the learning method, which must be

trained on a large number of suitable samples. Although

the available samples of common sketches are reasonably

sufficient, there exist very few furniture sketch samples or

datasets that are suitable for training a recognition tool for

the VIFL problem addressed in this work. In the following,

we review representative existing state-of-the-art approaches

for sketch recognition.

In the context of professional computer-aided

design (CAD) or artistic drawing, Lu et al. [1], Jabal et al. [2]

Zitnick et al. [3], Bae et al. [30], Kara et al. [31], and

Milosevic et al. [32], Zhou et al. [33], [34] conducted

extensive research on sketch recognition. Their proposed

methods yield excellent results, but they require high-quality

sketches, which are very difficult for typical amateur users
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to produce. Eitz et al. [4] proposed a new framework for

recognizing common sketches. In addition, these authors

released an open-source sketch dataset to help others train

their own tools, and this dataset also contains some furni-

ture sketches. Later, Schneider et al. [5] adopted a support

vector machine (SVM) classifier and considered different

hand-drawn features extracted from images to be used for

representation. Li et al. [6] demonstrated that fusing various

local features using a multikernel learning approach helps to

improve the performance of sketch recognition. They also

examined the performance achieved with many different

features and found that the Histogram of Oriented Gradi-

ents (HOG) descriptor is generally the best feature descriptor

for sketches.

Notably, CNNs have recently demonstrated impressive

performance for many recognition tasks across many differ-

ent disciplines; CNNs have dominated a number of visual

recognition challenges, producing the top benchmark results.

One important advantage of a CNN compared with other

conventional classifiers, such as SVM and Bayesian decision

tree classifiers, is its close coupling of representation learning

and classification, which endows the learned feature repre-

sentations with extremely high discriminatory capabilities.

Simonyan et al. [7] proposed a deeper network with

smaller filters that is preferable for image recognition.

Despite these advances, most existing image recognition

methods based on CNNs are optimized for images and not for

sketches; consequently, their performance for sketches is sub-

optimal. Yu et al. [8] proposed a new CNN-based method that

can demonstrate even better recognition performance than

that of humans, thus achieving an enormous breakthrough

for sketch recognition. However, this method is more suit-

able for distinguishing sketches with salient between-class

discrepancies, e.g., human and animal sketches. By contrast,

there are few between-class differences in many common

furniture sketches, such as table and bed sketches; therefore,

this approach is not suitable for our requirements.

As another relatedmethod,Wang et al. [9] designed a novel

scheme for cross-domain matching that employs a variant of

the Siamese network in which the shape view image branch

and the sketch branch have the same architecture, without any

special treatment of the unique features of sketches. However,

this method is a solution for sketch-based shape retrieval

rather than sketch recognition.

Moreover, deeper neural networks are often more difficult

to train. To address this problem, He et al. [10] proposed

a novel residual neural network called ResNet to facilitate

the training of networks that are substantially deeper than

those used previously. In this paper, we adopt this promising

network architecture for furniture sketch recognition based

on a limited number of furniture sketch samples.

B. INDOOR LAYOUT DESIGN

Scene design is a popular topic of research in many fields,

such as city planning, 3D scene modeling, and architec-

tural design. Many important related research results have

been reported, for instance, those of Parish et al. [11],

Muller et al. [12], Chen et al. [13], and Merrell et al. [14].

As an important aspect of scene design, the VIFL problem

has received considerable attention in recent years. Using

traditional manual methods, furniture layout is often a very

time-consuming and labor-intensive task. In particular, each

3D furniture model requires tedious rotation in six degrees of

freedom and translation in large spatial dimensions; conse-

quently, relying solely on a mouse for such manual manipula-

tions of 3D objects is very inconvenient.Moreover, themajor-

ity of people lack indoor design expertise and experience

and consequently must likely expend a great deal of effort to

achieve a reasonable furniture layout. Even for professional

designers, continuously repeating similar operations while

arranging furniture is a dull and tedious task. Therefore,

the ability to generate popular VIFL results for amateur users

would be an attractive option. Moreover, most professional

users would also find it convenient to be able to perform

necessary revision based on certain popular VIFL principles

to generate personalized design results at a lower cost. To this

end, it would be desirable to develop an automatic furniture

layout tool that can generate popular and reasonable design

results.

In essence, automatic furniture layout is a problem of

indoor scene optimization. A layout evaluation function has

been proposed by Yu et al. [15] for finding suitable furni-

ture arrangements based on the simulated annealing method.

However, as the variety of different furniture models in a vir-

tual 3D room environment increases, the number of iterations

will also increase, considerably reducing the convergence

speed and resulting in a very long execution time and high

latency. Hence, this approach is clearly not suitable for a

web-based application.

