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Abstract. We define on a manifold X a wedge product S ∧ T of a closed positive
(1, 1)-current S, smooth outside a proper analytic subset Y of X, and a positive pluriharmonic
(k, k)-current T , when k is less than the codimension of Y . Using this tool, we prove that if
M is a compact complex manifold of dimension n ≥ 3, which is Kähler outside an irreducible
curve, then M carries a balanced metric.

1. Introduction. The wedge product of closed positive currents was studied by Bed-
ford and Taylor, who proposed to define i∂∂̄u ∧ T as i∂∂̄(uT ), where T is a closed positive
(k, k)-current and u is a plurisubharmonic function (see [8]). Obviously the potential u must
satisfy some conditions, to get a well-defined current uT . For instance, if u is not locally
bounded, one may require that the unbounded locus of u (intersected with the support of T )
is contained in an analytic subset Y of the manifold X, with k + dimY < dimX (see [14],
III.4.10; more generally, see Remark 2).

In [7] the second author considered such a product when i∂∂̄u is smooth outside a smooth
curve and T is a positive pluriharmonic (i.e., i∂∂̄-closed) (1, 1)-current on a three-dimensional
manifold. Moreover, in [11] Dinh and Sibony show that in a compact Kähler manifold the
wedge product is well-defined when S is a closed positive (1, 1)-current with continuous
potential and T is a positive pluriharmonic (k, k)-current.

Here we are interested in a “geometrical setting”of the problem, to obtain some infor-
mation on the existence of particular metrics on the ambient manifold. Hence we improve the
results of [7] as follows:

THEOREM 2.2. Let Y be a proper analytic subset of a complex manifoldX. Let S be a
positive closed (1, 1)-current on X, smooth on X − Y , and let T be a positive pluriharmonic
(k, k)-current onX, with k+dimY < dimX. Then there exists a unique current onX, denoted
by S ∧ T , with the following property:

If g is a solution of S = i∂∂̄g in an open subset U ⊂ X, and if {gj } is a sequence
of smooth plurisubharmonic functions on U , which converge to g in C∞(U − Y ), then
limj i∂∂̄gj ∧ T = S ∧ T in U .

Moreover, when X is compact, S ∧ T belongs to the right (Aeppli) cohomology class
(Proposition 2.4).
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Let us make a couple of remarks. We do not need a Kähler ambient, nevertheless this
hypothesis would probably simplify the proof (as noted in [7], Remark 1.4). Our main hypoth-
esis, that is, the smoothness of the potential u outside Y , is probably a technical hypothesis,
whereas the request on the dimension of Y reflects the classical (i.e., closed) case.

These results allow us to get some interesting geometric information on Kähler or bal-
anced metrics on the ambient (compact) manifold. Recall that a balanced metric on a n-
dimensional manifold is a hermitian metric whose Kähler form ω satisfies dωn−1 = 0. In
particular, we consider the case of a compact n-dimensional manifold M , n ≥ 3, which is
Kähler outside an irreducible curve C. We proved in [4] the following result: “If M does not
carry itself a Kähler metric, then eitherC is the component of a boundary (i.e., [C] = ∂Ā+∂̄A
for a suitable current A) or C is part of the component of a boundary (i.e., there is a positive
current B �= 0 onM such that χCB = 0 and [C] + B = ∂Ā+ ∂̄A).”

In this last case, M carries a balanced metric (see [5] when C is smooth, but the proof
also works for an irreducible curve, as noted in Proposition 3.2).

The results proved in Chapter 2 allow us to manage also the other case, inspired by [7];
thus, summing up, we get:

THEOREM 3.4. If M is a compact complex manifold of dimension n ≥ 3, and C is an
irreducible curve inM such thatM−C is Kähler, then eitherM is Kähler itself, or [C] is the
component of a boundary andM is p-Kähler for every p ≥ 2, or [C] is part of the component
of a boundary andM ∈ C. In all cases, M is balanced.

Finally, we get also some partial results when M is Kähler outside an analytic subset of
dimension bigger than one.

2. Wedge product of positive currents. As regards forms and currents, we shall use
the notation of [14]. A (k, k)-current T on a n-dimensional manifoldX is a current of bidegree
(k, k) or bidimension (p, p), where p + k = n; T ∈ D′

p,p(X)
+ means that T is a positive

(k, k)-current (T ≥ 0), while T ∈ D′
p,p(X)R means that T is a real (k, k)-current; a current

T is called pluriharmonic (plurisubharmonic) if i∂∂̄T = 0 (i∂∂̄T ≥ 0).
When a function u is plurisubharmonic (and thus in L1

loc(X)), then T := i∂∂̄u is a closed
positive (1, 1)-current; the converse holds locally.

