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Abstract 

Document publication service over such a large network 
as the Internet challenges us to harness available server 
and network resources to meet fast growing demand. I n  
this paper, we show that large-scale dynamic caching 
can be employed to globally minimize server idle time, 
and hence maximize the aggregate server throughput of 
the whole service. To be eficient, scalable and robust, a 
successful caching mechanism must have three proper- 
ties: (1) maximize the global throughput of the system, 
(2) find cache copies without recourse to a directory 
service, or to a discovery protocol, and (3) be com- 
pletely distributed in the sense of operating only on  the 
basis of local information. 

In this paper, we develop a precise definition, which 
we call tree load-balance (TLB), of what at means f o r  a 
mechanism to satisfy these three goals. W e  present an 
algorithm that computes TLB off-line, and a distributed 
protocol that induces a load distribution that converges 
quickly to a TLB one. Both algorithms place cache 
copies of immutable documents, on the routing tree 
that connects the cached document’s home server to 
its clients, thus enabling requests to stumble on  cache 
copies en route to the home server. 

Keywords: load balancing, caching, replication, doc- 
ument service, read-only files, packet filter, routing, In- 
ternet, World Wide Web. 

1 Introduction 
Current multimedia Internet information services pro- 
vide users with the capability to transfer documents 
on a scale that is very large and fast growing. For 

*Some of this work was done while this author was on sab- 
batical leave at Harvard University, 1995/96. 
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document services to keep up with quickly increasing 
demand, servers need to cooperate so that minimal ca- 
pacity goes idle in one part of the network, when other 
parts have excess load. This must be done by creating 
cache copies of popular documents on lightly loaded 
nodes, and shifting requests from the heavily loaded 
servers to those nodes. But the effectiveness of such a 
system hinges on its ability to scale to many millions 
of server nodes. 

Scalability’ is determined by two factors: the over- 
head associated with implementing the protocol, and 
its reliance on centralized services. Most Current re- 
search [4, 5, 16, 251 assumes the existence of a cache 
directory service, that is queried when client requests 
are processed. The overhead associated with such a 
service limits the scalability of the caching system as a 
whole [17]. This paper attempts to answer the follow- 
ing question: can a document service achieve an opti- 
mal load distribution strictly through the use of local 
information? We give detailed evidence in the affirma- 
tive, assuming that the document service is allowed to 
i n t e g r a t e t o  a limited extent-caching with routing. 
Specifically, we assume that routers can accept filters, 
supplied by cache servers, that identify requests that 
represent potential hits in the cache. 

A significant amount of research has been conducted 
on the use of caching to improve the performance of 
file systems. Examples of such work include: the Net- 
work File System (NFS) [27], the Andrew File System 
(AFS) [20], Sprite [26], HARP [22], and xFS [12]. In 
addition, caching is used to improve the performance 
of large document delivery services such as USENET, 
FTP, and the World-wide Web [4,5,16,25].  For exam- 
ple the Harvest cache [9], initially motivated by FTP 
mirroring, is now being increasingly used in national 
WWW caching systems around the world. 

lThe rate at which the global throughput of the system grows 
as its total capacity increases. 
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To achieve load balance through file caching, re- 
quests have to  be (re)directed to cache copies whose 
locations must therefore be determined. A common ap- 
proach that has been adopted for load balancing over 
local area networks, performs this redirection by mod- 
ifying the naming [21] or the routing [l] mechanisms 
to maintain an explicit directory of cache copies, from 
which to select suitable destinations for client requests. 
Frequent and pronounced changes in request patterns 
can force the locations, and number, of cache copies to 
be highly transient. The resulting high update rate of 
the cache directory means that it cannot be replicated 
efficiently on a large scale, thus turning the cache di- 
rectory service itself into a scalability bottleneck, for 
caching systems that funnel all requests through it. 
Another strategy is to augment the client/server inter- 
action protocol so that clients, or their proxies, proac- 
tively identify suitable cache copies using a special pro- 
tocol, such as ICP [28]. This latter approach intro- 
duces additional complexity, message cost and extra 
round-trip message delays. 

