
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

1996-10-10

WebWave: Globally Load Balanced
Fully Distributed Caching of Hot
Published Documents

Heddaya, Abdelsalam; Mirdad, Sulaiman. "WebWave: Globally Load Balanced Fully
Distributed Caching of Hot Published Documents", Technical Report
BUCS-1996-024, Computer Science Department, Boston University, October 10,
1996. [Available from: http://hdl.handle.net/2144/3746]
https://hdl.handle.net/2144/3746
Boston University

WebWave: Globally Load Balanced Fully Distributed

Caching of Hot Published Documents

Abdelsalam Heddaya* Sulaiman Mirdadt
heddaya@cs.bu.edu mirdad@cs.bu.edu

Computer Science Department
Boston University

Abstract

Document publication service over such a large network
as the Internet challenges us to harness available server
and network resources to meet fast growing demand. I n
this paper, we show that large-scale dynamic caching
can be employed to globally minimize server idle time,
and hence maximize the aggregate server throughput of
the whole service. To be eficient, scalable and robust, a
successful caching mechanism must have three proper-
ties: (1) maximize the global throughput of the system,
(2) find cache copies without recourse to a directory
service, or to a discovery protocol, and (3) be com-
pletely distributed in the sense of operating only on the
basis of local information.

In this paper, we develop a precise definition, which
we call tree load-balance (TLB), of what at means f o r a
mechanism to satisfy these three goals. W e present an
algorithm that computes TLB off-line, and a distributed
protocol that induces a load distribution that converges
quickly to a TLB one. Both algorithms place cache
copies of immutable documents, on the routing tree
that connects the cached document’s home server to
its clients, thus enabling requests to stumble on cache
copies en route to the home server.

Keywords: load balancing, caching, replication, doc-
ument service, read-only files, packet filter, routing, In-
ternet, World Wide Web.

1 Introduction
Current multimedia Internet information services pro-
vide users with the capability to transfer documents
on a scale that is very large and fast growing. For

*Some of this work was done while this author was on sab-
batical leave at Harvard University, 1995/96.

tThis author’s research is supported in part by a scholarship
from the Saudi Cultural Mission to the U.S.A.

document services to keep up with quickly increasing
demand, servers need to cooperate so that minimal ca-
pacity goes idle in one part of the network, when other
parts have excess load. This must be done by creating
cache copies of popular documents on lightly loaded
nodes, and shifting requests from the heavily loaded
servers to those nodes. But the effectiveness of such a
system hinges on its ability to scale to many millions
of server nodes.

Scalability’ is determined by two factors: the over-
head associated with implementing the protocol, and
its reliance on centralized services. Most Current re-
search [4, 5, 16, 251 assumes the existence of a cache
directory service, that is queried when client requests
are processed. The overhead associated with such a
service limits the scalability of the caching system as a
whole [17]. This paper attempts to answer the follow-
ing question: can a document service achieve an opti-
mal load distribution strictly through the use of local
information? We give detailed evidence in the affirma-
tive, assuming that the document service is allowed to
i n t e g r a t e t o a limited extent-caching with routing.
Specifically, we assume that routers can accept filters,
supplied by cache servers, that identify requests that
represent potential hits in the cache.

A significant amount of research has been conducted
on the use of caching to improve the performance of
file systems. Examples of such work include: the Net-
work File System (NFS) [27], the Andrew File System
(AFS) [20], Sprite [26], HARP [22], and xFS [12]. In
addition, caching is used to improve the performance
of large document delivery services such as USENET,
FTP, and the World-wide Web [4,5,16,25]. For exam-
ple the Harvest cache [9], initially motivated by FTP
mirroring, is now being increasingly used in national
WWW caching systems around the world.

lThe rate at which the global throughput of the system grows
as its total capacity increases.

160 0-8186-7813-5/97 $10.00 0 1997 IEEE

mailto:heddaya@cs.bu.edu
mailto:mirdad@cs.bu.edu

To achieve load balance through file caching, re-
quests have to be (re)directed to cache copies whose
locations must therefore be determined. A common ap-
proach that has been adopted for load balancing over
local area networks, performs this redirection by mod-
ifying the naming [21] or the routing [l] mechanisms
to maintain an explicit directory of cache copies, from
which to select suitable destinations for client requests.
Frequent and pronounced changes in request patterns
can force the locations, and number, of cache copies to
be highly transient. The resulting high update rate of
the cache directory means that it cannot be replicated
efficiently on a large scale, thus turning the cache di-
rectory service itself into a scalability bottleneck, for
caching systems that funnel all requests through it.
Another strategy is to augment the client/server inter-
action protocol so that clients, or their proxies, proac-
tively identify suitable cache copies using a special pro-
tocol, such as ICP [28]. This latter approach intro-
duces additional complexity, message cost and extra
round-trip message delays.