Suppose Y is an analytic subset ofX. Following [12], we say that u ∈ L1
loc(Y ) is weakly

plurisubharmonic if it is locally essentially bounded from above and i∂∂̄u ∈ D′
n−1,n−1(Y )

+.
Let Y be an irreducible analytic subset of dimension d . We denote by [Y ] the current of

integration on Y , that is, [Y ](α) := ∫
Yreg

α for any test form α; [Y ] ∈ D′
d,d(X)

+ and it is
closed.

A current T onM−Y has locally finite mass across Y if and only if there exists its trivial
extension T 0, which is characterized by the condition: ‖T 0‖(Y ) = 0.

Let us recall the following result (see [6] Theorems 1.13 and 4.10):

THEOREM 2.1. If T is a positive plurisubharmonic (k, k)-current on a manifold X,
and Y is a proper analytic subset of X, then T = (T |X−Y )0 + χYT , where χYT = 0 if
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k + dimY < dimX, while if k + dimY = dimX and {Yr } are the irreducible components of
Y of maximal dimension, then χYT = ∑

r hr [Yr ], for non negative weakly plurisubharmonic
functions hr on Yr .

We shall need also the Aeppli cohomology groups of a manifold X, which can be de-
scribed using forms or currents of the same bidegree:

Λ
k,k
R (X) := {ϕ ∈ Ek,k(X)R ; dϕ = 0}

{i∂∂̄ψ ;ψ ∈ Ek−1,k−1(X)R} 	 {T ∈ D′
p,p(X)R ; dT = 0}

{i∂∂̄P ;P ∈ D′
p+1,p+1(X)R} .

V
k,k
R (X) := {ϕ ∈ Ek,k(X)R ; i∂∂̄ϕ = 0}

{ϕ = ∂η̄ + ∂̄η ; η ∈ Ek,k−1(X)} 	 {T ∈ D′
p,p(X)R ; i∂∂̄T = 0}

{∂Ā+ ∂̄A ;A ∈ D′
p,p+1(X)}

.

In the notation of [15], Λk,kR (X) = H
k,k

∂∂̄
(X); moreover, Λ1,1

R (X) 	 H 1(X,H), where H is
the sheaf of germs of real pluriharmonic functions.

A pluriharmonic (k, k)-current T is called the component of a boundary if its class van-
ishes in V k,kR (M); since these groups are locally trivial, every pluriharmonic current is locally
the component of a boundary; when T is positive, we may also suppose that T = ∂Ā + ∂̄A

where A has L1
loc-coefficients (see (1.15) in [6]).

Now we go to our main technical result, which allows the definition of a wedge product
of positive currents, under suitable hypotheses.

THEOREM 2.2. Let Y be a proper analytic subset of a complex manifoldX. Let S be a
positive closed (1, 1)-current on X, smooth on X − Y , and let T be a positive pluriharmonic
(k, k)-current on X, with k + dimY < dimX. Then there exists a (unique) current on X,
denoted by S ∧ T , with the following property:

If g is a solution of S = i∂∂̄g in an open subset U ⊂ X, and if {gj } is a sequence
of smooth plurisubharmonic functions on U , which converge to g in C∞(U − Y ), then
limj i∂∂̄gj ∧ T = S ∧ T in U .

REMARK 1. The above result, in the case dimX = 3, k = 1 and Y a smooth complex
curve, is proved in Proposition 1.1 of [7].

REMARK 2. When T is a closed current, the above definition of S ∧ T coincides with
the classical one, i.e., locally S ∧ T := i∂∂̄(gT ), where S = i∂∂̄g (see III.3 in [14]). In
fact, in our hypotheses (k + dimY < dimX), if T is closed, Corollary III.4.10 in [14] applies
and thus the classical definition is well-posed. Moreover, taken a decreasing sequence {gj }
as in Theorem 2.2 (e.g. regularize g by convolutions), by Proposition III.4.9 in [14] we can
apply Theorem III.3.7 ibidem, and so limj i∂∂̄gj ∧ T = i∂∂̄(g ∧ T ). Thus the two definitions
coincide by Theorem 2.2.

When T is closed and Y is replaced by a closed set whose Hausdorff measure vanishes
in a suitable degree, the above results are improved in Theorem III.4.5 ([14]) and in [9].