Meanwhile, with the rapid development of the 3D tech-

nologies available in the web environment [16], [17], massive

3D indoor design systems have emerged, which are very

welcome because they allow users to freely perform indoor

design tasks without needing to install any plugins. This new

trend has motivated researchers to extend the existing offline

methods of furniture layout to online applications. How-

ever, online furniture layout requires the ability to provide

real-time response while also generating reasonable layout

results.

A method of synthesizing 3D object arrangements from

examples has been proposed by Fisher et al. [18]; this method

considers dozens of plausible new scenes using a machine

learning approach. Xu et al. [19] have presented a frame-

work that can automatically generated a vivid 3D scene from

a hand-drawn sketch. Moreover, Xu et al. [20] have pro-

posed a system for automatically creating 3D indoor scenes

based on room shapes entered by users. In this approach,

3D object models are arranged based on the relationships

between the models and the room. Song et al. [21] have also

proposed automatic furniture layout algorithms to help users

rapidly generate reasonable layout results. Example-based

reasoning and a distant field method are used to measure
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the relationships among every piece of furniture to obtain

better positions for the furniture in a virtual room. Addition-

ally, Li et al. [22] have proposed the novel recursive neural

network and variational autoencoder (RvNN-VAE) method

for generating plausible 3D indoor scenes based on input

consisting of 2D sketches or images. A learning approach

is utilized to generate the closest feasible layout design.

In fact, many similar methods of scenario synthesis have also

been proposed by, e.g., Wang et al. [23], Song et al. [24],

Xu et al. [25], Yu et al. [26], and Wu et al. [27]. Although

these approaches can generate excellent results in the rele-

vant domain, there is an obvious disadvantage that urgently

requires a solution, i.e., the lack of sufficient examples of

indoor furniture arrangements for training a related learning

framework. In addition, the arrangement of indoor scenes is

relatively subjective; consequently, we limit our objective to

providing only basic or common arrangement results rather

than enabling rich individualized design capabilities since the

ability to generate common designs that can meet the habitual

requirements of ordinary users is the first priority.

In this paper, based on the extensive research reported

in the literature summarized above, to further enhance the

interactiveness of 3D indoor scenario design, we develop a

tool for hand-drawn sketch recognition to allow new fur-

niture to be conveniently added into a scene. In addition,

a deep Q-learning action strategy scheme is employed to

determine the optimal states for the various furniture agents.

In particular, the motivation of our work is to make WebVR

applications more suitable for indoor layout design tasks to

effectively achieve human-centered design results. Moreover,

we abandon the case-based inference method in favor of

the rule-based reinforcement learning approach. In this way,

we can effectively decrease the dependence on specific indoor

layout cases.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

In this section, an overview of the proposed framework is

presented. The framework addresses two main problems:

sketch recognition and indoor furniture layout design.

For sketch recognition, the framework comprises two

stages, i.e., an online stage and an offline stage. In the

offline stage, the complete pipeline must be trained to

correctly predict a label for each input sketch. In this

paper, the ResNet50 CNN architecture is used to classify

and describe furniture sketches, which often show large

within-class differences and small between-class differences.

In the online stage, several tasks need to be completed. Sketch

preprocessing ensures that each sketch is of a suitable size

to be utilized in subsequent analysis. In addition, in practice,

when a hand-drawn sketch is input, the requested furniture

should be provided immediately, using the prediction scheme

based on the trained model, to allow furniture to be conve-

niently added into virtual room scenes.

For furniture layout design, to correctly handle the relation-

ships between the room and the various pieces of furniture,

we divide furniture into two types, i.e., coupled-type furniture

and free-type furniture. For example, for a bedroom, a sofa

is free-type furniture because its position depends only on

the room itself. By contrast, the positioning of a nightstand

is strongly related to the placement of the bed; in some

sense, a nightstand can be viewed as a bed accessory. There-

fore, a nightstand is considered to be coupled-type furniture.

Notably, the classification of different furniture types depends

on the specific design goals. A great deal of time can be

saved by defining coupled-type furniture; by contrast, if all

furniture is treated as free-type furniture, it will take a very

long time to complete the layout design for a whole bedroom.

In essence, which furniture should be of the coupled type

strongly depends on the indoor design principles applied. For

coupled-type furniture, there exists an obvious master-slave

relationship; for instance, consider the relationships between

a TV and and its TV stand and between a dresser and its stool.