Our approach exploits the fact that routes from
clients to a server form a routing tree, along which all
document requests must flow. We observe that client
requests are routed up the tree to the home server,
and can be serviced by any node en route that hap-
pens to cache the desired document, without any need
to lookup a cache directory, to redirect requests, or to
probe the network to locate a copy. In WebWave, cache
copies are created only when a parent node in the rout-
ing tree detects a less loaded child, to which it can shift
some of its document service load by giving it a copy
of one of its cached documents. An imbalance in the
opposite direction causes a child to delete some of its
cached documents, or to reduce the fraction of requests
for these documents that it chooses to serve. In this
paper, we concentrate on the problem of defining and
computing the request rate that each node in the rout-
ing tree should handle in order for the tree as a whole
to have maximum throughput. Choosing the particu-
lar documents to copy, or which copies to delete, is also
discussed, but only briefly.

From the architectural point of view, a WebWave
cache server needs to be able to insert a packet filter
into the router associated with it, so that only docu-
ment request packets that are highly likely to hit in
the cache, are extracted from their normal path. En-
gler and Kaashoek 1131 use run-time code generation
techniques to dynamically download high performance
packet filters into the kernel. Their measured overhead
rivals that of hand crafted kernel code (a packet can be
filtered in 1.51 microseconds). This demonstrates the
feasibility, in principle, of our architectural requirement

for routers to accept such injected filtering code.
In summary, the main contributions of this paper

include: formal definition of optimal tree load balance
(TLB), an algorithm (WebFold) to compute it off-line,
and a distributed protocol (WebWave) that induces a
load distribution that converges to a TLB one. The re-
mainder of the paper is organized as follows: Section 2
presents the diffusion method, and its convergence to
Global Load Equality (i.e., uniform load). Section 3
provides formal definitions of Tree Loud Balance (TLB)
and the underlying constraints. Section 4 presents
WebFold, an off-line algorithm that finds a TLB assign-
ment, and proves its correctness. Section 5 describes
WebWave a fully distributed caching algorithm, and
shows preliminary simulation evidence of its optimal-
ity (convergence to TLB). Finally, Section 7 concludes
the paper and presents future work.

2 Load Diffusion
Our underlying model is similar to the dynamic load
balancing model in Cybenko [ll], and Bertsekas and
Tsitsiklis [3]. In particular, WebWave consists of a
set of caching servers cooperating to service client re-
quests. The objective is to achieve a load balanced
system, hence minimizing server idle time and maxi-
mizing system throughput. Each server has the abil-
ity to cache and discard documents based on its local
load, its neighbors' loads, and on document popular-
ity. Each server maintains an estimate of the load at
its neighbors. Periodically, nodes broadcast their load
to neighboring servers. If a server notices that it is
overloaded, with respect to any of its neighbors, it rel-
egates a fraction of its future predicted work to its less
loaded neighbors. Specifically, the change of load at
server i is determined by:

Li t Li + "ij . (Lij - Li),
j E N i

where Li = Lii is the current load at i, and Lij is the
load at j as of the last time at which j gossiped its load
to i. Ni is the set of nodes in the neighborhood of i, and
cxij is the diffusion parameter which defines the fraction
of the excess load to be exchanged between neighboring
nodes (aij = 0 if i and j are not neighbors).

Assuming that nodes have perfect information about
each other's load (i.e., Lii) = Ljy), that the diffusion
overhead is zero, and that work can be transported
freely among nodes, the load distribution E (t) at time
t can be expressed as: = D . z (t - l) . The coefficients
of the diffusion matrix D , can be derived straight-
forwardly from the above iteration. Cybenko [ll],

161

showed that the synchronous diffusion method con-
verges to the uniform load distribution under certain
conditions, and that it does so exponentially fast. Af-
ter every iteration of the diffusion algorithm, the Eu-
clidean distance to uniform load shrinks by an amount
proportional to 0 < y < 1,

IJDtf;(O) - U11 5 y y m - rsrll
where D is the diffusion matrix, is the initial load
distribution, U is the uniform load distribution, and
t represents time. Asynchronous diffusion also con-
verges, as shown in Bertsekas and Tsitsiklis [3], when
communication delay is bounded.