PROOF OF THEOREM 2.2. Let n := dimX, d := dimY,m := n−d.When k = 0, T is
a positive pluriharmonic distribution; in this case, T is smooth, so that S ∧ T is well-defined,
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and the case n = 1 is solved. Moreover, when m = 1, then k = 0. Thus from now on we
suppose n ≥ 2, m ≥ 2, 1 ≤ k ≤ m− 1.

Step 1. Suppose Y is smooth and m < n, and hence n ≥ 3.
Take an open coordinate pseudoconvex set U in X such that in U , S = i∂∂̄g and T =

∂̄F + ∂F̄ , where F has L1
loc-coefficients and take {gj } as in the Hypothesis (notice that this is

always possible); let us control the mass of i∂∂̄gj ∧ T near Y , following [18] (see also [7]).
Let us fix y ∈ Y , and a neighborhood Ω = ∆′ × ∆′′ ⊂⊂ U of y in X, such that:

∆′ is a polydisc in Cd with coordinates (t1, . . . , td ), ∆′′ is a polydisc in Cm with coordinates
(z1, . . . , zm),Ω∩Y = {(t, z) ∈ ∆′×∆′′; z = 0} and y = (0, 0) inΩ . Choose a unitary linear
coordinates change w = w(t, z) of Cn such that (wI (t, z), z) := (wi1 , . . . , wid , z1, . . . , zm)

are coordinates on Cn, for every multi-index I = (i1, . . . , id), 1 ≤ i1 < · · · < id ≤ n.
Call WI(r, s) = {(t, z) ∈ ∆′ ×∆′′; ‖wI(t, z)‖ < r, ‖z‖ < s}. When r and s are positive

and small (such thatWI(r, s) ⊂⊂ ∆′ ×∆′′), the set {WI(r, s)} gives a fundamental system of
neighborhoods of y.

Fix r and s, and considerW := ⋂
I WI (r, s), which is an open neighborhood of y. Since

(i/2)∂∂̄‖w‖2 = (i/2)∂∂̄‖t‖2 + (i/2)∂∂̄‖z‖2 and m > k, there is a constant c > 0 such that

(
i

2
∂∂̄‖w‖2

)n−k−1

≤ c
∑
I

(
i

2
∂∂̄‖wI‖2

)n−m
∧

(
i

2
∂∂̄‖z‖2

)m−k−1

.

Hence

‖i∂∂̄gj ∧ T ‖(W) =
∫
W

i∂∂̄gj ∧ T ∧
(
i

2
∂∂̄‖w‖2

)n−k−1

≤
∫
W

i∂∂̄gj ∧ T ∧
(
c
∑
I

(
i

2
∂∂̄‖wI‖2

)n−m
∧

(
i

2
∂∂̄‖z‖2

)m−k−1)
.

But i∂∂̄gj ∧ T ≥ 0, so we need only to control, for every I ,
∫
WI
i∂∂̄gj ∧ T ∧ θ, where

θ := ((i/2)∂∂̄‖wI‖2)n−m ∧ ((i/2)∂∂̄‖z‖2)m−k−1.

Since T = ∂̄F + ∂F̄ , if {Fε} is a family of forms which regularize F by convolution, we
get (see (3.6) in [2])

lim
ε→0

∫
WI

i∂∂̄gj ∧ (∂̄Fε + ∂F̄ε) ∧ θ =
∫
WI

i∂∂̄gj ∧ T ∧ θ ,

when we choose r, s such that WI = WI(r, s), ‖T ‖(bWI ) = 0; this holds for almost all r, s.
Remark that bWI = AI ∪ BI , where

AI = {(t, z) ∈ ∆′ ×∆′′ ; ‖wI (t, z)‖ = r, ‖z‖ < s} ,
BI = {(t, z) ∈ ∆′ ×∆′′ ; ‖wI (t, z)‖ < r, ‖z‖ = s} .

Thus BI ∩ Y = ∅, and moreover, by dimension reasons, the pull-back of θ to AI vanishes
(we call “good” the sets WI satisfying these conditions and ‖T ‖(bWI ) = 0).
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Hence we get∫
WI

i∂∂̄gj ∧ T ∧ θ = lim
ε→0

∫
WI

i∂∂̄gj ∧ (∂̄Fε + ∂F̄ε) ∧ θ

= lim
ε→0

∫
BI

i∂∂̄gj ∧ (Fε + F̄ε) ∧ θ

=
∫
BI

i∂∂̄gj ∧ [F + F̄ ]|BI ∧ θ ,

where [F+F̄ ]|BI denotes the slice of F+F̄ alongBI ( see (10.3) in [18]; use a small cylinder
M containing BI , π : M → R given by π(t, z) = ‖z‖ so that BI becomes a fibre of π).