Specifically, the location of accessory furniture is typically

restricted by that of the master furniture. Therefore, we need

only to place the master furniture; once this is done, the posi-

tion of the slave furniture is determined. By contrast, for

free-type furniture, we need to consider only the relationship

between each piece of furniture and the room itself. The

distance field concept [21] has previously been adopted to

measure the relationships between furniture and the room,

i.e., the Q-values of different states. Based on this approach,

we can arrange every piece of furniture in a room scenario

to specify suitable furniture locations to complete the layout

task.

An overview of the proposed framework is shown

in Figure 1.

In general, the proposed framework can be described as

follows:
1. Online pipeline: This stage can be divided into two

steps. The first step is online input sketch drawing

recognition. As is well known, for indoor scenarios,

there are dozens of different possible furniture models

that may appear in a given room; therefore, input sketch

recognition should be an iterative procedure. As shown

in the top left part of Figure 1, the system performs

three different operations. First, when a furniture sketch

is input, it is subjected to preprocessing and recognition

(based on the training results from the offline pipeline).

The relevant furniture models are then presented, and

the user can select which piece of furniture should

be added to the indoor scene. When more furniture

needs to be added to the scene, additional inquiries can

be made to continue to add new pieces of furniture.

Clearly, this is an iterative process. Moreover, as shown

in the top right part of Figure 1, the relationships

between the furniture and the room are defined to

determine suitable positions based on the principles of

indoor layout design. For two pieces of furniture with a

free positioning relationship, e.g., a chair and a sofa or

a stand and a table, the deep Q-learning schememust be

used to determine reasonable positions for these pieces

of furniture in the indoor scene. In turn, the positions

185776 VOLUME 7, 2019



W. Zhou et al.: Webvr Human-Centered Indoor Layout Design Framework

FIGURE 1. An overview of the proposed framework. It consists of two stages, i.e., an online stage and an offline stage. The online stage involves the input
of sketch drawings by the user, the output of recognition results and the display of the final automatically generated layout results. In the offline stage,
the training pipeline is executed to provide the online tool with the ability to produce suitable prediction results. The offline stage is mainly run on the
server side, whereas the online tasks are mainly executed in a web browser.

of pieces of furniture with master-slave relationships,

such as a chair and a table or a bed and a nightstand,

can then be easily rearranged. Thus, layout design is

performed based on common layout principles.

2. Offline pipeline: The purpose of this stage is to train

an existing network to obtain a suitable model for pre-

dicting the correct labels for furniture sketches. In this

study, the pretrained ResNet50 architecture has been

utilized as the base network model.

IV. DESCRIPTION OF THE PROPOSED FRAMEWORK

In the previous section, an overview of the proposed frame-

work has been presented. Next, the details of the proposed

framework will be specified.

A. RECOGNITION OF FURNITURE SKETCHES

To train the model for the recognition task, we must conduct

a suitable supervised learning process. This process consists

of three main steps, i.e., preprocessing, training, and testing,

as shown in Figure 2. These steps are described as follows:

(1). First, we need to collect furniture sketches to form

a training dataset. In this paper, we select ten dif-

ferent categories of furniture from the Eitz sketch

dataset [4], which is one of most famous sketch datasets

in academia.In every category associated with furniture

(e.g., armchair, bed, bench, chair, door, and table),

there are 80 different sketches. Of course, however,

the categories of furniture thatmay appear in a bedroom

extend far beyond those listed above. For categories for

which no sketch samples are available, users must still

rely only on direct dragging rather than sketch-based

recognition. For large sketches, we scale them down in

size, e.g., 1111 × 1111 → 128 × 128. To prevent a

scaled-down sketch from becoming unclear or blurry,

an adaptive thinning algorithm [28] is used to generate

a ten-pixel-wide skeleton of the sketch to augment

the strokes of the original sketch; in this way, we can

effectively obtain high-resolution scaled sketches.

(2). Rapid response is very important for web-based

applications. In this paper, we adopt the well-known,

powerful ResNet50 network, which has achieved great

success in many fields, including image recogni-

tion, as the base network for training. In comparison

to other networks with similarly good performance,

ResNet-based models require less time for training

and prediction. In particular, we utilize a well-known

ResNetmodel that has been pretrained on the ImageNet

dataset, which greatly accelerates the whole training

process.

(3) The network and parameters are saved to disk to allow

the whole network to be conveniently read out during

the testing stage. Finally, prediction can be performed

using the trained model to obtain the correct label
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FIGURE 2. The main flow of the model training process for recognizing hand-drawn sketches. The ResNet50 architecture used in this study was first
pretrained on the ImageNet dataset before being fine-tuned on sketch data.

FIGURE 3. The layout principles defined for indoor scenarios.

TABLE 1. The training parameters for the ResNet50 model.

for each input sketch. In this way, we can effectively

complete the recognition task.