These results apply well when load diffusion is ac-
complished by migrating a process image, together
with the resources it requires. However, document
caching systems do not necessarily enable unfettered
load migration, because requests need to find cache
copies. Unlike typical load balancers, WebWave rele-
gates future requests to its neighbors, rather than cur-
rent load.

Hong et a1 [19], show that load balance on a hy-
percube can be achieved by averaging the load among
neighboring processors. Xu and Lau [as], derive the op-
timal diffusion parameter a for a Ic-ary n-cube network.
Luling and Monien [23] implemented a diffusion based
load balancer on a transputer with De Bruijn and ring
networks.

In order to study the performance WebWave we first
define our load balance goals and develop WebFold an
off-line provably optimal algorithm. The sole purpose
of WebFold is to study the convergence of the dis-
tributed protocol.

L,, L,,

at

3 Tree Load Balance

L, = request rate served by node
i, and L,, is j ' s request rate as
known to 2. L, = Lt,.
Request rate forwarded by node
z to its parent. A, = E, -+
E, - Lt.

In this section, we develop the model and definitions
that will be used in Sections 4 and 5. We build our
model so as to capture the tree structure T induced by
the routing algorithm on the network. In terms of T ,
we state our goal for caching, describe the two algo-
rithms for achieving this goal, and our arguments and
evidence that we achieve it. In order to avoid requiring
clients to lookup the locations of cache copies, either
by contacting the home server, or even a distributed
name service, we constrain the placement of copies, and
hence the diffusion of load, to nodes in T . As a request
for a document travels up the tree, from the node at
which it originated, towards the root, it may encounter
cache copies along the way. When the request flies by
a node with a cache copy, the node handles it, if its
present request rate is smaller than it should be.

Table 1: Notation used in this paper.

I I I I

Set of tree nodes = { 1 , 2 , . . . , n}.
T is a partitioning of T into con-
tiguous regions, called folds.

Spontaneous request rate gener-
ated at node i.

Table 1 summarizes the notation used in the paper.
We model the Internet as a forest of trees, each rooted
at a different home server which is responsible for pro-
viding an authoritative permanent copy of some set of
documents. For simplicity, we assume that every node
is capable of storing an unlimited number of cached
copies, and that it is willing to do so. We restrict the
discussion in this paper to one tree T , considering it in
isolation. As mentioned above, T captures the routes
that are in effect at any point in time. A node i in T is
the parent of j if i is the first cache server on the route
from j to the home server (the root of T) , in which case
we also say that j is the child of i, and write j E Ci.

As shown in Figure 1, every node i in the tree re-
ceives requests at the rate of Ei + C j Aj, of which it
serves Li, and forwards the rest, Ai, up the tree. In
turn, i receives, from each child j E Ci, requests that
j forwards to it at a rate that we label Aj.

The objective of any load balancing algorithm must
be defined in terms of some load metric. While the
choice of workload metric can favor a particular aspect

~ a

/ '

Ei ' i

A

Figure 1: The flow of requests up the routing tree through a
node i. 2y is the spectral radius of the diffusion matrix.

162

of the system being optimized [14], we choose arrival
rate, because it obeys flow conservation, and thus sim-
plifies our analysis.

On the generally true assumption that individual
servers perform best when they are as lightly loaded as
possible, we posit the following recursive definition of
load balance.

Definition 1 (LB) A load
assignment L is load-balanced iff L,,, is minimum,
and the same holds recursively if we remove the L,,,
component from L, where Lma, = max Li.

The standard definition of global load equality (GLE)
(i.e., V i E T , L,,, = Li) follows necessarily from
the above definition, when equality is indeed feasible.
As we will see, load balancing over a routing tree can be
sufficiently constrained to render GLE infeasible, hence
the need for an alternative definition.

The first and most obvious constraint on legal load
assignments over a routing tree is that the root cannot
forward any load-a constraint that is not incompatible
with GLE.

Constraint 1 For the root r of tree T , A, = 0 in any
load assignment L.

The second constraint on load assignments, one that is
required for there to be no need for a directory service
for, or explicit discovery of, cache copies, is that of
no sibling sharing (NSS). NSS simply states that a file
can only be replicated, down the tree, in the direction
of clients that request it. This effectively restricts load
shifting, from a node to one of its child subtrees, to load
originating in that subtree itself, and eliminates any
load sharing between siblings. In other words, requests
always travel upwards in the tree, towards the home
server, in order to be serviced.

Constraint 2 (NSS) For every node i E T , the net
request rate it forwards, Ai 2 0.

Now we can specialize Definition 1 to routing trees.

Definition 2 (TLB) A load assignment L on a rout-
ing tree T is tree load balanced iff L is load balanced,
subject to Constraints 1 and 2 above.