Since BI ⊂⊂ Ω − Y, i∂∂̄gj converges uniformly to i∂∂̄g on BI , so that

lim
j

∫
WI

i∂∂̄gj ∧ T ∧ θ = lim
j

∫
BI

i∂∂̄gj ∧ [F + F̄ ]|BI ∧ θ

=
∫
BI

i∂∂̄g ∧ [F + F̄ ]|BI ∧ θ < ∞ .

Suppose now that Y is smooth and m = n; we may assume Y = {y}, and Ω ⊂⊂ U be a
polydisc in Cn with coordinates (z1, . . . , zn), where y is at the origin.

We do not need any change of coordinates, because on bΩ ⊂⊂ U −Y the sequence {gj }
converges uniformly to g; thus we get the estimate

lim
j

∫
Ω

i∂∂̄gj ∧ T ∧ θ =
∫
bΩ

i∂∂̄g ∧ [F + F̄ ]|bΩ ∧ θ < ∞ ,

where θ = ((i/2)∂∂̄‖z‖2)n−k−1) (θ does not appear when k = n− 1).
Summing up, we got that for any K ⊂⊂ U, supj ‖i∂∂̄gj ∧ T ‖(K) < ∞; in fact, on

neighborhoods of points outside Y , the hypothesis “gj → g in C∞(U − Y )” provides the
estimate.

Hence we get that there is a subsequence {gjν } of {gj } such that i∂∂̄gjν ∧ T converges
weakly to a (k + 1, k + 1)-current S ∧ T on U , which is positive and pluriharmonic.

Step 2. Let Ysing �= ∅; we may suppose 2 ≤ m < n, 1 ≤ k ≤ m − 1, so the first
significative case is that of a curve Y in a threefold M , and T a (1, 1)-current.

When y ∈ Yreg, we can argue exactly as in Step 1, and get the same results on Yreg. Let
y ∈ Ysing; for every irreducible component Yi of Y . We may argue as in Chapter II (4.8),
(4.11), (4.19) of [14], and hence the following Claim holds:

CLAIM 1. There is a basis (e1, . . . , en) of Cn with coordinates (t1, . . . , td , z1, . . . ,zm),

arbitrarily close to a preassigned basis, such that:
let ∆′ = ∆′(0, r ′) be a polydisc in Cd with coordinates (t1, . . . , td ) = t,

let ∆′′ = ∆′′(0, r ′′) be a polydisc in Cm with coordinates (z1, . . . , zm) = z;
if r ′′ is small enough and r ′ ≤ r ′′/Ci for some constant Ci > 0, then the projection map

π : Yi∩(∆′×∆′′) → ∆′, π(t, z) = t, is a ramified covering, and Yi∩(∆′×∆′′) is contained
in the cone {‖z‖ ≤ Ci‖t‖} (here y corresponds to the origin (t, z) = (0, 0)).
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Since the above basis is “generic”, we may suppose that Claim 1 also holds for the whole
Y , so that π : Y ∩(∆′ ×∆′′) → ∆′ is a ramified covering, and for some C > 0, Y ∩(∆′ ×∆′′)
is contained in the cone {‖z‖ ≤ C‖t‖}.

Moreover, replacing (e1, . . . , en) by (Ke1, . . . ,Ked, ed+1, . . . , en) for a suitableK > 0,
we may suppose that C is small (C << 1).

A linear algebra argument gives the following result:

CLAIM 2. There is a new basis (v1, . . . , vn) of Cn such that:
(1) the matrix A of the base change is unitary,
(2) for every multi-index I = (i1, . . . , id), (vi1 , . . . , vid , ed+1, . . . , en) is a basis of Cn,
(3) for each j , vj is contained in {‖z‖ > C‖t‖}, so that no axis of this coordinate

system intersects Y − (0, 0) in ∆′ ×∆′′.

Now we can go on as in Step 1: call (wj ) the coordinates with respect to the basis
(v1, . . . , vn) given in Claim 2. Since the matrix A is unitary, (i/2)∂∂̄‖w‖2 = (i/2)∂∂̄‖t‖2 +
(i/2)∂∂̄‖z‖2, hence we have only to control

∫
WI
i∂∂̄gj∧T ∧θ,whereWI(r, s), AI andBI are

defined as above. The pull-back of θ to AI vanishes, and for every s there is r0 > 0 such that
BI does not intersect Y when r < r0, and we conclude as in Step 1. (As for the uniqueness,
see Corollary 2.3).