The parameters used to further train the pretrained

ResNet50 network are shown in Table 1.

B. FOUNDATIONS OF FURNITURE LAYOUT DESIGN

In essence, the procedure for layout design is to conduct

a corresponding action strategy selection process for every

piece of furniture in a virtual room.We consider four different

possible actions: forward, back, left and right. The architec-

ture of the proposed approach is shown in Figure 3.

1) DEFINING THE Q-VALUE OF A STATE

In reinforcement learning, Q-learning is an important

off-policy method that is widely used in computer games,

intelligent control, robotics and other fields. Q-learning

enables an agent to learn the mapping relationship from

states to actions by trial and error through continuous inter-

action with the environment so as to maximize its long-term

cumulative reward. The most significant difference between

Q-learning and other machine learning methods, such as

CNNs, is that it requires no pretraining; it relies only on the

information gained by interacting with the complex environ-

ment. Additionally, Q-learning can consider teacher signals

issued in various states; consequently, it has wide application

prospects for solving various complex decision optimization

problems. Fortunately, the layout design problem is also

essentially a classical multitarget optimization problem in 3D

space. This problem requires consideration of the relation-

ships between the room and individual pieces of furniture and

also involves many complex relationships among multiple

pieces of furniture.

Consider a piece of furniture (denoted by 1) in a vir-

tual room (denoted by X ). As shown in the blue rectangle

in Figure 4, this piece of furniture can be moved forward,

backward, left or right in the process of layout design. For

interaction with the environment, we define a function to

measure the Q-value of every point δ = (x, y, z) ∈ 1, which

denotes the spatial coordinate position of 1 in the room. It is

always true that y = 0 because the piece of furniture must
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TABLE 2. Q-table of state/action tuples.

be sitting on the floor (we do not consider objects on the

walls, such as picture frames). Then, ∀δ ∈ 1, the distance

field E [21] can be represented as follows:

D(Pi,Pj) = ‖ Pi − Pj ‖2 (1)

E(δ) =

N
∑

n=0

α × D(δ, δndoor )+ β ×

M
∑

m=0

D(δ, δmwindow)

+ γ × D(δ, δcenter ) (2)

Here, Pi and Pj denote two different points in 3D space. The

parameters α, β, and γ are experimental values representing

the weights for doors, windows, and the center point of the

room, respectively; in this paper, α = 0.5, β = 0.5, and γ =
1. δndoor denotes the center point of the nth door (the center

point of the black part of the door in Figure 4); similarly,

δmwindow and δcenter denote the center points of them
th window

and the entire room, respectively. N and M denotes the total

numbers of doors and windows, respectively. If N = 0, then

there are no doors in the room; in this case, α = 0.

To compute the zone of E , the possible actions must be

considered. In this paper, we assume that there are four

different possible actions A = F,B,L,R for every piece of

furniture, i.e., forward (F), backward (B), left (L), and right

(R). In addition, the bounding rectangle of a piece of furniture

consists of four line segments (as shown in Figure 4, they

are denoted by Xred , Xpurple, Xblack , and Xblue). Therefore,

the reward can be expressed as follows.

8(Xf , a) =

{

ǫ ×
∑w

i=0 E(δ
i
purple)− E(δ

i
red ) a = F | B

ǫ ×
∑h

i=0 E(δ
i
black )− E(δ

i
blue) a = R | L

(3)

Here, w and h denote the width and height, respectively,

of furniture object Xf . When a = F or R, ǫ = 1; otherwise,

ǫ = −1. In addition, δipurple and δired denote the ith points

on the purple line and red line, respectively, of the bounding

rectangle (as shown in Figure 4). Finally, we can generate

a Q-table that records the Q-value of every state, as shown

in Table 2.

In Table 2, Pi denotes the i
th possible position of a piece

of furniture in the virtual room, which strongly depends on

the size of the room. For example, in a 100×100 room, there

are theoretically 10000 possible states for a piece of furniture.

However, as is well known, there are some positions where it

is not possible or reasonable to place furniture, such as within

the zones of the doors and windows in an indoor scenario. For

example, no furniture should be placed within the black, gray

FIGURE 4. A figure illustrating the indoor layout design problem. There
are three types of key regions, i.e., the regions of doors and windows and
the center point of the room (the red point in the figure). In addition,
the green rectangle represents the placement of the piece of furniture in
the current state.

or yellow zones in Figure 4; therefore, we should discard or

abandon these locations. Notably, the center of the room is

generally also a poor location for placing furniture. Hence,

∀1 ∈ X , for a given action a′, the Q-value can be computed

as shown in equation 4.