Figure 2 illustrates the difference between a TLB load
distribution and a GLE one. Subject to Constraints 1
and 2, TLB attempts to move the load distribution as
close as possible to GLE. Thus, whether a TLB load
assignment yields a GLE load distribution or not, de-
pends on the spontaneous requests originated at each
server.

Figure 2: A tree with two different spontaneous request rates,
and the corresponding T L B load assignments: (a) has a T L B
load assignment that is also GLE, while (b) has a TLB load
assignment that is not GLE.

4 Tree Folding

The definitions of LB and TLB above do not spec-
ify how to compute the optimal load assignment, an
exercise that is necessary to evaluate load balancing
protocols in practice. We approach the problem in a
two-pronged manner. First we design a centralized al-
gorithm that computes a load assignment that is prov-
ably balanced. Second, we give a diffusion-based fully
distributed protocol that enables neighbors in the tree
to exchange load between themselves, and give simula-
tion evidence that the load assignment thus produced
eventually converges to the optimal one. This section is
devoted to the first algorithm, which we call WebFold,
and to proving its properties-up to and including op-
timality.

The central insight embodied in WebFold is that tree
nodes can be partitioned into folds so that every fold
contains a contiguous portion of the tree that can all be
assigned equal load, and no load flows between folds.
Each node in a fold is allocated a load equal to the
sum of all spontaneous loads in the same fold, divided
by the number of nodes in the fold. That is, a node
forwards load to its parent only if both are in the same
fold. Folds are denoted by the names of their root
nodes, and they are constructed as follows. A fold j
is foldable (into its parent i) , if the load per node in
fold j exceeds that of fold i. WebFold repeatedly folds
the foldable node with maximum per node load, until
no more foldable nodes remain.

Once folding is completed, the optimal load assign-
ment becomes obvious: spread the spontaneous load
generated within a fold equally among the members of
the fold. This even distribution is guaranteed not to vi-
olate NSS as specified in Constraint 2. Figure 3 shows
the algorithm in complete detail.

Figure 4 demonstrates a complete folding process,
solid circles represent nodes of the routing tree T and
their spontaneous request rates, and dashed lines de-
limit the folds that make up the folded tree 7. Each

163

Web Fold (2')
(1) 7 t T
(2) foreach i E T :

(2.1) Fi t {i}
(2.2) ci t ci
(2.3) &i t Ei

(3) 7 t Fold(7)
(4) foreach j E T : Lj t & , j E h

(1) if Empty(7) return NIL
(2) while 3 j , i E 7, such that: Foldable(j,i), and

2 is maximum over all foldable nodes.

Fold(7)

(2.1) '7 it 7 \ { j }
(2.2) Fi t Fi U Fj
(2.3) Ci t ci U cj
(2.4) F;, Ci, &i t Fi U Fj, ci U c j , &i + &j

(3) return 7

Foldable(j, i) /+ Check if j is foldable into i . +/
(1) return [j E C; A > > A]

1Fjl - IFil+lFil - IFil

Figure 3: A provably optimal centralized algorithm. It folds
together al l adjacent nodes whose load can be equal.

fold's spontaneous request rate equals the sum of the
spontaneous requests generated by the nodes it con-
t ains .

The following technical lemma helps in proving our
central theorem. In addition, it yields insight into the
operation of WebFold. Lemma 1 states that the load
assignment produced by WebFold is monotonically non-
increasing as we descend the routing tree T from root
towards leaf.

Lemma 1 After WebFold returns, Vi E T , j E Ci :

Proof: For brevity, all proofs are ommitted from this
paper, but can be referred to, in [18].

En route to proving that the load assignment L pro-
duced by WebFold is TLB optimal, we first prove that
it satisfies Constraints 1 and 2 (NSS) respectively. Let
the sequence of folds performed by Fold, and the cor-
responding states of the folded tree 7 be:

Li 2 Lj.

T (0) fo, T(1) fl, . . . 7(4 fn, 7("+1) + . . . (1)
We begin by proving that L satisfies an even stronger

condition than Constraint 1, since the stricter version
is useful in proving NSS. The following lemma states
that WebFold distributes the load in such a way that
no load is exchanged between folds.

Lemma 2 After every fold performed by Fold, V n Y i E
7(") : Ai") = 0.

Figure 4: WebFold(7) in action. A complete sequence of
folds from start t o finish. Note that the TLB load assignment
is not GLE.