Under the hypotheses of Theorem 2.2, the current S ∧ T is obviously well-defined on
X − Y and has locally finite mass across Y ; we will denote by (S ∧ T )0 its trivial extension
to X. As regards this current and the current S ∧ T we get the following

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, the following hold.
(1) The current S ∧ T is positive and pluriharmonic.
(2) If k + dimY < dimX − 1, then S ∧ T = (S ∧ T )0.
(3) If k+ dimY = dimX− 1 and {Yr} are the irreducible components of Y of maximal

dimension, then there exist non negative, weakly plurisubharmonic functions hr on Yr such
that S ∧ T = (S ∧ T )0 + ∑

r hr [Yr ].
PROOF. By Theorem 2.2, S ∧ T is locally the limit of a sequence of positive plurihar-

monic currents, thus (1) holds.
Since gj → g in C∞(U − Y ), S ∧ T turns out to be a positive extension of S|X−Y ∧ T

in U across Y ; thus there is also the trivial extension (S|X−Y ∧ T )0 = (S ∧ T )0, and on U we
have S ∧ T = (S|U−Y ∧ T )0 + χU∩Y S ∧ T .

When k + 1 < m, by Theorem 2.1 we get χU∩Y S ∧ T = 0, so that S ∧ T is globally
defined as (S ∧ T )0, and it does not depend on {gjν } nor on the sequence {gj }. This proves
that S ∧ T is unique.

When k + 1 = m, by Theorem 2.1 there is a non-negative weakly plurisubharmonic
function h on U ∩ Y such that χU∩YS ∧ T = h[U ∩ Y ]. If Y is smooth, we got in the proof
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of Theorem 2.2 (Step 1) form < n that∫
BI

i∂∂̄g ∧ [F + F̄ ]|BI ∧ θ = lim
jν

∫
WI

i∂∂̄gjν ∧ T ∧ θ

=
∫
WI

S ∧ T ∧ θ =
∫
WI

(i∂∂̄g ∧ T )0 ∧ θ +
∫
WI∩Y

hθ .

The last term, when we allow y (∈ Y ) and r to vary (but assuring that WI is “good”), deter-
mines the values of h on Ω ∩ Y .

Notice that neither
∫
WI
(i∂∂̄g ∧ T )0 ∧ θ nor

∫
BI
i∂∂̄g ∧ [F + F̄ ]|BI ∧ θ depend on the

subsequence {gjν } nor on the sequence {gj }; thus S ∧ T and h do not depend on them, but
only on g . Moreover, by means of the same formula, h turns out to be globally defined on Y ,
and also S ∧ T turns out to be globally defined as S ∧ T = (S|X−Y ∧ T )0 + h[Y ], and in U ,
S ∧ T = limj i∂∂̄gj ∧ T .

If m = n, k = n − 1, we may assume Y = {y1, . . . , yr }, and that only one of them
is contained in U . Hence on U , S ∧ T = (S|X−Y ∧ T )0 + cl[yl] and as above, cl does
not depend on {gjν } nor on the sequence {gj }, and S ∧ T is globally defined as S ∧ T =
(S|X−Y ∧ T )0 + ∑k

1 cl[yl].
When Y is singular, k + 1 = m < n, we can argue as before, because h ∈ L1

loc(Y ∩ U)
and their values can be determined on regular points. This completes the proof.

REMARK 3. Looking at S ∧T as a positive pluriharmonic current on X−Y , what can
be said about (S ∧ T )0, using extension theorems? Here we show that this approach would
give only partial results:

(i) If k+dimY < dimX−2, by Theorem 5.4 in [3] (S∧T )0 exists and is pluriharmonic.
By Theorem 5 in [10], the same result holds when Y is only a closed set.

Of course, the argument does not say anything about limj i∂∂̄gj ∧ T , while we know from
Corollary 2.3 that S ∧ T = (S ∧ T )0.

(ii) If k+ dimY = dimX− 2, by Theorem 5.6 in [3] (S ∧ T )0 exists and is plurisuper-
harmonic; hence i∂∂̄(S ∧ T )0 is a closed negative current supported on Y . By Theorem 6 in
[10], the same result holds when Y is only a closed set. By Remark 5.7 in [3], i∂∂̄(S ∧ T )0 =
− ∑

r cr [Yr ] with cr ≥ 0, while we know from Corollary 2.3 that i∂∂̄(S ∧ T )0 = 0.
(iii) When k+ dimY = dimX− 1, the results we got here are completely new, because

in general we cannot extend currents across subvarieties which have the same dimension as
the current. Notice that by Corollary 2.3, we get i∂∂̄(S ∧ T )0 = − ∑

r i∂∂̄hr ∧ [Yr ]; are the
functions hr pluriharmonic? (Recall that when T is closed, then (S ∧ T )0 is closed too). The
answer is negative, as the following example shows.