Our approach exploits the fact that routes from 
clients to a server form a routing tree, along which all 
document requests must flow. We observe that client 
requests are routed up the tree to the home server, 
and can be serviced by any node en route that hap- 
pens to cache the desired document, without any need 
to lookup a cache directory, to redirect requests, or to 
probe the network to locate a copy. In WebWave, cache 
copies are created only when a parent node in the rout- 
ing tree detects a less loaded child, to which it can shift 
some of its document service load by giving it a copy 
of one of its cached documents. An imbalance in the 
opposite direction causes a child to delete some of its 
cached documents, or to reduce the fraction of requests 
for these documents that it chooses to serve. In this 
paper, we concentrate on the problem of defining and 
computing the request rate that each node in the rout- 
ing tree should handle in order for the tree as a whole 
to have maximum throughput. Choosing the particu- 
lar documents to copy, or which copies to delete, is also 
discussed, but only briefly. 

From the architectural point of view, a WebWave 
cache server needs to be able to insert a packet filter 
into the router associated with it, so that only docu- 
ment request packets that are highly likely to hit in 
the cache, are extracted from their normal path. En- 
gler and Kaashoek 1131 use run-time code generation 
techniques to dynamically download high performance 
packet filters into the kernel. Their measured overhead 
rivals that of hand crafted kernel code (a packet can be 
filtered in 1.51 microseconds). This demonstrates the 
feasibility, in principle, of our architectural requirement 

for routers to accept such injected filtering code. 
In summary, the main contributions of this paper 

include: formal definition of optimal tree load balance 
(TLB), an algorithm (WebFold) to compute it off-line, 
and a distributed protocol (WebWave) that induces a 
load distribution that converges to a TLB one. The re- 
mainder of the paper is organized as follows: Section 2 
presents the diffusion method, and its convergence to 
Global Load Equality (i.e., uniform load). Section 3 
provides formal definitions of Tree Loud Balance (TLB) 
and the underlying constraints. Section 4 presents 
WebFold, an off-line algorithm that finds a TLB assign- 
ment, and proves its correctness. Section 5 describes 
WebWave a fully distributed caching algorithm, and 
shows preliminary simulation evidence of its optimal- 
ity (convergence to TLB). Finally, Section 7 concludes 
the paper and presents future work. 

2 Load Diffusion 
Our underlying model is similar to the dynamic load 
balancing model in Cybenko [ll], and Bertsekas and 
Tsitsiklis [3]. In particular, WebWave consists of a 
set of caching servers cooperating to service client re- 
quests. The objective is to achieve a load balanced 
system, hence minimizing server idle time and maxi- 
mizing system throughput. Each server has the abil- 
ity to cache and discard documents based on its local 
load, its neighbors' loads, and on document popular- 
ity. Each server maintains an estimate of the load at 
its neighbors. Periodically, nodes broadcast their load 
to neighboring servers. If a server notices that it is 
overloaded, with respect to any of its neighbors, it rel- 
egates a fraction of its future predicted work to its less 
loaded neighbors. Specifically, the change of load at 
server i is determined by: 

Li t Li + "ij . (Lij - Li),  
j E N i  

where Li = Lii is the current load at i, and Lij is the 
load at j as of the last time at which j gossiped its load 
to i. Ni is the set of nodes in the neighborhood of i, and 
cxij is the diffusion parameter which defines the fraction 
of the excess load to be exchanged between neighboring 
nodes (aij = 0 if i and j are not neighbors). 

Assuming that nodes have perfect information about 
each other's load (i.e., Lii) = Ljy),  that the diffusion 
overhead is zero, and that work can be transported 
freely among nodes, the load distribution E ( t )  at time 
t can be expressed as: = D . z ( t - l ) .  The coefficients 
of the diffusion matrix D ,  can be derived straight- 
forwardly from the above iteration. Cybenko [ll], 
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showed that the synchronous diffusion method con- 
verges to the uniform load distribution under certain 
conditions, and that it does so exponentially fast. Af- 
ter every iteration of the diffusion algorithm, the Eu- 
clidean distance to uniform load shrinks by an amount 
proportional to 0 < y < 1, 

IJDtf;(O) - U11 5 y y m  - rsrll 
where D is the diffusion matrix, is the initial load 
distribution, U is the uniform load distribution, and 
t represents time. Asynchronous diffusion also con- 
verges, as shown in Bertsekas and Tsitsiklis [3], when 
communication delay is bounded. 

These results apply well when load diffusion is ac- 
complished by migrating a process image, together 
with the resources it requires. However, document 
caching systems do not necessarily enable unfettered 
load migration, because requests need to find cache 
copies. Unlike typical load balancers, WebWave rele- 
gates future requests to its neighbors, rather than cur- 
rent load. 