That WebFold satisfies TLB (see Definition 2), ends
up hinging on the structure of the folds computed by
the Fold procedure. This structure is explored in the
proof of the following pivotal lemma, which establishes
that WebFold chooses L in such a way as to prevent
any load sharing between siblings on the routing tree
(see Constraint 2).

Lemma 3 Every load assignment L produced by Web-
Fold satisfies the constraint of no sibling sharing (NSS).

Theorem 1 The load assignment L, computed by
WebFold is tree load balanced.

Now that we have established a reliable means of
computing the exact load assignments that satisfy
TLB, we have the tool to evaluate any load balanc-
ing distributed protocol. WebWave, which we describe
in the next section, is one such protocol.

5 WebWave Protocol

In this section, the underlying protocol adopted for
WebWave is presented. In addition, simulation evi-
dence of its optimality is provided.

164

WebWave(T)
(1) ai t T&
(2) do forever

/* other values of ai are possible */

(2.1) foreach j child of i in T do
/* Load can shift to/from child */
L: t Li - min{Aj , ai . (Li - Lij)}

L:: t Li + min{&, Qk . (L i k - Li)}

(2.2) for k parent of i do
/* Load can shift from/to parent */

(2.3) Li t L:
(2.4) send(&) to parent(i) and children(i) in T

Figure 5: WebWave a fully distributed diffusion based algo-
rithm.

As mentioned earlier, WebWave achieves load bal-
ancing by attempting to equalize the load between
neighboring servers, subject to the no sibling sharing
constraint. Each server i maintains Li the number
of requests serviced locally and Aj the number of re-
quests it receives from child j E Ci. In addition, i
maintains Lik, an estimate of the load of its neighbor
k E (Ci Uparent(i)) .

Periodically a server estimates the number of future
requests that should be delegated to/from each of its
children and its parent. Under NSS, the number of fu-
ture requests delegated from a node i to child j cannot
exceed Aj. Each server participating in WebWave pe-
riodically executes the algorithm in Figure 5 attempt-
ing to balance its load with its neighbors (ie . , servers
do not need to know the optimal load distribution).
In a realistic system, WebWave servers would have two
parameters: the gossip period, and the diffusion period.

When the spontaneous load pattern fortuitously al-
lows a GLE load distribution to satisfy NSS, Web-
Wave provably converges. This is because it satisfies
the following conditions that have been shown by Cy-
benko [ll] to be sufficient for convergence: (1) 1 -
CiENi aij > 0, and, (2) the communication network is
connected. However, we need also to show that Web-
Wave converges in general to TLB; this we do by sim-
ulation.

5.1 WebWave's Convergence
We have conducted simulations to test whether Web-
Wave converges to TLB, and how fast it does so, under
a variety of conditions. All our simulation results are
consistent with the proposition that WebWave is indeed
optimal.

3An implementation of WebWave needs to maintain a sepa-
rate Aj for each document it caches, which introduces a hazard
that we discuss in Section 5.2.

Figure 6: (a) A routing tree with spontaneous request rates
and T L B rate assignments shown in parentheses. Dashed cir-
cles represent folded nodes with the same T L B rate assign-
ment. (b) Convergence of WebWave on the shown routing
tree.

Due to the lack of space, this optimality is illus-
trated by demonstrating its convergence to TLB on a
hand-crafted tree structure. Request rates are carefully
picked such that WebFold generates folds that exhibit
many different patterns. Figure 6a illustrates a routing
tree with initial and final request rate assignments; dot-
ted lines enclose folded nodes after WebFold. The pat-
tern of spontaneous request rates shown in Figure 6a
is designed so as to force the shown variety of folds.
Recall that nodes in one fold serve the same number of
requests.

Following 1111, we use the Euclidean distance to
measure the convergence of WebWave. On every it-
eration of the diffusion algorithm we compute the Eu-
clidean distance between the current load assignment
and the optimal (TLB) one, produced by WebFold. De-
spite the variety of obstacles to GLE embodied in this
particular case, we can see from Figure 6b that Web-
Wave converges on TLB exponentially fast. Additional
simulation results can be found in [HI.

Our simulation results suggest that WebWave indeed

165

converges to TLB, and that it does so at the same high
rate that it follows when it converges to GLE. To test
this hypothesis, we use the nonlinear regression mod-
els provided in s-PLUS [8] to determine how closely a
bounding function of the form ayt , can be said to model
the convergence of WebWave. Given an objective func-
tion specifying the shape of the model, and the simula-
tion results, S-PLUS estimates the desired parameter
(i.e., y) by optimizing the objective function such that
the sum of the squared residuals is minimized. The re-
sults obtained from s-PLUS demonstrate that y closely
approximates the convergence rate of WebWave. For
example, for a random tree with depth 9, y = 0.830734
with a standard error of 0.005786.