Q(S ′, a′) =
∑

δ∈1

E(δ) (4)

In addition, the Q-value Q(S ′) of a given state S ′ is repre-

sented as shown in equation 5.

Q(S ′) =
n

max
a′

Q(S ′, a′) (5)

Here, n denotes the number of possible actions that can be

taken from the given state S. In this paper, n = 4.

Figure 5 illustrates the variations in the distance field.

Dark-colored zones are not good regions for placing fur-

niture; instead, furniture generally should be placed in

light-colored zones, such as yellow zones. Note that as fur-

niture is added to a scene, salient changes occur in the whole

distance entropy distribution.

2) DEEP Q-LEARNING NETWORK FOR LAYOUT DESIGN

In Figure 5, the black rectangles denote forbidden regions for

the placement of any furniture; they are occupied by doors,

windows or other furniture. Concretely, if ∀δi ∈ Xf there is
overlap with these zones (black rectangles in Figure 4), then

Q(Pcurrent ) = 0 (Pcurrent is the center position of the furniture

and can also be understood as the location of the furniture).

Next, we must obtain the maximumQ-value among all possi-

ble locations in the virtual room. Of course, when the location

of the furniture is outside of the room (more specifically,

∃δi ∈ Xf , δi /∈ X or Xf
⋂

X 6= Xf ), the Q-value should be

set to 0.

In addition to the relationships between the room and the

furniture, there may also be rich and complex connections

among multiple pieces of furniture, for instance, a bed and

two nightstands, whose positions are restricted by the position

of the bed. We refer to furniture of this kind as coupled-type
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FIGURE 5. A figure comparing the distance entropy of different layouts.
In the top row, the model includes only a window and a door. In the top
left figure, black rectangle no. 1 represents the shape of the region
occupied by the door in the room, where the energy entropy is zero; no
furniture can be placed in this region. Rectangle no. 2 represents the
region occupied by the window model; similarly, it is not possible to
place any furniture in this region. In the bottom row, three objects are
arranged in the room, i.e., a door and two chairs (see the bottom right
figure). In the bottom left figure, rectangles no. 3, 4, and 5 represent the
positions occupied by the three newly added models, generating zero
distance entropy.

furniture. In such a case, we arrange only themaster furniture,

and the accessory furniture can then be automatically placed

in the corresponding positions. We refer to the other kind of

furniture, such as a table, as free-type furniture.

Q-learning is a model-free off-policy algorithm for esti-

mating the long-term expected return of executing an action

from a given state. These estimated returns are known as

Q-values. A higher Q-value indicates that an action a is

judged to yield better long-term results when starting from

a state s. Q-values are learned iteratively by updating the

current Q-value estimate towards the observed reward R plus

the maximum Q-value over all possible actions a′ resulting

in a state s′. This can be easily represented as shown in

equation 6.

Q(s, a; θ )← rt + ξ max
a′

Q(s′, a′; θ ) (6)

Here, the purpose of the semicolon is to separate the neural

network parameters θ from the state and action. Clearly,

the term θ is constantly changing; thus, the Q-value for a

given state and action is also constantly changing. In addition,

the term rt is the reward for the new state at time t , which can

be obtained in accordance with equation 3 (see Table 2). The

factor ξ denotes a discount rate or decay rate; in this paper,

we assume that this parameter does not change, i.e., ξ = 1.

Recently, deep CNNs have often been exploited to make

full use of the ability to optimize the relationships between

stochastic actions (e.g., the ǫ greedy algorithm) and predicted

actions (i.e., deep Q-learning networks). In contrast to the tra-

ditional Q-learning method, a CNN optimizer can be utilized

to predict concrete actions rather than stochastic strategies.

Consider a loss function L that represents the discrepancies

between the Q-values of stochastically generated actions and

the Q-values of predictions; a CNN optimizer can be utilized

to minimize this loss function L. In this way, through training

FIGURE 6. Architecture of the CNN to be trained.

the CNN, we easily obtain the ideal network parameters;

hence, we can predict a concrete action based on the current

state of an agent, e.g., the position of a piece of furniture in a

virtual scene. L can be represented as shown in equation 7.

L =‖ rt + ξ max
a′

Q(s′, a′; θ ′)− Q(s, a; θ ) ‖2 (7)

Here,the notations θ and θ ′ represent two different sets of

network parameters; as mentioned above, during the train-

ing stage, the parameters of the neural network are con-

stantly changing.Otherwise, the definitions of the parameters

in equation 7 are essentially the same as those in equation 6.

Notably, the loss function L has two components: one is the

Q-value based on the stochastic strategy (i.e., the ǫ greedy

strategy), as specified in equation 6, and the other is the result

predicted based on the network with parameters θ .