Hong et  a1 [19], show that load balance on a hy- 
percube can be achieved by averaging the load among 
neighboring processors. Xu and Lau [as], derive the op- 
timal diffusion parameter a for a Ic-ary n-cube network. 
Luling and Monien [23] implemented a diffusion based 
load balancer on a transputer with De Bruijn and ring 
networks. 

In order to study the performance WebWave we first 
define our load balance goals and develop WebFold an 
off-line provably optimal algorithm. The sole purpose 
of WebFold is to study the convergence of the dis- 
tributed protocol. 

L,, L,, 

at 

3 Tree Load Balance 

L, = request rate served by node 
i, and L,, is j ' s  request rate as 
known to 2. L, = Lt,. 
Request rate forwarded by node 
z to its parent. A, = E, -+ 
E, - Lt. 

In this section, we develop the model and definitions 
that will be used in Sections 4 and 5. We build our 
model so as to capture the tree structure T induced by 
the routing algorithm on the network. In terms of T ,  
we state our goal for caching, describe the two algo- 
rithms for achieving this goal, and our arguments and 
evidence that we achieve it. In order to avoid requiring 
clients to lookup the locations of cache copies, either 
by contacting the home server, or even a distributed 
name service, we constrain the placement of copies, and 
hence the diffusion of load, to nodes in T .  As a request 
for a document travels up the tree, from the node at 
which it originated, towards the root, it may encounter 
cache copies along the way. When the request flies by 
a node with a cache copy, the node handles it, if its 
present request rate is smaller than it should be. 

Table 1: Notation used in this paper. 

I I I I 

Set of tree nodes = { 1 , 2 , .  . . , n}. 
T is a partitioning of T into con- 
tiguous regions, called folds. 

Spontaneous request rate gener- 
ated at node i. 

Table 1 summarizes the notation used in the paper. 
We model the Internet as a forest of trees, each rooted 
at a different home server which is responsible for pro- 
viding an authoritative permanent copy of some set of 
documents. For simplicity, we assume that every node 
is capable of storing an unlimited number of cached 
copies, and that it is willing to do so. We restrict the 
discussion in this paper to one tree T ,  considering it in 
isolation. As mentioned above, T captures the routes 
that are in effect at any point in time. A node i in T is 
the parent of j if i is the first cache server on the route 
from j to the home server (the root of T ) ,  in which case 
we also say that j is the child of i, and write j E Ci. 

As shown in Figure 1, every node i in the tree re- 
ceives requests at the rate of Ei + C j  Aj, of which it 
serves Li, and forwards the rest, Ai, up the tree. In 
turn, i receives, from each child j E Ci, requests that 
j forwards to it at a rate that we label Aj. 

The objective of any load balancing algorithm must 
be defined in terms of some load metric. While the 
choice of workload metric can favor a particular aspect 

~ a 

/ '  

Ei ' i  

A 

Figure 1: The flow of requests up the routing tree through a 
node i. 2y is the spectral radius of the diffusion matrix. 
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of the system being optimized [14], we choose arrival 
rate, because it obeys flow conservation, and thus sim- 
plifies our analysis. 

On the generally true assumption that individual 
servers perform best when they are as lightly loaded as 
possible, we posit the following recursive definition of 
load balance. 

Definition 1 (LB) A load 
assignment L is load-balanced iff L,,, is minimum, 
and the same holds recursively if we remove the L,,, 
component from L,  where Lma, = max Li. 

The standard definition of global load equality (GLE) 
(i.e., V i E T ,  L,,, = Li) follows necessarily from 
the above definition, when equality is indeed feasible. 
As we will see, load balancing over a routing tree can be 
sufficiently constrained to render GLE infeasible, hence 
the need for an alternative definition. 

The first and most obvious constraint on legal load 
assignments over a routing tree is that the root cannot 
forward any load-a constraint that is not incompatible 
with GLE. 

Constraint 1 For the root r of tree T ,  A, = 0 in any  
load assignment L. 

The second constraint on load assignments, one that is 
required for there to be no need for a directory service 
for, or explicit discovery of, cache copies, is that of 
no sibling sharing (NSS). NSS simply states that a file 
can only be replicated, down the tree, in the direction 
of clients that request it. This effectively restricts load 
shifting, from a node to one of its child subtrees, to load 
originating in that subtree itself, and eliminates any 
load sharing between siblings. In other words, requests 
always travel upwards in the tree, towards the home 
server, in order to be serviced. 