Since our goal is to demonstrate the convergence
of the distributed algorithm to TLB, we made the
following simplifying assumptions in conducting the
above simulations. Communication delay is negligi-
ble, which implies instantaneous information exchange
(Le., Lik = Lk) . This assumption can be relaxed in
the GLE case, provided that the communication delay
is bounded, [3]. Our simulation assumes that an ar-
bitrarily small fraction of load can be diffused. This
means that load for some documents may have to be
split across multiple servers, and that the load balance
may be off by the load represented by one request. All
servers are modeled with uniform capacity, and the
spontaneous request rate generated at each server is
constant. This last assumption is unlikely to prove
overly restrictive, since WebWave quickly converges to
TLB starting from an arbitrary spontaneous request
rate assignment. However, the dynamics of WebWave
under erratic request rates is the subject of an ongoing
simulation study.

5.2 Potential Barriers

y
Spont. rate

Figure 7: (a) An example of a potential barrier in which TLB
is not achievable without tunneling, and, (b) a cache copy
distribution that is TLB. Requests for documents d l and d2

are issued by server 4, and those for document d3 are generated
by server 3.

by node 3. The figure shows the placement of replicas
and the requests serviced by each cached copy. In this
example, server 2 is the potential barrier, it cannot dif-
fuse any load to node 3, since it does not cache d3. In
addition it isolates node 1 from recognizing the exis-
tence of the problem. A correct TLB load assignment,
would distribute the load evenly among all nodes with
each node servicing 90 requests. Figure 7b shows file
cache and load distributions, that satisfy TLB.

Our diffusion based scheme was altered so that a
server can detect such undesirable states and recover
from them. A server k assumes that its parent j is a
potential barrier if k remains underloaded, relative to
j , for more than two periods, and no action is taken by
j. The lack of diffused load from L’s parent in this case,
implies that the parent does not cache any of the docu-
ments requested by the subtree rooted at k . To correct
the problem, server k identifies one or more documents
for which it is forwarding requests to its parent, and re-
quests them directly. Once copies of these documents
are served to it, server i caches them normally. We
call this technique tunneling, because server k in this
case is able to obtain cache copies from across j , a
high load barrier. Tunneling can be implemented us-
ing more elaborate mechanisms, but the above simple
method suffices for our purposes in this paper.

To avoid introducing overhead that grows quickly with
the size of the system, diffusion based algorithms rely
strictly Qn local information. This restriction, coupled
with the directional load diffusion required by NSS,
may cause the diffusion algorithm to encounter a po-
tential barrier. A server j is a potential barrier when it
has at least two children IC and k‘, and parent i, such
that:

Lkt 2 Lj 2 Li > L k ,

and j does not cache any of the files required by its
underloaded child k .

Figure 7a illustrates an example of such a file distri-
bution. The system consists of a home server (node 1)
and three intermediate servers (nodes 2 , 3 , and 4.) Re-
quests are only generated by leaf nodes, documents dl
and dz are requested by node 4, and d3 is requested

6 Related Work
The work presented in this paper overlaps two areas:
distributed load balancing and hierarchical file caching.
Of the work in distributed load balancing, the most
relevant is [3, 6, 111.

To our knowledge Cybenko [ll] was the first to an-
alyze the diffusion method. Under the assumption of
synchronous communication, he outlined the sufficient

166

conditions for the convergence of the diffusion method.
The convergence argument relies on the fact that, on
every iteration, server load assignments move mono-
tonically closer to the uniform load. Bertsekas and
Tsitsiklis [3] prove the convergence of the asynchronous
diffusion method provided that communication delay is
bounded. These proofs do not address tree load bal-
ance, nor do they account for per document caching
effects such as potential barriers.

A number of hierarchical caching strategies were
proposed in the literature, the most relevant of which
are [4, 5 , 9, 12, 161. Blaze [5] and Dahlin et al [12]
study a demand-based hierarchical caching scheme in
which clients serve files from their own cache to other
clients. Geographically based push-caching was pro-
posed in [lS], in this scheme servers are allowed to dis-
seminate documents based on the geographic location
of clients and on document popularity.

In [4], Bestavros analyzes two push based caching
schemes, with respect to bandwidth consumption,
space requirement, response time for clients, and server
load sharing. Our approach differs in that we concen-
trate on load balancing exclusively, aiming to guaran-
tee global optimality, instead of incremental improve-
ments resulting from load sharing. We address proto-
col design questions (e.g., we rule out the possibility of
clients or servers consulting any cache directory), while
Bestavros concentrates on evaluating resource alloca-
tion policies.

