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We study a simple ‘‘horizon model’’ for the problem of recovering an
image from noisy data; in this model the image has an edge with �-Holder¨
regularity. Adopting the viewpoint of computational harmonic analysis,
we develop an overcomplete collection of atoms called wedgelets, dyadi-
cally organized indicator functions with a variety of locations, scales and
orientations. The wedgelet representation provides nearly optimal repre-
sentations of objects in the horizon model, as measured by minimax
description length.

We show how to rapidly compute a wedgelet approximation to noisy
data by finding a special edgelet-decorated recursive partition which
minimizes a complexity-penalized sum of squares. This estimate, using
sufficient subpixel resolution, achieves nearly the minimax mean-squared
error in the horizon model. In fact, the method is adaptive in the sense
that it achieves nearly the minimax risk for any value of the unknown
degree of regularity of the horizon, 1 � � � 2.

Wedgelet analysis and denoising may be used successfully outside the
horizon model. We study images modelled as indicators of star-shaped sets
with smooth boundaries and show that complexity-penalized wedgelet
partitioning achieves nearly the minimax risk in that setting also.

1. Introduction. Consider a simple mathematical model of the problem
Ž .of removing noise from image data. We are interested in an object f x , x1 2

�Ž . 4defined on the unit square S � x , x : 0 � x , x � 1 and we assume we1 2 1 2
have available a means of measuring pixel-level averages about f with noise.

Ž . � Ž . . � Ž . .Formally, we let Pixel i , i � i �n, i � 1 �n � i �n, i � 1 �n , and1 2 1 1 2 2
we assume we are able to get noisy measurements of the pixel-level averages
Ž̃ . � Ž .4f i , i � Ave f � Pixel i , i . Thus we have available an n-by-n array of1 2 1 2

data

˜1.1 y � f i , i � z , 0 � i , i � n ,Ž . Ž .i , i 1 2 i , i 1 21 2 1 2

Ž 2 .where the z � N 0, � are samples from a white Gaussian noise. Wei , i iid1 2 ˆŽ .wish to recover f with small per-pixel mean-squared error MSE f , f �
�2 ˆ ˜ 2Ž Ž . Ž ..En Ý f i , i � f i , i . We take a minimax point of view, definingŽ i , i . 1 2 1 21 2
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a function class FF and searching for estimators exactly or approximately
attaining the minimax mean-squared error:

ˆ1.2 M* n , FF � inf sup MSE f , f .Ž . Ž . Ž .
f̂ FF

This type of minimax estimation problem has been studied at length in
many papers in the literature, of course, under the assumption that FF is a

� � Žm. � p 4smoothness class such as f : f � C ; then it is properly a problemL

of ‘‘smoothing.’’

1.1. Edges in images. We are interested in the problem of dealing with
objects f that are discontinuous along curves: this is a way of directing our
attention to the fact that, in real-world image data, the most interesting
aspects of the image are the edges. The importance of edges in the vision

� �literature goes back to the work of Marr 32 and even earlier; one could say
that this issue permeates the field. In the statistical literature pioneers in

� �bringing the ‘‘edge’’ issue to the fore include Khas’minskii and Lebedev 27
� �and Korostelev and Tsybakov 29 , whose initial efforts were roughly syn-

� �chronous. There is also interesting work by Geman and Geman 25 and by
� �Muller and Song 35 oriented to a different set of goals.¨

Consider the following very simple ‘‘horizon’’ model. Suppose there is a
Ž . � �function H x called the horizon, defined on the interval 0, 1 , and that the

image is of the form

f x , x � 1 , 0 � x , x � 1.Ž .1 2 � x 	 H Ž x .4 1 22 1

This models a ‘‘black-and-white image’’ with a horizon, where the image is
‘‘white’’ above the horizon and ‘‘black’’ below. We are interested in cases
where the horizon is regular, and to measure this we use Holder conditions.¨

� Ž .For 0 � � � 1 we say that H 
 HOLDER C if¨
�� �H x � H x� � C � x � x� , 0 � x , x� � 1.Ž . Ž .

� Ž .For 1 � � � 2 we say that H 
 HOLDER C if¨
Ž��1.� �H� x � H� x� � C � x � x� , 0 � x , x� � 1,Ž . Ž .
Ž . �where H� is the derivative of H. For � � 1 � � 2 membership in HOLDER¨

Ž .imposes a Lipschitz condition on H respectively, on H� ; for 0 � � � 1 we
are measuring a degree of fractional regularity of H, and for 1 � � � 2
a degree of fractional regularity of H�. We define a functional class

� Ž .HORIZ C , C ,1 �

1.3 HORIZ� C , C � f : H 
 HOLDER� C � HOLDER1 C .Ž . Ž . Ž . Ž .� 4¨ ¨1 � � 1

This model is essentially the model of boundary fragments introduced
� �by Korostelev and Tsybakov 29 ; we find the name horizon model more

evocative.
Ž .We will focus in this paper on the recovery of images in model 1.1 under

Ž . � Ž .the performance criterion 1.2 with FF � HORIZ C , C .1 �
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Ž .There are of course many ways that one could choose to treat data 1.1
Ž .arising from model 1.3 . Since the image is locally constant, traditional
Ž .smoothing techniques kernel methods could be applied; these would not

make use of the specific structure of the image as something where ‘‘all the
action is in the edges.’’ At the other extreme, one could develop estimators
very specifically tailored to ‘‘edge finding,’’ perhaps also exploiting the ‘‘black-
or-white’’ aspect of the image directly.

1.2. Computational harmonic analysis. In this paper, we are interested
Ž .in exploring the point of view of computational harmonic analysis CHA , a

rapidly developing discipline whose recent achievements include the develop-
ment of wavelets, wavelet packets, cosine packets, brushlets and other novel

� �schemes of data representation 7, 9, 30, 34, 38 . There is an emerging
tradition within CHA, whereby the ‘‘way to go about things’’ is to find the
‘‘optimal representation’’ of the objects underlying a problem and then a ‘‘fast
algorithm’’ to compute that representation.

The CHA viewpoint says that the ‘‘optimal representation’’ depends on the
functional class, and that once one has the ‘‘optimal representation’’ for a
functional class FF one can easily do many different tasks. One of those tasks

Ž .is to remove noise i.e., construct minimax estimators ; another task is to
work with noiseless data and perform data compression. The CHA point of
view would say that ‘‘optimal representation’’ is primary, and that statistical

� �and information theoretic applications follow directly 12, 15 .
From this very general point of view, a number of asymptotic minimaxity

results in mathematical statistics are seen as special cases of a larger picture.
Among those results we identify the following:

1. the fact that Fourier series estimates are nearly minimax over L2-Sobolev
classes;

2. the fact that wavelet estimates are nearly minimax over L p-Sobolev,
Holder, Triebel and Besov classes;¨

3. the fact that recursive partitioning estimates achieve near-minimaxity
over anisotropic smoothness classes.

From the CHA viewpoint, these results all follow from the fact that certain
natural representations from harmonic analysis are the ‘‘optimal representa-
tion’’ for objects in the corresponding functional classes:

1. Fourier series are ‘‘optimal representations’’ for L2-Sobolev classes.
2. Wavelets are ‘‘optimal representations’’ for L p-Sobolev classes.
3. Anisotropic Haar bases are ‘‘optimal representations’’ for anisotropic

smoothness classes.

ŽThe CHA viewpoint would say that results in mathematical statistics near-
.minimaxity results for Fourier series, wavelets, etc. are simple consequences

of these more fundamental facts.
An appealing benefit of the CHA point of view is the fact that the central

preoccupation of CHA is to rapidly compute such ‘‘optimal representations.’’
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When the CHA viewpoint succeeds fully, one has therefore very practical
methods. For example, since Fourier transforms, wavelet transforms and
anisotropic transforms all have fast algorithms, the noise removal algorithms
derived from CHA have fast algorithms�which also have near-optimality
properties for appropriate classes FF.

On the other hand, one has to admit frankly that the CHA viewpoint is
rather arrogant. It supposes that it is more interesting or important to get
minimax or nearly minimax estimates by a certain point of view�through
development of fast algorithms for newly invented decompositions�rather
than to develop minimax or nearly minimax estimates in some other way.

1.3. CHA and analysis of singularities. Looking at the CHA viewpoint
critically for a moment, one sees certain important open questions. Computa-
tional harmonic analysis has shown that Fourier series estimates, wavelets
and straightforward recursive partitioning schemes are the optimal represen-
tations for certain classes FF. So each representation has its own specific
domains of expertise and its own limitations. Despite their nice behavior in
their respective domains of expertise, these representations do not provide
simple nearly minimax estimates of objects with edges. For example, for a

ŵave � Ž .nice wavelet thresholding estimate f , and FF � HORIZ C , C with 1 �1 �

� � 2, we have the result that

ŵave �11.4 sup MSE f , f 	 C � n , n � �.Ž . Ž .
FF

� � � �On the other hand, as we already know from, for example, 29 and 19 ,

1.5 M* n , HORIZ� C , C � O n�2 � ���1 .Ž . Ž . Ž .Ž .1 �

So wavelets are not nearly minimax for objects with edges when � � 1. More
precisely, if we suppose that the edges in an image are C � regular curves,
� � 1, then the minimax rate of convergence improves correspondingly as �
improves; but the rate of convergence of wavelet estimators does not improve
correspondingly: they suffer a speed limit of n�1. Related speed limits apply
to other schemes based on CHA ideas: sinusoids; dyadic recursive partition-
ing schemes.

In sum, the existing methods of CHA do not yield nearly minimax esti-
mates on this simple edge model.

This is because CHA has not yet solved the problem of ‘‘analysis of
singularities’’ in its most general form; CHA does not yet offer an algorithm
which provides efficient representation of smooth objects with singularities

Žalong submanifolds of the ambient space e.g., discontinuities along curves in
.image data, discontinuities along surfaces in three-dimensional data .

For an object with a discontinuity along a curve in dimension 2, there are
Ž . �jO m wavelet coefficients exceeding 1�m in amplitude. Indeed, at scale 2 ,

Ž j.thee are O 2 wavelets which ‘‘feel’’ the discontinuity and those have coeffi-
cients of size greater than or equal to 2�j. As the performance of wavelet

�thresholding estimates is dependent on the number of big coefficients 12, 17,
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�21, 18, 13, 15 this limited decay rate of wavelet coefficients places a ‘‘speed
limit’’ on the mean-squared error of wavelet estimates, which is recorded

Ž . Ž .in 1.4 above. In order to achieve the bound 1.5 by thresholding in an
orthogonal basis, we would need a much better basis, one which gave only
Ž 2�Ž��1..O m coefficients of size greater than or equal to 1�m for objects in

� Ž .HORIZ C , C .1 �

Unfortunately, the failure of harmonic analysis to address the problem of
singularities is not well recognized in the computational harmonic analysis

Ž .community which helps explain why it is still open . It can be seen most
clearly as a problem in the various cognate fields that CHA addresses�com-
pression and denoising. Workers in compression realize that wavelet and
Fourier compression methods do not represent edges efficiently. Workers in
denoising realize that wavelet and Fourier methods do not efficiently remove
noise from images with edges. Workers in CHA have not yet developed
representations in their field which deal with edges efficiently.

1.4. Wedgelets. We are therefore interested in developing schemes of data
representation which are general and can be applied to pixel data of more or

Ž .less arbitrary type i.e., not necessarily arising from the horizon model . Our
representation will be based on objects we call wedgelets, which make up an
overcomplete dictionary of atoms from which image data of arbitrary type
may be synthesized. We will show that this representation is in principle well
suited to recovering edges in the horizon model, by following a point of view
which is natural for CHA. We will investigate three questions:

1. Representation�show that this is an ‘‘optimal representation’’ for objects
in the horizon model.

2. Algorithms�develop a fast algorithm for obtaining an approximate repre-
sentation of pixel-level datas, which may be used on clean or noisy data,
arising from the horizon model or not.

3. Estimation�develop a way to invoke the fast algorithm so that when
applied to noisy empirical data from the horizon model it achieves near-
minimax behavior for recovering the underlying noiseless object.