Constraint 2 (NSS) For every node i E T ,  the net 
request rate it forwards, Ai 2 0.  

Now we can specialize Definition 1 to routing trees. 

Definition 2 (TLB) A load assignment L on a rout- 
ing tree T is tree load balanced iff L is load balanced, 
subject to Constraints 1 and 2 above. 

Figure 2 illustrates the difference between a TLB load 
distribution and a GLE one. Subject to Constraints 1 
and 2, TLB attempts to move the load distribution as 
close as possible to GLE. Thus, whether a TLB load 
assignment yields a GLE load distribution or not, de- 
pends on the spontaneous requests originated at each 
server. 

Figure 2: A tree with two different spontaneous request rates, 
and the corresponding T L B  load assignments: (a) has a T L B  
load assignment that is also GLE, while (b) has a TLB load 
assignment that is not GLE. 

4 Tree Folding 

The definitions of LB and TLB above do not spec- 
ify how to compute the optimal load assignment, an 
exercise that is necessary to evaluate load balancing 
protocols in practice. We approach the problem in a 
two-pronged manner. First we design a centralized al- 
gorithm that computes a load assignment that is prov- 
ably balanced. Second, we give a diffusion-based fully 
distributed protocol that enables neighbors in the tree 
to  exchange load between themselves, and give simula- 
tion evidence that the load assignment thus produced 
eventually converges to the optimal one. This section is 
devoted to the first algorithm, which we call WebFold, 
and to proving its properties-up to and including op- 
timality. 

The central insight embodied in WebFold is that tree 
nodes can be partitioned into folds so that every fold 
contains a contiguous portion of the tree that can all be 
assigned equal load, and no load flows between folds. 
Each node in a fold is allocated a load equal to the 
sum of all spontaneous loads in the same fold, divided 
by the number of nodes in the fold. That is, a node 
forwards load to its parent only if both are in the same 
fold. Folds are denoted by the names of their root 
nodes, and they are constructed as follows. A fold j 
is foldable (into its parent i ) ,  if the load per node in 
fold j exceeds that of fold i. WebFold repeatedly folds 
the foldable node with maximum per node load, until 
no more foldable nodes remain. 

Once folding is completed, the optimal load assign- 
ment becomes obvious: spread the spontaneous load 
generated within a fold equally among the members of 
the fold. This even distribution is guaranteed not to vi- 
olate NSS as specified in Constraint 2. Figure 3 shows 
the algorithm in complete detail. 

Figure 4 demonstrates a complete folding process, 
solid circles represent nodes of the routing tree T and 
their spontaneous request rates, and dashed lines de- 
limit the folds that make up the folded tree 7. Each 
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Web Fold (2') 
(1) 7 t T 
(2) foreach i E T : 

(2.1) Fi t {i} 
(2.2) ci t ci 
(2.3) &i t Ei 

(3) 7 t Fold(7) 
(4) foreach  j E T : Lj t & , j E h 

(1) if Empty(7) return NIL 
(2) while 3 j , i  E 7, such that: Foldable(j,i), and 

2 is maximum over all foldable nodes. 

Fold(7) 

(2.1) '7 it 7 \ { j }  
(2.2) Fi t Fi U Fj 
(2.3) Ci t ci U cj 
(2.4) F;, Ci, &i t Fi U Fj, ci U c j ,  &i + &j 

(3) return 7 

Foldable(j, i )  /+ Check if j is foldable into i .  +/ 
(1) return [ j E C; A > > A ]  

1Fjl - IFil+lFil - IFil 

Figure 3: A provably optimal centralized algorithm. It folds 
together al l  adjacent nodes whose load can be equal. 

fold's spontaneous request rate equals the sum of the 
spontaneous requests generated by the nodes it con- 
t ains . 

The following technical lemma helps in proving our 
central theorem. In addition, it yields insight into the 
operation of WebFold. Lemma 1 states that the load 
assignment produced by WebFold is monotonically non- 
increasing as we descend the routing tree T from root 
towards leaf. 

Lemma 1 After WebFold returns, Vi E T ,  j E Ci : 

Proof: For brevity, all proofs are ommitted from this 
paper, but can be referred to, in [18]. 