EXAMPLE. Let h be a non negative subharmonic function in a neighborhood U of
0 ∈ C, and take

S := i

π
∂∂̄ log

√|z1|2 + |z2|2 , T := − log |z1| i
π
∂∂̄h(z3)+ h(z3)[{z1 = 0}] .

Let X := {|z1| < 1} × C × U and Y := {z ∈ X/z1 = z2 = 0}.
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The hypotheses of Theorem 2.2 are satisfied, and in X − Y we get

S ∧ T = − log |z1| i
π
∂∂̄ log

√|z1|2 + |z2|2 ∧ i

π
∂∂̄h(z3)

but in X it holds

S ∧ T = − log |z1| i
π
∂∂̄ log

√|z1|2 + |z2|2 ∧ i

π
∂∂̄h(z3)+ h(z3)[Y ] .

In the next Proposition, we consider also the Aeppli cohomology, in the compact case.

PROPOSITION 2.4. Under the hypotheses of Theorem 2.2, ifX is compact, then S ∧T
is “natural” with respect to cohomology in the sense that, if S = α + i∂∂̄u and T = ψ +
∂Ā+ ∂̄A, for suitable smooth forms α and ψ and currents u and A on X, then also S ∧ T =
α ∧ ψ + ∂Q̄+ ∂̄Q for a suitable current Q on X.

PROOF. Let us consider the following Claim, which is used in [7] and is a variant of
the Regularization Theorem of Demailly ([13]).

CLAIM. Let S be a closed positive (1, 1)-current on X, smooth on X − Y . For every
γ ∈ E1,1(X)R such that S ≥ γ ≥ 0 on X, for every α ∈ E1,1(X)R and for every distribution
f , smooth on X − Y , such that S = α + i∂∂̄f , there exist:

(1) a sequence {fj } of smooth functions onX, decreasing to f , such that onX−Y the
sequence converges to f in C∞(X − Y ), and for every compact set K ⊂⊂ X − Y , it holds
fj = f when j >> 1.

(2) a sequence {λj } of continuous functions on X such that, for any z ∈ X, {λj (z)}
decreases to the Lelong number n(S, z). Moreover, for any j , Sj := α + i∂∂̄fj ≥ γ − λju

for a suitable hermitian metric u on X.
Let us prove that S ∧ T = limj Sj ∧ T , where the forms Sj are defined in the Claim.
Let U be a small polydisc in a coordinate set (V , z), where α = i∂∂̄k, k ∈ C∞(U). Let

C > 0 be a constant, and gC,j := k + fj + C‖z‖2 ∈ C∞(U), where the sequence {fj } is
defined in the Claim; call gC := k + f + C‖z‖2.

The functions gC,j are plurisubharmonic for every j , if C is sufficently big; moreover,
gC is a plurisubharmonic function onU , smooth on U−Y , and the sequence {gC,j } converges
to g in C∞(U − Y ), due to the properties of {fj } stated in the Claim.

Apply Theorem 2.2 to U and to the positive closed current S + Ci∂∂̄‖z‖2 = i∂∂̄gC to
get (S + Ci∂∂̄‖z‖2) ∧ T = limj i∂∂̄gC,j ∧ T .

Since S ∧ T also exists, we get on U

S ∧ T + Ci∂∂̄‖z‖2 ∧ T = lim
j
i∂∂̄gC,j ∧ T = lim

j
Sj ∧ T + Ci∂∂̄‖z‖2 ∧ T .

Hence, on U , S ∧ T = limj Sj ∧ T , and also on X. Now,

S ∧ T − α ∧ ψ = lim
j
Sj ∧ T − α ∧ (T − ∂̄F − ∂F̄ )

= lim
j
i∂∂̄fj ∧ T + ∂̄(α ∧ F)+ ∂(α ∧ F̄ ) .
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For every j , i∂∂̄fj ∧ T is the component of a boundary, for it vanishes on every closed test
form; since X is compact, also limj i∂∂̄fj ∧T is the component of a boundary, and this gives
the result.