We give solutions to all three problems. We show that wedgelets achieve
nearly the minimax description length for objects in horizon classes. We
develop a fast algorithm for obtaining atomic decompositions of noisy image
data into wedgelets. The algorithm finds decompositions which correspond to
special edgelet-decorated recursive partitions of the image; among such parti-
tions, it optimizes complexity-penalized sum-of-squares. Owing to known
oracle inequalities, this approach has certain near-ideal mean-squared error
properties. Near-minimaxity over horizon classes follows directly.

The wedgelet approach can be successfully applied outside the horizon
model. As an immediate generalization of our results, we show that the
complexity-penalized estimator can recover, in a nearly minimax fashion,
objects which are indicators of star-shaped sets having C � boundaries.
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From the CHA point of view, the contribution of this paper is the following.
We point out an important general question�analysis of singularities�and
we make contributions to CHA of singularities in a special case. We show
that overcomplete systems of atoms, selected in an adaptive nonlinear fash-
ion, can provide an acceptable analysis of singularities in a special case. This
points to the possibility that simple, flexible harmonic analysis tools might be
developed some day to deal with more realistic models of images.

2. Edgelets. We begin with some terminology and notation. A dyadic
�Ž . � j Ž . j �square S is the collection of points x , x : k �2 , k � 1 �2 �1 2 1 1

� j Ž . j �4 jk �2 , k � 1 �2 , where 0 � k , k � 2 for an integer j 	 0. For clarity,2 2 1 2
Ž . Ž .we will sometimes write S k , k , j , so that, for example, S 0, 0, 0 is the1 2

� �2unit square 0, 1 , and so that, in the set ting of the data collection model of
the introduction, if n is an n-by-n grid with n � 2 J dyadic, then the

2 Ž .individual pixels are the n cells S k , k , J , 0 � k , k � n.1 2 1 2
� �2Suppose we take vertices v , v 
 0, 1 and consider the line segment1 2

e � v v . Following the literature of computer vision, we call such a segment1 2
Ž .an edgel for edge element . If we consider only edgels connecting vertices

Ž . Ž 4.k �n, k �n at pixel corners. There are order O n such edgels. For our1 2
Ž 2 .purposes, we are seeking algorithms of order O n or as near to that as we

Ž 4.can get. The use of collections of cardinality O n edgels will lead to
unworkable algorithms, and so we seek a reduced-cardinality substitute.

Recalling that n � 2 J, take the collection of all dyadic squares at scales
0 � j � J, that is, all dyadic squares down to pixel level, but not at finer
levels. Fix a quantum of resolution � � 2�J�K for K 	 0. On each dyadic
square, traverse the boundary in clockwise fashion starting at the upper right
corner and mark off equispaced vertices a distance � apart. As � is dyadic
and it divides the perimeter length of every dyadic square with sidelength
greater than or equal to 1�n, there are precisely M � 4 � 2 K � 2 J� j verticesj
marked out in this fashion on a dyadic square S with side 2�j 	 1�n. Call

Ž .this collection of vertices V S ; label the vertices according to the order they
Ž . �are encountered in the clockwise boundary traverse, so that V S � v :i, S

40 � i � M . If we consider any two dyadic squares which have interestingj
boundaries, along the intersection of the boundaries the two squares have the
same vertices in common; under our labelling system we might have v �i, S

Ž .v even though i � i�. For later use, we let VV n, � denote the collection ofi�, S�

Ž .all vertices in all V S where S is dyadic of sidelength greater than or equal
Ž .to 1�n, and we let LL n be latticework of all horizontal and vertical lines in

the square at spacing 1�n.
Within each dyadic square S, consider the collection of all edgels connect-

ing vertices on the boundary of S:

E S � e � v v : 0 � i , i � M .Ž . � 4� i , S i� , S 1 2 j

MjThere are such edgels in total.ž /2



WEDGELETS 865

DEFINITION 2.1. For given dyadic n and � , the set of edgelets is the
Ž .collection EE of all edgels belonging to some E S for some dyadic square Sn, � �

of sidelength 2�j, 0 � j � J.

We note that edgelets only connect vertices on the boundary of a dyadic
Ž 2 .square, so that although the family of edgelets is built from O n vertices, it

Mj4 2Ž .contains many fewer than O n edgels. In fact, as � M �2, we havejž /2

J 2 j�1 J Mj2 j�EE � �E S k , k , j � 2Ž .Ž .Ý Ý Ýn , � � 1 2 ž /2j�0 k , k �0 j�01 2

J J
2 j 2 2 j K 2Ž J�j.� 2 M �2 � 2 � 8 � 4 � 2Ý Ýj

j�0 j�0

� 8 log n � 1 ��2 .Ž .Ž .2

For example, suppose that � � 1�n. Then there are just four vertices vi, S
associated with any dyadic square with sidelength 1�n; these are of course
the corners of the squares, and we have

�EE � 8 � log n � 1 � n2 .Ž .Ž .n , 1� n 2

Ž 2 . Ž 4.Although there are order O n pixels and order O n edgels can be defined
based on pixel corners, the collection of edgelets at that scale has a cardinal-

Ž 2 .ity only logarithmically larger than O n . It follows that exhaustive searches
through the collection of edgelets can run much faster than exhaustive
searches through the collection of edgels.

Despite reduced cardinality, the dictionary of edgelets is expressive. It
consists of edgels at a variety of scales, locations and orientations. A rela-
tively small number of edgelets can be used as a substitute for any single
edgel.

� �2LEMMA 2.2. Any edgel with endpoints anywhere in 0, 1 can be approx-
imated within Hausdorff distance ��2 � 1�n by a continuous chain
Ž .e , e , . . . , e of edgelets e 
 EE , where the number m of edgelets required1 2 m i n, �

Ž .is bounded by 8 log n for n � 2.2

We will prove this in Section 5. From the remark following the proof, we
have:

Ž . Ž .COROLLARY 2.3. Let H t be a continuous ‘‘horizon’’ function, 0 � H t � 1
� � �Ž Ž ..4 � �2	 t 
 0, 1 . Let 
 � t, H t be the associated horizon set in 0, 1 , and

suppose that this set can be approximated to within Hausdorff distance �
using at most m edgels with arbitrary vertices. Then this curve may be

Ž .approximated within Hausdorff distance � � � using at most 8 log n � m2
edgelets, for n � 2, m 	 2.
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We will see below that the logarithmic factor can often be omitted, yielding
a number of edgelets at most proportional to the underlying number of
edgels.

3. Wedgelets. The dictionary of edgelets, while conceptually interesting,
has little to do with approximation of image data of the type ordinarily

Ž .n�1obtained: that is, arrays y of pixel values. Edgelets are noti , i i , i �01 2 1 2

functions and canot make up a basis for the space of numerical arrays.
However, they do allow us to describe a convenient collection of such func-
tions: the wedgelets.

Ž .Let S be a dyadic square; say that an edgelet e 
 E S is nondegenerate�

if it does not lie entirely on a common edge of S. A nondegenerate edgelet
traverses the interior of S, and so splits S into two pieces, exactly one of
which contains the segment of the boundary of S starting at v and ending0, S
at v . Label the indicator of that piece w and call this the wedgelet1, S e, S
defined by e. Let

� 4W S � 1  w : e 
 E S nondegenerate ;� 4Ž . Ž .� S e , S �

this collection of functions expresses all ways of splitting S into two pieces by
edgelet splits, including the special case of not splitting at all.

Ž .DEFINITION 3.1. For given dyadic n and � , WW n, � is the collection of all
Ž .wedgelets belonging to some W S , for some dyadic square S of sidelength�

2�j, 0 � j � J.

3.1. Optimal representation. There is a sense in which wedgelets furnish
near-optimal representations of objects in horizon classes. The following key
estimate is proven in Section 5.3.

Ž . Ž .LEMMA 3.2. Let H t be a continuous horizon function, 0 � H t � 1
� � � Ž .	 t 
 0, 1 . Suppose that H 
 HOLDER C , 1 � � � 2, and that H 
¨ �
1Ž . Ž .HOLDER C as well. Let f x , x � 1 be the associated ‘‘black-and-¨ 1 1 2 � x 	 H Ž x .42 1� �2white image’’ defined on 0, 1 . Suppose that n � 2 and let 2 � m � n. There

is a superposition of m� wedgelets,
m�

ˆ3.1 f x , x � � w x , xŽ . Ž . Ž .Ým� 1 2 i i 1 2
i�1

with
m� � 8 � C � 2 � mŽ .1

achieving an approximation error

ˆ 2 � ��� �f � f � K � C � m � � .2m� �

ˆThe object f constructed in the proof of this lemma is itself a ‘‘black-m�

Ž .and-white image,’’ taking values 0 and 1 only. The expression 3.1 involves
� 4binary coefficients � 
 0, 1 . The wedgelets in the expression are selectedi
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ˆŽ .from a finite set of cardinality �WW n, � . Hence each term in f can bem�
ˆ� Ž Ž ..	represented by a bit string of length 1 � log �WW n, � and so f can be2 m�

Ž � Ž Ž ..	.represented by a bit string of total length ll � m� � 1 � log �WW n, � .2
Ž .For a desired error of approximation � , pick a counting number m � 	 2

� �� 2 Ž . Ž .so that K � m � � �2. Pick n � and � � so that n is dyadic and n 	 m
and so that � is dyadic and � � � 2�2. Doing this in the obvious way gives

Ž . Ž . Ž Ž Ž . Ž ... Ž �1 .functions n � and � � with log WW n � , � � � Const � log � , for 0 �2 2
� � 1, where the constant depends on � , K � and C. Lemma 3.2 constructs an

ˆobject f achieving error bounded bym�

ˆ 2 2� �3.2 f � f � � ,Ž . L �0, 1�m�

and a corresponding description length

3.3 ll � � ��2�� � Const � log ��1 , � � 0.Ž . Ž . Ž .2

Ž .This description length is within logarithmic factors the best one can
� Ž .typically do for objects in HORIZ C , C . To explain what we mean, we quote1 �

� � 2� �2from 14 . Let FF be a compact set of functions in L 0, 1 . Let ll be a fixed
� 4 llcounting number and let E � 0, 1 be a functional which assigns a bitll

� 4 ll 2� �2string of length ll to each f 
 FF. Let D : 0, 1 � L 0, 1 be a mappingll

which assigns to each bit string of length ll a function. The coder�decoder
Ž .pair E , D will be said to achieve distortion less than or equal to � over FFll ll

if
2 23.4 sup D E f � f � � .Ž . Ž .Ž . � �L 0, 1ll ll

f
FF

We define the minimax description length as

3.5 L* � , FF � min ll : � E , D achieving distortion � � over FF .� 4Ž . Ž . Ž .ll ll

This measures precisely the number of bits it is necessary to retain to be sure
that the reconstruction of any f 
 FF will be accurate to within � .

Ž .When FF is not a finite set, then L* � , FF � � as � � 0, and the rate of
Ž . �1��this growth becomes of interest. In many interesting cases, L* � , FF � �

Ž . �1�� Ž . or L* � , FF � � log 1�� for some � ,  � 0. A crude measure of growth
�1�� �1�� Ž . �insensitive to the difference between � and � log 1�� �is the

optimal exponent

3.6 �* FF � sup � : L* � , FF � O ��1�� , � � 0 .� 4Ž . Ž . Ž . Ž .
� �From calculations in 19 we know that

�* HORIZ� C , C � ��2.Ž .Ž .1 �

Ž . Ž .The bounds 3.2 and 3.3 say that wedgelet descriptions can achieve this
optimal exponent.