En route to proving that the load assignment L pro- 
duced by WebFold is TLB optimal, we first prove that 
it satisfies Constraints 1 and 2 (NSS) respectively. Let 
the sequence of folds performed by Fold, and the cor- 
responding states of the folded tree 7 be: 

Li 2 Lj. 

T ( 0 )  fo, T(1) fl, . . . 7(4 fn, 7("+1) + . . . (1) 
We begin by proving that L satisfies an even stronger 

condition than Constraint 1, since the stricter version 
is useful in proving NSS. The following lemma states 
that WebFold distributes the load in such a way that 
no load is exchanged between folds. 

Lemma 2 After every fold performed by Fold, V n Y i  E 
7(") : Ai") = 0. 

Figure 4: WebFold(7) in action. A complete sequence of 
folds from start t o  finish. Note that the TLB load assignment 
is not GLE. 

That WebFold satisfies TLB (see Definition 2), ends 
up hinging on the structure of the folds computed by 
the Fold procedure. This structure is explored in the 
proof of the following pivotal lemma, which establishes 
that WebFold chooses L in such a way as to prevent 
any load sharing between siblings on the routing tree 
(see Constraint 2). 

Lemma 3 Every load assignment L produced by  Web- 
Fold satisfies the constraint of no sibling sharing (NSS). 

Theorem 1 The load assignment L,  computed by  
WebFold is tree load balanced. 

Now that we have established a reliable means of 
computing the exact load assignments that satisfy 
TLB, we have the tool to evaluate any load balanc- 
ing distributed protocol. WebWave, which we describe 
in the next section, is one such protocol. 

5 WebWave Protocol 

In this section, the underlying protocol adopted for 
WebWave is presented. In addition, simulation evi- 
dence of its optimality is provided. 
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WebWave(T) 
(1) ai t T& 
( 2 )  do forever 

/* other values of ai are possible */ 

(2.1) foreach j child of i in T do 
/* Load can shift to/from child */ 
L: t Li - min{Aj ,  ai . (Li - Lij)}  

L:: t Li + min{&, Qk . ( L i k  - Li)} 

(2.2) for k parent of i do 
/* Load can shift from/to parent */ 

(2.3) Li t L: 
(2.4) send(&) to parent(i) and children(i) in T 

Figure 5: WebWave a fully distributed diffusion based algo- 
rithm. 

As mentioned earlier, WebWave achieves load bal- 
ancing by attempting to equalize the load between 
neighboring servers, subject to the no sibling sharing 
constraint. Each server i maintains Li the number 
of requests serviced locally and Aj the number of re- 
quests it receives from child j E Ci. In addition, i 
maintains Lik,  an estimate of the load of its neighbor 
k E (Ci Uparent( i ) ) .  

Periodically a server estimates the number of future 
requests that should be delegated to/from each of its 
children and its parent. Under NSS, the number of fu- 
ture requests delegated from a node i to child j cannot 
exceed Aj. Each server participating in WebWave pe- 
riodically executes the algorithm in Figure 5 attempt- 
ing to balance its load with its neighbors ( ie . ,  servers 
do not need to know the optimal load distribution). 
In a realistic system, WebWave servers would have two 
parameters: the gossip period, and the diffusion period. 

When the spontaneous load pattern fortuitously al- 
lows a GLE load distribution to satisfy NSS, Web- 
Wave provably converges. This is because it satisfies 
the following conditions that have been shown by Cy- 
benko [ll] to be sufficient for convergence: (1) 1 - 
CiENi aij > 0, and, (2) the communication network is 
connected. However, we need also to show that Web- 
Wave converges in general to TLB; this we do by sim- 
ulation. 

5.1 WebWave's Convergence 
We have conducted simulations to test whether Web- 
Wave converges to TLB, and how fast it does so, under 
a variety of conditions. All our simulation results are 
consistent with the proposition that WebWave is indeed 
optimal. 

3An implementation of WebWave needs to maintain a sepa- 
rate Aj for each document it caches, which introduces a hazard 
that we discuss in Section 5.2. 

Figure 6: (a) A routing tree with spontaneous request rates 
and T L B  rate assignments shown in parentheses. Dashed cir- 
cles represent folded nodes with the same T L B  rate assign- 
ment. (b) Convergence of WebWave on the shown routing 
tree. 