Corollary 2.3 (2) gives a simple characterization of S ∧ T , when k+ dimY < dimX− 1.
In the other case, we have:

COROLLARY 2.5. Under the hypothesis of Theorem 2.2, if k+dimY = dimX−1, and
when moreover X is compact, Y is irreducible and [Y ] is not the component of a boundary,
then the current S ∧ T is characterized by the following properties:

(1) S ∧ T is positive and pluriharmonic.
(2) S ∧ T extends S|X−Y ∧ T |X−Y .
(3) S ∧ T is “natural” with respect to cohomology.

PROOF. By Corollary 2.3 we get S∧T = (S∧T )0 +h[Y ], where h is constant because
Y is compact. Since the Aeppli class of [Y ] does not vanish, the constant h is determined by
the cohomology class of S ∧ T (that is, by Proposition 2.4, by the classes of S and T ) and by
the class of the pluriharmonic current (S ∧ T )0.

3. Manifolds which are Kähler outside a curve. In this section, we consider the
following situation: M is a compact complex manifold of dimension n > 1, Y is a proper
analytic subset of M , and M − Y carries a Kähler metric h with Kähler form ω (dω = 0).

If Y is discrete, by a result of Miyaoka [17]M is itself a Kähler manifold, while this is not
true in general; for instance, there exist Moishezon non projective manifolds. Nevertheless,
we may look for a weaker condition, as one of the following:

(1) M carries a balanced metric, that is, a hermitian metric whose Kähler form ω sat-
isfies dωn−1 = 0.

(2) M has a closed strictly weakly positive (p, p)-form Ω , i.e., M has a p-Kähler
form, for an index p, 1 < p < n− 1 (when n ≥ 3) (see, e.g., [1]).

(3) M belongs to the Fujiki class C, i.e., M is bimeromorphic to a Kähler manifold.
(Notice that (2) does not imply (1), in general, while (3) implies (1) by Corollary 4.5 in

[2]).

REMARK 4. When 1 < p < n−1, there are several notions of positivity for forms and
currents: see, e.g., the Appendix of [1]. A manifold is called p-Kähler if it has a closed strictly
weakly positive (p, p)-form (called also a closed transverse (p, p)-form), or equivalently if
it has no non-zero strongly positive currents of bidimension (p, p) which are components of
boundaries (Theorem 3.2 in [1]). Since strongly positive currents are positive, we can use in
this context the results of Chapter 2.

The Hopf surface gives an example of a manifold which is Kähler outside a curve, but
not balanced, and this allows to build examples in any dimension assuring that, when Y is a
hypersurface, M may be not balanced, nor p-Kähler.

Therefore, the first significative case is that of manifolds of dimension n ≥ 3, which are
Kähler outside a curve C; in this situation we proved in [4] the following
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THEOREM 3.1 (Theorem 5.5 in [4]). LetM be a compact complex manifold of dimen-
sion n ≥ 3, which is Kähler outside an irreducible curve C. Then one and only one of the
following cases may occur:

(1) M is Kähler.
(2) C is the component of a boundary.
(3) C is part of the component of a boundary, i.e., there is a positive current B �= 0 on

M such that χCB = 0 and the class of S + B vanishes in V n−1,n−1
R (M).

This result assures that, if M is not itself a Kähler manifold, then C is either the compo-
nent of a boundary or a part of it. Let us study the last case:

PROPOSITION 3.2. Under the hypotheses of Theorem 3.1, if C is part of the compo-
nent of a boundary, then M is balanced.

PROOF. The proof of Theorem 2.7 in [5], when C is a smooth curve, also works when
C is irreducible. Indeed, only Lemma 2.2 there refers to the smooth case; but Aeppli coho-
mology is also defined for singular spaces, even if it may loose some properties of the smooth
case (see e.g. [15], page 1262). Moreover, working on the normalization of C, we get that
also in the irreducible case dimΛ1,1

R (C) = 1, so that we can conclude as in [5]. Thus, if C is
part of the component of a boundary, then M ∈ C and so M is balanced.

Let us study now the case when C is the component of a boundary, following the ideas
of Theorem II in [7], (where dimX = 3 and C is smooth).

THEOREM 3.3. Let M be a compact complex manifold of dimension n ≥ 3, let C be
an irreducible curve inM , which is the component of a boundary, and such thatM−C carries
a Kähler metric. Then M is not Kähler, but is p-Kähler for every p ≥ 2; in particular, it is
balanced.