3.2. Atomic decomposition. In our definition, we have taken the wedgelets
Ž .w as functions of x , x . We also find it useful to think of them as arrays of1 2

Ž . Ž .numbers. Given a wedgelet w x, y we let w i , i denote a pixel-level˜ 1 2
average of w, and let w denote the array of all such averages.˜
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In the spirit of much work in computational harmonic analysis, we think of
the wedgelets as a collection of atoms, and we are interested in approximate

Ž Ž ..atomic decompositions of arrays y � y i , i of the form1 2

3.7 y � � w � Error.Ž . ˜Ý w
Ž .w
WW n , �

There is no unique way to approach this problem, because the collection
WW is over complete. Indeed it has cardinality larger than that of a basis.n, �

2 Ž .The vector space of n-by-n arrays has dimension n ; but �WW n, � 	 6 �
Ž . K 2 2J � 1 � 4 � n , which is larger than n by a logarithmic factor. Following

� �Mallat and Zhang 31 , we call such a collection of elements a dictionary of
Ž .atoms, with each one possessing a position, scale and in some cases pro-

nounced orientation. This dictionary is complete, since it contains a subset
which is a basis for the vector space of n-by-n arrays: the indicators of all

� Ž . Ž .�pixels as 1 
 W S for every S � S i , i , J .S 1 2
Using this basis, we can always obtain a trivial representation of the form

Ž . Ž .3.7 : set � � 0 unless w � 1 for some pixel S � S i , i , J , and thenw S 1 2
Ž .� � y i , i . This always gives Error � 0. However, we are interested inw 1 2

representations which use only a small number of coefficients and yet have
good approximation; this trivial representation uses n2 coefficients in gen-
eral.

Lemma 3.2 implies that, for objects arising from discretizing images with
edges, there will exist good approximate representations with far fewer than
n2 wedgelets. How to find them? A variety of algorithms have been proposed
for atomic decomposition. These can be divided into two groups:

1. practically effective methods, which run efficiently on current computers
but cannot guarantee to find representations with near-optimal sparsity
Ž � � � � � �matching pursuit 31 , basis pursuit 6 and best-ortho-basis 8 are

.examples ;
2. theoretically effective methods, which do guarantee to find good approxima-

tions, but require in principle enumeration of all subsets of a large
� �collection of candidate decompositions 19 . Such ‘‘methods’’ cannot be

used on large-scale problems.

In special cases, there are specific algorithms which run rapidly and which
� �give near-best results for objects in certain classes; see 15 for an example.

Our goal in this paper is to develop an algorithm of this form.

� 43.3. Wedgelet analysis. In a setting where we have a dictionary DD � �
of atoms, there are two tasks which we can distinguish:

1. analysis�compute inner products of dictionary elements with data, ob-
² :taining �, y , for all � 
 DD;

Ž . Ž .2. synthesis�givena subset of the dictionary � and coefficients a formi i
y � Ýa � .i i

These two items are in principle different, although they are deeply linked.
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What we were studying up to now was decomposition, and this involves
both elements of analysis and synthesis. Analysis is necessary to identify
atoms which should appear in the decomposition; synthesis is necessary to
actually construct the approximate representation. Analysis is an important
ingredient of any practical algorithm for atomic decomposition, and the
ability to rapidly analyze is a prerequisite for the ability to rapidly decompose

� �and synthesize. There is an explicit discussion of the importance of this in 6 ;
Žbut one can say that standard methods of atomic decomposition matching

� � � � � �.pursuit 31 , basis pursuit 6 and best-ortho basis 8 depend for their
practicality on the ability to rapidly compute all the inner products between
data to be decomposed and the dictionary.

² :Now for an arbitrary collection of inner products �, y , for all � 
 DD,
there is no hope for fast calculation. Naively, to compute one single inner

2 2 Ž .product would take as many n calculations; as there are at least n log n2
Ž . Ž 4 Ž ..elements in WW n, � , one is led to a figure approaching O n log n complex-

ity. For problems where n may be in the hundreds or thousands this order of
complexity seems daunting.

A basic reason for defining the wedgelet dictionary as we have done is the
prospect of computational efficiency. Let us formalize our discussion:

Ž .DEFINITION 3.3. The wedgelet analysis WA of an array y is the vector of
all inner products

² :3.8 w , y 	 w 
 WW n , � ;Ž . Ž .˜
Ž . Ž .this vector has N n, � � �WW n, � entries.

We anticipate that it is possible to rapidly compute an approximate WA,
and the developments in this paper are based on the following:

MAJOR PREMISE. It is possible to calculate an approximate wedgelet analy-
Ž .sis in no more than C � N log N flops, where the constant C reflects the degree

of approximation.

A discussion of how to perform such a computation rapidly, and of the size
of the approximation error and so on, is properly a topic in computational
harmonic analysis and lies outside the scope of the present article. However,
we will take the premise as given for the purposes of this paper. We plan to
describve algorithms for rapid wedgelet analyusis elsewhere.

4. Recursive partitioning. To obtain an effective algorithm, we now
develop notions of adaptive partitioning.

We begin with inheritance terminology. We say that four adjacent dyadic
squares are siblings if their union is a dyadic square, which we call their
parent. The four siblings are called children of their common parent. The
operation of partitioning a parent square into its four children is called a
standard quad-split. The operation of combining four siblings into one parent
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is called a standard quad-merge. Given a dyadic square S, its ancestors are
its parent, grandparent, . . . ; its descendants are its children, grand-
children . . . .

Ž .DEFINITION 4.1. A recursive dyadic partition RDP is any partition of
� �20, 1 reachable by applying the following production rules recursively:

Ž . �� �24i The trivial partition PP � 0, 1 is an RDP.
Ž . � 4ii If PP � S , . . . , S , . . . , S is an existing RDP, then the partition ob-1 i m

tained by applying a standard quad-split on one of the squares in PP is
another RDP.

Ž .We let RDP n denote the collection of RDPs where all squares are of
sidelength greater than or equal to 1�n.

There are many types of RDPs. The uniform partition of depth j consists of
all 4 j dyadic squares of sidelength 2�j; it is spatially homogeneous. There are

Ž .also spatially inhomogeneous partitions, such as the partition of depth log n2
Ž . Ž . Ž .which contains at levels j � 1, 2, . . . , log n the square S k , k , j , k , k2 1 2 1 2

�Ž . Ž . Ž .4 Ž Ž ..
 1, 0 , 0, 1 , 1, 1 , and which also contains S 0, 0, log n . This partition2
Ž .is very fine in a small neighborhood of 0, 0 and gets increasingly coarse as

Ž .one moves away from 0, 0 .
The definition of RDP is based on refining existing RDPs. There is also a

� 4coarsening operation. An RDP PP has the form PP � S , S , . . . , S for some1 2 m
m and some dyadic squares S . Such a partition must contain four squaresi
which are siblings. If we apply a standard quad-merge to those four siblings,
we get a new, coarser RDP.

� �2Each RDP is associated with a quadtree Q rooted at 0, 1 whose terminal
nodes are the S , and whose interior nodes are the ancestors of the S . We cani i
think of the quadtree as a road map describing how to produce the given RDP

� �2by applying standard quad-splits starting from the unit interval 0, 1 . Also,
by applying standard quad-merges to an RDP, one can create various coarser
RDPs; each such coarser RDP corresponds to its own quadtree, which is a
subtree of the quadtree corresponding to the original RDP. In a very natural
sense refining an RDP is the same as ‘‘growing’’ the associated tree and
coarsening an RDP is the same as ‘‘pruning’’ the associated tree.

DEFINITION 4.2. An edgelet-decorated recursive dyadic partition is an RDP
Ž . Ž .PP in which each member S can optionally be decorated with at most one

Ž .nondegenerate edgelet in E S . Such a decorated partition PP induces a�

subordinate partition PP in which decorated squares of PP are split into two
Ž .pieces along the edgelet boundary. Let ED-RDP n, � be the collection of all

such partitions.

In an RDP, all splits are parallel to the axes and are located halfway along
the sides, and each split always results in four children. In an ED-RDP there
is the additional possibility of ‘‘splitting-diagonally’’ some of the squares into
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two pieces, but we are forbidden to do this recursively�squares which have
been split into two arbitrary pieces rather than four dyadic squares may not
be further subdivided. The terminal regions of an ED-RDP are either dyadic
squares or else polygons; we use the letter P for either type of piece. Also, we
often use the typographical device of an overline to indicate whether the

Ž .object in question is an RDP e.g., PP or the partition derived from an
Ž .ED-RDP e.g., PP .

A key fact about ED-RDPs is that they can provide good approximations to
� Ž .objects in class HORIZ C , C .1 �

2 2Ž . � �Let f � f x , x be a function in L 0, 1 . Let PP be an ED-RDP. Define1 2
� � 4 Ž .Ave f PP in the obvious way, as the function f x , x which is constant on1 2

each piece P of PP:

f x , x � f 1 x , x ,Ž . Ž .Ý1 2 P P 1 2
P
PP

� Ž . Ž . 4where of course f � Ave f x , x : x , x 
 PP . Section 5.4 proves:P 1 2 1 2

� Ž .LEMMA 4.3. Suppose that H 
 HOLDER C , 1 � � � 2, and that H 
¨ �
1Ž . Ž .HOLDER C as well. Let n � 2 and 2 � m � n. Let f x , x � 1 be¨ 1 1 2 � x 	 H Ž x .42 1� �2the associated ‘‘black-and-white image’’ defined on 0, 1 . There exists an

Ž .ED-RDP with fewer than m� � 8 � C � 2 � m elements having an approxi-1
mation error K �C m�� � � . More precisely,�

2
� ���inf sup f � Ave f PP � K � C � m � � ,� 4 2 �L

� PP�m� f
FF

where K � depends on � only.

This lemma shows that approximation schemes based on RDPs achieve
bounds similar to what can be achieved with wedgelets. In fact there is a

� � 4close connection. The approximant f � Ave f PP is a kind of atomic decompo-
sition using wedgelets. Indeed, it may be written as a sum

f � a w.Ý w
w

Ž .This is due to the fact that, by definition, WW n, � contains every indicator 1S
of every dyadic square with sidelength greater than or equal to 1�n, while,
for any region P arising by splitting a dyadic square S into two pieces along
a nondegenerate edgelet e, we have

1 � a � 1 � b � w .P P S P e

Ž .Indeed, either P or S � P must be the wedge supp w , and so either a � 0e P
and b � 1 or else a � 1 and b � �1.P P P

Notice, however, that because f arises from adaptive recursive partition-
ing, it is not built in an arbitrary fashion from wedgelets. Various constraints
are enforced by the recursive partitioning which mean that only certain
wedgelets can appear simultaneously in this expansion. In our case, these
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constraints will be seen to be useful, because they make possible a fast
algorithm; but they do not seem to lead to significantly worse upper bounds
on approximate error.

5. Proofs of key lemmas. Now that we have established RDP concepts
and terminology, we can easily prove the lemmas stated in Sections 2�4. We
pause to do this before proceeding.

5.1. Preparation

LEMMA 5.1. Let SS be a finite collection of dyadic squares. If the squares in
the collection have disjoint interiors, there exists on RDP with those squares
as members. If all the squares are of sidelength greater than or equal to 1�n,

Ž .there exists an RDP n with those squares as terminal squares.

�� �24PROOF. Consider the following procedure. Starting from PP � 0, 1 ,
recursively apply the following rule: if any member of SS is a proper subset of
a square S� in the current partition, apply a standard quad-split to S�,
obtaining a new current partition.

For any specific S 
 SS , the procedure must eventually arrive at a partition
which includes S, because it will always decide to split any square properly
containing S. Once it arrives at a partition that includes such an S 
 SS , it

Ž .will not split S because by the non-overlapping interiors condition , no
members of SS lie inside S. Hence, the procedure terminates at a partition in
which every square in SS appears as an element. �

LEMMA 5.2. The coarsest RDP containing a set SS of squares as members is
precisely the RDP whose quadtree contains all children of all ancestors of all
squares in SS . The algorithm of Lemma 5.1 produces this RDP.

� �2If S � 0, 1 , so that it strictly speaking has no ancestors, we still regard
S itself as a child of ancestors.

PROOF OF LEMMA 5.2. Consider a quadtree associated with a partition in
which all members of SS appear also as members of the partition. If S� is an
ancestor of an S 
 SS , then S� must be an interior node of the quadtree. But
then the quadtree must contain all the children of S�. In short any such
quadtree must contain, either as interior or terminal nodes, all the children
of all ancestors of all intervals S 
 SS . The smallest such quadtree is exactly
the tree that contains only the ancestors and children of ancestors, and it
corresponds to an RDP with elements of SS as members.