Due to the lack of space, this optimality is illus- 
trated by demonstrating its convergence to TLB on a 
hand-crafted tree structure. Request rates are carefully 
picked such that WebFold generates folds that exhibit 
many different patterns. Figure 6a illustrates a routing 
tree with initial and final request rate assignments; dot- 
ted lines enclose folded nodes after WebFold. The pat- 
tern of spontaneous request rates shown in Figure 6a 
is designed so as to force the shown variety of folds. 
Recall that nodes in one fold serve the same number of 
requests. 

Following 1111, we use the Euclidean distance to 
measure the convergence of WebWave. On every it- 
eration of the diffusion algorithm we compute the Eu- 
clidean distance between the current load assignment 
and the optimal (TLB) one, produced by WebFold. De- 
spite the variety of obstacles to GLE embodied in this 
particular case, we can see from Figure 6b that Web- 
Wave converges on TLB exponentially fast. Additional 
simulation results can be found in [HI. 

Our simulation results suggest that WebWave indeed 
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converges to TLB, and that it does so at the same high 
rate that it follows when it converges to GLE. To test 
this hypothesis, we use the nonlinear regression mod- 
els provided in s-PLUS [8] to determine how closely a 
bounding function of the form ayt ,  can be said to model 
the convergence of WebWave. Given an objective func- 
tion specifying the shape of the model, and the simula- 
tion results, S-PLUS estimates the desired parameter 
(i.e., y) by optimizing the objective function such that 
the sum of the squared residuals is minimized. The re- 
sults obtained from s-PLUS demonstrate that y closely 
approximates the convergence rate of WebWave. For 
example, for a random tree with depth 9, y = 0.830734 
with a standard error of 0.005786. 

Since our goal is to demonstrate the convergence 
of the distributed algorithm to TLB, we made the 
following simplifying assumptions in conducting the 
above simulations. Communication delay is negligi- 
ble, which implies instantaneous information exchange 
(Le., Lik = Lk) .  This assumption can be relaxed in 
the GLE case, provided that the communication delay 
is bounded, [3]. Our simulation assumes that an ar- 
bitrarily small fraction of load can be diffused. This 
means that load for some documents may have to be 
split across multiple servers, and that the load balance 
may be off by the load represented by one request. All 
servers are modeled with uniform capacity, and the 
spontaneous request rate generated at  each server is 
constant. This last assumption is unlikely to prove 
overly restrictive, since WebWave quickly converges to 
TLB starting from an arbitrary spontaneous request 
rate assignment. However, the dynamics of WebWave 
under erratic request rates is the subject of an ongoing 
simulation study. 

5.2 Potential Barriers 

y 
Spont. rate 

Figure 7: (a) An example of a potential barrier in which TLB 
is not achievable without tunneling, and, (b) a cache copy 
distribution that is TLB. Requests for documents d l  and d2 

are issued by server 4, and those for document d3 are generated 
by server 3. 

by node 3. The figure shows the placement of replicas 
and the requests serviced by each cached copy. In this 
example, server 2 is the potential barrier, it cannot dif- 
fuse any load to node 3, since it does not cache d3. In 
addition it isolates node 1 from recognizing the exis- 
tence of the problem. A correct TLB load assignment, 
would distribute the load evenly among all nodes with 
each node servicing 90 requests. Figure 7b shows file 
cache and load distributions, that satisfy TLB. 

Our diffusion based scheme was altered so that a 
server can detect such undesirable states and recover 
from them. A server k assumes that its parent j is a 
potential barrier if k remains underloaded, relative to 
j ,  for more than two periods, and no action is taken by 
j. The lack of diffused load from L’s parent in this case, 
implies that the parent does not cache any of the docu- 
ments requested by the subtree rooted at k .  To correct 
the problem, server k identifies one or more documents 
for which it is forwarding requests to its parent, and re- 
quests them directly. Once copies of these documents 
are served to it, server i caches them normally. We 
call this technique tunneling, because server k in this 
case is able to obtain cache copies from across j ,  a 
high load barrier. Tunneling can be implemented us- 
ing more elaborate mechanisms, but the above simple 
method suffices for our purposes in this paper. 

To avoid introducing overhead that grows quickly with 
the size of the system, diffusion based algorithms rely 
strictly Qn local information. This restriction, coupled 
with the directional load diffusion required by NSS, 
may cause the diffusion algorithm to encounter a po- 
tential barrier. A server j is a potential barrier when it 
has at least two children IC and k‘, and parent i, such 
that: 

Lkt 2 Lj 2 Li > L k ,  

and j does not cache any of the files required by its 
underloaded child k .  