Through minor kernel modification Anderson and
Patterson [l] implement user level packet filters to
redirect requests to lightly loaded servers. Other ap-
proaches [21, 241 use the round-robin feature of Do-
main Name Servers (DNS) to distribute load among a
number of Web servers. Our work differs in that it ad-
dresses a significantly larger scale of load balancing, in
which it is not possible to rely on name resolution as
a means of shifting load, since this introduces its own
performance bottleneck.

The problem of choosing the best cache copy (or
replica) to serve a particular request, is addressed
by [15, 71. Implicit in [7, 151 is the assumption that
some name service can be expected to yield a list of
candidate copies among which a client can choose the
best. In our view, such inherently off-route global cache
naming service will prove too expensive for most doc-
uments.

7 Discussion
We have set forth a formal definition of what it means
for a document service to have an optimal load distri-
bution, captured a constraint for achieving this goal in

a distributed manner, and demonstrated that a set of
servers can cooperate to achieve this objective (strictly
through the use of local information). Our formal def-
inition of tree-load balance (TLB) expresses the opti-
mal load distribution, for a caching system that is not
allowed to lookup a cache directory, or to probe the
network, to find cache copies. In order to demonstrate
that TLB is achievable in a distributed fashion, first
we determined the optimal load distribution using a
provably optimal off-line algorithm, WebFold. Then
we presented WebWave as a fully distributed diffusion
based caching algorithm. WebWave implicitly deter-
mines the number and placement of cache copies as
well as the number of requests allocated to each copy.
Using the optimal load distribution computed by Web-
Fold, we establish, through the use of simulation, the
convergence of WebWave. Finally, we illustrate that
the convergence rate of WebWave can be estimated by
Y~ where 0 < y < 1.

WebWave requires routers to accept packet filter-
ing code that extracts packets relevant to the protocol.
Such injectable filters can be implemented very effi-
ciently, as has been shown by numerous experimental
efforts [l, 2, 13, 301.

Although the focus of our load balancing objective
is on a single tree, it will be important, in the future,
to evaluate how WebWave functions in the context of
the forest of overlapping routing trees that is the Inter-
net. Other future work includes analyzing WebWave
for stability, especially under realistic load [lo], and
measuring its effects on network traffic and client re-
sponse time.

Acknowledgements. We would like to thank Mark
Crovella for his direct, constructive, criticism, and Moham-
mad AI-Ansari and Robert Carter for many provocative
discussions. The members of the Oceans Group4 provided
much interesting feedback when we presented our ideas in
their early form. We also thank the anonymous reviewers
for their valuable comments on an earlier version of this
paper.

References
[1] E. Anderson and D. Patterson. The Magicrouter:

An application of fast packet interposing. Techni-
cal report, Univ. of California, Berkeley, EECS, Com-
puter Science Division, May 1996. Available as
http://www.cs.berkeley.edu/ eanders/magicrouter/osdi96-
mr-submission.ps.

[2] M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar.
Pathfinder: A pattern-based packet classifier. In Proc. 1 st
USENIX Symp. on Op. Sys. Design and Implementation,
pages 115-123, November 1994.

4h t tp : //vuv. cs .bu .edu/groups/oceans/

167

http://www.cs.berkeley.edu

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods. Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

[4] A. Bestavros. Speculative data dissemination and service
to reduce server load, network traffic and service time for
distributed information systems. In Proc. 12th IEEE Intl.
Conference on Data Engineering, New Orleans, Louisiana,
Mar. 1996.

[5] M.A. Blaze. Caching in Large-scale Distributed File Sys-
tems. PhD thesis, Princeton Univ., Dept. of Computer Sci-
ence, Jan. 1993.

[6] J. E. Boillat. Load balancing and Poisson equation in a
graph. Concurrency: Practice and Experience, 2(4):289-
313, December 1990.

[7] R. Carter and M. Crovella. Dynamic server selection using
bandwidth probing in wide-area networks. Technical Re-
port BU-CS-96-007, Boston Univ., Computer Science Dept.,
<www.cs.bu.edu/techreports>, Mar. 1996.

[8] John M. Chambers and Trevor J. Hastie. Statistical Models
in S. Wadsworth & Drooks/Cole Advanced Books Software,
Pacific Grove, California, 1992.

191 A. Chankhunthod, P.B. Danszig, C. Neerdaels, M.F.
Schwartz, and K.J. Worrell. A hierarchical Internet object
cache. In Proc. USENIX Annual Technical Conference, San
Diego, California, Jan. 1996.