The algorithm of Lemma 5.1 splits only nodes which are ancestors of
members of SS . Hence it produces an RDP whose quadtree contains only the
children of ancestors of members of SS .
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LEMMA 5.3. A square S of sidelength greater than or equal to 1�n yields
Ž .at most 4 log n � 1 ancestors and children of ancestors.2

PROOF. Count them. �

1Ž . �Ž Ž ..4LEMMA 5.4. Let H 
 HOLDER C , and let 
 � t, H t . Then for SS the¨ j
collection of all dyadic squares of sidelength 2�j having nonempty intersection
with 
,

� SS � C � 2 � 2 j .Ž .j

PROOF. Let t � k�2 j. We simply interpret the Lipschitz conditionk , j

�jsup H t � H t � C � 2Ž . Ž .k , j
� �t
 t , tk , j k�1, j

as saying that the curve 
 traverses at most C � 2 dyadic squares of side 2�j

as t runs from t to t . �k , j k�1, j

5.2. Proof of Lemma 2.2. Let e be the given arbitrary edgel. We assume it
is not purely vertical or purely horizontal and give the proof in that case only.

Ž . Ž . Ž .The edgel e intersects with the n � 1 -by- n � 1 latticework LL n of
equispaced vertical and horizontal lines at spacing 1�n. Let e be the subset of˜
e extending from the intersection point v closest to one endpoint of e to the0
intersection point v closest to the other endpoint of e.1

Ž .There are vertices v , v belonging to our discrete set VV n, � withini , S i , S0 0 1 1

a distance ��2 of the endpoints of e. Those dyadic points belong to dyadic˜
squares S and S , say. Either we may take these squares to be disjoint, or if0 1
this is impossible because these dyadic points belong to the same pixel, we

� 4take them to be identical. Set SS � S , S . Run Lemma 5.1 to construct the0 1
coarsest RDP PP containing elements of SS .

Take the edgel e from v to v . For simplicity of exposition, speak of this˜ 0 1
edgel as if it goes ‘‘from’’ v ‘‘to’’ v . We say that an edgel traverses a dyadic0 1
square completely if it both enters and leaves the square, that is, it intersects
the square and does not terminate inside the square. Mark all the elements
of the partition PP which the edgel e traverses completely. Let SS* be the˜
collection of all marked squares. In each marked S, choose the vertices vi , S0

Ž .and v in V S which are nearest the points of entry and exit. Note that ini , S1

neighboring marked squares S, S�, the vertex closest to the exit point of S
will be also the vertex closest to the entry point into S�, since squares with
boundaries in common have vertices in common.

Ž .There is a possibility of ties, where two vertices in V S are equidistant
from an entry or exit point. This should be resolved as follows. Since squares
with boundaries in common have vertices in common, if there is a tie in the

� Ž .assignment in S say, two vertices in V S are equally close to the entry point
�of e in S , there will a marked square adjacent to S, S� in which there is also˜

� Ž .a corresponding tie say, two vertices in V S� are equally close to the exit
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�point of e . The pairs of vertices involved in each tie, although assuming˜
� �2different labels in each case, are actually the same pairs of points in 0, 1 .

Ž .We can resolve the tie in any way we like coin tossing? but we should
resolve it the same way in each of the two dyadic squares.

The selection of vertices v and v for each marked S gives us a list ofi , S i , S0 1
� Ž . 4edgelets e S : S 
 SS* indexed by marked S. Because adjacent marked

squares have entry points and exit points in common, this list of edgelets
makes a chain�a connected set.

This chain never deviates from e by more than ��2 in Hausdorff distance.˜
Indeed, the intersection of e with each marked S makes an edgel contained˜
in S whose endpoints are at most ��2 away from the endpoints of the

Ž .corresponding e S .
The edgel e never deviates from e by more than 1�n.˜
Hence, the chain never deviates from e by more than 1�n � ��2.
It remains to count the number of members of the chain. This is no greater

than the number � SS* of marked squares. All marked squares must be
Ž .children of ancestors of S or S ; S has sat most 4 log n � 1 children of0 1 0 2

Ž .ancestors. Similarly for S . Hence there are not more than 8 log n � 21 2
edgelets in the chain. We can refine this slightly. If n � 2, and S and S0 1
have sidelength less than 1�2, note that S and S always have in common0 1
five elements among their ancestors and children of ancestors: the unit

Ž .square and its four children. The estimate 8 log n � 2 double counts these2
Ž .five squares. In that case m � 8 log n will also work. If either S or S is of2 0 1

Ž .sidelength greater than 1�4 one sees that m � 8 log n continues to work2
Ž .for n � 2 .

Ž .REMARK. Suppose that the endpoints of the edgel e lie in the n � 1 -by-
Ž . Ž .n � 1 latticework LL n of equispaced vertical and horizontal lines at

Žspacing 1�n. Then the chain of edgelets comes within distance � of e rather
.than ��2 � 1�n .

Indeed, the edgel e constructed in the proof can then be taken identical˜
to e. The endpoints belong to the latticework, and these will be at most ��2

Ž .distance away from members of VV n, � , the endpoints of e, rather than
1�n � ��2 away.

� Ž .5.3. Proof of Lemma 3.2. Since the underlying horizon H 
 HOLDER C ,¨ �

the polygonal approximation H obtained by linearly interpolating the m � 1m
Ž Ž ..points i�m, H i�m has error

� � � ��5.1 H � H � K � C � m , m � 1, 2, . . . ,Ž . �m �

for K a constant depending only on � .
Second, we note that it is enough to establish the result for dyadic m, that

is, m of the form 2 j for 1 � j � J. The result for general m in the range
2 � m � n will follow with a possibly larger constant. So let m be dyadic.
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View the linear interpolant H as a chain of m edgels. Let v and v bem i, 0 i, 1
the endpoints of the ith edgel. These have x -coordinates which are integer1
multiples of 1�m, and, by the dyadicity assumption on m, these therefore

Ž .belong to the latticework LL m at scale 1�n. Let v and v be points with˜ ˜i, 0 i, 1
the same x -coordinates as the original v and v but belonging to our1 i, 0 i, 1

Ž . Ž .discrete set of vertices VV n, � � LL m ; they are chosen by the condition that
Ž . Žthey are closest members of VV m, � . There is the possibility of ties; by

following a consistent tie-breaking procedure, we can arrange that v �ĩ�1, 0
.v . These new points are at most distance ��2 from the original points. Theĩ, 1

chain of edgels v v comes within a distance ��2 of the original chain.˜ ˜i , 0 i , 1
As in the proof of Lemma 5.4, each edgel in the chain traverses at most

C � 2 dyadic squares of sidelength 1�m. It can be approximated within1
Ž .distance ��2 by a chain of at most C � 2 edgelets, each one associated with1

a different square, the squares being vertically adjacent.
The resulting chain of chains of edgelets is continuous as a whole, contains

Ž .at most C � 2 � m edgelets and yields a function H which obeys1 m , �

� �H � H � � .�m m , �

Third, consider now the function

f x , x � 1 .Ž .m , � 1 2 � x 	 H Ž x .42 m ,� 1

We have

� � 2
2 � � 1

� ��5.2 f � f � H � H � K � C � m � � ,Ž . L L �0, 1�m , � m , � �

so that f has the degree of approximation we are seeking. We claim thatm , �

f is a superposition of m� wedgelets.m , �

Take each edgelet associated with H . That edgelet is itself associatedm , �

with a unique dyadic square S. Hence H gives us immediately a corre-m , �

sponding finite collection SS of dyadic squares. These dyadic squares allm , �

have common sidelength 1�m. Dyadic squares of the same size are either
identical or disjoint. The collection SS of dyadic squares constructed in them , �

building of the chain of chains therefore consists of squares with disjoint
interiors.

The algorithm of Lemma 5.1 gives an RDP PP which has all the squaresm , �

in SS as members. Let PP be the corresponding ED-RDP resulting fromm , � m , �

decorating the partition PP so that squares S 
 SS are decorated withm , � m , �

the corresponding edgelets.
We can count the cardinality of PP as follows. It consists of all them , �

ancestors and children of ancestors of squares in SS . Now any ancestor of am , �

Ž Ž ..square in SS has nonempty intersection with the curve t, H t . We canm , �

bound the number of such ancestors using Lemma 5.4; the number of
�j j Ž .ancestors of sidelength 2 is at most 2 � C � 2 . The number of children1

�j j�1 Ž .of ancestors of sidelength 2 is at most 4 � 2 � C � 2 . The total across1
all scales of the number of ancestors and children of ancestors can be
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estimated as

4 � 2 j � C � 2 � 8 � C � 2 � m.Ž . Ž .Ý 1 1
j2 �m

This is a bound on the cardinality of PP .m , �

Ž .We now turn to PP . There are at most C � 2 � m squares in SS andm , � 1 m , �

each one might potentially be decorated. Each decoration of a square in-
Ž .creases the cardinality of PP over PP . Hence � PP � 8 � C � 2 � m.m , � m , � m , � 1

We have proven the lemma. �

5.4. Proof of Lemma 4.3. Lemma 3.2 showed how to construct a partition
PP and a function f that is constant on each piece of the partition PP .m , � m , � m , �

In the technical sense, it is PP -measurable, by standard properties ofm , �

conditional expectation, if PP is an arbitrary partition, and f � is PP-measura-
ble, then

2� � �2� 4f � Ave f PP � f � f � .LL

Applying that in this case

2� � �f � Ave f PP � f � f .� 4 2 Lm , � m , �L

Hence PP gives us an RDP achieving the indicated error bounds. The samem , �

complexity bounds on the partition that were developed for Lemma 3.2 apply
here. �

6. Fast recursive partitioning. We are now in a position to define a
Ž .specific principle for processing noisy data 1.1 . Our goal is to find a partition

with low cardinality which fits the data well. The approach we use is of
� �exactly the same type as employed in 18, 19, 15 .

Ž .Let y i , i be an array of pixel-level data. Suppose we are given an1 2

ED-RDP PP. In the vector space of n-by-n arrays, consider the vector subspace
˜ ˜Ž .L PP of all arrays arising from linear combinations Ý C 1 , where 1 isP 
 PP P P P�

� � 4the array of pixel averages of the function 1 . Define Ave y PP as the arrayP
Ž .resulting from least-squares projection of y onto L PP .

Ž .We fix a complexity penalty factor � to be discussed later and we define
the complexity-penalized sum of squares

2�
2�CPRSS PP, � � y � Ave y PP � � � PP ;Ž . � 4

this associates with an ED-RDP a figure of merit which combines both the� 2� � � 4�residual sum of squares y � Ave y PP and the complexity of the partition.
The empirically optimal ED-RDP is then

PP* � argmin CPRSS PP, � ,Ž .
Ž .ED-RDP n , �

and our empirical estimate is
�ˆ �f * � Ave y PP* .� 4
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This estimate is obtained by selecting an optimal ED-RDP according to the
CPRSS criterion. This is a kind of empirical atomic decomposition using
discrete wedgelets. Indeed, it may be written as

f̂ * � a w ,˜Ý w
w

ˆŽ .for the same reasons as 3.7 . Because f * arises from adaptive recursive
partitioning, it is not built in an arbitrary fashion from wedgelets. Various
constraints are enforced by the recursive partitioning which mean that only
certain wedgelets can appear simultaneously in this expansion. In our case,
these constraints are useful, because they make possible a fast algorithm to

ˆfind f *.
Recall our major premise of Section 3: that it is possible to rapidly obtain

an approximate wedgelet analysis. The following result uses the major
premise as a starting point. It will follow from this result and the major

ˆ 2Ž Ž ..premise that one can essentially obtain f * in O N log N time, where2
Ž .N � �WW n, � .

THEOREM 6.1. Suppose we are given the wedgelet analysis of y�the
Ž² : Ž ..collection of all inner products w, y : w 
 WW n, � . There is an algorithm˜

ˆ Ž .for finding f * starting from this collection which operates in order O N time,
Ž .where N � �WW n, � .