PROOF. M is not Kähler, sinceC is the component of a boundary. Every Kähler formω

onM−C extends to a closed positive (1, 1)-current onM (see [16]), called ω too. Fix p ≥ 2,
let k = n − p. Let T be a strongly positive (k, k)-current on M , which is the component of
a boundary; as we said in Remark 4, we need only to prove that T = 0. By Theorem 2.2 and
Proposition 2.4 we consider ω∧T , . . . , ωp−1 ∧T := ω∧ (ωp−2 ∧T ), which are components
of boundaries.

In particular, by Corollary 2.3, ωp−1 ∧ T = (ωp−1 ∧ T )0 + c[C], with c ≥ 0, thus
(ωp−1 ∧ T )0 is the component of a boundary. Using the notation of the Claim in the proof of
Proposition 2.4, we get

0 ≤
∫
M

γ ∧ (ωp−1 ∧ T )0 ≤
∫
M

Sj ∧ (ωp−1 ∧ T )0 +
∫
M

λju ∧ (ωp−1 ∧ T )0 .

The first summand on the right hand side vanishes because Sj is smooth and closed, whereas
limj

∫
M
λju∧ (ωp−1 ∧T )0 = 0 because (ωp−1 ∧T )0 vanishes on C, but the Lelong numbers

of S := ω vanish outside C. Thus
∫
M
γ ∧ (ωp−1 ∧T )0 = 0, which implies (ωp−1 ∧T )0 = 0.
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But ωp−1 is strictly positive on M − C, so T |M−C = 0; since T cannot be supported on
C, because p > 1 = dimC ([1], Theorem 1.1), and hence T = 0.

Collecting these results, we get the proof of the following Theorem.

THEOREM 3.4. If M is a compact complex manifold of dimension n ≥ 3, and C is
an irreducible curve in M , such that M − C is Kähler, then either M is Kähler itself, or [C]
is the component of a boundary and M is p-Kähler for every p ≥ 2, or [C] is part of the
component of a boundary and M ∈ C. In all cases, M is balanced.

Let us consider briefly also the case dimY > 1.

PROPOSITION 3.5. Let M be a compact complex manifold of dimension n ≥ 4, let Y
be a proper analytic subset of M of pure dimension d, 1 < d < n − 1, such that M − Y

carries a Kähler metric.
(1) If M is q-Kähler, q ≥ d , then it is p-Kähler for every p > q .
(2) If M is (d − 1)-Kähler and Y is irreducible and is the component of a boundary,

then M is not d-Kähler, but it is p-Kähler for every p > d .
(3) If Y is smooth and Kähler, with b2(Y ) = 1, and it is not the component of a

boundary, thenM ∈ C.
In all cases, M is balanced.

PROOF. Take p < n and k = n − p. Let as argue exactly as in the proof of Theorem
3.3: let T be a strongly positive (k, k)-current on M , which is the component of a boundary,
and consider ω ∧ T , . . . , ωp−d ∧ T , which are positive components of boundaries.

In the first case, let p > q , and letΩ be a q-Kähler form, thus closed and strictly positive;
since (ωp−q∧T )(Ω) = 0, the mass of ωp−q∧T vanishes, and in particular ωp−q∧T |M−Y =
0. This gives T |M−Y = 0, but T cannot be supported on Y , because p > dimY , and hence
T = 0.

In the second case, let p > d and let Ω be a (d − 1)-Kähler form. As in Theorem 3.3
we get

∫
M γ ∧ (Ω ∧ (ωp−d ∧ T )0) = 0, which implies Ω ∧ (ωp−d ∧ T )0 = 0 and also

Ω ∧ T |M−Y = 0. To get T |M−Y = 0, it sufficies to prove that for every K ⊂⊂ M − Y ,∫
K T ∧ ωp = 0, but on K , T ∧ ωp is dominated by a multiple of T ∧Ω ∧ ωp−d+1.

For the last case, let us follow the proof of Theorem 2.7 in [5]. By the hypothesis, the
map i∗ : Λ1,1

R (M) → Λ
1,1
R (Y ) 	 H 2(Y,R) 	 R induced by the inclusion i : Y → M cannot

be the zero-map, because Y is not the component of a boundary. Thus, starting from a Kähler
form η on Y , by Proposition 3.3 in [15] we get a (1, 1)-form γ onM and a smooth function u
on M such that γ + i∂∂̄u is strictly positive in a neighborhood of Y in M . If ω0 is the trivial
extension of a Kähler form on M − Y , Kω0 + γ + i∂∂̄u becomes a Kähler current on M
(whenK >> 0), and henceM ∈ C.
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