Figure 7a illustrates an example of such a file distri- 
bution. The system consists of a home server (node 1) 
and three intermediate servers (nodes 2 , 3 ,  and 4.) Re- 
quests are only generated by leaf nodes, documents dl 
and dz are requested by node 4, and d3 is requested 

6 Related Work 
The work presented in this paper overlaps two areas: 
distributed load balancing and hierarchical file caching. 
Of the work in distributed load balancing, the most 
relevant is [3, 6, 111. 

To our knowledge Cybenko [ll] was the first to an- 
alyze the diffusion method. Under the assumption of 
synchronous communication, he outlined the sufficient 
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conditions for the convergence of the diffusion method. 
The convergence argument relies on the fact that, on 
every iteration, server load assignments move mono- 
tonically closer to the uniform load. Bertsekas and 
Tsitsiklis [3] prove the convergence of the asynchronous 
diffusion method provided that communication delay is 
bounded. These proofs do not address tree load bal- 
ance, nor do they account for per document caching 
effects such as potential barriers. 

A number of hierarchical caching strategies were 
proposed in the literature, the most relevant of which 
are [4, 5 ,  9, 12, 161. Blaze [5] and Dahlin et al [12] 
study a demand-based hierarchical caching scheme in 
which clients serve files from their own cache to other 
clients. Geographically based push-caching was pro- 
posed in [lS], in this scheme servers are allowed to dis- 
seminate documents based on the geographic location 
of clients and on document popularity. 

In [4], Bestavros analyzes two push based caching 
schemes, with respect to bandwidth consumption, 
space requirement, response time for clients, and server 
load sharing. Our approach differs in that we concen- 
trate on load balancing exclusively, aiming to guaran- 
tee global optimality, instead of incremental improve- 
ments resulting from load sharing. We address proto- 
col design questions (e.g., we rule out the possibility of 
clients or servers consulting any cache directory), while 
Bestavros concentrates on evaluating resource alloca- 
tion policies. 

Through minor kernel modification Anderson and 
Patterson [l] implement user level packet filters to 
redirect requests to lightly loaded servers. Other ap- 
proaches [21, 241 use the round-robin feature of Do- 
main Name Servers (DNS) to distribute load among a 
number of Web servers. Our work differs in that it ad- 
dresses a significantly larger scale of load balancing, in 
which it is not possible to rely on name resolution as 
a means of shifting load, since this introduces its own 
performance bottleneck. 

The problem of choosing the best cache copy (or 
replica) to serve a particular request, is addressed 
by [15, 71. Implicit in [7, 151 is the assumption that 
some name service can be expected to yield a list of 
candidate copies among which a client can choose the 
best. In our view, such inherently off-route global cache 
naming service will prove too expensive for most doc- 
uments. 

7 Discussion 
We have set forth a formal definition of what it means 
for a document service to have an optimal load distri- 
bution, captured a constraint for achieving this goal in 

a distributed manner, and demonstrated that a set of 
servers can cooperate to achieve this objective (strictly 
through the use of local information). Our formal def- 
inition of tree-load balance (TLB) expresses the opti- 
mal load distribution, for a caching system that is not 
allowed to lookup a cache directory, or to probe the 
network, to find cache copies. In order to demonstrate 
that TLB is achievable in a distributed fashion, first 
we determined the optimal load distribution using a 
provably optimal off-line algorithm, WebFold. Then 
we presented WebWave as a fully distributed diffusion 
based caching algorithm. WebWave implicitly deter- 
mines the number and placement of cache copies as 
well as the number of requests allocated to each copy. 
Using the optimal load distribution computed by Web- 
Fold, we establish, through the use of simulation, the 
convergence of WebWave. Finally, we illustrate that 
the convergence rate of WebWave can be estimated by 
Y~ where 0 < y < 1. 

WebWave requires routers to accept packet filter- 
ing code that extracts packets relevant to the protocol. 
Such injectable filters can be implemented very effi- 
ciently, as has been shown by numerous experimental 
efforts [l, 2, 13, 301. 

Although the focus of our load balancing objective 
is on a single tree, it will be important, in the future, 
to evaluate how WebWave functions in the context of 
the forest of overlapping routing trees that is the Inter- 
net. Other future work includes analyzing WebWave 
for stability, especially under realistic load [lo], and 
measuring its effects on network traffic and client re- 
sponse time. 
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