The algorithm is based on ideas of dynamic programming and backward
induction; it is similar in basic outline to the ‘‘best-ortho-basis’’ algorithm of

� �Coifman and Wickerhauser 8 and to the optimal tree pruning algorithm in
� � � �the CART book 4 ; see also 2, 15, 37 . In the remainder of this section, we

first describe a basic decomposability property of the CPRSS, then give an
algorithm for minimizing CPRSS. Finally we give the proof of Theorem 6.1.

6.1. Additivity of CPRSS. The objective function has certain additivities
which imply that it can be optimized sequentially. For a dyadic square S, let

� � � �PP S denote an ED-RDP of S, let y S denote the subarray of our original
Ž � � .pixel array consisting only of pixels belonging to S, and let CPRSS PP S , �; S

denote the localized complexity penalized sum-of-squares
2�

2� 2� � � � � � � � � �CPRSS PP S , �; S � y S � Ave y S PP S � � � PP S ,� 4Ž . � �ll S

2� � 2where ll S denotes the ll -norm over the indicated subarrays.
The localized CPRSS has two useful additivity properties:

Ž .1. Global decomposition�suppose that PP is an RDP not an ED-RDP and
� �that PP is a finer ED-RDP. For a dyadic square S in PP, let PP S be

partition of S induced by restriction of PP to S. Then we have the identity

� �CPRSS PP, � � CPRSS PP S , �; S ,Ž . Ž .Ý
S
PP

expressing the global CPRSS in terms of analogous localized quantities.
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� �2. Local decomposition�again let S be a dyadic square, let PP S denote a
� �partition of S and let PP S denote any coarser partition of S. In a notation

� �� �borrowed from the computer language C, for S� � S, let PP S S� denote
� �the restriction of the partition PP S to induce a partition of S�:

� � � � � �6.1 CPRSS PP S , �; S � CPRSS PP S S� , �; S� .Ž . Ž . Ž .Ý
� �S�
PP S

Ž .Now let CPRSS* �; S denote the optimal value of the localized CPRSS:

� �min CPRSS PP S , �; S .Ž .
� �PP S

Ž .By 6.1 this new quantity obeys two inheritance relations, which we can
Ž .state as follows. Let PP S, e denote the two-element partition of S created by

Ž . � 4a split along edgelet e 
 EE S . Let S be the trivial partition of S into one�

set:

1. Inheritance at coarse scales�suppose that S has sidelength greater than
1�n, and let S , i � 1, 2, 3, 4, denote the four children of S. Theni

� � 4CPRSS S , �; S ,Ž .
min CPRSS PP S, e , �; S ,Ž .Ž .

Ž .e
EE S�6.2 CPRSS* �; S � minŽ . Ž .
4

CPRSS* �; S .Ž .Ý i�
i�1

2. Inheritance at fine scales�on the other hand, if S has sidelength 1�n so
Ž .that it has no children which can belong to any RDP n , then

� � 4CPRSS S , �; S ,Ž .�6.3 CPRSS* �; S � minŽ . Ž . min CPRSS PP S, e , �; S .Ž .Ž .�
Ž .e
EE S

Ž . Ž .6.2. Tree pruning algorithm. The inheritance relations 6.2 and 6.3 lead
to a hierarchically-organized algorithm for minimizing CPRSS.

Ž .ALGORITHM Optimal decorated quadtree . This algorithm finds the ED-
RDP achieving CPRSS* by breadth-first, bottom-up pruning. When it termi-
nates, it holds a quadtree whose terminal nodes are the squares of the RDP PP

associated with the optimal RDP and whose labels indicate the decorations, if
any, attached to those squares in the optimal ED-RDP.

Ž .� Build the complete quadtree of depth log n .2
� Initialize: Label each node S with

Ž� 4 .� a � CPRSS S , �; SS
Ž Ž . .� b � min CPRSS PP S, e , �; S ,S e
 EE ŽS .

� e � the e achieving b .S S
Ž .� Set level j � log n .2

� Loop: for each S of sidelength 2�j,
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Ž . Ž .� Inherit: If j � log n set d � Ý c sum over children of S ;2 S i Si
Ž . Ž .while if j � log n set d � �� there are no children .2 S

Ž .� Tournament: Compute c � min a , b , d .S S S S
� If the minimum is achieved by a , mark node S ‘‘Terminal:S

undecorated’’
� If the minimum is achieved by b , mark node S ‘‘Terminal:S

decorated by edgelet e .’’S
� If the minimum is achieved by d , mark node S ‘‘Interior.’’S

� Prune: If S is marked ‘‘Terminal,’’ prune away from the cur-
Žrent quadtree the four children of S and the subtrees if

.any rooted at those children.
� Set j � j � 1;
� If j 	 0 goto Loop.

6.3. Proof of Theorem 6.1. The algorithm is fast.
The dominant computational burden is in step Initialize. We need, to begin

with, quantities measuring the size and energy of y on dyadic squares

1 1
2 2� � � �y S � y i , i , y S � y i , i .Ž . Ž .Ý Ý1 2 1 2�S �SS S

The collection of all these numbers, for all squares S of sidelength greater
˜² :than or equal to 1�n, can be computed from the collection of all 1 , yS

Ž . Ž 2 .which we have assumed given in order O n time. The formulas for a andS
b are justS

22� � � �a � �S � y S � y S � �Ž .S

and

2 22 ² : ² :� �b � �S � y S � w , y � w , w � 2 � �,˜ ˜ ˜S

where w � w . Hence, all these quantities can be computed in order˜ ˜eŽS ., S
Ž Ž ..O �WW n, � operations.
In the main loop of the algorithm, we process each node of the complete

Ž . Ž .quadtree of depth log n . At each node we have order O 1 computations to2
4 2 2Ž .do. There are � n nodes of this quadtree. This takes O n work in general.3

In summary, we can initialize and then traverse the whole tree in order
Ž Ž .. Ž 2 . Ž Ž ..O �WW n, � � O n � O �WW n, � time.
The algorithm correctly computes the optimal CPRSS because it is just a

Ž . Ž .systematic application of the inheritance relations 6.2 and 6.3 .

ˆ7. Main result. In addition to rapid computation, the estimator f * can
have, when the complexity penalty is chosen appropriately, near-minimax
mean-squared error, simultaneously over a broad collection of horizon classes.
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THEOREM 7.1. Let � � � � 2�� J 	, where  � 4�3. Base the wedgeletn
Ž .dictionary and analysis on WW n, � . Fix � � 8, and setn

2
7.1 � � � � � � 1 � 2 log �W n , � .'Ž . Ž .Ž .ž /e nž /

ˆLet f * denote the complexity-penalized estimator produced with this �. For
this estimator

ˆ7.2 sup MSE f *, f � O log n � M* n , FF ,Ž . Ž . Ž .Ž .Ž .
FF

� Ž . � �where FF � HORIZ C , C for some � 
 1, 2 .1 �

� �This is true, whatever � 
 1, 2 may be, with a simple choice of �; it is not
Ž .necessary to adapt � to the unknown f. Comparing this result with 1.5 and

the discussion surrounding it, we see that the method improves on traditional
means of harmonic analysis.

In the next subsections we prove this result, according to the following
ˆoutline. In Section 7.1, we describe how the MSE of the estimator f * may be

controlled in terms of the ideal MSE one would suffer if an oracle revealed
the ideal partitioning. In Section 7.2, we calculate the ideal MSE. In Section
7.3 we combine the pieces into a proof.

ˆ7.1. Oracle inequalities. Suppose we have a collection of estimators � �
ˆ� Ž .4f � ; we wish to use the one best adapted to the problem at hand. The best

� �performance we can hope for is what Donoho and Johnstone 17, 18, 19 call
the ideal MSE

ˆ ˆ ˆ ˆMM * � , f � inf MSE f , f : f 
 � .Ž . Ž .½ 5
We call this ideal because it can be attained only with an oracle, who in full

Ž .knowledge of the underlying f but not revealing this to us selects the best
ˆestimator for this f from the collection �.

ˆŽ .We optimistically propose MM * �, f as a target, and seek true estimators
which can approach this target. We do not expect to do as well with a true
estimator as one can do with an oracle. But it turns out that in a range of

� �examples 17�19, 15 , one can find estimators which do achieve this to within
logarithmic factors. The inequalities which establish this are called oracle
inequalities, because they compare the risk of valid procedures with the risk
achievable by idealized procedures which depend on oracles. Compare related

� � � �ideas of Birge and Massart 3 and of Foster and George 23 . A simple´
� �corollary of results in 17�19, 15 gives an oracle inequality for the estimator

f̂ * of this paper.
Ž .For each PP 
 ED-RDP m, � , consider the fixed partition estimator�ˆ ˆ ˆŽ . � � 4 � Ž .f �; PP � Ave y PP . The family of such estimators is � � f �; PP : PP 


ˆŽ .4 Ž . ŽED-RDP n, � . For obvious reasons, we call MM * �, f also MM * IDEAL PARTI-
.TIONING, f , as it represents the risk we would suffer by estimating using the

ideal ED-RDP, if we only knew to use it.
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ˆTHEOREM 7.2. For the minimum CPRSS estimator f * defined with � in
Ž .7.1 .

ˆMSE f *, f � Const � log �W n , �Ž .Ž .Ž .
� 2

� � MM * IDEAL PARTITIONING, f 	 f .Ž .2ž /n

7.3Ž .

ŽIn short, empirical adaptive partitioning with an appropriate penaliza-
.tion comes within log-factors of the performance of ideal adaptive parti-

tioning.

7.2. Ideal risk calculation. Consider the linear model
p

Ž j.y � � �  x � z , 0 � i , i � n.Ýi , i i , i j i , i i , i 1 21 2 1 2 1 2 1 2
j�1

Ž Ž j. .Here the x , j � 1, . . . , p, are predictor arrays, the  are predictioni , i j1 2
Ž . Ž .coefficients, and � is an nonrandom array orthogonal to the linear spani , i1 2

of the x Ž j. ’s. The z make a Gaussian white noise with variance � 2.i , i1 2
Ž . pSuppose we estimate the coefficients  by a least squares fit of the formj j�1

2p
Ž j.min y �  x ,Ý j

 2j�1 ll

ˆ p ˆ Ž j.Ž .producing  and predicted values y � Ý  x . The predictiveˆj i , i j�1 j i , i1 2 1 2

mean-squared error is then

� � 2
2 � � 2

2 27.4 E y � y � � � p� ,Ž . ˆ ll ll

that is, a traditional Bias2 � Variance expression.�
� � 4Now the operator Ave y PP which we have defined in Section 6 is a

least-squares projection operator of the form just described. Indeed, set
� 4p � � PP, and enumerate the pieces of the partition as PP � P : j � 1, . . . , p .j

Ž j. ˜Then set x � 1 . With this correspondence the predicted values y �ˆPj� �˜ ˜� � 4 � � 4Ave y PP precisely, and � � f � Ave f PP . We conclude that
22� �

2˜ ˜� �7.5 E Ave y PP � y � f � Ave f PP � � PP � � .2Ž . � 4 2� 4ll ll

Ž .Now let P f be the operator that replaces a function f x , x by its arrayn 1 2
˜ �1 2 2 2Ž . � � � �of pixel-level averages f i , i . Then of course n P f � f . Letll L �0, 1�1 2 n

˜f be the function guaranteed by Lemma 4.3, and as usual f � P f .m , � m , � n m , �

Then
�

�1 �1˜ ˜ ˜ ˜ 2� � �n � f � Ave f PP � n � f � f2� 4 llm , �ll

�1
2� n � P f � fŽ .n m , � ll

� � 2 2� f � f .L �0, 1�m , �
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Ž .Combining this with 7.5 we get

� 2� 2
2 2� � �MSE Ave y PP , f � f � f � � � PP.� 4 L �0, 1�ž / m , � 2n

� Ž .Now for f 
 HORIZ C , C , Lemma 4.3 gives1 �

� 2�
� ���MSE Ave y PP , f � K � C � m � � � � m�,� 4ž / � n 2n

Ž . Ž . � �� 2with m� � 8 C � 2 m. Define � � , m � K � C � m � � � m. Then this1 ��
2Ž � � 4 . Ž .last display says that MSE Ave y PP , f � � � , m , where � � 8 �

2Ž . 2� C � 2 �n . The ideal risk is then not bigger than what we can get by1
optimizing this expression in m over the range 2 � m � n. Now in the range
1 � � � 2, we get that, for all sufficiently small � � 0, the minimum obeys

����1 1���1 
2 2min � � , m � � � C � K � � .Ž . Ž . Ž .� �
2�m�n

� Ž .Hence, for FF � HORIZ C , C , the ideal risk obeys1 �

sup MM * IDEAL PARTITIONING, fŽ .
FF

Ž .�� ��11���1� 2 2� � � K � C � � �n .Ž . Ž .n � �

7.6Ž .