C. TRAINING STAGE FOR A DEEP Q-LEARNING NETWORK

In this section, we mainly present the details of how to train

the deep Q-learning network (DQN). The architecture of the

CNN to be trained is shown in Figure 6, and an overview of

the whole training pipeline is illustrated in Figure 7.

The training process can be divided into three stages. The

first is the preprocessing stage, i.e., the necessary prepro-

cessing operations, which include discretizing the scene into

a grid. In reality, the possible states of the actual scene are

continuous. However, to reduce the time required to compute

the optimal state for each agent (i.e., each individual piece

of furniture), we introduce the idea of a spatial grid from

the field of fluid simulations to generate a reliable and valid

discrete model of the scene. When the majority of the volume

of an agent (i.e., a piece of furniture) belongs to a certain

grid cell, we consider that it should placed in this grid cell.

Thus, the state space of the scene can be naturally represented

by some limited number of discrete grid cells. In addition,

we need to effectively adjust the size of every input image.

In this paper, the size of each input image is uniformly scaled

to 600 × 400. An overly large input image size would con-

siderably reduce the training speed and exert an undesirable

effect on the final results.

Moreover, the ǫ greedy strategy, which is often used to

identify relevant actions, is used to optimize our network.

Specifically, ǫ is expressed as shown in equation 8.

ǫ = max
0≤step≤eps_decay_steps

{epsmin, epsmax

− (epsmax − epsmin)×
step

eps_decay_steps
} (8)
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FIGURE 7. The training procedure for the DQN. First, preprocessing of the
input images is performed, including the establishment of a discretized
grid to resize the input images. In addition, transfer information is saved
in a prepared buffer to avoid overgeneralization.

Here, the parameters epsmin, epsmax , and eps_decay_steps

have constant values; in this paper, we set them to epsmin =
0.5, epsmax = 1, and eps_decay_steps = 500000, respec-

tively. The ǫ greedy strategy is applied as shown in equation 9.

a′ =

{

N (num_actions) r ≤ ǫ

a otherwise
(9)

Here, the quantity 0 ≤ r ≤ 1 is a randomly gen-

erated number, and N is a stochastic function that gen-

erates a random integer in the range specified by the

argument, i.e., num_actions. The quantity num_actions

denotes the number of possible actions; in this paper,

num_actions = 4.

In practice, prepared buffer storage is used to collect sets

of related transfer information on the state, action, and reward

for each agent. In this paper, the number of sets of trans-

fer information that is saved is set to 500000. Every such

set of transfer information can be viewed as a tuple. Using

the approach discussed above, we can perform the relevant

training task. In addition, a termination condition must also

be specified. When a specified maximum number of training

epochs is reached, the training stage will terminate. However,

it is unlikely that every agent will need the same amount of

training time. Therefore, we also define a new condition to

terminate training. A cumulative reward function, denoted by

J (θ ), is utilized to measure whether it is necessary to execute

the next state; in this way, we can ensure that the goal of the

maximum reward is reached.

J (θ ) =

T
∑

t=0

γ T−t × rt (10)

Here, θ denotes the parameters of the DQN, and γ ∈ [0, 1]

is a discount factor. When γ = 0, only the instantaneous

reward is considered; to accelerate convergence, we choose

to place relatively little emphasis on the long-term reward

by setting γ = 0.1. We consider that if the cumulative

reward J (θ ) starts to decrease at time T + 1 (specifically,

if the derivative of J is less than 0), then the optimal position

for the specified agent (i.e., a piece of furniture) has been

found.

Algorithm 1 Agent layout optimization based on a DQN

Input: At time t = 0, the first existing agent i = 0 is in

state s00
Output: For n agents in the scene, their optimal states

can be represented as Sopt = {s
0
opt , . . . , s

n−1
opt }

Initialize: The number of agents n = 1, Sopt ← ∅,
the initial parameters θ of the DQN, the maximum

allowed T ← 1000, t ← 0, i← 0

for the ith agent s
t
i at time t do

As described in Section IV-C, train the DQN

if a new agent is added to the scene then
n← n+ 1

end

while t<T do

Based on the current agent state S0i , predict a

new state S ti and compute the reward rt
In accordance with Equation 10, compute the

cumulative reward J

if rt+1 < J then

siopt ← sti
break

else
J ← γ × J + rt+1

end

t ← t + 1
end

Sopt ← Sopt + s
i
opt

if i ≥ n then
Layout is complete for all agents

break
else

i← i+ 1

end

end

D. TESTING BASED ON THE DQN

Once the DQN has been trained, it can be used to generate

reliable predictions consisting of a valid, concrete action for

every agent at time T . As mentioned above, our goal is to

obtain the best position for every agent; therefore, in accor-

dance with Equation 10, we utilize the DQN for action pre-

diction. Once the termination condition is met, the optimal

arrangement can be acquired. The complete procedure of the

proposed method is described in detail in Algorithm 1.