[lo] Mark Crovella and Azer Bestavros. Self-similarity in World
Wide Web traffic: Evidence and possible causes. In Proc.
ACM SIGMETRICS ’96, 1996.

[ll] G. Cybenko. Dynamic load balancing for distributed mem-
ory multiprocessors. J. Parallel and Distributed Computing,

[12] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Ander-
son, and David A. Patterson. Cooperative caching: Using
remote client memory to improve file system performance.
In Proc. 1st USENIX Symp. on Op. Sys. Design and Im-
plementation, pages 267-280, November 1994.

1131 Dawson R. Engler and M. Rans Kaashoek. DPF: Fast,
flexible message demultiplexing using dynamic code gen-
eration. In Proc. of ACM SIGCOMM’96 Conference on
Applications, Technologies, Architectures and Protocols for
Computer Communication, Aug. 1996.

[14] Domenico Ferrari and Songnian Zhou. An empirical inves-
tigation of load indices for load balancing applications. In
Proc. 12th Intl. Symp. on Computer Performance Model-
ing, Measurements, and Evaluation, pages 515-528, 1987.

Locating nearby
copies of replicated Internet servers. Technical Report CU-
(3-762-95, Department of Computer Science, University of
Colorado-Boulder, February 1995.

[16] James Gwertzman. Autonomous replication in wide-area
internetworks. Technical Report TR-17-95, Harvard Uni-
versity, April 1995.

[17] A. Heddaya and S. Mirdad. Wave: Wide-area virtual
environment for distributing published documents. In
Electronic Proc. AGM SIGCOMM’SB Workshop on Mid-
dleware, Cambridge, Mass., Aug. 1995. Available as
h t tp : //uwu. acm. org/sigconrm/sigco~95/workshop/.

[18] A. Heddaya and S. Mirdad. Webwave: Globally load bal-
anced fully distributed caching of hot published documents.
Technical Report BU-CS-96-024, Boston Univ., Computer
Science Dept., <www.cs .bu.edu/techreports>, Oct. 1996.

7:279-301, July 1989.

[15] James Guyton and Michael Schwartz.

[19] Jiawei Hong, Xiaonan Tan, and Marina Chen. From local to
global: An analysis of nearest neighbor balancing on hyper-
cube. Performance Evaluation Review, 16(1):73-82, May
1988.

[20] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols,
M. Satyanarayanan, R.N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. AGM
Trans. on Computer Systems, 6(1):1-32, February 88.

[21] E.D. Katz, M. Butler, and R. McGrath. A scalable HTTP
server: The NCSA prototype. In Proc. 1st Intl. World- Wide
Web Conference, May 1994.

[22] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams. Replication in the Harp file system. In
Proc. 13th ACM Symp. on Operating System Principles,
Asilomar, California, pages 226-238, Oct. 1991. Also pub-
lished as Operating Systems Review, vol. 25, no. 5.

[23] R. Luling and B. Monien. Load balancing for distributed
branch and bound algorithms. In Proc. 6th IEEE Intl. Par-
allel Processing Symp., pages 543-548, 1992.

[24] J.C. Mogul. Network behavior of a busy Web server and
its clients. Technical report, DEC WRL Research Report,
October 1995.

[25] D. Muntz and P. Honeyman. Multi-level caching in dis-
tributed file systems -or- your cache ain’t nuthin’ but trash.
In Proc. Winter USENIX Technical Conf., San Francisco,
CA , pages 305-314. USENIX, January 1992.

[26] Michael Nelson, Brent Welch, and John Ousterhout.
Caching in the Sprite network file system. ACM Trans.
on Computer Systems, 6(1):134-154, February 1988.

[27] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
file system. In Proc. Summer USENIX Technical Conf.,
June 1985.

[28] D. Wessles and K. Claffy. Internet cache proto-
col (icp), version 2. Technical Report Internet-
Draft, IETF Network Working Group, Nov. 1996.
<ftp://ds.internic.net/internet-drafts>.

[29] C.-Z. Xu and F. C. M. Lau. Optimal parameters for load
balancing using the diffusion method in k-ary n-cube net-
works. Information Processing Letters, 47(4):181-187, Sept.
1993.

[30] M. Yahara, B. Bershad, C. Maeda, and E. Moss. Efficient
packet dimultiplexing for multiple endpoints and large mes-
sages. In Proc. Winter USENIX Technical Conf., 1994.

168

ftp://ds.internic.net/internet-drafts