Ž .7.3. Completion of the proof. We know from 1.5 that

M* n , FF 	 c � C1�1�� � n�2 � �1�� .Ž . �

Ž � . Ž �4�3. Ž �2 � �1�� .By assumption � � 2, and so � � O n � o n � o n .n
Ž .Hence, from 7.6 ,

sup MM * IDEAL PARTITIONING, f � O 1 � M* n , FF , n � �;Ž . Ž . Ž .
FF

the risk of ideal partitioning is within constant factors of the minimax risk.
Ž .But from the oracle inequality 7.3 we know that the risk of empirical

partitioning is within log factors of the risk of ideal partitioning, and so

� 2

ˆMSE f *, f � Const � log n � � MM * IDEAL PARTITIONING, fŽ . Ž .Ž . 2ž /n

� O log n � M* n , FF , n � �.Ž . Ž .Ž .

8. Generalization. We briefly discuss two avenues of generalizations of
the above results.

8.1. Inhomogeneous boundaries. In the paper so far, we have considered
the case where the horizon function obeys certain Holder conditions. Such¨
conditions are of a very spatially homogeneous type�they impose the same
type of condition on H in the vicinity of each point. We may consider instead

� Ž .functional classes HORIZ C , C defined by the condition that the horizonp, q 1 �
� Ž .function H belong to Besov ball B C . Here p, q � 0 are scalars; � is ap, q �
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Ž � �.smoothness index. The scale of Besov spaces see, e.g., 33, 24 includes
2 � Ž .various Holder-type spaces, as well as L -Sobolev spaces; B C is very¨ �, �

� Ž . � Ž .nearly HOLDER C , and so what we have been calling HORIZ C , C is very¨ 1 �
� Ž .nearly HORIZ C , C .�, � 1 �

Horizon functions in certain Besov classes are spatially inhomogeneous,
smooth in most of the domain, with potentially exceptional behavior on a
special subset. An example is the case � � 2, p � 1, q � �, which consists
more or less of functions which are primitives of functions of bounded
variation. Such functions behave in many respects like twice-differentiable
functions at ‘‘most’’ points, but they are not necessarily even continuously
differentiable.

Our main result extends easily to cover this more general scale of exam-
ples.

Ž � � Ž .THEOREM 8.1. Let q 
 0, � and 1 � p � �. Let FF � HORIZ C , C forp, q 1 �

Ž .1 � � � 2. Then 7.2 holds for this FF.

Ž .The heart of the matter is on display in 5.2 . What we really need are
bounds of the form

� � 1
� ��H � H � K � C � m , m � 2, 4, 8, . . . ,L �0, 1�m �

where H is an approximant of H based on m edgels. So far in this paper wem
have controlled L� approximation; but the weaker L1 condition is all we
really needed. The following lemma is based on well-known properties of

Ž � �.Besov spaces see 11 .

� Ž .LEMMA 8.2. Let H 
 B C , 0 � � � 2, p 	 1. The equispaced knot lin-p, q
ear spline interpolant H obeysm

� � 1
� ��8.1 H � H � K � C � m , m � 2, 4, 8, . . . ,Ž . L �0, 1�m p , q

� Ž .where K depends on � , p, q only.p, q

Applying this lemma will immediately give a more general version of
Lemma 3.2; the rest of the arguments in the paper go through verbatim,
giving Theorem 8.1.

ˆ Ž .8.2. General shapes. There is nothing about the estimator f * of 7.1
which specifically requires that the underlying object be of the ‘‘horizon’’

Ž .form. It may be applied to any data of the form 1.1 ; it makes no explicit
assumptions about the type of object being estimates.

To illustrate this point, we now consider star-shaped objects. A star-shaped
� �2 � �2set B � 0, 1 has an origin b 
 0, 1 from which every point of B is0

�Ž . � �4‘‘visible,’’ that is, such that the line segment 1 � t b � tb: t 
 0, 1 � B0
ˆwhenever b 
 B. We will show that the estimator f * works well on objects

� Ž .f � 1 . To do so, we define STAR-SET C , a class of star-shaped sets withB
Žregular boundaries using a kind of polar coordinate system. This type of

� � . Ž . � . � �class is studied at greater length in 19 . Let � � : 0, 2� � 0, 1 be a
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Ž .radius function and b � x , x be an origin with respect to which the0 1, 0 2, 0
Ž . Ž .set of interest is star-shaped. Define � x � x � x and � x � x � x ;1 1 1, 0 2 2 2, 0

Ž . Ž .then define functions � x , x and r x , x by1 2 1 2

1�22 2
� � arctan �� �� , r � � � � .Ž . Ž . Ž .Ž .2 1 1 2

Ž . Ž .For a star-shaped set, we have x , x 
 B iff 0 � r � � � . In particular,1 2
the boundary � B is given by the curve

8.2  � � � � cos � � x , � � sin � � x .Ž . Ž . Ž . Ž . Ž . Ž .Ž .1, 0 2, 0

� Ž .The class STAR-SET C of interest to us can now be defined by
21 9 1 1�STAR-SET C � B : B � , , � � � � ,Ž . Ž .½ 10 10 10 2

� �� 
 0, 2� , � 
 HOLDER C .Ž .. ¨ 5
NOTE 1. Some star-shaped sets have more than one possible choice of

origin b ; different choices lead to different radius functions �; we demand0
only that some valid choice of b lead to a � obeying the above conditions.0

NOTE 2. We consider only the range 1 � � � 2; � � 1 is excluded.

The actual objects of interest are the indicators of sets in STAR-SET �, so we
introduce the functional class

8.3 STAR� C � f � 1 : B 
 STAR-SET � C .� 4Ž . Ž . Ž .B

ˆTHEOREM 8.3. Let f * denote the complexity-penalized estimator as de-
� Ž .scribed in Theorem 7.1. Let FF � STAR C for some choice 1 � � � 2, 0 �

Ž .C � �. Then 7.2 holds for this FF.

8.2.1. Outline of proof. The proof can be given an architecture paralleling
closely the structure used in proving Theorem 7.1. We know from the risk

� �lower bounds in, for example, 19 , for a c � � that

M* n , FF 	 c � C1�1�� � n�2 � �1�� ;Ž . �

� Ž .so if we can show that for FF � STAR C , the ideal risk obeys
Ž .�� ��1Ž .1� ��1� 2 2sup MM * IDEAL PARTITIONING, f � � � K � C � � �n .Ž . Ž . Ž .n �

FF

Ž �2 � �1�� .then it will follow from � � o n that the ideal risk obeysn

sup MM * IDEAL PARTITIONING, f � O 1 � M* n , FF , n � �;Ž . Ž . Ž .
FF

the risk of ideal partitioning is within constant factors of the minimax risk. It
� Ž .will then follow from the oracle inequality that over each class STAR C the

ˆrisk of f * is within a log factor of minimax.
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The required estimate for ideal risk can be stated as follows:

� Ž .LEMMA 8.4. Let FF � STAR C , 1 � � � 2, 0 � C � �. For each f 
 FF

there exists a corresponding ED-RDP with fewer than m� � K � m � K ele-1 2
Ž �� .ments having an approximation error O m � � . More precisely,

2
� ���inf sup f � Ave f PP � K � C � m � � ,� 4 2 �L

� PP�m� f
FF

where K � depends on � only.

The proof of Lemma 8.4 proceeds in the same fashion as the analogous fact
for the horizon case, Lemma 4.3. There are three stages, the first establishing
an approximation to the boundary of B by general edgels, the second
obtaining a subsidiary approximation to f � 1 by edgelets and the thirdB
counting the number of wedgelets involved. The first stage is as follows.

Ž . � Ž .LEMMA 8.5 Edgel approximation . Let B 
 STAR-SET C . A unit-speed
Ž .parametrization of the boundary of B exists; call it  s . Below we describe an

‘‘espalier construction’’ which yields, for each dyadic m obeying m 	 2 �0 , a
polygonal approximation  with these properties:m

Ž . Ž .i All the edgels belonging to  have endpoints in LL m � � B.m
Ž .ii Each edgel belonging to  has length � K �m, K a fixed constant.m 1 1
Ž .iii At least 50% of the edgels belonging to  have length greater than orm

equal to 1�m.
Ž .iv Any dyadic square S of side 1�m which intersects the interior of an

� 4edgel in  intersects one and only one such edgel.m

The proof will be given further below, after the espalier construction is
explained. The lemma implies that

� � � �� � 0 �0�18.4  �  � K � C � m , m � 2 , 2 , . . . ,Ž . �m

Ž .by ii above, the fact that  is Holderian, and the fact that linear interpola-¨
tion of Holderian functions obeys estimates based on the length h of the¨

Ž . Ž .longest line segment; here, of course h � K �m. Compare 5.1 and 8.1 ,1
where a similar principle was invoked. This lemma also implies that the list
E of edgels in  has cardinalitym m

� �8.5 �E � 2 � � B � m ,Ž . m

Ž .by iii above, and the obvious fact that in comparing arclengths we have
Ž . Ž .Length  � Length  , owing to Euclid.m

Ž .LEMMA 8.6 Edgelet approximation . Starting from E , we construct a listm
E of edgelets and a corresponding curve  by approximating each edgel inm m
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 by a corresponding edgelet. We can do this in a way which guarantees them
following properties:

Ž .i The dyadic squares of scale 1�m which intersect  also intersect  .m m
Ž .ii Any dyadic square of side 1�m which intersects  intersects them

interior of one and only one edgelet e 
 E .m
Ž . � �iii  �  � � .�m m
Ž .iv The number of edgelets obeys the bound

� ��E � C � K � m � � B � C .m 1 1 2

Now of course we have
� ��� �8.6  �  � K � C � m � � ,Ž . �m

Ž . Ž .by iii and 8.4 . To finish up, we need to estimate the number of pieces in an
ED-RDP generating a set with  for a boundary curve. By Lemma 5.2, wem
know this reduces to counting the ancestors of the dyadic squares associated
with the edgelets in E .m

Ž .LEMMA 8.7 Counting ancestors . Starting from the list of E of edgeletsm
we can construct an ED-RDP P decorated by these edgelets with cardinalitym
bounded by

� �8.7 �P � K � m � �B � K ,Ž . m 1 2

and the approximation error specified in Lemma 8.4.

It remains to describe the espalier construction and to prove these three
lemmas.

8.2.2. Espalier construction. An espalier is a gardener’s device�a uni-
form latticework to which one can attach shoots of a growing vine to manage

Ž .the shape of the plant. Here we use the latticework LL m to ‘‘tie down’’ our
curve  to certain points on the latticework, and approximate the curve by
line segments in between the places where it is tied down. By judicious choice
of where to tie the curve down we will obtain a decomposition of the curve
into Lipschitz graphs, each of which behaves as in the horizon model.