E. ADJUSTING FURNITURE POSES

Determining the pose of a piece of 3D furniture is an impor-

tant problem. The pose of a piece of furniture when it is ini-

tially placed in an indoor scene is always constant. However,

the method proposed above can be used to modify only the

positions of pieces of furniture, not their poses. Nevertheless,

furniture pose adjustment is also very important.

Function-behavior-state (FBS) modeling [29] is a tradi-

tional design concept that has been widely applied in many

design applications, including CAD and scenario layout.
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FIGURE 8. The FBS-based design concept in an indoor scenario.

The basic principle is that the state of an object is determined

by both its function and its behavior. In indoor layout design,

every piece of furniture has salient functional characteris-

tics; for instance, the purpose of a chair is to be sat on.

Furthermore, the behavior strongly relies on users’ choices

regarding, e.g., how to conveniently achieve the action of sit-

ting. Ideally, in design studies, function and behavior should

be uniformly consistent. Otherwise, the state of the object

should be changed; i.e., in this paper, the pose of the piece

of furniture should be adjusted. For ease of describing these

concepts, two different vectors are defined: the function vec-

tor EF for the piece of furniture and the behavior vector EB
for the room. The definitions of these vectors are illustrated

in Figure 8. To conveniently handle pose adjustment in an

indoor scenario, there are four different possible directions

for these vectors. Moreover, EB is determined by the position

of the door, e.g., when the door is aligned along the x-axis

(see Figure 4), EB is aligned along the z-axis. Then, we can

compute the rotation angle β as shown in equation 11.

β = arccos(EB • EF) (11)

Here, the notation • represents the point multiplication oper-

ation between the vectors EB and EF . Finally, a geometrical

rotation transformation can be performed based onβ to obtain

a suitable pose for the piece of furniture.

V. EXPERIMENTS

In this section, the training and testing results related to

the proposed framework are presented, and comparisons are

performed to demonstrate its superiority.

A. ENVIRONMENT

We implemented our proposed framework using the Python

language.More specifically, the Python-based Django frame-

workwas adopted for web programming. In addition, we used

the open-source TensorFlow library for network training.

Fortunately, the ResNet50 network has been integrated into

the Keras package, and we can directly call this network to

perform related tasks. In these experiments, the program was

executed on a PC running the Windows 10 OS with an Intel

Core I7-7700HQ processor, 8 GB of physical memory, and

an NVIDIA GeForce GTX 1060 with 6 GB of memory.

To train the network, we collected related furniture sketch

samples from the Eitz dataset [4]. The total number of

FIGURE 9. The loss curves from the training stage for furniture sketch
recognition.

FIGURE 10. A comparison between the training accuracy and the
validation accuracy.

TABLE 3. Comparison of furniture sketch recognition results obtained
using various methods.

collected samples is 800, corresponding to 10 different cat-

egories (80 per category). We divided these samples into a

training set (70%) and a validation set (30%).

B. SKETCH-BASED RECOGNITION OF FURNITURE

The objective of the furniture sketch recognition task is to

retrieve related furniture models based on input sketches

to provide a better user experience. The results obtained

during the training stage in terms of loss and accuracy

indicators are shown in Figure 9 and Figure 10, respec-

tively. In the testing stage, to better validate our proposed

method, our method was compared with two other published

methods: HOG-SVM [4] and multikernel SVM [6]. Many

methods exist that can be used to perform this task, but

for online recognition applications, we must first consider

methods that can effectively handle online requests. From

the user perspective, it is meaningless to use a method that

can achieve slightly higher accuracy if doing so results in

a much longer wait time. Moreover, because the number

of available furniture sketches is very limited, we do not

compare our method with other deep learning methods, for

which a very large number of samples are often used for

network training. The comparison of the result is presented

in Table 3.
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FIGURE 11. Online test results based on our proposed method.

FIGURE 12. Comparison of results before and after layout design based
on our proposed approach. In the top left figure (a), two different chairs
have been added to the indoor scene. The layout result obtained using
the proposed framework is shown in the bottom left figure (b); clearly,
these two pieces of furniture have been arranged into new positions.
As another example, we further add a bed into the scene, as shown in the
top right figure (c); the subsequent layout result is shown in the bottom
right figure (d).

As Table 3 shows, the performance of our method is

approaching the human level. In fact, if we could collect a

greater quantity of samples, we could further improve our

results and potentially even surpass the human level. The final

test results are shown in Figure 11.

As Figure 11 illustrates, we are able to conveniently

retrieve relevant furniture models based on freely hand-drawn

sketches. For the majority of users, this capability will pro-

vide an easier and more convenient method of adding desired

furniture into virtual scenes.

C. INDOOR LAYOUT RESULTS

For indoor layout design, we adopt the deep Q-learning

method to enable online execution of the design task. Exam-

ples of the layout results are shown in Figure 12.

From Figure 12, it is not difficult to see that the layout

design task can be smoothly and correctly completed. Intu-

itively, the furniture is initially randomly placed in the space

of the virtual room, and it is very inconvenient to manually

manipulate such 3D objects with a mouse. Moreover, simple

drag-and-pull manipulation of such furniture objects is a very

dull and time-consuming task. By contrast, our proposed

approach allows a reasonable, conventional layout design

FIGURE 13. A comparison between the layout design results of the
proposed framework and photographs of real existing indoor layouts.

to be rapidly completed, thus considerably enhancing the

convenience of the design task.

However, the assessment of the final result is inherently

subjective; correspondingly, there is a lack of effective quanti-

tative criteria for evaluating the final result. Thus, it is difficult

to objectively measure the success of the outcome. Therefore,

we instead present a qualitative comparison with photographs

of real existing indoor layouts to validate the feasibility of our

framework.

Figure 13 presents a comparison between the layout

design results and photographs of real existing layout designs

retrieved from the Internet.We find the following similarities:
1. The bed is placed near the window. In this case, the lay-

out design result is very close to the photograph.

2. The bed is placed in the center of the room, at a certain

distance from the door. In addition, the nightstands are

placed on either side of the bed. This result is also very

similar to the photograph.

Clearly, the design results of our framework are highly con-

sistent with popular layout design principles. Therefore, this

qualitative comparison effectively demonstrates the feasibil-

ity of the proposed framework.

D. DISCUSSION

We have proposed a framework for completing popular

indoor layout design tasks. Related experiments validate the
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feasibility of our proposed method. However, several prob-

lems still exist that will need to be solved. First, indoor layout

design is highly subjective, and it is difficult to perform

quantitative comparisons for a variety of scenarios, such as

different room sizes or room types, which often generate

different results. Thus, it would be desirable to develop an

objective metric for evaluating layout results. Second, indoor

layout design in 3D space requires not only the 3D position-

ing of furniture but also many other factors, such as indoor

illumination. In particular, the illumination conditions in a

room have a great effect on the aesthetics of its layout and

consequently must be considered in human-centered indoor

layout design. Third, in this study, we have achieved layout

result based only on certain popular design principles; we

have not fully considered the implementation of various per-

sonalized design rules, such as the desire to place a sofa near

the window for reading purposes. Additionally, wall-based

layout design, e.g., the layout of family photos on the wall,

has not been addressed, although this should also be a goal

of human-centered layout design. Finally, to broaden the

scope of application, more room types should be considered,

e.g., dining rooms, living rooms, kitchens, or even the whole

house.

VI. CONCLUSION

In this paper, we propose a framework to support indoor

furniture layout design in a virtual room. There are two

important tasks to consider, i.e., the interactive addition of

new furniture into a scene and the intelligent completion of

the indoor layout design.We adopt a CNN for furniture sketch

recognition to achieve the function of more interactive and

convenient furniture addition. Moreover, the deep Q-learning

method is used to develop a new pipeline for layout design

based on state-action selection. The results of related exper-

iments performed to validate our proposed framework show

that it is completely feasible.

However, our proposed approach still has certain limita-

tions. More concretely, in regard to furniture sketch recogni-

tion, there are not currently sufficient samples available for

analysis. In the future, we plan to collect a greater quantity

of samples to train our network. In addition, a more complex

network architecture should be used to further improve the

accuracy. Moreover, for the layout design task, the Asyn-

chronous Advantage Actor-Critic (A3C) method will be con-

sidered to further improve the performance and obtain better

results. In addition, as is well known, the proper layout of

indoor scenes inherently involves certain subjective factors,

such as individual preferences and habits. Therefore, further

effort is still required to enable more personalized design of

indoor layouts based on, e.g., the learning of individual style

preferences using a CNN. Furthermore, to some extent, effec-

tive layout design is likely to require further study of existing

exemplary style samples, such as photographs selected by

individuals to illustrate their favorite design styles, rather

than relying solely on agent-based decisions. In addition,

in the future, further research will need to be conducted

to address indoor illumination layout design and wall-based

layout design.
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