The espalier construction has these stages:

Ž .1. Initialization�take 
 � LL m � � B.1
2. Pruning�
 is in general an uncountably infinite set, since some pieces of1

� B may coincide perfectly with a vertical or horizontal segment of the
latticework. We now ‘‘prune’’ this set by replacing any compoent of 
1
which is a line segment by its endpoints together with points having
coordinates which are both integer multiples of 1�m. An at-most count-
able set 
 results.2

3. Labelling�we now label each member � of this discrete set by labels
Ž . Ž .ll � and ll � :1 2

Ž . � 43a. Orientation�ll � 
 V, H, B depending on the type of line segment1
Ž .the curve is intersecting intersection with Vertical, Horizontal, Both .
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Ž . � 4 Ž .3b. Quality�ll � 
 E, G, P Excellent, Good, Poor depending on2
the angle between the tangent to the curve and the segment it is
intersecting: if the angle is � ��6, mark ‘‘P’’; if the angle is

� �
 ��6, ��3 mark ‘‘G’’; if the angle is � ��3, mark ‘‘E’’. If � is
Ž Ž . .precisely at a lattice crossing i.e., ll � � B , then choose the1

label based on the ‘‘better’’ of the two possible labels. In such an
Ž .event, for later use, modify the corresponding label ll � to reflect1

the orientation of the ‘‘better’’ of the two crossings.
4. Chaining�now gather a subset of the points � 
 
 into chains which are2

Ž . Ž .consistent locally with a function y � f x or a function x � f y :
4a. The points in 
 can be ordered circularly by the numerical value of2

the angle the tangent makes with the x -axis, so there is a clear notion1
of predecessor and successor.

4b. JAt least one point � 
 
 is marked E. Initiate a chain labelled from2
� 4 Ž .V, H according as the label ll � .1

4c. Grow the chain as far it is possible to do so without starting a ‘‘bad
link.’’ Suppose that � is the most recently added point in the chain.
Starting at the immediately succeeding point, iterate through succes-
sor points � �, looking for the first occurrence of a point � � where either
Ž . Ž . Ž . Ži ll � � ll � � here we are continuing the existing chain, and we1 1

. Ž . Ž . Ž . Ž . �add to it � or ii ll � � ll � � but ll � � E here we are ending the1 1 2
old chain and starting a new one, with a new orientation; we mark the
old chain ended at � ; we mark � � as the first member of a new chain

� 4 Ž .�labelled from V, H according as ll � � .1
4d. Continue systematically until returning to the starting point. Deal

with the termination in the obvious way, merging the last chain with
� 4the first if they have the same V, H labelling.

The result of this construction is a finite collection of finitely many chains,
every vertex in a chain having an identical ll -labelling. The points of such a1
chain, once connected together by line segments, generate a Lipschitz graph

Ž . Ž .of the form either y � f x or x � f y . The maximum slope of such a chain is
bounded by an absolute constant depending on the choice of constants

Ž . Ž .cos ��3 in the labelling and on the constants � , C underlying � B. Each
chain consists of ‘‘good links’’ having length greater than or equal to 1�m and
less than or equal to K �m.1

ŽOur description of the construction makes a number of assertions such as
‘‘there exists a point labelled ‘E’ ’’; ‘‘chains have links less than or equal to

.K �m,’’ etc. which need to be supported. Underlying this justification is the1
following lemma.

Ž . � Ž .LEMMA 8.8. Let  � be the boundary curve of a B 
 STAR-SET C ,
Ž .1 � � � 2, as in 8.8 . Then  has a continuous tangent vector field and a

Ž .unique unit-speed parametrization  s . This unit-speed cuve is uniformly
� Ž .continuous, uniformly in B 
 STAR-SET C . Indeed, there exists a uniform

Ž . Ž .modulus of continuity � � ; � , C satisfying � � � 0 as � � 0 and so that,
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for every  arising from a unit-speed parametrization of such a boundary
� Ž .curve B 
 STAR-SET C ,

˙ ˙ s �  s � � � � � , � � 0.Ž . Ž . Ž .

Ž .In effect, this just follows from the uniform modulus of continuity of  � .

Ž .LEMMA 8.9. 1 Each point in 
 can be given a well-defined angle of1
Ž .intersection with the lattice LL m .

Ž . Ž . �02 There is � � � � , C so that for m 	 2 :0 0
Ž . Ž .2a If  enters a vertical column by crossing a vertical line of LL m

at angle greater than ��6, it continues across the column and exits the column
Ž .by crossing the vertical line of LL m on the opposite side of the same column.

Ž .2b In moving from one side of the column to the other,  intersects at
most K dyadic squares of side 1�m.1

Ž .2c If  reenters the column after leaving, it will not, during its
second passage through the column, intersect any of the same dyadic squares
it has already intersected.

Of course similar statements hold with occurrences of ‘‘vertical’’ replaced by
‘‘horizontal.’’

Ž . Ž .3 There exists a point � 
 
 labelled ll � � E.2 2
Ž .4 Each chain contains at least two vertices and the link that joins them.
Ž . Ž .5 Each chain stops the first time a point � � marked ll � � � P is2

accepted into the chain.

PROOF. For the reader’s convenience, we recall the points to be proved, in
italic text:

Ž .1 Each point in 
 can be given a well-defined angle of intersection with1
˙Ž . Ž .the lattice LL m . Since  s is continuous there is a well-defined tangent to 
Ž .at each point of 
 , so after fixing a sense of orientation we can unambigu-1

˙ously define the ‘‘angle’’ between  and any fixed direction. Typically, a point
Ž .of 
 is at the crossing of  with a horizontal line or a vertical line in LL m ,1

but not both. In either of these typical cases, the angle of crossing is
unambiguously defined.

If the intersection point is precisely at the crossing of  both with a
horizontal and a vertical line, we ignore the crossing which is ‘‘most nearly

� � Ž . �tangent’’ i.e., smallest value of sin angle of intersection , flipping a coin in
�case of ties , and record the angle with the other crossing.

Ž . Ž .2a If  enters a vertical column by crossing a vertical line of LL m at
angle greater than ��6, it continues across the column and exits the column

Ž .by crossing the vertical line of LL m on the opposite side of the same column.
˙ ˙Ž . Ž .Since  is uniformly continuous, there is a � � � � � 0 so with  s �

˙Ž Ž . Ž ..h s , v s ,˙

˙ ˙� �s � s � � � h s � h s � � .Ž . Ž .0 0
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˙Ž . Ž . � Ž . � Ž .Picking � � cos ��3 �2, we get that for � � � � that if h s � cos ��30 0 0 0
� �then s � s � � implies0 0

˙ � �8.8 h s � h s � h s s � s �2.Ž . Ž . Ž . Ž .0 0 0

˙� Ž . � Ž .Hence if h s � cos ��3 , the curve  continues in a monotone fashion0
in the x -direction throughout the interval s � s � s � � . Taking 2�� 0 �1 0 0 0
� � � , we get that, for m � 2 �, � 	 � , there is an s in the range s �0 0 0 1 0
s � s � � with1 0 0

1
8.9 h s � h s � ;Ž . Ž . Ž .1 0 m

Ž .that is, the curve exits the vertical column bounded on one side by x � h s1 0
Ž .and the other by x � h s .1 1

Ž .2b In moving from one side of the column to the other,  intersects at
� Ž . Ž . � � �most K dyadic squares of side 1�m. Indeed, as v s � v s � s � s we1 1 0 1 0

Ž . Ž .get, by 8.8 and 8.9 ,

v s � v s � 2�cos ��3 � 1�m � A�m, say.Ž . Ž . Ž . Ž .1 0

The curve can therefore only intersect squares in this vertical column within
vertical distance A�m of the point of entry; there are at most K � A � 21
such squares of side 1�m.

Ž .2c If  reenters the column after leaving, it will not, during its second
passage through the column, intersect any of the same dyadic squares it has

˙ ˙Ž .already intersected. For  to reenter a vertical column after leaving it,  s
will have to be strictly vertical at some point s in between exit and reentry.1

Ž .It will leave at a point � � marked ll � � � P. Indeed, had the point beeen2
marked ‘‘E’’ or ‘‘G,’’ then in the step marked 4, chaining, the espalier
construction would have selected to continue the chain rather than to break

Ž .the chain, as it actually did. See 2a .
On the other hand, the preceding point � in the chain will have been

Ž . Ž . Ž .marked ll � � G or E. Recall the argument above at 8.8 and 8.9 . Let s02
Ž .be the value of the arclength parameter yielding � �  s , and let s be the0 1

Ž .value yielding � � �  s . For the same value � used in that argument, from1 0
˙� Ž . � Ž .the fact that h s � cos ��3 , we know that0

ḣ s � 0, s � s � s � � .Ž . 1 1 0

In short, even after the curve moves out of the column, it continues in the
‘‘away’’ direction at least for another arclength � units. But now the same0

Ž . Ž .modulus of continuity argument applies to v s that was used for h s , and as
2 ˙2v � h � 1, we have˙

8.10 v s � cos ��3 , s � s � s � � .Ž . Ž . Ž .˙ 1 1 0
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Ž . Ž .Exactly the same manipulations as at 8.8 and 8.9 show that, for some s in2
the range s � s � s � � ,1 2 1 0

1
v s � v s � .Ž . Ž .2 1 m

˙In short, long before h can vanish, the curve will have crossed a horizontal
line.

Ž .At this point, the tangent vector will be pointing into say the upper right
quadrant of the plane. But at this point, the previously encountered square is

Ž .in say the lower left quadrant anchored at the current point. Hence, in order
to reenter the previous square in the column it is necessary for the tangent to
turn through at least 90�.

At this point we invoke star-shapedness. The square in question subtends
�relative to the origin b �an angle of size at most �� , since by hypothesis0 m

Ž .� � 0.1 and 1�m � 0.05 say . A star-shaped curve cannot reenter a sector it
Ž .has left, until it goes a full circle. So if the curve  � cannot reenter the

square within an angle distance �� , star-shapedness forbids it ever to do som
Ž .short of reentry after a full circle . The modulus of continuity shows that for
sufficiently large � , and all m 	 2 �0 , the tangent cannot turn by 90� in an0
angular distance �� .m

Ž . Ž .3 There exists a point � 
 
 labelled ll � � E. As  is a closed curve,2 2
˙Ž .the image of  s covers the circle. Hence there exists a point s at which1

˙Ž . s is exactly vertical.1
Ž . � �The argument for 2a gives us a � so that, for s 
 s � � , s � � ,0 1 0 1 0

� Ž . � Ž . �� 0v s � sin ��3 . Because 2 � � � � � � the curve must cross in this˙ 0 0 0
Ž .interval a horizontal line from LL m . This intersection point will belong to 
2

and will be labelled ll � E.2
Ž .4 A chain contains at least two points and the link that contains them. A

Ž .chain always starts with a point labelled ll � E. By 2a above, the applica-2
tion of the inertia labelling step of the espalier construction will always use

Ž . Ž .case i when � is labelled E; the chain will continue at least for that step .
Ž . Ž .5 Each chain stops the first time a point � � marked ll � � � P is2

Ž . Ž .accepted into the chain. Consider the competition between cases i and ii in
the step labelled 4, chaining, of the espalier construction. The same type of

Ž .argument for 2c with the same value of � shows that, on the set s � s �0 1
˙Ž . Ž .s � � , the slope v s �h s � 1. In running through the list of successors to˙1 0

a point labelled ll � P, one will encounter a point labelled ‘‘E’’ and repre-2
senting a horizontal intersection before one could potentially encounter a

Žpoint representing a vertical intersection which would be needed to continue
.the chain .

8.2.3. Proof of edgel approximation lemma. We consider each property in
turn.

Ž . Ž .Lemma 8.5 i , all the edgels belonging to  have endpoints in LL m � �B.m
This is so by construction, since the endpoints come from the set 
 , and2

Ž .
 � 
 � LL m � �B.2 1
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Ž .Lemma 8.5 ii , each edgel belonging to  has length less than or equal tom
Ž .K �m. Lemma 8.9 2a shows that one component of the edgel undergoes1

Ž .displacement exactly 1�m, while part 2b shows that the other undergoes
displacement no larger than A�m. Hence

1�22 2 2'Length e � � � � � A � 1 �m � A � 2 �m � K �m.Ž . Ž .Ž .1 2 1

Ž .Lemma 8.5 iii , at least 50% of the edgels belonging to  have lengthm
greater than or equal to 1�m. Each link in a chain has length greater than or

Ž .equal to 1�m, by Lemma 8.9 2a . In between each chain and the next, there is
Ž .a ‘‘switch,’’ an edgel which begins on a vertical respectively, horizontal line

Ž . Ž .in LL m and ends on a horizontal respectively, vertical . Since the terminal
point of the switch is a point labelled ‘‘E,’’ it starts a new chain, of length at
least one link. Hence there is at most one ‘‘switch’’ in between each pair of
chains. Also, no more than half the edgels in  are switches.m

Ž . � 4Lemma 8.5 iv , any dyadic square S of side 1�m which intersects m
intersects one and only one edgel. A dyadic square of side 1�m cannot
intersect two edgels in the same chain, since each edgel is the only one in
that chain which intersects a given column, hence a given square. The square
cannot intersect two edgels in different chains. In between any two chains
marked H there must be a chain marked V. A chain marked V means that
there is a vertical column of thickness at least 1�m separating the first H
chain from the next H chain.

8.2.4. Proof of edgelet approximation lemma. An edgel e in a chain is
associated with a column that it traverses completely, in the sense of Lemma

Ž . Ž .8.9 2a . By part 2b , as e traverses that column it intersects at most K1
dyadic squares of side 1�m in that column. Consider just one of those dyadic
squares, S say. The segment e � S can be approximated within Hausdorff

Ž .distance � by an edgelet e 
 EE . To see this, recall the set V S defined inn, �

Section 2. This consists of vertices at spacing � around the border of S. It
contains two vertices within �-distance of each endpoint of e � S; they come
just before and just after the corresponding endpoint in a clockwise traverse
of the boundary of S. Picking one of the pair at each end yields the endpoints
of an edgelet e. Doing this for each square traversed in the column, and
imposing continuity in the choice of approximating edgelets, we get a chain of
at most K edgelets approximating the edgel e within Hausdorff distance � .1

Continuing this from edgel to edgel, we obtain a continuous sequence Em
of edgelets having cardinality less than or equal to K � �E .1 m

In the discretization of edgels to edgelets, we need to attend to certain
details. We need to arrange that in all cases the edgelet endpoints are on the
same edge of the enclosing dyadic square S as the endpoint of the correspond-
ing e � S. Also, if the edgel goes exactly through a corner of S, then we must

�arrange that the edgelet also goes through the corner this is possible, as the
Ž .�corner belongs to V S .
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Ž . Ž .When these details are attended to, properties i � iii follow immediately
from the construction. For example, by arranging that the edgelets in Em
have endpoints with the same edge incidences as the corresponding e � S
segments they approximate, we arrange that E intersects exactly the samem
dyadic squares of side 1�m as the edgels in E .m

8.2.5. Counting wedgelets. Our final step requires the following lemma.

� Ž .LEMMA 8.10. Let B 
 STAR-SET C . Let N denote the number of dyadicj
squares of side 2�j which intersect � B. Then, with A and A depending on �1 2
and C,

J
J8.11 N � A 2 � A , J 	 0.Ž . Ý j 1 2

j�0

PROOF. The boundary can be decomposed into a sequence of Lipschitz
graphs by the espalier construction. For a Lipschitz graph with constant C
the argument of Lemma 5.4 shows that the number of boxes traversed at

�j Ž . jscale 2 is at most C � 2 � 2 � R, where R is the range of the ‘‘independent
variable’’ of the graph. The sum of the ranges of the ‘‘independent variables’’
is less than the total arclength of the curve . The Lipschitz constant of the
graph from the espalier construction is an absolute constant A; see Lemma

Ž .8.6 ii . The total arclength of  is bounded by a constant L depending on C
and � only. Hence at one scale we have

N � L � A � 2 � 2 j .Ž .j

Ž . Ž .Summing across j gives 8.11 with A � 2 � L � A � 2 .1
Ž . �jWe now let N  denote the number of dyadic squares at scale 2j m

intersecting  , and note that we havem

N  � N  � N  .Ž . Ž .Ž .j m j m j

We turn now to constructing a recursive dyadic partition based on E . Letm
SS be the collection of dyadic squares of scale 1�m that intersect a memberm
of E . Construct the coarsest RDP having the associated members of SS asm m
terminal nodes, and decorate the squares belonging to SS with the corre-m
sponding edgelets, thereby forming an ED-RDP P . We note that we havem
shown that there really is an ED-RDP with these terminal nodes and
decorations, as we have constructed things so that the edgelets are associated
with disjoint squares of side 1�m. Hence Lemma 5.1 applies.

The cardinality of this partition is equal to the number of ancestors and
siblings of ancestors of squares of SS . Now note that any ancestor of am
member of SS intersects the curve  . In the other direction, squares atm m

�j Ž .scale 2 , j � log m , whch intersect with this curve will all be ancestors of2
squares in the ED-RDP.
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There are at most three siblings per actual ancestor intersecting the
square, so

Ž .log m2

�P � 4 � N  � 1.Ž .Ým j m
j�0

Ž . Ž .Applying now 8.11 gives the desired cardinality estimate 8.7 . �

9. Discussion.

9.1. Remarks.

9.1.1. Subpixel resolution. It is important to note that our results specify
Ž .that we use � � o 1�n to get nearly minimax rates; this corresponds to using

edgelets with angular resolution which is asymptotically much finer than
what one naively obtains with pixel-level data; there are pairs of edgelets in
our dictionary which differ only in their subpixel behavior. The accomodation
of subpixel resolution increases the computational complexity of the algo-
rithm, but appears to be necessary.

9.1.2. Improve log factors. The log factor given in Theorem 7.1 is not best
� �possible. Using the same arguments as in 15 , one sees immediately that the

Ž Ž .. Ž Ž .r . Ž .O log n factor can actually be replaced by O log n , where r � 2�� � � 1 .
The same comment applies, for the same reasons, to Theorems 8.1 and 8.2.

9.1.3. Finer penalization. In fact the log-factors specified in the results
appear to be removable, by changing the wedgelet estimator. Suppose we
modify the penalization of partition complexity, so that instead of penalizing
cardinality of a partition only, we take notice also of the size of associated
dyadic blocks in a partition, and penalize the presence of very small blocks
more heavily than large blocks. With an appropriate strategy we can expect
to recoup the associated log factors. Indeed, this is a natural analog of the
‘‘level-dependent thresholding’’ idea that recoups log terms in wavelet thresh-

Ž � �.olding see 20, 22, 3 . Note that we can modify the penalization in this way
while still using a fast tree-pruning algorithm.

9.2. Relations to other work.

� �9.2.1. Breiman�Friedman�Olshen�Stone. The bulk of the CART book 4
deals with the notion of approximation by recursive partitioning in which
‘‘splits’’ can be made only parallel to the axes. However, in a few places, it
also considers more general partitions where ‘‘hyperplane splits’’ are allowed.
The ED-RDP partitions discussed in this paper are instances of such general
CART partitions; however, they obey very special constraints. We restrict

Ž .attention to dyadic partitions only ‘‘� midpoint splits’’ in CARTesian , and
we allow only a restricted set of ‘‘affine splits’’ taken from the edgelet
dictionary, and we allow such affine splits only on terminal nodes. The value
of such restrictions is that they lead to fast algorithms for finding optimal
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partitions within this class; and this class of partitions is already large
enough to get near-optimal approximations. General recursive partitioning
with hyperplane splits seems much too general a model to lead to effective
computational algorithms for finding optimal partitions.

9.2.2. Jones�David�Semmes�Coifman. The edgelet system we have de-
scribed here, and the associated dyadic organization of edge data, is closely

� �related to important recent work in harmonic analysis 26, 10 . Peter Jones
started off this line of research by showing that one could gather information
about approximations to the pieces of a curve defined by intersections with
dyadic boxes�recording the error of approximation of such pieces by line

Žsegments�could be used to characterize curves of finite arclength travel-
.ling-salesman problem . David and Semmes have extended such dyadic-

d Žorganization ideas to R where one dissects a surface into dyadically orga-
.nized pieces and studies approximation by k-planes ; they used such tools to

understand a number of important questions in analysis.
In this paper, we have focused on a very special discrete set of edgels and

showed how to use them to give curves with near-minimax description length.
The goal of minimax description length is somewhat different than minimal
arclength, although there are significant connections. For our noise-removal
purposes it seems to be the description length, rather than arclength, which
matters.

Returning to the theme of the Introduction, there is no doubt that the
harmonic analysis techniques of David and Semmes will prove to have a
variety of applictions to analysis of embedded submanifolds of an ambient
Euclidean space. R. R. Coifman is presently working to fashion workable tools
for computational harmonic analysis of empirical data. A stimulating meeting
organized by Coifman at Yale in December 1996 suggested many potential
application areas.

9.3. Comparison with image processing. The viewpoint in this paper is,
by and large, quite different than the viewpoint one commonly encounters in
the field of image processing. In this section we remark on differences and
connections.

9.3.1. Comparison with edge detection. Existing edge detection methods
in the literature of image processing are monoscale�they are typically based
on some pixel-scale filtering, followed by contour following. The methods
suggested here are explicitly multiscale, and so can involve the use of
‘‘detectors’’ which are of very large scale along an edge. This aspect of our
approach causes profound differences, which can be explained as follows.
Existing edge detectors can be expected to ‘‘work well’’ provided the noise
level is so low that the ‘‘edge is visible’’ at the pixel scale. The approach
developed here will ‘‘work’’ provided the ‘‘edge is obvious’’ at some scale. Here
obvious means: the edge is sufficiently straight over a sufficiently large extent
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that the signal-to-noise ratio of an edgelet-based line segment detector be-
comes appreciably bigger than 1.

9.3.2. About minimax estimation. The philosophy of minimax estimation
is rather foreign to most workers in the image processing literature, and one
can reasonably question whether there is a useful contribution of minimaxity
to workers in that literature.

Here is an example of what we mean: as the reader no doubt sees clearly,
the wedgelets described in this paper are discontinuous. The reconstructions
they give will create bad visual artifacts away from the actual boundary
being estimated�so-called blocking effects. Such artifacts would be unaccept-
able in the image processing context. A worker in image processing might
argue that, if such methods can be near-optimal, then the optimality is itself
suspect.

In our view, this indicates that minimaxity with respect to L2-loss mea-
sures only is a partial goal. A more complete goal would require estimators to
satisfy side conditions, or to be minimax with respect to a wider range of
losses, which include losses imposing certain visual quality requirements.

We are seeking at the moment a better solution which would use smooth
basis elements, obtain near-optimal performance in L2 and in other losses as
well. We expect such a better solution to be based on the ridgelets system

� �deployed in a multiresolution system based on dyadic squares 5 . Ridgelets
involve highly elongated basis elements and when deployed in a dyadic
scheme, they exhibit certain similarities ot the edgelets scheme.

9.3.3. About optimal representation. In the Introduction we claimed that
the problem of minimax estimation and the problem of optimal representa-
tion are closely linked. From that point of view, the results of this paper show
that a certain kind of overcomplete wedgelet system plays the same role for
images with edges that sinusoids and wavelets play for the classes of objects
traditionally studied in the nonparametric smoothing literature.

There is a branch of the ‘‘image analysis’’ literature which is concerned
with issues of optimal representation. Researchers in computational neuro-
science have been trying to determine ‘‘what are the sparse components of
images?’’ In this body of literature, the aim is to perform an analysis of image
data with the goal of uncovering a basis in which typical images have a

� �sparse representation 36 . This is analogous to principal components analy-
sis, only the goal is sparse coefficients rather than uncorrelated coefficients.
To the author’s eye, the computational results which have been uncovered in
this data analysis can be organized in a way reminiscent of the edgelets
system and are most easily understood from the edgelets�wedgelets point of
view.

The companion article ‘‘Sparse Components of Images and Optimal Atomic
Decompositions’’ refers to this interesting work in computational neuro-
science and interprets the computational results as being similar to optimal
decompositions by wedgelets. The empirically optimal representations of
images are very similar to wedgelet decompositions, except that the wedgelets
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are discontinuous while the empirically optimal decompositions seem smooth.
This seems again to indicate that a next goal would be to remove the
discontinuity artifacts from the wedgelets system.
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